
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING LARGE LANGUAGE MODELS TO REASON IN
PARALLEL WITH GLOBAL FORKING TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although LLMs have demonstrated improved performance by scaling parallel
test-time compute, doing so relies on generating reasoning paths that are both
diverse and accurate. For challenging problems, the forking tokens that trigger
diverse yet correct reasoning modes are typically deep in the sampling tree. Con-
sequently, common strategies to encourage diversity, such as temperature scaling,
encounter a worsened trade-off between diversity and accuracy. Motivated by this
challenge, we treat parallel reasoning as a set-of-next-token-prediction problem
and incorporate a set-based global loss into Supervised Fine-Turning (SFT) using
bipartite matching between global forking tokens and unique reasoning traces. We
observe that, whereas naive fine-tuning with multiple reasoning traces collapses
these unique reasoning modes, our proposed method, Set Supervised Fine-Turning
(SSFT), preserves these modes and produces emergent global forking tokens. Ex-
periments on multiple reasoning benchmarks show our SSFT method consistently
outperforms SFT under both pass@1 and cons@k metrics.

1 INTRODUCTION

Large language models have recently improved reasoning by allocating more test-time compute
to generate more tokens before producing the final answer (OpenAI, 2025). However, extended se-
quential scaling can lead to “overthinking”, where performance decreases beyond a certain sequence
length (Ghosal et al., 2025; Chen et al., 2024a). To mitigate this, another scaling dimension based
on repeated parallel sampling and aggregation (Wang et al., 2022; Brown et al., 2024) has shown
success in further boosting reasoning performance. However, these methods rely on LLMs gener-
ating diverse yet correct solutions; as tasks become harder, a mechanism for increasing diversity is
required. Recent work shows that only a minority of tokens in Chain-of-Thought reasoning (Wei
et al., 2022) can act as forking tokens that lead to distinct reasoning modes (Wang et al., 2025), so as
the problem becomes harder and the generation becomes longer, it can become substantially harder
to sample them. Also, common practices to encourage diversity, typically through temperature scal-
ing, inherently entails an diversity-accuracy trade-off, as the forking tokens that trigger diverse yet
correct reasoning modes are typically located deeply within the sampling tree. Moreover, recent
theoretical work also shows that increasing the temperature alone does not necessarily guarantee
greater diversity unless the model is explicitly trained to ensure coverage. (Verine et al., 2025).

Building on these observations, we aim to leverage diverse reasoning traces to train for coverage
(Guo et al., 2025; Google, 2025b). We introduced global forking tokens prior to generate paral-
lel reasoning traces and frame parallel reasoning as a set prediction problem. Specifically, given a
question, an LLM, conditioned on a reserved set of tokens in a chosen ordering, generates M rea-
soning sequences in parallel, each aligned with one of M ground-truth reasoning traces. For each
ordering, we compute the total autoregressive loss across the generated sequences. By enumerat-
ing all possible orderings, we identify the minimum loss, which defines the set language modeling
loss, conditioned on the distinct forking tokens (Equation 3). This formulation naturally incorpo-
rates coverage into the training objective and is capable of learning global forking tokens that can
serve as prompts to trigger reasoning modes that are both diverse and accurate. We operationalize
this idea through our Set Supervised Fine-Tuning (SSFT) framework. Our main contributions are
summarized below. And we will also release source code to support reproducibility.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We introduced global forking tokens and incorporate a set-based loss into SFT using bipar-
tite matching between a set of reserved global forking tokens and diverse reasoning traces
(Section 2; Figure 1). The goal is that, after training with SSFT, the model can initiate
distinct reasoning modes when prompted with different tokens from this set, thus reducing
the dependence on sampling forking tokens mid-generation (Section 2.3; Figure 2).

• We empirically demonstrate that, across multiple reasoning benchmarks, a model fine-
tuned with SSFT outperforms a standard SFT model trained on the same distilled traces
from diverse teacher models, improving Pass@1, Pass@k, and Cons@k (Section 3, Table
1 and Figure 3). We also find that naively fine-tuning using diverse reasoning traces without
the set loss from bipartite matching can result in control tokens initiating the same collapsed
reasoning mode (Figure 5). In contrast, the global forking tokens learned by SSFT reliably
initiate distinct reasoning (Figure 4).

• To facilitate training with variable-size parallel generation, we propose a scalable training
implementation that does not increase VRAM usage. Instead of concatenating diverse
reasoning traces, our algorithm can expand these variable-sized parallel generations along
the batch dimension under distributed training (Appendix A.3).

2 LEARNING GLOBAL FORKING TOKENS VIA SET SUPERVISED FINETUNING

Background on Language Modeling with Reasoning. In language modeling, the goal is to train a
model πθ to approximate the joint distribution over a sequence of word tokens x = {xi}Ti=1 ∈ VT,
where T is the sequence length, and each token is within a finite vocabulary set V . An autore-
gressive model uses the chain rule to represent it as a product of conditionals on the preceding
tokens: πθ(x) =

∏T
t=1 πθ (xt|x<t). This is known as next-token-prediction (NTP) (Radford et al.,

2019). For reasoning tasks, we break the sequence of word tokens into: (1) an input prompt
x = {xt}Tx

t=1, (2) a special token (or a sequence of tokens) g that initiates reasoning, and (3) a
reasoning trace plus the final answer r = {rt}Tr

t=1. To simplify notation, we combine a verifiable
answer and a reasoning trace. A reasoning model autoregressively generates a reasoning path and
the final answer: πθ(r|x, g) =

∏Tr

t=1 πθ (rt|x, g, r<t). To train a reasoning model, Supervised
Fine-tuning (SFT) minimizes the negative log-likelihood of a ground-truth reasoning trace, i.e.,
L(θ) = −Ex,r[

∑
t log πθ(rt|x, g, r<t)].

2.1 PARALLEL REASONING AS SET OF NEXT TOKEN PREDICTION

Problem Setup. In this paper, our goal is not only to instill new reasoning capabilities into a model,
but also to ensure that prompting with a set of reserved special tokens, in parallel with a question,
elicits distinct reasoning traces. We call these global forking tokens g := {g(i)}Ni=1 instantiated
as {<thinki> }Ni=1 tags. We use g(i) interchangeably with <thinki>, depending on context
for clarity. We consider a setting with multiple sources of reasoning traces, obtained at low cost
without human annotation by distilling from diverse teachers, sampling repeatedly, and potentially
filtering with a verifiable metric such as correctness. We adopt this low-cost regime to highlight the
effectiveness of our algorithm, though the method extends naturally to settings with well-annotated
annotated, human-labeled data. So our problem is to (1) learn to do a set of next-token predictions
on multiple distinct yet correct reasoning traces R := {r(j)}Mj=1 in parallel for an input prompt x,
and (2) ensure that distinct global forking tokens can uniquely initiate these distinct traces.

To do this, we make a simple change to the NTP loss, which now has two requirements: (1)
Permutation-invariance: It should not depend on the order of elements in R and g, so we don’t
penalize a trace that incurs high NTP loss under one forking token if the model predicts it well
when conditioned on another. (2) No shared global forking token: We want {g(i)}Ni=1 to uniquely
initiate distinct reasoning traces, so this requirement prevents conditioning on the same g(i) when
generating distinct traces given a question.

To satisfy these requirements, we incorporate a subproblem in language modeling: finding the mini-
mum cost bipartite matching configuration between the left vertices {g(i)}Ni=1 and the right vertices
{r(j)}Mj=1 where the cost of each edge between a left vertex i and a right vertex j, is the NTP loss of
r(j) conditioned on g(i) and an input prompt x. A matching configuration is a set of edges connecting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the left and right vertices where no two edges share a common vertex. Without loss of generality, we
assume N ≥ M to simplify our notation. The total cost involves all vertices on the smaller side of the
bipartite graph, so this allows us to write the summation from 1 to min{N,M}, which equals M un-
der this assumption. We denote a matching configuration as a finite map σ : {1, ...,M} → {1, ...,N}
such that σ(j) = i ⇐⇒ r(j) is paired with g(i). Let SP := {σk}Pk=1 denote all the

(
N
M

)
×M!

configurations of a bipartite graph. The total cost of each configuration represents the compatibil-
ity between {r(j)}Mj=1 and {g(i)}Ni=1 under this unique matching. Figure 1 shows an example of a
matching configuration.

<think 1>/

<think 2>/

<think 3>/

<think 5>/

<think 4>/

<think 6>/

OSS-high:via cyclotomic
polynomials

... \boxed{97}

OSS-medium: ...we
can attempt to factor....not

correct..... \boxed{97}

DeepSeek: ...Wait,
let me check the logic
again..... \boxed{97}

Gemini: ...Check divisibility by 3...
Check divisibility by 5...Consider

 ... Consider ... \boxed{97}

: Find the
least odd prime

factor of

<think 3>

<think 5>

<think 2>

1. Minimize Total Bipartite Matching Loss 2. Minimize Set NTP Loss

<think 6>

 frozen
parameters

Update parameters
Select matched

Figure 1: An illustration of one SSFT training step. Step 1: We first construct the cost ma-
trix by evaluating all pairwise combinations: for each r(j) ∈ {r(1), r(2), r(3), r(4)} and each
g(i) ∈ {g(1), g(2), g(3), g(4), g(5), g(6)}, we compute the NTP loss of r(j) conditioned on g(i)
(Equation (2)). Then we use Hungarian algorithm to find σ̂ that minimizes the total bipartite
matching cost. Here, this minimum is the sum of the losses highlighted in blue, which means
σ̂ = {(g(6), r(1)), (g(5), r(2)), (g(2), r(3)), (g3, r(4))}. Step 2: We optimize θ by backpropagating
the set of NTP losses for r(j), each conditioned on g(σ̂(j)).

2.2 SSFT: MINIMIZING SET OF NTP LOSSES UNDER OPTIMAL BIPARTITE MATCHING

Under this formulation, we propose Set Supervised Fine-Tuning (SSFT), which performs two opera-
tions at each training step: (1) find the minimum-cost bipartite matching that is optimal for uniquely
initiating different reasoning traces (2) and then minimize the NTP losses under the matching con-
figuration to instill diverse reasoning modes conditioned on the matched global forking tokens. We
show our implementation in Algorithm 1.

For the first step, we first compute all the entries in the cost matrix such as the one in Figure 1 and
then apply the Hungarian algorithm (Kuhn, 1955) to efficiently find the optimal σ̂:

σ̂ = argmin
σ∈SP

M∑
j=1

Lmatching

(
g(σ(j)), r(j)

)
, where (1)

Lmatching

(
g(i), r(j)

)
= −sg

(
1

Tr

Tr∑
t=1

log πθ

(
r(j)t |x, g(i), r

(j)
<t

))
(2)

As noted in Equation 2, each matching cost in Equation 1 is the negative log-likelihood of r(j)

conditioned on g(σ(j)) under the current model parameters. Here, sg(·) is stop-gradient, as the
matching process is done by discrete optimization w.r.t. σ, so we can save VRAM by not storing
intermediate activations. We explicitly indicate that length normalization is done to remove biases
toward trace length, so that the matching is driven by semantic content.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

After solving σ̂ for each (x,R), our second step optimizes model parameters θ by backpropagating
on the matching loss in Equation 3. The expectation is replaced by its sample mean over pairs of
(x, {r(j)}Mj=1) in a mini-batch. In practice, we may use only the first L < Tr tokens in Equation
2 to compute the matching cost and find σ̂ when the training dataset is such that these early tokens
reveal sufficient differences. However, we always optimize the matching loss for the full Tr length.

LHungarian(θ) = − E
x,R∼D

 M∑
j=1

Tr∑
t=1

log πθ

(
r(j)t |x, g(σ̂(j)), r

(j)
<t

) (3)

Remarks. The resulting model is not the same as a simple routing of the models independently
trained with the nonoverlapping subsets of these traces. Firstly, SSFT allows positive transfer in
representation learning within {r(j)}Mj=1 even though they are matched to different {g(i)}Ni=1. Sec-
ondly, it is not optimal to distill reasoning traces from the same fixed sources for every question if
the goal is to maximize both diversity and correctness. Our algorithm supports a variable number of
target reasoning traces across training steps, with sources that may also change for each x. Thirdly,
even if the two sets of traces, {r(j)a }Mj=1 for xa and {r(j)b }Mj=1 for xb, are from the same sources,
their optimal configurations σ̂a and σ̂b can still vary because a teacher model can reason differently
under different questions. Lastly, we reserve more global forking tokens than the maximum number
of traces (N > M), and empirically observe that all the forking tokens are being matched throughout
the process. This is because the extra forking tokens can maximally intra-differentiate similar traces.

2.3 INFERENCE WITH LEARNED GLOBAL FORKING TOKENS

Learned Matchings

Inference protocols

Pass@1:

Cons@k:
<think 1> <think 2> <think 3>

<think 5><think 4> <think 6>

<think 1>

<think 1>

<think 2>

<think 3>

<think 5>

<think 4>

<think 6>

Figure 2: Learned matchings
by SSFT-32B in Exp 3, ob-
tained by connecting all edges in
Sp. At test time, for Pass@1,
we prompt with g(i⋆) that has
the most connected edges. For
Cons@k, we augment ith prompt
by <think(i % N)>.

We discuss the inference protocols with N global forking to-
kens.

Inference Process (Cons@k). Our inference protocol with
parallel test-time compute is to prompt ith response with
<think(i%N)> and then do majority voting on their an-
swers. Sharing the KV cache accelerates the generations.

Inference Process (Pass@1). When aggregation is not al-
lowed, we use g(i) that reasons with more flexibility. Inspired
by enumerating dissimilar bipartite matchings to reveal node-
level variation (Blumenthal et al., 2022), we choose the learned
g(i) with largest coverage. Note that this token emerges auto-
matically thanks to SSFT, and the other emerging {g(i)}Ni=1 still
contribute to representation learning and improving Cons@k
with distinct reasoning modes. Concretely, each time an opti-
mal matching σ̂ ∈ {σk}Pk=1 is computed, we increment a count
c(σk); empirically, only a finite subset Sp := {σk}pk=1 ⊆SP

continues to accumulate mass late in training, indicating the sta-
ble learned matchings. We then take the union of their edges,
and select g(i

⋆) that matched to the largest number of distinct
traces based on Equation 4 for Pass@1. Figure 2 shows an ex-
ample of the matchings learned by aggregating all edges in Sp.
More details about Sp

1 are in Appendix A.2.

i⋆ = argmax
i
|
⋃

σ∈Sp

{j|σ(j) = i}| (4)

3 EXPERIMENTS

We address the following research questions through experiments: (RQ1): In terms of Pass@1 and
Cons@k accuracy, how does a model trained with SSFT perform on reasoning benchmarks? (RQ2):
Does finding the optimal bipartite matching matter in reasoning performance? (RQ3): Does training

1We choose the subscripts p and P to emphasize that Sp is a subset of SP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with diverse reasoning traces yield better accuracy and coverage under SSFT compared to standard
SFT with temperature scaling? (RQ4): Does prompting with distinct {g(i)}Ni=1 genuinely make a
model generate diverse reasoning traces? (RQ5): Is the performance gain from SSFT conditioned
on the traces generated by our procedure and on a high-quality small dataset?

3.1 EXPERIMENT SETUP

Training Dataset. We use the 1,000 questions from s1k dataset Muennighoff et al. (2025). In addi-
tion to the R1 (Guo et al., 2025) and Gemini Flash (Google, 2024) traces provided by s1, we also
use Claude Opus 4.0/4.1 (Anthropic, 2025) and GPT-OSS-120B (Agarwal et al., 2025) with high
and medium reasoning effort to obtain a pool of distilled targets for the 1,000 questions. For each
question, we generate two traces per source to populate the pool. We then sample four traces from
this pool. We call this s1k-4mixed-reasoning dataset.

Training Details. We fine-tune Qwen2.5-32B-Instruct (Yang et al., 2025a) for six epochs with a
context length of 32,768. We reserve N = 6 global forking tokens and use M = 4 targets per
question. To find the optimal bipartite matching for each input prompt, we consider only the first
1,000 tokens when computing the matching cost in Equation 2 for computational efficiency. We
call this model SSFT-32B. We also include SSFT but choose a random bipartite matching at each
step to fine-tune SSFT-32B (random σ). Exact details on the pool of diverse distillation targets and
selection procedure, as well as training hyperparameters, are provided in Appendix A.4.

Baselines. All of our baselines use Qwen2.5-32B-Instruct as their base model, and only train on
the 1k questions. Our baselines include two groups: (Single-Target △) models trained with one
trace per question and (Multi-Target ⋆) models trained with four traces per question. For (Single-
Target), we include s1.1-32B (Muennighoff et al., 2025), which uses 1k DeepSeek-R1 traces. We
also fine-tuned an SFT-OSS-distill-32B baseline that trains only on the 1k GPT-OSS traces with high
reasoning effort, as these traces achieved the highest correctness on the 1k questions based on an
evaluation by Claude 3.5 Sonnet comparing each attempt against the reference answer. For (Multi-
Target), we use our s1k-4mixed-reasoning to fine-tune SFT-mixed-distill-32B using standard SFT
with one <think> token, duplicating each question and treating the four traces as four individual
data points. We also include Multiverse-32B (Yang et al., 2025b), which prompts Gemini 2.5-Pro
(Google, 2025a) to transform 1k sequential CoTs into parallel CoTs as their training data.

Evaluation Setup. Our evaluation tasks consist of AIME24/AIME25 (Ye et al., 2025), MATH-
500 (Hendrycks et al., 2021), and GPQA-Diamond (Rein et al., 2024). We use LightEval (Habib
et al., 2023) as our evaluation framework with generation configurations: temperature=0.7 used
in (Guha et al., 2025), top p=0.95, max length=32768. For Pass@1 accuracy without any parallel
test-time compute, we select learned g(1) for SSFT-32B and g(4) for SSFT-32B (random σ) based on
Equation 4. For each Pass@1 accuracy, we compute the average performance over 32 generations.
For Cons@6, which applies each of the six global forking tokens once in our method and uses six
generations for the baselines, we compute the average over 11 sets of generations to reduce variance
in the results. We refer to this as Pass@1 of Native Cons@6 using a similar terminology as the
concurrent work (Wen et al., 2025). Appendix A.5 presents an example of the parallel generations.

3.2 EVALUATING SSFT ON REASONING BENCHMARKS

For RQ1, we see in Table 1 that SSFT delivers the best Pass@1 accuracy, 64.06 on AIME24 and
58.13 on AIME25, outperforming SFT-mixed-32B by 8.33% and 6.57%, respectively. We also
observe consistent improvements on all four tasks under parallel test-time compute at two scales,
Cons@6 and Cons@32, over SFT-mixed-32B, which was trained on the same reasoning traces.
Some notable results are Cons@6 = 73.94%,Cons@32 = 86.67% on AIME25. To answer RQ2,
we observe consistent improvements over SSFT-32B (random σ), with especially strong gains at
Cons@6 on AIME25, where effectiveness with few parallel generations is critical. As shown later in
Figures 4 and 5, optimal bipartite matching is essential for preventing collapsing reasoning modes.
For RQ3, we compare our method against SFT-mixed-32B under various k in Pass@k accuracy with
32 generations to assess generation coverage. Figure 3 shows that SSFT achieves higher coverage
across nearly all values of k. SFT-mixed-32B requires more allowed attempts and higher temper-
ature to match the coverage of SSFT at the cost of lowering its Pass@1 and Cons@6 accuracy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

AIME 2024 AIME 2025 MATH-500 GPQA-D Average

Pass@1: Average performance of individual generations

Qwen2.5-32B-Instruct △ 15.80 10.40 80.40 47.00 38.40
s1.1-32B △ 54.79 44.27 92.16 62.12 63.34
Multiverse-32B ⋆ 53.80 45.80 91.80 60.70 63.03
SFT-OSS-distill-32B△ 57.82 48.75 89.54 60.06 64.04
SFT-mixed-distill-32B⋆ 55.73 51.56 88.36 57.50 63.29
SSFT-32B (random σ) ⋆ 61.77 55.10 89.95 62.28 67.28
SSFT-32B ⋆ 64.06 58.13 90.02 60.39 68.15

Pass@1 of Native Cons@6: Average performance of majority voting with 6 parallel generations

s1.1-32B △ 70.30 53.33 95.60 61.45 70.17
SFT-OSS-distill-32B△ 72.12 65.45 95.47 61.52 73.64
SFT-mixed-distill-32B⋆ 72.42 70.91 92.10 57.32 73.19
SSFT-32B (random σ) ⋆ 73.03 67.58 95.67 61.87 74.54
SSFT-32B ⋆ 75.45 73.94 96.47 63.05 77.23

Cons@32: Majority voting performance with large number of parallel generations

s1.1-32B △ 73.33 63.33 94.80 60.61 73.02
SFT-OSS-distill-32B△ 76.66 73.33 96.00 61.60 76.90
SFT-mixed-distill-32B⋆ 80.00 73.33 96.20 60.61 77.54
SSFT-32B (random σ) ⋆ 80.00 80.00 95.60 62.63 79.56
SSFT-32B ⋆ 83.33 86.67 96.80 61.62 82.11

△ indicates training with single-target data and ⋆ indicates training with multi-target data.

Table 1: Performance of SSFT compared to baselines on four reasoning tasks, reported at Pass@1,
Cons@6, and Cons@32. SSFT selects <think1> for Pass@1 and replaces 6 generations with 6
generations prompted by distinct <thinki> for Cons@k. We observe consistent improvements
over (i) SFT-OSS-distill-32B, which uses the 1k OSS-high traces; (ii) SFT-mixed-distill-32B, which
uses the four mixed traces but treats them as individual data; and (iii) SSFT-32B (random σ), which
trains using Equation 3 but with a randomly chosen σ.

1 2 4 6 8 16 32
k (log scale)

55

60

65

70

75

80

85

90

95

Pa
ss

@
k

(%
) Cons@6: 72.42%

Cons@6: 71.52%

Cons@
6: 70.94%Cons@

6: 73.03%

Cons@6: 75.45%

SSFT-32B, temp=0.7
SSFT-32B-random, temp=0.7
SFT mixed distill 32B, temp=0.7
SFT mixed distill 32B, temp=0.8
SFT mixed distill 32B, temp=1.0

(a) AIME24

1 2 4 6 8 16 32
k (log scale)

50

60

70

80

90

Pa
ss

@
k

(%
) Cons@6: 70.30%

Cons@6: 69.09%

Cons@
6: 63.94%

Cons@
6: 67.58%

Cons@6: 73.94%

SSFT-32B, temp=0.7
SSFT-32B-random, temp=0.7
SFT mixed distill 32B, temp=0.7
SFT mixed distill 32B, temp=0.8
SFT mixed distill 32B, temp=1.0

(b) AIME25

Figure 3: Coverage of SSFT compared to SFT-mixed-distill-32B with temperature scaling, reported
at Pass@k. For convenience, we also report the Cons@6 accuracy next to each line. In AIME25,
SFT-mixed-distill-32B needs to raise the inference temperature to 1 and use more attempts to match
the coverage at the cost of lowering its Pass@1 and Cons@6 accuracy, further widening the gaps.

3.3 EVALUATING PARALLEL REASONING DIVERSITY AND LEARNED MATCHINGS

Addressing RQ4, we show that our global forking tokens genuinely initiate distinct reasoning traces
and offer a new mechanism for leveraging test-time compute.

Emerging Diverse Reasoning Modes. Using the Cons@6 results in Table 1, we form six sets of
generations, each prompted by a distinct g(i). For each set, we show the average accuracy and the
distribution of thinking-token counts: Figure 4 for SSFT with optimal bipartite matching and Figure
5 for SSFT with random matching. Reasoning length: Length partially indicates the diversity in
reasoning, and we see clear differences for SSFT with optimal matching, despite the absence of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

think1 think2 think3 think4 think5 think6
0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r

of
 t

hi
nk

in
g

to
ke

ns

Avg Acc
65.15%

Avg Acc
65.45%

Avg Acc
64.85%

Avg Acc
66.97%

Avg Acc
52.12%

Avg Acc
61.52%

AIME24 Cons@6=75.45%: Avg stats (SSFT-optimal)

think1 think2 think3 think4 think5 think6
0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r

of
 t

hi
nk

in
g

to
ke

ns

Avg Acc
59.39%

Avg Acc
60.30%

Avg Acc
57.27%

Avg Acc
59.09%

Avg Acc
49.09%

Avg Acc
55.45%

AIME25 Cons@6=73.94%: Avg stats (SSFT-optimal)

Figure 4: (SSFT, optimal matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>, . . . ,<think6>.

think1 think2 think3 think4 think5 think6
0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r

of
 t

hi
nk

in
g

to
ke

ns

Avg Acc
61.52%

Avg Acc
61.82%

Avg Acc
61.21%

Avg Acc
61.82%

Avg Acc
62.12%

Avg Acc
61.21%

AIME24 Cons@6=73.03%: Avg stats (SSFT-random)

think1 think2 think3 think4 think5 think6
0

5000

10000

15000

20000

25000

30000

35000
N

um
be

r
of

 t
hi

nk
in

g
to

ke
ns

Avg Acc
56.06%

Avg Acc
55.15%

Avg Acc
54.24%

Avg Acc
55.15%

Avg Acc
53.64%

Avg Acc
54.85%

AIME25 Cons@6=67.58%: Avg stats (SSFT-random)

Figure 5: (SSFT, random matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>, . . . ,<think6>.

hand-crafted matching rule or information about these traces. The consistency of these distributions
across AIME24 and AIME25 indicates the differences is not from randomness, whereas randomly
assigning a <thinki>, as in concurrent work (Wen et al., 2025), does not yield clear or consistent
differences in reasoning length, as shown in Figure 5. Performance: After finetuning with random
matching, prompting with a distinct <thinki> shows no meaningful impact (≈ 61% on AIME24
and ≈ 55% on AIME25). With optimal matching, SSFT elicits distinct reasoning modes initiated
by <think1>, . . . ,<think4> that reach around 65% on AIME24 and ≥ 59% on AIME25, with
different lengths. Although <think5> and <think6> are weaker due to shorter reasoning modes,
the average of these and, especially, Cons@6 performance improve consistently with them.

Visualization of Learned Matchings. We observe in Figure 2 that some g(i) ∈ g from SSFT-
32B have unique configuration of matched edges with {r(j)}4j=1. This is a positive indication
that {g(i)}6i=1 are likely to initiate distinct reasoning modes. We hypothesize that {g(i)}Ni=1 can
still yield a unique edge-matching configuration even if a subset of {r(j)}4j=1 are difficult to dis-
tinguish. For interpretability, we fine-tune using the same four teacher models for each x: GPT-
OSS high, medium, R1, and Gemini. We call this dataset s1k-4teachers-reasoning dataset, and
ask whether SSFT associate a unique g(i) to the Gemini and R1 traces which have easily identifi-
able reasoning patterns, and then have the rest matched to OSS-high/OSS-medium traces in differ-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bipartite Matching Config Index (0..23)
0

40
80

120
160

Tra
ini

ng
 St

ep

0

15

30

45

60

Cu
m

ul
at

iv
e

co
un

ts
: o

pt
im

al

(a) SSFT under random matching
({g(i)}4i=1, {r(j)}4j=1). No

correlations learned Sp = SP

22 23

Bipartite Matching Config Index (0..23)
0

40
80

120
160

Tra
ini

ng
 St

ep

0

150

300

450

600

Cu
m

ul
at

iv
e

co
un

ts
: o

pt
im

al

(b) SSFT under optimal matching
({g(i)}4i=1, {r(j)}4j=1).

Sp = {22, 23}

62 11
0

13
4

18
0

20
4

23
0Bipartite Matching Config Index (0..359)

0

40

80
120

160

Tra
ini

ng
 St

ep

0

30

60

90

120

Cu
m

ul
at

iv
e

co
un

ts
: o

pt
im

al

(c) SSFT under optimal matching
({g(i)}6i=1, {r(j)}4j=1). Sp =
{62, 110, 134, 180, 204, 230}

Figure 6: Cumulative counts of σk ∈ SP computed as optimal over training. Note that SP and
Sp are defined in Sections 2.1 and 2.3, respectively. Front axis: matching configuration index k.
Depth: training step t. Bar height is the cumulative counts. These are the evolution of matchings
during training 3 Qwen-32B-Instruct models under 3 bipartite matching settings. In this case study,
the {r(j)}4j=1 are always (GPT-OSS-high, GPT-OSS-med, R1, Gemini) for each question. Note that
Random matching method does not minimize Eqn 3 under optimal matching, but we track it. We
observe Sp = SP with random matching, meaning no correlations learned. But by optimizing
Hungarian loss, we see the emergence of Sp ⊂SP.

ent ways (i.e. only matched to OSS-high, only matched to OSS-med, and matched to both). We
track source indices only for evaluation; the model still receives an unordered set of traces with
no source information for each question. We study 3 bipartite matching settings for SSFT. Fig-
ure 6 shows the evolution of matchings learned under these 3 hyperparameters SSFT (a) random
matching with four reserved g(i), (b) optimal matching with four reserved g(i), and (c) optimal
matching with six reserved g(i). Initially, all the configurations σ ∈ SP accumulate mass as
there is no correlations between g sand {r(j)}Mj=1. Figure 6a shows SSFT under random match-
ing does not shrink the size of configs computed as optimal, meaning that no correlations are
learned between {g(i)}4i=1 and {r(j)}4j=1. By contrast, Figure 6b and Figure 6c show the emer-
gence of only a strict subset of matching configurations in SP. This indicates some correlations
between {g(i)}Ni=1 and {r(j)}Mj=1 are indeed learned through SSFT. We first visualize the learned
matchings of the model with four g(i) in Figure 7b. We observe that g(1) and g(2) are uniquely
matched to the R1 and Gemini traces, showing that SSFT can indeed uniquely associate g(i) to
sufficiently diverse reasoning traces. Now to confirm our previous hypothesis, we see the unique
learned matchings (g(3), (OSS-high, OSS-med)), (g(4),OSS-med). Furthermore, by connecting all
the edges in Sp from SSFT with 6 forking tokens (Figure 6c), we also see unique learned match-
ings (g(3),OSS-high), (g(4),OSS-med), (g(5), (OSS-med,OSS-high)) in Figure 7c. This confirms
that the global forking tokens can identify unique correlations even among highly similar traces.

3.4 ABLATION STUDY: REMOVING HIGH QUALITY SMALL DATASET

To test whether our empirical gains are conditioned on the traces generated by our procedure and
on a highly optimized small dataset (Muennighoff et al., 2025), we fine-tune on a public dataset
that already provides sufficient reasoning traces per question: the 93k math set of Face (2025) (2-4
traces per question). Because this dataset has been successful for fine-tuning Qwen2.5-Math-7B, we
adopt that base model and compare SSFT against SFT trained on all available traces. Details on the
hyperparameters are in Appendix A.4.4. Addressing RQ5, Table 2 shows consistent improvements
in both Pass@1 and Cons@32. The results indicate the SSFT is effective for larger sized public
dataset with less diverse reasoning traces.

4 RELATED WORK

Test-time Scaling. There has been a surge of work fine-tuning LLMs to reason longer, using re-
inforcement learning for frontier models (OpenAI, 2024; Shao et al., 2024; xAI, 2025; Yang et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

AIME 2024 AIME 2025 MATH-500 GPQA-D

Model Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32

Qwen2.5-Math-7B-Instruct 10.42 20.00 9.48 23.33 81.87 87.40 30.29 30.30
SFT-OpenR1-93k-7B 46.15 66.67 34.17 50.00 86.62 90.20 46.35 47.98
SSFT-OpenR1-93k-7B 51.25 73.33 35.52 56.66 89.74 93.60 46.86 48.90

Table 2: Performance of SSFT versus SFT trained solely on publicly available distillation targets.
The setup uses the 93k math questions from Face (2025) with Qwen2.5-Math-7B as the base model.
SFT-OpenR1-93k-7B uses the same distillation targets as SFT-mixed-distill-32B in Table 1.

2025a) and supervised fine-tuning for smaller ones (Muennighoff et al., 2025; Hu et al., 2025).
These methods enable LLMs to improve reasoning by allocating more test-time compute to se-
quential, iterative refinement such as self-reflection (Guo et al., 2025; Liu et al., 2025). However,
extended sequential reasoning can be more sensitive to the order of reasoning steps and may result
in failures (Chen et al., 2024b), and performance can start to degrade beyond a certain length due
to “overthinking” (Ghosal et al., 2025). Our goal is to study the effective use of diverse reasoning
traces to fine-tune small language models, essential for agentic AI (Belcak et al., 2025).

Parallel Reasoning. Parallel scaling methods such as self-consistency (Wang et al., 2022) and Best-
of-N (Lightman et al., 2023) improve LLM performance by generating multiple reasoning paths in
parallel and aggregating them. These methods fundamentally require choosing a temperature that
can generate diverse reasoning paths, but a recent theoretical work shows that increasing temperature
can sometimes fail to increase diversity if language models are not trained towards coverage (Verine
et al., 2025). Other search-based methods such as Monte Carlo tree search (MCTS) (Zhang et al.,
2024) and Tree of Thoughts (ToT) (Yao et al., 2023) apply heuristic-guided search with an external
verifier to do more deliberate search to increase the coverage (Yao et al., 2023; Zhang et al., 2024).
However, their dependence on heuristics and domain-specific knowledge can limit their applicable
tasks. Regarding training LLMs with parallel reasoning traces, Yang et al. (2025b) proposes training
with parallel CoTs decomposed from sequential CoTs, and our concurrent work Wen et al. (2025)
proposes to train with multiple reasoning traces distilled from teacher models. These works show
native parallel scaling can surpass sequential scaling within certain token limits. However, we aim to
show that training on diverse distilled traces with our set language modeling loss enables the model
to learn global forking tokens that trigger distinct reasoning modes, improving Pass@1 and Cons@k
over baselines fine-tuned on the same dataset, whether on subsets or the full set.

Set-based Global Loss in Deep Learning. DETR introduces end-to-end object detection with a
set global loss (Carion et al., 2020; Minderer et al., 2022), whose success in parallel bounding-box
prediction inspires our approach. We are the first to extend this to language modeling: while DETR
predicts a set of tokens in parallel to match a list of bounding boxes, we predict a set of sequential
reasoning paths initiated by global forking tokens and assess the matchings based on autoregressive
losses. We adapt the set-based loss with autoregressive (AR) models, rather than diffusion-based
models (Nie et al., 2025), because AR models achieve superior reasoning performance.

5 CONCLUSION

In this work, we demonstrate that diverse reasoning traces can be leveraged to learn global forking
tokens which serve as prompts to initiate distinct reasoning modes that are both diverse and accurate.
We proposed Set Supervised Fine-Turning (SSFT), which employs bipartite matching between re-
served global forking tokens and diverse reasoning traces to compute a set-based language modeling
loss. We show that models trained with SSFT yields improvements in both Pass@k and Cons@k
accuracy compared to standard supervised fine-tuning (SFT) with temperature scaling. The pro-
posed training method also improves the usage of multi-target data and avoids collapsing distinct
reasoning modes, which is especially helpful in the context of distilling from multiple teacher mod-
els. For future work, we plan to further investigate how performance scales with a larger number of
distillation targets and reserved forking tokens, which jointly determine the size of the underlying
bipartite graph.

Reproducibility Statement. To ensure reproductibility of our work, we provide detailed hyper-
parameter settings in A.4.2, and SSFT algorithm implementations in A.3. We have also included the
source code and data in the supplementary materials, which will be open-sourced upon acceptance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Anthropic. Claude 4.1 Opus. https://claude.ai, 2025. Generative AI Chatbot. Response to
a prompt on [Date of Access].

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
ai. arXiv preprint arXiv:2506.02153, 2025.

David B. Blumenthal, Sébastien Bougleux, Anton Dignös, and Johann Gamper. Enumerating dis-
similar minimum cost perfect and error-correcting bipartite matchings for robust data matching.
Inf. Sci., 596:202–221, 2022. URL https://doi.org/10.1016/j.ins.2022.03.017.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024a.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reason-
ing with large language models. In Forty-first International Conference on Machine Learning,
2024b. URL https://openreview.net/forum?id=4zAHgkiCQg.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does think-
ing more always help? understanding test-time scaling in reasoning models. arXiv preprint
arXiv:2506.04210, 2025.

Google. Gemini 2.0 flash thinking mode (gemini-2.0-flash-thinking-exp-1219), December
2024. URL https://cloud.google.com/vertex-ai/generative-ai/docs/
thinking-mode.

Google. Gemini 2.5 (gemini-2.5-pro-preview). https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/, 2025a.
Accessed: 2025-04-22.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking, March 2025b.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://claude.ai
https://doi.org/10.1016/j.ins.2022.03.017
https://openreview.net/forum?id=4zAHgkiCQg
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
training. arXiv preprint arXiv:2410.10989, 2024.

Xiao Hu, Xingyu Lu, Liyuan Mao, YiFan Zhang, Tianke Zhang, Bin Wen, Fan Yang, Tingting Gao,
and Guorui Zhou. Why distillation can outperform zero-rl: The role of flexible reasoning. arXiv
preprint arXiv:2505.21067, 2025.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955. doi: https://doi.org/10.1002/nav.3800020109. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European conference on computer vision, pp. 728–755.
Springer, 2022.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

OpenAI. Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-03-and-04-mini/, 2025.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://arxiv.org/abs/2305.20050
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-03-and-04-mini/
https://openai.com/index/introducing-03-and-04-mini/
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexandre Verine, Florian Le Bronnec, Kunhao Zheng, Alexandre Allauzen, Yann Chevaleyre, and
benjamin negrevergne. Improving diversity in language models: When temperature fails, change
the loss. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=RsyMfsqzeG.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Hao Wen, Yifan Su, Feifei Zhang, Yunxin Liu, Yunhao Liu, Ya-Qin Zhang, and Yuanchun Li. Para-
thinker: Native parallel thinking as a new paradigm to scale llm test-time compute. arXiv preprint
arXiv:2509.04475, 2025.

xAI. Grok 3 beta the age of reasoning agents. https://x.ai/news/grok-3, February 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Xinyu Yang, Yuwei An, Hongyi Liu, Tianqi Chen, and Beidi Chen. Multiverse: Your language mod-
els secretly decide how to parallelize and merge generation. arXiv preprint arXiv:2506.09991,
2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immedi-
ate evaluation framework for advanced mathematical reasoning. https://github.com/
GAIR-NLP/AIME-Preview, 2025. GitHub repository.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024.

12

https://openreview.net/forum?id=RsyMfsqzeG
https://openreview.net/forum?id=RsyMfsqzeG
https://x.ai/news/grok-3
https://github.com/GAIR-NLP/AIME-Preview
https://github.com/GAIR-NLP/AIME-Preview

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

In this appendix, we provide details omitted from the main text.

A.1 LLM USAGE IN PAPER

We used ChatGPT (OpenAI, GPT-5) in September 2025 for occasional language polishing only.
This is done when we really wanted to make sure there are no grammatical errors in a few sen-
tences. No text, code, experiment results, or figures were generated by the LLM. We made our own
hypothesis, completed all technical content on our own, and made our conclusions. We also verified
all outputs by ourselves. The occasional grammar check is done by typing into LLM chatbox.

A.2 LEARNED MATCHINGS BETWEEN GLOBAL FORKING TOKENS AND TRACES

Initially, any of the bipartite matching configuration σk ∈ SP can be computed as optimal, as the
reserved global forking tokens {g(i)}Ni=1 have no specific correlations with these traces {r(j)}Mj=1.
This can be observed in Figures 6 and 7 that c(σk), the count of configuration σk being optimal
during training, uniformly increases on all configuration indexes. However, as training goes with
SSFT, we notice only a subset of SP accumulates mass. This indicates there are some unique
correlations learned between {g(i)}Ni=1 and {r(j)}Mj=1. This subset is denoted as Sp = {σk}pk=1,
and we call the unique edges in Sp as learned matchings.

A.2.1 HOW TO CHOOSE THE GLOBAL FORKING TOKEN FOR PASS@1

To find Sp, we can simply track which configurations σ still accumulate mass in the last epoch.
Then we can connect all the unique edges in Sp to visualize learned matchings. However, multiple
global forking tokens may share the maximum number of connected edges in the learned matchings.
To break the tie, we treat the counts as edge weights and select g(i) with the largest weighted degree.
We provide this implementation in our code.

A.2.2 MORE VISUALIZATIONS ON LEARNED MATCHINGS

<think 1>

<think 2>

<think 3>

<think 4>

OSS-high

OSS-medium

R1

Gemini

(a) Visualization of learned
matchings after SSFT with random

matching. The fully connected
graph shows no correlations were

learned

<think 1>

<think 2>

<think 3>

<think 4>

OSS-high

OSS-medium

R1

Gemini

(b) Visualization of learned
matchings after SSFT with optimal
matching between {g(i)}4i=1 and

{r(j)}4j=1

<think 1>

<think 2>

<think 3>

<think 5>

<think 4>

<think 6>

OSS-high

OSS-
medium

DeepSeek

Gemini

(c) Visualization of learned
matchings after SSFT with optimal
matching between {g(i)}6i=1 and

{r(j)}4j=1

Figure 7: These learned matching visualizations are obtained by connecting edges in the subset of
configurations {σk}pk=1 that still accumulate mass towards the end of training in Figure 6. These
models are fine-tuned using the same GPT-OSS-high, GPT-OSS-medium, R1, and Gemini traces for
each question, so we can better interpret the learned matchings

A.3 ALGORITHM: SSFT IMPLEMENTATION

Algorithm 1 presents the core SSFT implementation with optimal bipartite matching. In practice,
the nested-loop computation used to populate C is fully vectorized and can be executed in a

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

single forward pass. This does not blow up VRAM because (i) we do not store activations for
these cost evaluations (no backprop through matching costs), and (ii) We only need to use the first
TL < Tr NTP losses to compute the matching cost, as the NTP loss over the first few thousand
tokens can already differentiate many reasoning traces in terms of their modes. Nevertheless, our
code also supports matching over the full Tr tokens by chunking the computation into a few batches,
so this step does not become a VRAM bottleneck. Fine-tuning on 1k questions with 4 traces each,
SSFT (optimal matching) took 6.5 h for 6 epochs, compared to 6.1 h for standard SFT, adding only
a small overhead.

The primary VRAM bottleneck in SSFT remains the backpropagation Step 8, regardless of whether
we use optimal or random matching, because the effective batch size scales with M. To mitigate this,
we split the backward pass into several gradient-accumulation steps. Although our experiments use
the same number of reasoning traces per question, we also support variable number of targets using
our queue-based batching in Algorithm 2. The complication arises when using distributed training
with a variable-sized batch, as different processes require the same per-device batch size to perform
collective operations. This is mitigated by padding with PAD” sequences to align batch sizes. Our
implementation minimizes the number of “PAD” sequences by storing a variable number of targets
in a queue and dequeuing multiple items to form a per-device global batch, so smaller batches can
be stitched together instead of always being padded.

A.4 TRAINING DETAILS

A.4.1 TRAINING DATASETS

32B experiments with questions from s1(Main): We explain the process of generating our training
dataset for experiments in Table 1, Figure 3, Figure 4, Figure 5, Figure 6. First, we use the 1000
questions from s1 (Muennighoff et al., 2025) and populate a pool of reasoning traces by distilling
from GPT-OSS-120B-high reasoning, GPT-OSS-120B-medium reasoning, DeepSeek R1, Gemini
Flash2.0 Thinking, and Claude4/4.1. We use temperature 1.0, maximum length of 32768, and sets
high reasoning effort unless specified. We generate two traces per teacher model. We use Claude3.5
Sonnet to extract the answer from the distilled solutions and compare with the ground-truth answer.
The correctness of these distilled traces are shown in 3.

For s1k-4mixed-reasoning dataset, we sample 4 traces per question from this pool, so the dataset
consists of 1000 questions, each paired with 4 reasoning traces. This dataset was used to fine-tune
SSFT-32B, SSFT-32B (random σ), and SFT-mixed-distill-32B.

For fine-tuning SFT-OSS-distill-32B model, we only use the 1000 traces from “Run1” GPT-OSS-
120B with high reasoning effort.

For obtaining the visualizations in Figure 6 and Figure 7, we fine-tune models using the same teacher
models for all 1000 questions. we always choose the 4 traces from “Run1” of GPT-OSS-120B-high,
GPT-OSS-120B-medium, DeepSeek R1, and Gemini Flash2.0 Thinking. As mentioned in Section
3.3 and Figure 6, we fine-tune under 3 bipartite matching hyperparameters to conduct this case study.

GPT-OSS-
120B-high

GPT-OSS-
120B-medium

DeepSeekR1 Gemini
Flash2.0
Thinking

Claude
Opus4/4.1

Run1 796/1000 769/1000 620/1000 538/1000 656/1000
Run2 785/1000 753/1000 641/1000 545/1000 647/1000

Table 3: The number of correct reasoning traces distilled for the 1,000 questions in s1 by different
teacher models. This evaluation is done by Sonnet comparing the predictions and the ground-truth
answers. We see that GPT-OSS has the highest accuracy for s1 dataset.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Set Supervised Fine-tuning (SSFT)

Require: • πθ: base model
• N: Number of global forking tokens {g(i)}Ni=1
• D: Dataset with (at most) M reasoning traces per question
• B: Global batch size
• TL: The first TL number of tokens to match in matching cost (Equation 5).

Ensure: Output πθ

1: for each training step do
2: for k = 1, ...,B do
3: Sample an input prompt and the corresponding reasoning traces (xk, {r(j)k }Mj=1) ∼ D
4: Initialize cost matrix C ∈ RN×M

5: for i = 1, ...,N do
6: for j = 1, ...,M do
7: Compute the matching cost between g(i) and r

(j)
k by Equation 5.

Lmatching

(
g(i), r

(j)
k

)
= −sg

(
1

TL

TL∑
t=1

log πθ

(
r(j)k,t|xk, g(i), r(j)k,<t

))
(5)

8: Store the matching cost in C.

C(i, j) = Lmatching

(
g(i), r(j)k

)
(6)

9: end for
10: end for
11: Compute optimal matching σ̂k between {g(i)}Ni=1 and {r(j)k }Mj=1. Hungarian algorithm

(Kuhn, 1955) can be applied to C to efficiently compute Equation 7 (Equation 1).

σ̂k = argmin
σ∈SP

M∑
j=1

C(σ(j), j) (7)

12: end for
13: Compute the empirical set language modeling loss (Equation 8):

LHungarian(θ) = −
1

B

B∑
k=1

 M∑
j=1

Tr∑
t=1

log πθ

(
r(j)k,t|xk, g(σ̂k(j)), r

(j)
k,<t

) (8)

14: Update model parameters θ using gradients∇θLHungarian(θ)
15: end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Queue-based Distributed SSFT with variable number of traces for each question

Require: • πθ: base model
• N: Number of global forking tokens {g(i)}Ni=1
• D: Dataset with (at most) M reasoning traces per question, variable m number of traces per

question
• B: Global batch size
• TL: The first TL number of tokens to match in matching cost (Equation 5).
• b: Original per-device global batch size (b ≥ M), This is “micro batch size*original grad

accumulation steps”
Ensure: Output πθ

1: for each epoch do
2: Initialize Queue Q for storing a sequence of (xk, {r(j)k }mj=1) where m is a variable number

that differs between input questions and different processes (GPUs)
3: Initialize Queue q for storing a sequence of sizes of sets m.
4: for every (xk, {r(j)k }mj=1) ∈ D do
5: Q← Q.enqueue((xk, {r(j)k }mj=1))
6: q ← q.enqueue(m)
7: all q list = All-gather(q)
8: Initialize list temp batch
9: while All processes have at least b sequences based on all q list do

10: while temp batch does not have at least b sequences do
11: temp batch← temp batch.append(Q.dequeue())
12: q.deque()
13: end while
14: compute the the maximum per device global batch size bmax currently in all pro-

cesses using all q list (inferred, no collective operation)
15: Pad temp batch to size bmax by appending “pad sequences” as needed.
16: Update all entries in all q list based on inferred usage
17: Perform one SSFT training step, SSFT (πθ, temp batch, bmax)
18: end while
19: end for
20: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4.2 TRAINING HYPERPARAMETERS

For consistency, we use Qwen2.5-32B-Instruct (Yang et al., 2025a) as the base model for all of our
32B experiments. We use standard fine-tuning hyperparameters: we train for 6 epochs with a global
batch size of 32, which is derived from 4 gradient accumulation steps and distributed training with
8 GPUS (4 × 8 = 32). This results in 756 gradient steps. The maximum sequence length is set
to 32,768. We train with bfloat16 with a learning rate of 1e − 5 warmed up linearly for 5% and
then decayed to 0 using a cosine schedule. We choose AdamW optimizer (Loshchilov & Hutter,
2017) with β1 = 0.9, β2 = 0.95, and weight decay 1e− 4. We only backpropagates the completion
loss, which is the loss on reasoning traces and the answers. Fine-tuning SSFT-32B plus loggings
took 6.5 hours on 8 NVIDIA B200 GPUs using PyTorch FSDP, Liger Kernel (Hsu et al., 2024) for
fused cross entropy loss, and FlashAttention-2 (Dao, 2023) for fused attention computation. Fine-
tuning SSFT-32B (random σ) took 6.3 hours, and Fine-tuning SFT-mixed-distill-32B took 6.1
hours. Even our baseline SFT-OSS-distill-32B with only one trace per question, and our attempt to
reproduce s1.1 took 1.66 hours, which is longer than the time reported by Muennighoff et al. (2025).
This is due to using 8 GPUs instead of 16 GPUs, hardware and package differences. When training
with s1k-4mixed-reasoning, we added one extra epoch from 5 epochs to 6 epochs, since we have
4x reasoning traces, but we did not linearly increase the number of epochs, as these traces can be
similar, and the number of distinct questions is still 1,000. Overall, we made sure all of our models
are fine-tuned with consistent hyperapameters.

A.4.3 VISUALIZATION OF SSFT TRAINING DYNAMICS

Figure 8 shows the standard training dynamics of SSFT with optimal bipartite matching. The result-
ing model is SSFT-32B. The loss plotted here is Equation 3.

0 200 400 600
Training Steps

0.1

0.6

1.1

Lo
ss

Training Loss

0 200 400 600
Training Steps

0.05

0.50

1.05

Le
ar

ni
ng

 R
at

e

×10 5
Learning Rate Schedule

0 200 400 600
Training Steps

0

1

2

3

Gr
ad

ie
nt

 N
or

m
Gradient Norm

Figure 8: Training dynamics of SSFT-32B on s1k-4mixed-reasoning

Figure 9 shows the evolution of bipartite matching during SSFT. Figures 9a and 9b show that the
gap between optimal bipartite matching cost and non-optimal bipartite matching cost under other σ
keeps widening during training. This means that these reasoning traces are indeed starting to match
unique global forking tokens. Even though SSFT effectively optimizes a non-stationary objective
which depends on model parameters θ, the widening gap shows the inner discrete optimization is
converging as training goes. Figure 9c also confirms that the model learned some unique correla-
tions between {g(i)}6i=1 and {r(j)}4j=1, as only a subset of matchings are still computed as optimal.
Compared to Figure 6, we see more σ accumulating mass towards the end. This is due to having
more mixed diverse reasoning traces, so the model learned more intricate associations between these
global forking tokens and truly diverse reasoning traces.

A.4.4 ABLATION STUDY TRAINING DETAILS (REMOVING HIGH QUALITY SMALL DATASET)

For this ablation study, we choose Open-R1-Math220k default split, which has 93,000 math ques-
tions and 2 ∼ 4 traces. Since Qwen2.5-Math-7B is a widely fine-tuned model using this dataset, we
also choose it as our base model. We train for 3 epochs using 8 A100 GPUs, which took around 4
days. Our hyperparameters are mostly consistent with the recommended hyperparameters by Face
(2025). We fine-tune both SSFT-OpenR1-93k-7B and SFT-OpenR1-93k-7B with a maximum length
of 32768, learning rate of 4.0e − 05 warmed up linearly for 3% and decayed to 0 following cosine
schedule, 8 gradient accumulation steps. For our SSFT method, we reserve N = 4 global forking

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 200 400 600
Training Steps

0

2

4

Ga
p

be
tw

ee
n

2n
d

an
d

1s
t o

pt
 to

ta
l c

os
t ×10 3Gap between 2nd and 1st opt total cost

(a) The gap between the optimal
bipartite matching cost in Equation

1 and second smallest bipartite
matching cost. The increase shows

the global forking tokens start
preferring a specific matching.

0 200 400 600
Training Steps

0.0

2.0

4.5

Ga
p

be
tw

ee
n

av
g

re
st

 a
nd

 1
st

 o
pt

 to
ta

l c
os

t

×10 1
Gap between avg rest and 1st opt total cost

(b) The gap between the optimal
matching cost in Equation 1 and the
average of bipartite matching cost
under other σ. The increase shows

the global forking tokens start
preferring a specific matching.

(c) Cumulative counts of σk

computed as optimal over training.
We observe that only a subset Sp

accumulates mass towards the end,
indicating some unique correlations

learned between {g(i)}6i=1 and
{r(j)}4j=1

Figure 9: Dynamics of bipartite matching during the fine-tuning of SSFT-32B on s1k-4mixed-
reasoning.

tokens, and use the first 1000 tokens for matching. Again, only the completion loss is used for
optimizing the model parameters.

A.5 EXAMPLES OF SSFT-32B REASONING TRACES INITIATED BY DIFFERENT GLOBAL
FORKING TOKENS

We randomly picked a set of six parallel generations from those where SSFT-32B correctly answered
a problem from AIME 2025 under all six global forking tokens. This is question 11.

Problem 11 (AIME25)

A piecewise linear periodic function is defined by

f(x) =

{
x, if x ∈ [−1, 1),
2− x, if x ∈ [1, 3),

and f(x+ 4) = f(x) for all real x.

The graph of f(x) has a sawtooth pattern. The parabola x = 34y2 intersects the graph of
f(x) at finitely many points. The sum of the y-coordinates of these intersection points can
be expressed in the form

a+ b
√
c

d
,

where a, b, c, d are positive integers, gcd(a, b, d) = 1, and c is squarefree. Find a+b+c+d.

Here are the 6 parallel generations by SSFT-32B. We see distinct reasoning traces produced by
prompting with a unique g(i) ∈ {g(i)}6i=1. The differences are highlighted in red comments.

<think1> — Periodization + Quadratic Families + Vieta/Telescoping

<|im_start|>assistant
<|im_start|>
<think1>
“write x = t + 4k with t ∈ [−1, 3)” “Case 1 (t ∈ [−1, 1), y = t) . . . Case 2

(t ∈ [1, 3), y = 2 − t)” 34t2 − t − 4k = 0 and t =
1±
√
1 + 544k

68
... ... “let

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

u = 2 − t” and u =
−1±

√
273 + 544k

68
... ... Thus u =

−1 + 5
√
185

68
. “telescopes

to rational constant 9/34” ([Comment:] periodize x = t + 4k, solve two quadratic
families, use Vieta pair-sums; edge-period gives the irrational y)
</think1>
<|im_start|>answer

Answer: 259

<think2> — Nearest-Multiple-of-4 Reduction

<|im_start|>assistant
<|im_start|>
<think2>
Start from y = f(34y2) write 34y2 = 4k + r with r ∈ [−1, 3) (choose k =⌊
34y2+1

4

⌋
) Branch A (r ∈ [−1, 1)): y = r ⇒ 34y2 − y − 4k = 0 Branch B

(r ∈ [1, 3)): y = 2− r ⇒ 34y2 + y − (2 + 4k) = 0 Vieta: pair-sums + 1
34 and − 1

34
cancel over full periods only the edge/partial period remains (k = 8, descending

branch) y =
−1 +

√
273 + 544 · 8
68

=
−1 + 5

√
185

68
.

([Comment:] reduce to r ∈ [−1, 3) via nearest multiple of 4; full periods cancel by ± 1
34

pair-sums; only the boundary k = 8 root contributes)
</think2>
<|im_start|>answer

Answer: 259

<think3> — Paper-Style Sections; Explicit Pair-Sums and Totals

<|im_start|>assistant
<|im_start|>
<think3>

“Now we need sum of all y-coordinates”
8∑

n=0

y1,n +

7∑
n=0

yC,n y =
−1 +

√
4625

68

... ... “Therefore S2 =
5
√
185− 17

68
” “Total sum S . . . ” ([Comment:] formal

write-up; separates sums by family, explicitly displays the boundary y = −1+
√
4625

68 , then
totals)
</think3>
<|im_start|>answer

Answer: 259

<think4> — Set/System Framing Before Algebra

<|im_start|>assistant
<|im_start|>
<think4>
“the set {(x, f(x))} . . . Intersecting it with the parabola x = 34y2 requires solving
y = f(x), x = 34y2.” (then proceeds to the same two-case algebra)

u+ =
−1 +

√
273 + 544 · 8
68

=
−1 + 5

√
185

68
. ([Comment:] definition-first framing;

after setting up the system, it reaches the same boundary u+ value on the partial period)
</think4>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

<|im_start|>answer

Answer: 259

<think5> — Outline & Symmetry: Full Periods Cancel, Last Period Contributes

<|im_start|>assistant
<|im_start|>
<think5>
“the sum is zero . . . That’s a key insight.” “for each full period (k = 0 to k = 7), the
sum . . . is zero . . . now consider the partial period k = 8” Compute upos(k=8) =

−1 +
√
4625

68
. (term-by-term cancellation examples for k = 0, 1) ([Comment:]

symmetry explains full-period cancellation; the lone boundary contribution at k = 8 supplies
the irrational term)
</think5>
<|im_start|>answer

Answer: 259

<think6> — Stream-of-Consciousness Scratchwork

<|im_start|>assistant
<|im_start|>
<think6>
“Okay, so I need to solve this problem . . . Let me try to break this down step by step.” ...

... “Wait, actually, no. Wait,” yA,8 =
−1 +

√
4625

68
. ([Comment:] exploratory

self-checks; reaches the same boundary y on the partial period)
</think6>
<|im_start|>answer

Answer: 259

A.6 ALTERNATIVE IMPLEMENTATION OF TRAINING WITH MULTI-TARGET SEQUENCES

Figure 10 shows an alternative implementation for training with multiple target parallel sequences.
Instead of flattening multi-target data along the batch dimension, we can also concatenate parallel
reasoning traces along the sequence dimension, modify the causal attention matrix, and position
ids for positional embeddings. While easy to implement, this version extends the sequence length
and cannot perform gradient accumulation along the batch dimension to maintain the same VRAM
as training with a single reasoning trace. Since most fine-tuning already sets the micro-batch size
to 1 due to the increased number of reasoning tokens already present in a single reasoning path,
this implementation also cannot further shrink the micro-batch size to accommodate the extended
context length. In addition, the code that uses the initial flash-attention implementation, which
requires causal attention matrix, is not compatible with this setup. In terms of choosing the number
of sequences in a global batch size, this implementation is also less flexible.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: An illustration of training with multiple parallel targets along the sequence dimension.

21

	Introduction
	Learning Global Forking Tokens via Set Supervised Finetuning
	Parallel Reasoning as Set of Next Token Prediction
	SSFT: Minimizing Set of NTP Losses under Optimal Bipartite Matching
	Inference with Learned Global Forking Tokens

	Experiments
	Experiment Setup
	Evaluating SSFT on Reasoning Benchmarks
	Evaluating Parallel Reasoning Diversity and Learned Matchings
	Ablation Study: Removing High Quality Small Dataset

	Related work
	Conclusion
	Appendix
	LLM Usage in Paper
	Learned Matchings between Global Forking Tokens and Traces
	How to Choose the Global Forking Token for Pass@1
	More Visualizations on Learned Matchings

	Algorithm: SSFT Implementation
	Training details
	Training Datasets
	Training Hyperparameters
	Visualization of SSFT Training Dynamics
	Ablation Study Training details (Removing High Quality Small Dataset)

	Examples of SSFT-32B Reasoning Traces initiated by Different Global Forking Tokens
	Alternative Implementation of training with multi-target sequences

