Under review as a conference paper at ICLR 2026

TRAINING LARGE LANGUAGE MODELS TO REASON IN
PARALLEL WITH GLOBAL FORKING TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although LLMs have demonstrated improved performance by scaling parallel
test-time compute, doing so relies on generating reasoning paths that are both
diverse and accurate. For challenging problems, the forking tokens that trigger
diverse yet correct reasoning modes are typically deep in the sampling tree. Con-
sequently, common strategies to encourage diversity, such as temperature scaling,
encounter a worsened trade-off between diversity and accuracy. Motivated by this
challenge, we treat parallel reasoning as a set-of-next-token-prediction problem
and incorporate a set-based global loss into Supervised Fine-Turning (SFT) using
bipartite matching between global forking tokens and unique reasoning traces. We
observe that, whereas naive fine-tuning with multiple reasoning traces collapses
these unique reasoning modes, our proposed method, Set Supervised Fine-Turning
(SSFT), preserves these modes and produces emergent global forking tokens. Ex-
periments on multiple reasoning benchmarks show our SSFT method consistently
outperforms SFT under both pass@1 and cons @k metrics.

1 INTRODUCTION

Large language models have recently improved reasoning by allocating more test-time compute
to generate more tokens before producing the final answer (OpenAlL [2025)). However, extended se-
quential scaling can lead to “overthinking”, where performance decreases beyond a certain sequence
length (Ghosal et al.l [2025; |(Chen et al.| [2024a)). To mitigate this, another scaling dimension based
on repeated parallel sampling and aggregation (Wang et al.| |2022; [Brown et al., [2024) has shown
success in further boosting reasoning performance. However, these methods rely on LLMs gener-
ating diverse yet correct solutions; as tasks become harder, a mechanism for increasing diversity is
required. Recent work shows that only a minority of tokens in Chain-of-Thought reasoning (Wei
et al.} 2022) can act as forking tokens that lead to distinct reasoning modes (Wang et al.,|2025)), so as
the problem becomes harder and the generation becomes longer, it can become substantially harder
to sample them. Also, common practices to encourage diversity, typically through temperature scal-
ing, inherently entails an diversity-accuracy trade-off, as the forking tokens that trigger diverse yet
correct reasoning modes are typically located deeply within the sampling tree. Moreover, recent
theoretical work also shows that increasing the temperature alone does not necessarily guarantee
greater diversity unless the model is explicitly trained to ensure coverage. (Verine et al.,|[2025)).

Building on these observations, we aim to leverage diverse reasoning traces to train for coverage
(Guo et al., |2025; |Google, [2025b). We introduced global forking tokens prior to generate paral-
lel reasoning traces and frame parallel reasoning as a set prediction problem. Specifically, given a
question, an LLM, conditioned on a reserved set of tokens in a chosen ordering, generates M rea-
soning sequences in parallel, each aligned with one of M ground-truth reasoning traces. For each
ordering, we compute the total autoregressive loss across the generated sequences. By enumerat-
ing all possible orderings, we identify the minimum loss, which defines the set language modeling
loss, conditioned on the distinct forking tokens (Equation [3). This formulation naturally incorpo-
rates coverage into the training objective and is capable of learning global forking tokens that can
serve as prompts to trigger reasoning modes that are both diverse and accurate. We operationalize
this idea through our Set Supervised Fine-Tuning (SSFT) framework. Our main contributions are
summarized below. And we will also release source code to support reproducibility.

Under review as a conference paper at ICLR 2026

* We introduced global forking tokens and incorporate a set-based loss into SFT using bipar-
tite matching between a set of reserved global forking tokens and diverse reasoning traces
(Section [2} Figure [T). The goal is that, after training with SSFT, the model can initiate
distinct reasoning modes when prompted with different tokens from this set, thus reducing
the dependence on sampling forking tokens mid-generation (Section 2.3} Figure [2)).

* We empirically demonstrate that, across multiple reasoning benchmarks, a model fine-
tuned with SSFT outperforms a standard SFT model trained on the same distilled traces
from diverse teacher models, improving Pass@1, Pass@k, and Cons@k (Section Table
[TJand Figure[3). We also find that naively fine-tuning using diverse reasoning traces without
the set loss from bipartite matching can result in control tokens initiating the same collapsed
reasoning mode (Figure[5)). In contrast, the global forking tokens learned by SSFT reliably
initiate distinct reasoning (Figure).

* To facilitate training with variable-size parallel generation, we propose a scalable training
implementation that does not increase VRAM usage. Instead of concatenating diverse
reasoning traces, our algorithm can expand these variable-sized parallel generations along
the batch dimension under distributed training (Appendix [A.3)).

2 LEARNING GLOBAL FORKING TOKENS VIA SET SUPERVISED FINETUNING

Background on Language Modeling with Reasoning. In language modeling, the goal is to train a
model g to approximate the joint distribution over a sequence of word tokens x = {z;} 1 ; € VT,
where T is the sequence length, and each token is within a finite vocabulary set . An autore-
gressive model uses the chain rule to represent it as a product of conditionals on the preceding
tokens: 7g(x) = H;le 7o (X¢|X<¢). This is known as next-token-prediction (NTP) (Radford et al.,
2019). For reasoning tasks, we break the sequence of word tokens into: (1) an input prompt
X = {xt}th"l, (2) a special token (or a sequence of tokens) g that initiates reasoning, and (3) a
reasoning trace plus the final answer r = {rt};fzrl. To simplify notation, we combine a verifiable
answer and a reasoning trace. A reasoning model autoregressively generates a reasoning path and
the final answer: mp(r|x,g) = 1—[;1“:,1 7o (r¢|x, g, r<¢). To train a reasoning model, Supervised
Fine-tuning (SFT) minimizes the negative log-likelihood of a ground-truth reasoning trace, i.e.,

L(0) = —Ex >, log mg(r|x, g, r<4)].

2.1 PARALLEL REASONING AS SET OF NEXT TOKEN PREDICTION

Problem Setup. In this paper, our goal is not only to instill new reasoning capabilities into a model,
but also to ensure that prompting with a set of reserved special tokens, in parallel with a question,
elicits distinct reasoning traces. We call these global forking tokens g := {g(i)}ﬁi1 instantiated
as {<think i>}N | tags. We use g interchangeably with <thinki>, depending on context
for clarity. We consider a setting with multiple sources of reasoning traces, obtained at low cost
without human annotation by distilling from diverse teachers, sampling repeatedly, and potentially
filtering with a verifiable metric such as correctness. We adopt this low-cost regime to highlight the
effectiveness of our algorithm, though the method extends naturally to settings with well-annotated
annotated, human-labeled data. So our problem is to (1) learn to do a set of next-token predictions
on multiple distinct yet correct reasoning traces R := {r(j) };‘4:1 in parallel for an input prompt x,
and (2) ensure that distinct global forking tokens can uniquely initiate these distinct traces.

To do this, we make a simple change to the NTP loss, which now has two requirements: (1)
Permutation-invariance: It should not depend on the order of elements in R and g, so we don’t
penalize a trace that incurs high NTP loss under one forking token if the model predicts it well
when conditioned on another. (2) No shared global forking token: We want {g(*) N | to uniquely
initiate distinct reasoning traces, so this requirement prevents conditioning on the same g(¥) when
generating distinct traces given a question.

To satisfy these requirements, we incorporate a subproblem in language modeling: finding the mini-
mum cost bipartite matching configuration between the left vertices { g(® }N | and the right vertices
{r@@) };\/I:l where the cost of each edge between a left vertex ¢ and a right vertex j, is the NTP loss of

r?) conditioned on g and an input prompt x. A matching configuration is a set of edges connecting

Under review as a conference paper at ICLR 2026

the left and right vertices where no two edges share a common vertex. Without loss of generality, we
assume N > M to simplify our notation. The total cost involves all vertices on the smaller side of the
bipartite graph, so this allows us to write the summation from 1 to min{N, M}, which equals M un-
der this assumption. We denote a matching configuration as a finite map o : {1,..., M} — {1,...,N}
such that o(j) = i <= 1) is paired with gV). Let &p := {ow}L_, denote all the (};) x M!
configurations of a bipartite graph. The total cost of each configuration represents the compatibil-
ity between {r()}?4:1 and {g”}N | under this unique matching. Figure shows an example of a
matching configuration.

X: Find the OSS -high:via cyclotomic || OSS-medium: ...we DeepSeek: ...Wait, |[Gemini: ...Check divisibility by 3...
Ieasf;:gi ;;r;lme polynomlals x8 + 1 = ®16(x)||can attempt to factor....notf let me check the logic|| Check divisibility by 5...Consider
2019% 41) \boxed{97} correct..... \boxed{97}) again..... \boxed{97} J| p = 29 ... Consider ... \boxed{97}
frozen 5 S (o) gl
r(l)] [r®] o= argmmZE(g 28 2
parameters =1

Select matched g%

Update parameters

~ - [g(g('),r(l))] [£(g<l)7r<z>)] [c(g(1>,r<3>)] [L(g<1>,r<4))
) (o) (o) (oo LD E Ty

)
=)
)))) o
| oo) e ——
")
)

SR () (o) (o) [
L <think 65/g® [0, £][,r2>)] [qg(ﬁ)’r(s))] [L(gw @

1. Minimize Total Bipartite Matching Loss 2. Minimize Set NTP Loss

Figure 1: An illustration of one SSFT training step. Step 1: We first construct the cost ma-
trix by evaluating all pairwise combinations: for each r(/) ¢ {r() r® r®) r®} and each
g ¢ {gM) g o) o) o5 o)1 we compute the NTP loss of r/) conditioned on g*)
(Equation (2)). Then we use Hungarian algorithm to find & that minimizes the total bipartite
matching cost. Here, this minimum is the sum of the losses highlighted in blue, which means
= {(g9,rM), (g, r@), (g@,r3), (g3, r®))}. Step 2: We optimize 0 by backpropagating
the set of NTP losses for r(/), each conditioned on g(@(J

2.2 SSFT: MINIMIZING SET OF NTP LOSSES UNDER OPTIMAL BIPARTITE MATCHING

Under this formulation, we propose Set Supervised Fine-Tuning (SSFT), which performs two opera-
tions at each training step: (1) find the minimum-cost bipartite matching that is optimal for uniquely
initiating different reasoning traces (2) and then minimize the NTP losses under the matching con-
figuration to instill diverse reasoning modes conditioned on the matched global forking tokens. We
show our implementation in Algorithm 1]

For the first step, we first compute all the entries in the cost matrix such as the one in Figure [T and
then apply the Hungarian algorithm (Kuhnl, [1955) to efficiently find the optimal &

= rgmlnzﬁmalchlng<g(o)) I‘(])>7 where (D
occeSp j=1
1 & . .
Linatching (g<l)7r(1)) = —sg (T > logme (r,(g])lx, g, r(<jt))> 2)
T =1

As noted in Equation [2| each matching cost in Equation |1/ is the negative log-likelihood of r(7)
conditioned on g(®%) under the current model parameters. Here, sg(-) is stop-gradient, as the
matching process is done by discrete optimization w.r.t. o, so we can save VRAM by not storing
intermediate activations. We explicitly indicate that length normalization is done to remove biases
toward trace length, so that the matching is driven by semantic content.

Under review as a conference paper at ICLR 2026

After solving & for each (x, R), our second step optimizes model parameters 8 by backpropagating
on the matching loss in Equation [3] The expectation is replaced by its sample mean over pairs of
(x, {rU)}24:1) in a mini-batch. In practice, we may use only the first L < T, tokens in Equation
to compute the matching cost and find & when the training dataset is such that these early tokens
reveal sufficient differences. However, we always optimize the matching loss for the full T, length.

M T,
LHungarian(O) = - x,I:I{EN’D Z Z 1Og e (rg‘]) |x7 g(o'(]))7 I'(<]2) (3)
j=1t=1

Remarks. The resulting model is not the same as a simple routing of the models independently
trained with the nonoverlapping subsets of these traces. Firstly, SSFT allows positive transfer in
representation learning within {r(/) L, even though they are matched to different { g@N | Sec-
ondly, it is not optimal to distill reasoning traces from the same fixed sources for every question if
the goal is to maximize both diversity and correctness. Our algorithm supports a variable number of
target reasoning traces across training steps, with sources that may also change for each x. Thirdly,
even if the two sets of traces, {r((f)}?/[:1 for x, and {r,()])}?4:1 for x;, are from the same sources,
their optimal configurations &, and &7, can still vary because a teacher model can reason differently
under different questions. Lastly, we reserve more global forking tokens than the maximum number
of traces (N > M), and empirically observe that all the forking tokens are being matched throughout

the process. This is because the extra forking tokens can maximally intra-differentiate similar traces.

2.3 INFERENCE WITH LEARNED GLOBAL FORKING TOKENS

We discuss the inference protocols with N global forking to- Inference protocols

ens R ki
Cons@k:

Inference Process (Cons@k). Our inference protocol with -drhi“k R
parallel test-time compute is to prompt ith response with
<think (1%N)> and then do majority voting on their an- pass@1: (il
swers. Sharing the KV cache accelerates the generations.

Learned Matchings G,,

Inference Process (Pass@1). When aggregation is not al-
lowed, we use g(*) that reasons with more flexibility. Inspired
by enumerating dissimilar bipartite matchings to reveal node-
level variation (Blumenthal et al.,[2022)), we choose the learned
g with largest coverage. Note that this token emerges auto-
matically thanks to SSFT, and the other emerging {g("} N, still
contribute to representation learning and improving Cons@k
with distinct reasoning modes. Concretely, each time an opti-
mal matching & € {0, }}_, is computed, we increment a count
¢(o); empirically, only a finite subset &, := {o }}_, C Sp
continues to accumulate mass late in training, indicating the sta-
ble learned matchings. We then take the union of their edges, Figure 2: Learned matchings
and select g0 that matched to the largest number of distinct by SSFT-32B in Exp Bl ob-
traces based on Equation 4] for Pass@1. Figure[2]shows an ex- tained by connecting all edges in
ample of the matchings learned by aggregating all edges in &,,. &,,. At test time, for Pass@l1,

<think 5>

<think 6>

More details about 61>E| are in Appendix we prompt with g(*") that has
the most connected edges. For
i* = arg max| U {ilo(4) = i} (4) Cons@Fk, we augment ith prompt

v cES, by <think (i % N)>.

3 EXPERIMENTS

We address the following research questions through experiments: (RQ1): In terms of Pass@1 and
Cons@k accuracy, how does a model trained with SSFT perform on reasoning benchmarks? (RQ2):
Does finding the optimal bipartite matching matter in reasoning performance? (RQ3): Does training

"We choose the subscripts p and P to emphasize that &,, is a subset of Sp.

Under review as a conference paper at ICLR 2026

with diverse reasoning traces yield better accuracy and coverage under SSFT compared to standard
SFT with temperature scaling? (RQ4): Does prompting with distinct {g(i)}i\i1 genuinely make a
model generate diverse reasoning traces? (RQS5): Is the performance gain from SSFT conditioned
on the traces generated by our procedure and on a high-quality small dataset?

3.1 EXPERIMENT SETUP

Training Dataset. We use the 1,000 questions from s1k dataset Muennighoff et al.|(2025)). In addi-
tion to the R1 (Guo et al., [2025) and Gemini Flash (Google, 2024) traces provided by s1, we also
use Claude Opus 4.0/4.1 (Anthropic} 2025) and GPT-OSS-120B (Agarwal et al., 2025) with high
and medium reasoning effort to obtain a pool of distilled targets for the 1,000 questions. For each
question, we generate two traces per source to populate the pool. We then sample four traces from
this pool. We call this s1k-4mixed-reasoning dataset.

Training Details. We fine-tune Qwen2.5-32B-Instruct (Yang et al., 2025a) for six epochs with a
context length of 32,768. We reserve N = 6 global forking tokens and use M = 4 targets per
question. To find the optimal bipartite matching for each input prompt, we consider only the first
1,000 tokens when computing the matching cost in Equation [2] for computational efficiency. We
call this model SSFT-32B. We also include SSFT but choose a random bipartite matching at each
step to fine-tune SSFT-32B (random o). Exact details on the pool of diverse distillation targets and
selection procedure, as well as training hyperparameters, are provided in Appendix [A.4]

Baselines. All of our baselines use Qwen2.5-32B-Instruct as their base model, and only train on
the 1k questions. Our baselines include two groups: (Single-Target /\) models trained with one
trace per question and (Multi-Target %) models trained with four traces per question. For (Single-
Target), we include s1.1-32B (Muennighoft et al.l 2025), which uses 1k DeepSeek-R1 traces. We
also fine-tuned an SFT-OSS-distill-32B baseline that trains only on the 1k GPT-OSS traces with high
reasoning effort, as these traces achieved the highest correctness on the 1k questions based on an
evaluation by Claude 3.5 Sonnet comparing each attempt against the reference answer. For (Multi-
Target), we use our slk-4mixed-reasoning to fine-tune SFT-mixed-distill-32B using standard SFT
with one <think> token, duplicating each question and treating the four traces as four individual
data points. We also include Multiverse-32B (Yang et al.l [2025b)), which prompts Gemini 2.5-Pro
(Googlel 2025a)) to transform 1k sequential CoTs into parallel CoTs as their training data.

Evaluation Setup. Our evaluation tasks consist of AIME24/AIME25 (Ye et all [2025), MATH-
500 (Hendrycks et al., [2021), and GPQA-Diamond (Rein et al., [2024)). We use LightEval (Habib
et al., |2023) as our evaluation framework with generation configurations: temperature=0.7 used
in (Guha et al., 20235)), top_p=0.95, max length=32768. For Pass@1 accuracy without any parallel
test-time compute, we select learned g(!) for SSFT-32B and g(*) for SSFT-32B (random o) based on
Equation[d] For each Pass@1 accuracy, we compute the average performance over 32 generations.
For Cons@6, which applies each of the six global forking tokens once in our method and uses six
generations for the baselines, we compute the average over 11 sets of generations to reduce variance
in the results. We refer to this as Pass@] of Native Cons@6 using a similar terminology as the
concurrent work (Wen et al., 2025). Appendix [A.5]presents an example of the parallel generations.

3.2 EVALUATING SSFT ON REASONING BENCHMARKS

For RQ1, we see in Table [I| that SSFT delivers the best Pass@1 accuracy, 64.06 on AIME24 and
58.13 on AIME25, outperforming SFT-mixed-32B by 8.33% and 6.57%, respectively. We also
observe consistent improvements on all four tasks under parallel test-time compute at two scales,
Cons@6 and Cons@32, over SFT-mixed-32B, which was trained on the same reasoning traces.
Some notable results are Cons@6 = 73.94%, Cons@32 = 86.67% on AIME25. To answer RQ2,
we observe consistent improvements over SSFT-32B (random o), with especially strong gains at
Cons@6 on AIME25, where effectiveness with few parallel generations is critical. As shown later in
Figures {f] and [5] optimal bipartite matching is essential for preventing collapsing reasoning modes.
For RQ3, we compare our method against SFT-mixed-32B under various k in Pass@Fk accuracy with
32 generations to assess generation coverage. Figure [3|shows that SSFT achieves higher coverage
across nearly all values of k. SFT-mixed-32B requires more allowed attempts and higher temper-
ature to match the coverage of SSFT at the cost of lowering its Pass@1 and Cons@6 accuracy.

Under review as a conference paper at ICLR 2026

AIME 2024 AIME 2025 MATH-500 GPQA-D Average

Pass@]: Average performance of individual generations

Qwen2.5-32B-Instruct 15.80 10.40 80.40 47.00 38.40
s1.1-32B 54.79 44.27 92.16 62.12 63.34
Multiverse-32B % 53.80 45.80 91.80 60.70 63.03
SFT-OSS-distill-32B 57.82 48.75 89.54 60.06 64.04
SFT-mixed-distill-32B % 55.73 51.56 88.36 57.50 63.29
SSFT-32B (random o) % 61.77 55.10 89.95 62.28 67.28
SSFT-32B % 64.06 58.13 90.02 60.39 68.15
Pass@ 1 of Native Cons@6: Average performance of majority voting with 6 parallel generations
s1.1-32B 70.30 53.33 95.60 61.45 70.17
SFT-OSS-distill-32B 72.12 65.45 95.47 61.52 73.64
SFT-mixed-distill-32B % 72.42 70.91 92.10 57.32 73.19
SSFT-32B (random o) % 73.03 67.58 95.67 61.87 74.54
SSFT-32B % 75.45 73.94 96.47 63.05 77.23
Cons@32: Majority voting performance with large number of parallel generations
s1.1-32B 73.33 63.33 94.80 60.61 73.02
SFT-OSS-distill-32B 76.66 73.33 96.00 61.60 76.90
SFT-mixed-distill-32B % 80.00 73.33 96.20 60.61 77.54
SSFT-32B (random o) % 80.00 80.00 95.60 62.63 79.56
SSFT-32B % 83.33 86.67 96.80 61.62 82.11

indicates training with single-target data and % indicates training with multi-target data.

Table 1: Performance of SSFT compared to baselines on four reasoning tasks, reported at Pass@1,
Cons@6, and Cons@32. SSFT selects <think1> for Pass@1 and replaces 6 generations with 6
generations prompted by distinct <thinki> for Cons@k. We observe consistent improvements
over (i) SFT-OSS-distill-32B, which uses the 1k OSS-high traces; (ii) SFT-mixed-distill-32B, which
uses the four mixed traces but treats them as individual data; and (iii) SSFT-32B (random &), which
trains using Equation E|but with a randomly chosen o.

90

. 72.82%
Cons@6: 12 80

Sl

SSFT-32B, temp=0.7
—e— SSFT-32B-random, temp=0.7 60
—e— SFT-mixed-distill-32B, temp=0.7
—e— SFT-mixed-distill-32B, temp=0.8
—e— SFT-mixed-distill-32B, temp=1.0

SSFT-32B, temp=0.7
—e— SSFT-32B-random, temp=0.7

—e— SFT-mixed-distill-32B, temp=0.7
—e— SFT-mixed-distill-32B, temp=0.8

>0 —e— SFT-mixed-distill-32B, temp=1.0

1 2 4 6 8 16 32 1 2 4 6 8 16 32
k (logz scale) k (log2 scale)

(a) AIME24 (b) AIME25

Figure 3: Coverage of SSFT compared to SFT-mixed-distill-32B with temperature scaling, reported
at Pass@k. For convenience, we also report the Cons@6 accuracy next to each line. In AIME25,
SFT-mixed-distill-32B needs to raise the inference temperature to 1 and use more attempts to match
the coverage at the cost of lowering its Pass@1 and Cons@6 accuracy, further widening the gaps.

3.3 EVALUATING PARALLEL REASONING DIVERSITY AND LEARNED MATCHINGS

Addressing RQ4, we show that our global forking tokens genuinely initiate distinct reasoning traces
and offer a new mechanism for leveraging test-time compute.

Emerging Diverse Reasoning Modes. Using the Cons@G6 results in Table [T} we form six sets of
generations, each prompted by a distinct g(*). For each set, we show the average accuracy and the
distribution of thinking-token counts: Figure] for SSFT with optimal bipartite matching and Figure
[] for SSFT with random matching. Reasoning length: Length partially indicates the diversity in
reasoning, and we see clear differences for SSFT with optimal matching, despite the absence of

Under review as a conference paper at ICLR 2026

35000 AvgAcc AvgAcc AvgAcc Avg Acc Avg Acc Avg Acc 350001 Avg Acc AvgAcc AvgAcc Avg Acc Avg Acc Avg Acc
65.15% 65;43% Gﬁ;ﬂj% 66.97% 52;13% 61;53% 59.39% 60.30% 57.27% 59.09% 49;03% 55.45%
30000 30000 |
n 1]
: ;
3 3 4
< 25000 < 25000
- -
g 3
'S 20000 g 20000
£ £
K- K=
- -
% 15000 % 15000
1 1S
3 3
£ 10000 J € 100001 °
S (o) F
z z
5000 5000
ol

AIME24 Cons@6=75.45%: Avg stats (SSFT-optimal)

thinkl think2 think3 think4 think5 think6

AIME25 Cons@6=73.94%: Avg stats (SSFT-optimal)

thinkl think2 think3 think4 think5 thinké

Figure 4: (SSFT, optimal matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>,...,<think6>.

AIME24 Cons@6=73.03%: Avg stats (SSFT-random)

AIME25 Cons@6=67.58%: Avg stats (SSFT-random)

35000 Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc 35000 Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc
61.52% 61;83% 61.21% 61.82% 62;13% 61.21% 56.06% 55.15% 54.24% 55.15% 53.64% 54.85%

30000 30000
0 0
c c

g 25000 g 25000
3] 3]
- -
o o
c c

'g 20000 'g 20000
£ £
< =
- -

‘5 15000 ‘5 15000
@ @
g} (e} k-]

€ 10000 € 10000
F 5
H H

5000 5000

0 0

thinkl think2 think3 think4 think5 thinké thinkl think2 think3 think4 think5 thinké

Figure 5: (SSFT, random matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>,...,<think6>.

hand-crafted matching rule or information about these traces. The consistency of these distributions
across AIME24 and AIME2S5 indicates the differences is not from randomness, whereas randomly
assigning a <thinki>, as in concurrent work (Wen et al., 2025), does not yield clear or consistent
differences in reasoning length, as shown in Figure|5| Performance: After finetuning with random
matching, prompting with a distinct <t hinki> shows no meaningful impact (~ 61% on AIME24
and ~ 55% on AIME25). With optimal matching, SSFT elicits distinct reasoning modes initiated
by <think1>,...,<think4> that reach around 65% on AIME24 and > 59% on AIME25, with
different lengths. Although <think5> and <think 6> are weaker due to shorter reasoning modes,
the average of these and, especially, Cons@6 performance improve consistently with them.

Visualization of Learned Matchings. We observe in Figure @ that some g(¥) € g from SSFT-
32B have unique configuration of matched edges with {r(j)}?zl. This is a positive indication
that {g("}%_, are likely to initiate distinct reasoning modes. We hypothesize that {g()1N | can
still yield a unique edge-matching configuration even if a subset of {r(j)};*:1 are difficult to dis-
tinguish. For interpretability, we fine-tune using the same four teacher models for each x: GPT-
OSS high, medium, R1, and Gemini. We call this dataset slk-4teachers-reasoning dataset, and
ask whether SSFT associate a unique g(*) to the Gemini and R1 traces which have easily identifi-
able reasoning patterns, and then have the rest matched to OSS-high/OSS-medium traces in differ-

Under review as a conference paper at ICLR 2026

3
nts: optimal
3

5

2 ©

S
Cumulative counts: optimal

Cumulative cou

= =8
oy

AL .)
O~vmy, 0.8
m $

o

< & s p

Biparti LAY O & Biparti . o & Bipartit, it S8 A&
e Matching Config l;z;e,::(o 23? ’ e Matching Config Index (o ;;”; ’ @ Matching C”"f'gwlndex (0..359) ’

(a) SSFT under random matching (b) SSFT under optimal matching (c) SSFT under optimal matching
(g}, {r}_0). No (g, x93) (g, F)). &, =
correlations learned &, = Sp S, = { 2,2 } {62,110, 134, 180, 204, 230}
Figure 6: Cumulative counts of o, € Sp computed as optimal over training. Note that Sp and
&,, are defined in Sections @ and @ respectively. Front axis: matching configuration index k.
Depth: training step ¢. Bar height is the cumulative counts. These are the evolution of matchings
during training 3 Qwen-32B-Instruct models under 3 bipartite matching settings. In this case study,
the {r()}4,1 are always (GPT-OSS-high, GPT-OSS-med, R1, Gemini) for each question. Note that
Random matchmg method does not minimize Eqn |§| under optlmal matching, but we track it. We
observe &, = Gp with random matching, meaning no correlations learned. But by optimizing
Hungarian loss, we see the emergence of &,, C Sp.

ent ways (i.e. only matched to OSS-high, only matched to OSS-med, and matched to both). We
track source indices only for evaluation; the model still receives an unordered set of traces with
no source information for each question. We study 3 bipartite matching settings for SSFT. Fig-
ure [6] shows the evolution of matchings learned under these 3 hyperparameters SSFT (a) random
matching with four reserved g(*), (b) optimal matching with four reserved g(*), and (c) optimal
matching with six reserved g(i). Initially, all the configurations & € &Sp accumulate mass as
there is no correlations between g sand {r(/)}?/[:1. Figure |6al shows SSFT under random match-
ing does not shrink the size of configs computed as optimal, meaning that no correlations are
learned between {g(V}%_| and {r")}?:1. By contrast, Figure @ and Figure [6¢c| show the emer-
gence of only a strict subset of matching configurations in &p. This indicates some correlations
between {g(V} | and {r(J ~ , are indeed learned through SSFT. We first visualize the learned

matchings of the model with four g in Figure . We observe that g(*) and g(®) are uniquely
matched to the R1 and Gemini traces, showing that SSFT can indeed uniquely associate g(¥) to
sufficiently diverse reasoning traces. Now to confirm our previous hypothesis, we see the unique
learned matchings (g(), (OSS-high, 0SS-med)), (g*), 0SS-med). Furthermore, by connecting all
the edges in &,, from SSFT with 6 forking tokens (Figure , we also see unique learned match-
ings (g(®,0SS-high), (g, 0SS-med), (g(®, (OSS-med, OSS-high)) in Figure7c| This confirms
that the global forking tokens can identify unique correlations even among highly similar traces.

3.4 ABLATION STUDY: REMOVING HIGH QUALITY SMALL DATASET

To test whether our empirical gains are conditioned on the traces generated by our procedure and
on a highly optimized small dataset (Muennighoff et al.l 2025), we fine-tune on a public dataset
that already provides sufficient reasoning traces per question: the 93k math set of [Face| (2025) (2-4
traces per question). Because this dataset has been successful for fine-tuning Qwen2.5-Math-7B, we
adopt that base model and compare SSFT against SFT trained on all available traces. Details on the
hyperparameters are in Appendix [A-4.4] Addressing RQS, Table [2]shows consistent improvements
in both Pass@1 and Cons@32. The results indicate the SSFT is effective for larger sized public
dataset with less diverse reasoning traces.

4 RELATED WORK

Test-time Scaling. There has been a surge of work fine-tuning LLMs to reason longer, using re-
inforcement learning for frontier models (OpenAl, |2024; [Shao et al., 2024; xAlL [2025; |Yang et al.,

Under review as a conference paper at ICLR 2026

AIME 2024 AIME 2025 MATH-500 GPQA-D
Model Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32
Qwen2.5-Math-7B-Instruct 1042 20.00 9.48 23.33 81.87 87.40 30.29 30.30
SFT-OpenR1-93k-7B 46.15 66.67 34.17 50.00 86.62 90.20 46.35 4798
SSFT-OpenR1-93k-7B 51.25 73.33 3552 56.66 89.74 93.60 46.86 48.90

Table 2: Performance of SSFT versus SFT trained solely on publicly available distillation targets.
The setup uses the 93k math questions from |Face|(2025) with Qwen2.5-Math-7B as the base model.
SFT-OpenR1-93k-7B uses the same distillation targets as SFT-mixed-distill-32B in Table

2025a) and supervised fine-tuning for smaller ones (Muennighoff et al.l [2025; Hu et al., [2025)).
These methods enable LLMs to improve reasoning by allocating more test-time compute to se-
quential, iterative refinement such as self-reflection (Guo et al., |2025; Liu et al., 2025). However,
extended sequential reasoning can be more sensitive to the order of reasoning steps and may result
in failures (Chen et al.| |2024b)), and performance can start to degrade beyond a certain length due
to “overthinking” (Ghosal et al., 2025). Our goal is to study the effective use of diverse reasoning
traces to fine-tune small language models, essential for agentic Al (Belcak et al.| [2025).

Parallel Reasoning. Parallel scaling methods such as self-consistency (Wang et al.,[2022) and Best-
of-N (Lightman et al., |2023) improve LLM performance by generating multiple reasoning paths in
parallel and aggregating them. These methods fundamentally require choosing a temperature that
can generate diverse reasoning paths, but a recent theoretical work shows that increasing temperature
can sometimes fail to increase diversity if language models are not trained towards coverage (Verine
et al.| [2025). Other search-based methods such as Monte Carlo tree search (MCTS) (Zhang et al.,
2024) and Tree of Thoughts (ToT) (Yao et al.,|2023)) apply heuristic-guided search with an external
verifier to do more deliberate search to increase the coverage (Yao et al., 2023; Zhang et al., [2024)).
However, their dependence on heuristics and domain-specific knowledge can limit their applicable
tasks. Regarding training LLMs with parallel reasoning traces, [Yang et al.|(2025b)) proposes training
with parallel CoTs decomposed from sequential CoTs, and our concurrent work [Wen et al.| (2025)
proposes to train with multiple reasoning traces distilled from teacher models. These works show
native parallel scaling can surpass sequential scaling within certain token limits. However, we aim to
show that training on diverse distilled traces with our set language modeling loss enables the model
to learn global forking tokens that trigger distinct reasoning modes, improving Pass@1 and ConsQk
over baselines fine-tuned on the same dataset, whether on subsets or the full set.

Set-based Global Loss in Deep Learning. DETR introduces end-to-end object detection with a
set global loss (Carion et al., 2020 [Minderer et al., 2022), whose success in parallel bounding-box
prediction inspires our approach. We are the first to extend this to language modeling: while DETR
predicts a set of tokens in parallel to match a list of bounding boxes, we predict a set of sequential
reasoning paths initiated by global forking tokens and assess the matchings based on autoregressive
losses. We adapt the set-based loss with autoregressive (AR) models, rather than diffusion-based
models (Nie et al.|[2025), because AR models achieve superior reasoning performance.

5 CONCLUSION

In this work, we demonstrate that diverse reasoning traces can be leveraged to learn global forking
tokens which serve as prompts to initiate distinct reasoning modes that are both diverse and accurate.
We proposed Set Supervised Fine-Turning (SSFT), which employs bipartite matching between re-
served global forking tokens and diverse reasoning traces to compute a set-based language modeling
loss. We show that models trained with SSFT yields improvements in both Pass@k and Cons@Qk
accuracy compared to standard supervised fine-tuning (SFT) with temperature scaling. The pro-
posed training method also improves the usage of multi-target data and avoids collapsing distinct
reasoning modes, which is especially helpful in the context of distilling from multiple teacher mod-
els. For future work, we plan to further investigate how performance scales with a larger number of
distillation targets and reserved forking tokens, which jointly determine the size of the underlying
bipartite graph.

Reproducibility Statement. To ensure reproductibility of our work, we provide detailed hyper-
parameter settings in[A.4.2] and SSFT algorithm implementations in[A.3] We have also included the
source code and data in the supplementary materials, which will be open-sourced upon acceptance.

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Anthropic. Claude 4.1 Opus. https://claude.ai, 2025. Generative Al Chatbot. Response to
a prompt on [Date of Access].

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
ai. arXiv preprint arXiv:2506.02153, 2025.

David B. Blumenthal, Sébastien Bougleux, Anton Dignds, and Johann Gamper. Enumerating dis-
similar minimum cost perfect and error-correcting bipartite matchings for robust data matching.
Inf. Sci., 596:202-221,2022. URL https://doi.org/10.1016/3.ins.2022.03.017.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213-229. Springer, 2020.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024a.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reason-
ing with large language models. In Forty-first International Conference on Machine Learning,
2024b. URL https://openreview.net/forum?id=4zAHgkiCQgl

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—-rl.

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does think-
ing more always help? understanding test-time scaling in reasoning models. arXiv preprint
arXiv:2506.04210, 2025.

Google. Gemini 2.0 flash thinking mode (gemini-2.0-flash-thinking-exp-1219), December
2024. URL https://cloud.google.com/vertex—ai/generative—ai/docs/
thinking-mode.

Google. Gemini 2.5 (gemini-2.5-pro-preview). |https://blog.google/technology/
google—deepmind/gemini-model-thinking—-updates—-march-2025/, 2025a.
Accessed: 2025-04-22.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/
google—deepmind/gemini-model-thinking—-updates—-march-2025/
#gemini-2-5-thinking, March 2025b.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://claude.ai
https://doi.org/10.1016/j.ins.2022.03.017
https://openreview.net/forum?id=4zAHgkiCQg
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking

Under review as a conference paper at ICLR 2026

Nathan Habib, Clémentine Fourrier, Hynek Kydlicek, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for Ilm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
training. arXiv preprint arXiv:2410.10989, 2024.

Xiao Hu, Xingyu Lu, Liyuan Mao, YiFan Zhang, Tianke Zhang, Bin Wen, Fan Yang, Tingting Gao,
and Guorui Zhou. Why distillation can outperform zero-rl: The role of flexible reasoning. arXiv
preprint arXiv:2505.21067, 2025.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83-97, 1955. doi: https://doi.org/10.1002/nav.3800020109. URL |https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European conference on computer vision, pp. 728-755.
Springer, 2022.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

OpenAl Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to-reason-with—-11lms/\

OpenAl Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-03-and-04-mini/, 2025.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://arxiv.org/abs/2305.20050
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-03-and-04-mini/
https://openai.com/index/introducing-03-and-04-mini/
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Under review as a conference paper at ICLR 2026

Alexandre Verine, Florian Le Bronnec, Kunhao Zheng, Alexandre Allauzen, Yann Chevaleyre, and
benjamin negrevergne. Improving diversity in language models: When temperature fails, change
the loss. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=RsyMfsqzeG.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Hao Wen, Yifan Su, Feifei Zhang, Yunxin Liu, Yunhao Liu, Ya-Qin Zhang, and Yuanchun Li. Para-
thinker: Native parallel thinking as a new paradigm to scale llm test-time compute. arXiv preprint
arXiv:2509.04475, 2025.

xAl. Grok 3 beta the age of reasoning agents. https://x.ai/news/grok- 3, February 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Xinyu Yang, Yuwei An, Hongyi Liu, Tianqi Chen, and Beidi Chen. Multiverse: Your language mod-
els secretly decide how to parallelize and merge generation. arXiv preprint arXiv:2506.09991,
2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immedi-
ate evaluation framework for advanced mathematical reasoning. https://github.com/
GAIR-NLP/AIME-Preview, 2025. GitHub repository.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024.

12

https://openreview.net/forum?id=RsyMfsqzeG
https://openreview.net/forum?id=RsyMfsqzeG
https://x.ai/news/grok-3
https://github.com/GAIR-NLP/AIME-Preview
https://github.com/GAIR-NLP/AIME-Preview

Under review as a conference paper at ICLR 2026

A APPENDIX
In this appendix, we provide details omitted from the main text.

A.1 LLM USAGE IN PAPER

We used ChatGPT (OpenAl, GPT-5) in September 2025 for occasional language polishing only.
This is done when we really wanted to make sure there are no grammatical errors in a few sen-
tences. No text, code, experiment results, or figures were generated by the LLM. We made our own
hypothesis, completed all technical content on our own, and made our conclusions. We also verified
all outputs by ourselves. The occasional grammar check is done by typing into LLM chatbox.

A.2 LEARNED MATCHINGS BETWEEN GLOBAL FORKING TOKENS AND TRACES

Initially, any of the bipartite matching configuration o, € Sp can be computed as optimal, as the
reserved global forking tokens {g(¥ }}_, have no specific correlations with these traces {r()}?/[:1.
This can be observed in Figures |§| and that ¢(o71), the count of configuration o, being optimal
during training, uniformly increases on all configuration indexes. However, as training goes with
SSFT, we notice only a subset of &p accumulates mass. This indicates there are some unique
correlations learned between {g(¥}| and {r")}?4:1. This subset is denoted as &, = {o}}},_;,
and we call the unique edges in &, as learned matchings.

A.2.1 How 1O CHOOSE THE GLOBAL FORKING TOKEN FOR PASS@ 1

To find &,,, we can simply track which configurations o still accumulate mass in the last epoch.
Then we can connect all the unique edges in &,, to visualize learned matchings. However, multiple
global forking tokens may share the maximum number of connected edges in the learned matchings.
To break the tie, we treat the counts as edge weights and select g(¥) with the largest weighted degree.
We provide this implementation in our code.

A.2.2 MORE VISUALIZATIONS ON LEARNED MATCHINGS

0S55-high

055-high | - 055-high N
OSS—mediumI - 055-medium
pSeek
Gemini | - Gemini <think 6>
(a) Visualization of learned (b) Visualization of learned (c) Visualization of learned
matchings after SSFT with random matchings after SSFT with optimal matchings after SSFT with optimal
matching. The fully connected matching between {g¥}%_, and matching between {g‘"}_, and
graph shows no correlations were {r(j) };%71 {r(j) };%71

learned

Figure 7: These learned matching visualizations are obtained by connecting edges in the subset of
configurations {o, }}_, that still accumulate mass towards the end of training in Figure@ These
models are fine-tuned using the same GPT-OSS-high, GPT-OSS-medium, R1, and Gemini traces for
each question, so we can better interpret the learned matchings

A.3 ALGORITHM: SSFT IMPLEMENTATION

Algorithm] presents the core SSFT implementation with optimal bipartite matching. In practice,
the nested-loop computation used to populate C is fully vectorized and can be executed in a

13

Under review as a conference paper at ICLR 2026

single forward pass. This does not blow up VRAM because (i) we do not store activations for
these cost evaluations (no backprop through matching costs), and (ii) We only need to use the first
Tr, < T, NTP losses to compute the matching cost, as the NTP loss over the first few thousand
tokens can already differentiate many reasoning traces in terms of their modes. Nevertheless, our
code also supports matching over the full T,. tokens by chunking the computation into a few batches,
so this step does not become a VRAM bottleneck. Fine-tuning on 1k questions with 4 traces each,
SSFT (optimal matching) took 6.5 h for 6 epochs, compared to 6.1 h for standard SFT, adding only
a small overhead.

The primary VRAM bottleneck in SSFT remains the backpropagation Step [8] regardless of whether
we use optimal or random matching, because the effective batch size scales with M. To mitigate this,
we split the backward pass into several gradient-accumulation steps. Although our experiments use
the same number of reasoning traces per question, we also support variable number of targets using
our queue-based batching in Algorithm [2] The complication arises when using distributed training
with a variable-sized batch, as different processes require the same per-device batch size to perform
collective operations. This is mitigated by padding with PAD” sequences to align batch sizes. Our
implementation minimizes the number of “PAD” sequences by storing a variable number of targets
in a queue and dequeuing multiple items to form a per-device global batch, so smaller batches can
be stitched together instead of always being padded.

A.4 TRAINING DETAILS
A.4.1 TRAINING DATASETS

32B experiments with questions from s1(Main): We explain the process of generating our training
dataset for experiments in Table [T| Figure [3| Figure 4 Figure [5] Figure[6] First, we use the 1000
questions from s1 (Muennighoff et al., 2025) and populate a pool of reasoning traces by distilling
from GPT-OSS-120B-high reasoning, GPT-OSS-120B-medium reasoning, DeepSeek R1, Gemini
Flash2.0 Thinking, and Claude4/4.1. We use temperature 1.0, maximum length of 32768, and sets
high reasoning effort unless specified. We generate two traces per teacher model. We use Claude3.5
Sonnet to extract the answer from the distilled solutions and compare with the ground-truth answer.
The correctness of these distilled traces are shown in[3l

For s1k-4mixed-reasoning dataset, we sample 4 traces per question from this pool, so the dataset
consists of 1000 questions, each paired with 4 reasoning traces. This dataset was used to fine-tune
SSFT-32B, SSFT-32B (random o), and SFT-mixed-distill-32B.

For fine-tuning SFT-OSS-distill-32B model, we only use the 1000 traces from “Run1” GPT-OSS-
120B with high reasoning effort.

For obtaining the visualizations in Figure[6]and Figure[7] we fine-tune models using the same teacher
models for all 1000 questions. we always choose the 4 traces from “Runl” of GPT-OSS-120B-high,
GPT-0SS-120B-medium, DeepSeek R1, and Gemini Flash2.0 Thinking. As mentioned in Section
3.3]and Figure[6] we fine-tune under 3 bipartite matching hyperparameters to conduct this case study.

GPT-OSS- GPT-OSS- DeepSeekR 1 Gemini Claude
120B-high 120B-medium Flash2.0 Opus4/4.1
Thinking
Runl 796/1000 769/1000 620/1000 538/1000 656/1000
Run2 785/1000 753/1000 641/1000 545/1000 647/1000

Table 3: The number of correct reasoning traces distilled for the 1,000 questions in s1 by different
teacher models. This evaluation is done by Sonnet comparing the predictions and the ground-truth
answers. We see that GPT-OSS has the highest accuracy for s1 dataset.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Set Supervised Fine-tuning (SSFT)

Require: ¢ 7g: base model
+ N: Number of global forking tokens {g("}},
* D: Dataset with (at most) M reasoning traces per question
* B: Global batch size
¢ Tp: The first Tr, number of tokens to match in matching cost (Equation [5).
Ensure: Output 7g
1: for each training step do

2: fork=1,...Bdo

3: Sample an input prompt and the corresponding reasoning traces (X, {r,(gj) ?/[:1) ~D
4: Initialize cost matrix C € RN*M
5: fori:=1,...,Ndo
6: for j=1,....,Mdo _
7: Compute the matching cost between g(*) and r,(f) by Equation
. 1 Io .)
»Cmatching (g(l)v I‘;@) = —Sg <TL Z 10g e (r](g} ‘Xka g(l)a I'J(f,)<f>> (5)
t=1
8: Store the matching cost in C.
C(Z, j) = L:ma[ching (g(l)a r’(g)) (6)
9: end for
10: end for _)
11: Compute optimal matching &, between {g(¥}N_| and {r%)}?/[:1. Hungarian algorithm
(Kuhn| [1955)) can be applied to C to efficiently compute Equation [7] (Equation [T)).
M
(o zargminZC(a(j),j) (7
oceSp j=1
12: end for
13: Compute the empirical set language modeling loss (Equation [8):
1 B[
— (9) &1(7) @)
ﬁHungarian(e) = _E ; ; tz:; log T (rkj,t|xk7 g(k(J))7 rkj,<t) (8)

14: Update model parameters 6 using gradients Vg Ljungarian (6)
15: end for

15

Under review as a conference paper at ICLR 2026

Algorithm 2 Queue-based Distributed SSFT with variable number of traces for each question

Require: ¢ 7g: base model
+ N: Number of global forking tokens {g("}}_;
e D: Dataset with (at most) M reasoning traces per question, variable m number of traces per
question
B: Global batch size
Ty, The first T, number of tokens to match in matching cost (Equation [5).
* b: Original per-device global batch size (b > M), This is “micro batch size*original grad
accumulation steps”
Ensure: Output 7g
1: for each epoch do

2: Initialize Queue @ for storing a sequence of (x, {rg) }7L.1) where m is a variable number
that differs between input questions and different processes (GPUs)
Initialize Queue q for storing a sequence of sizes of sets m.

3

4 for every (xy, {rg) 1) €Ddo

5: Q + Q.enqueuve((xy, {r,(j) 7))
6.
7
8

L]

q < g.enqueue(m)
all_q-list = All-gather(q)
Initialize list temp_batch

9: while All processes have at least b sequences based on all_g_list do
10: while temp_batch does not have at least b sequences do
11: temp_batch < temp_batch.append(Q.dequeue())
12: g.deque()
13: end while
14: compute the the maximum per_device global batch size b,,,, currently in all pro-
cesses using all_g_list (inferred, no collective operation)
15: Pad temp_batch to size b,,.. by appending “pad sequences” as needed.
16: Update all entries in all_qg_list based on inferred usage
17: Perform one SSFT training step, SSFT (g, temp_batch, by,q.)
18: end while
19: end for
20: end for

16

Under review as a conference paper at ICLR 2026

A.4.2 TRAINING HYPERPARAMETERS

For consistency, we use Qwen2.5-32B-Instruct (Yang et al., 2025a) as the base model for all of our
32B experiments. We use standard fine-tuning hyperparameters: we train for 6 epochs with a global
batch size of 32, which is derived from 4 gradient accumulation steps and distributed training with
8 GPUS (4 x 8 = 32). This results in 756 gradient steps. The maximum sequence length is set
to 32,768. We train with bfloat16 with a learning rate of 1le — 5 warmed up linearly for 5% and
then decayed to O using a cosine schedule. We choose AdamW optimizer (Loshchilov & Hutter,
2017) with 5, = 0.9, B> = 0.95, and weight decay 1e — 4. We only backpropagates the completion
loss, which is the loss on reasoning traces and the answers. Fine-tuning SSFT-32B plus loggings
took 6.5 hours on 8 NVIDIA B200 GPUs using PyTorch FSDP, Liger Kernel (Hsu et al.| 2024])) for
fused cross entropy loss, and FlashAttention-2 (Daol [2023) for fused attention computation. Fine-
tuning SSFT-32B (random o) took 6.3 hours, and Fine-tuning SFT-mixed-distill-32B took 6.1
hours. Even our baseline SFT-OSS-distill-32B with only one trace per question, and our attempt to
reproduce s1.1 took 1.66 hours, which is longer than the time reported by Muennighoff et al.| (2025)).
This is due to using 8 GPUs instead of 16 GPUs, hardware and package differences. When training
with slk-4mixed-reasoning, we added one extra epoch from 5 epochs to 6 epochs, since we have
4x reasoning traces, but we did not linearly increase the number of epochs, as these traces can be
similar, and the number of distinct questions is still 1,000. Overall, we made sure all of our models
are fine-tuned with consistent hyperapameters.

A.4.3 VISUALIZATION OF SSFT TRAINING DYNAMICS

Figure[8]shows the standard training dynamics of SSFT with optimal bipartite matching. The result-
ing model is SSFT-32B. The loss plotted here is Equation 3]

Training Loss Learning Rate Schedule Gradient Norm
11 x10-5
1.05
3 €3
© o
(%] o =
V0.6 o €2
3 2 o0s0 5
£ 2
5 f:
b 1
] O
015 200 400 600 —0.055 200 400 600 0 200 400 600
Training Steps Training Steps Training Steps

Figure 8: Training dynamics of SSFT-32B on s1k-4mixed-reasoning

Figure [9] shows the evolution of bipartite matching during SSFT. Figures [0a] and [0b] show that the
gap between optimal bipartite matching cost and non-optimal bipartite matching cost under other o
keeps widening during training. This means that these reasoning traces are indeed starting to match
unique global forking tokens. Even though SSFT effectively optimizes a non-stationary objective
which depends on model parameters 6, the widening gap shows the inner discrete optimization is
converging as training goes. Figure [9c|also confirms that the model learned some unique correla-
tions between {g(V1%_, and {r(?) }j—1. as only a subset of matchings are still computed as optimal.
Compared to Figure 6] we see more o accumulating mass towards the end. This is due to having
more mixed diverse reasoning traces, so the model learned more intricate associations between these
global forking tokens and truly diverse reasoning traces.

A.4.4 ABLATION STUDY TRAINING DETAILS (REMOVING HIGH QUALITY SMALL DATASET)

For this ablation study, we choose Open-R1-Math220k default split, which has 93,000 math ques-
tions and 2 ~ 4 traces. Since Qwen2.5-Math-7B is a widely fine-tuned model using this dataset, we
also choose it as our base model. We train for 3 epochs using 8 A100 GPUs, which took around 4
days. Our hyperparameters are mostly consistent with the recommended hyperparameters by |[Face
(2025)). We fine-tune both SSFT-OpenR1-93k-7B and SFT-OpenR1-93k-7B with a maximum length
of 32768, learning rate of 4.0e — 05 warmed up linearly for 3% and decayed to 0 following cosine
schedule, 8 gradient accumulation steps. For our SSFT method, we reserve N = 4 global forking

17

Under review as a conference paper at ICLR 2026

8
S
optimal

1501

i
c
>
o
o
[

Gap between avg rest and 1st opt total cost
x10-2Gap between 2nd and 1st opt total cost xw—lp 9 P

IS
&~
n

Cumulativ

5

o
o
o

Gap between 2nd and 1st opt total cost
~
Gap between avg rest and 1st opt total cost
~
o

=y
ST
Bi " D Dy
Partite Matching Contig
200 400 600 200 400 600 nde:
Training Steps Training Steps

(a) The gap between the optimal (b) The gap between the optimal (c) Cumulative counts of o,
bipartite matching cost in Equation matching cost in Equation[I]and the computed as optimal over training.

[[]and second smallest bipartite average of bipartite matching cost We observe that only a subset &,
matching cost. The increase shows under other o. The increase shows accumulates mass towards the end,

the global forking tokens start the global forking tokens start ~ indicating some unique correlations
preferring a specific matching. preferring a specific matching. learned between {g(“ }?:1 and
{r}-,

Figure 9: Dynamics of bipartite matching during the fine-tuning of SSFT-32B on slk-4mixed-
reasoning.

tokens, and use the first 1000 tokens for matching. Again, only the completion loss is used for
optimizing the model parameters.

A.5 EXAMPLES OF SSFT-32B REASONING TRACES INITIATED BY DIFFERENT GLOBAL
FORKING TOKENS

We randomly picked a set of six parallel generations from those where SSFT-32B correctly answered
a problem from AIME 2025 under all six global forking tokens. This is question 11.

Problem 11 (AIME25)

A piecewise linear periodic function is defined by
x, ifz e [-1,1),
= and x+4) = f(z) forall real x.
(@) {2% e e [L9), fla+4) = ()

The graph of f(z) has a sawtooth pattern. The parabola 2 = 34y intersects the graph of
f(z) at finitely many points. The sum of the y-coordinates of these intersection points can
be expressed in the form

a+ by/c

d
where a, b, ¢, d are positive integers, gcd(a, b, d) = 1, and c is squarefree. Find a+b+c+d.

Here are the 6 parallel generations by SSFT-32B. We see distinct reasoning traces produced by
prompting with a unique g € {g(¥}%_,. The differences are highlighted in red comments.

<think1> — Periodization + Quadratic Families + Vieta/Telescoping

<|im_start|>assistant
<|im_start|>

<think1>

“write © = t + 4k with t € [-1,3)” “Case | (t € [-1,1),y =t) ... Case2
14+ 1+ 544k

(tel,3),y=2-1)" .. . 34t —t — 4k = 0 and t = 6—; “let

18

Under review as a conference paper at ICLR 2026

. —14+/273 + 544k —1+ 5v185
u=2—t"andyu = ——— Thusu = —. .

to rational constant 9/34” ... 68 ([Comment:] periodize x = t 284/@', solve two quadratic
families, use Vieta pair-sums; edge-period gives the irrational ¥)

</think1>

<|im_start|>answer

Answer: | 259

.. ... “telescopes

<think2> — Nearest-Multiple-of-4 Reduction

<|im_start|>assistant
<|im_start|>

<think2>

Start from y = f(34y?) write 34y? = 4k + r with r € [~1,3) (choose k =

LMyTQ‘HJ) Branch A (r € [-1,1): y=r=34y> —y—4k=0... ... Branch B

re,3)y=2—r=34y>+y—(2+4k)=0... ... Vieta: pair-sums +z; and — 5

cancel over full periods only the edge/partial period remains (kK = 8, descending
—1++/273+544-8 —1+5V185

branch) Y= 68 = T

([Comment:] reduce to r € [—1,3) via nearest multiple of 4; full periods cancel by :l:ﬁ
pair-sums; only the boundary k = 8 root contributes)

</think2 >

<|im_start|>answer

Answer: | 259

<think3> — Paper-Style Sections; Explicit Pair-Sums and Totals

<|im_start|>assistant
<|im_start|>

<think3>
8 7

. —1 4 v/4625

“No e need sum of all y-coordinates” T e e =
W W u y ; Yin+ ; ve, y o3
5vV/185 — 17

...... “Therefore Sy = T” e ... “Total sum S ...” ([Comment:] formal
write-up; separates sums by family, explicitly displays the boundary y = _Hﬁi V84625, then
totals)
</think3>

<|im_start|>answer
Answer: | 259

<think4> — Set/System Framing Before Algebra

<|im_start|>assistant
<|im_start|>

<think4>
“the set {(z, f(z))} ... Intersecting it with the parabola x = 34y requires solving
y = f(z), x = 34y%>” (then proceeds to the same two-case algebra) ...

" -1+ 273 +544-8 —1+5v185
L = = .

68
after setting up the system, it reaches the same boundary . value on the partial period)
</think4 >

e« ([Comment:] definition-first framing;

19

Under review as a conference paper at ICLR 2026

<|im_start|>answer
Answer: | 259

<think5> — Outline & Symmetry: Full Periods Cancel, Last Period Contributes

<|im_start|>assistant
<|im_start|>

<think5>
“the sum is zero ... That’s a key insight.” “for each full period (k = 0 to k = 7), the
sum ... is zero ... now consider the partial period &k = 8" Compute upys(k=8) =

—1 4 /4625

symmetry explains full-period cancellation; the lone boundary contribution at k = 8 supplies
the irrational term)

</think5>

<|im_start|>answer

Answer: | 259

... ... (term-by-term cancellation examples for £k = 0,1) ([Comment:]

<think6> — Stream-of-Consciousness Scratchwork

<|im_start|>assistant

<|im_start|>

<think6>

“Okay, so I need to solve this problem ... Let me try to break this down step by step.” ...

_ —1+/1625

self-checks; reaches the same boundary y on the partial period)
</think6>
<|im_start|>answer

Answer: | 259

... “Wait, actually, no. Wait,” YA wee wo. ([Comment:] exploratory

A.6 ALTERNATIVE IMPLEMENTATION OF TRAINING WITH MULTI-TARGET SEQUENCES

Figure [I0] shows an alternative implementation for training with multiple target parallel sequences.
Instead of flattening multi-target data along the batch dimension, we can also concatenate parallel
reasoning traces along the sequence dimension, modify the causal attention matrix, and position
ids for positional embeddings. While easy to implement, this version extends the sequence length
and cannot perform gradient accumulation along the batch dimension to maintain the same VRAM
as training with a single reasoning trace. Since most fine-tuning already sets the micro-batch size
to 1 due to the increased number of reasoning tokens already present in a single reasoning path,
this implementation also cannot further shrink the micro-batch size to accommodate the extended
context length. In addition, the code that uses the initial flash-attention implementation, which
requires causal attention matrix, is not compatible with this setup. In terms of choosing the number
of sequences in a global batch size, this implementation is also less flexible.

20

Under review as a conference paper at ICLR 2026

Prompt: prove that there are infinitely many prime numbers. [
Ko
LLM (9) <onins
R
- Xprompt <thinkl> Ry </thinkl><think2> R, </think2><think3> Ry </think3>Xns~; ‘s
<erinf)
R
Constructive proof: Given finitely many Analytical proof: If finitely many Topological proof: Finite primes would ¢ N T
primes pi, ..., py, primes, [, i, — would converge... make {<1} openin F mnd
their sum plus 1 isn’t divisible. .. 5 topology, but every open set is infinite. |
—_ L Rk
QB - {015) y 04,05 }

P N A R I TR

Figure 10: An illustration of training with multiple parallel targets along the sequence dimension.

21

	Introduction
	Learning Global Forking Tokens via Set Supervised Finetuning
	Parallel Reasoning as Set of Next Token Prediction
	SSFT: Minimizing Set of NTP Losses under Optimal Bipartite Matching
	Inference with Learned Global Forking Tokens

	Experiments
	Experiment Setup
	Evaluating SSFT on Reasoning Benchmarks
	Evaluating Parallel Reasoning Diversity and Learned Matchings
	Ablation Study: Removing High Quality Small Dataset

	Related work
	Conclusion
	Appendix
	LLM Usage in Paper
	Learned Matchings between Global Forking Tokens and Traces
	How to Choose the Global Forking Token for Pass@1
	More Visualizations on Learned Matchings

	Algorithm: SSFT Implementation
	Training details
	Training Datasets
	Training Hyperparameters
	Visualization of SSFT Training Dynamics
	Ablation Study Training details (Removing High Quality Small Dataset)

	Examples of SSFT-32B Reasoning Traces initiated by Different Global Forking Tokens
	Alternative Implementation of training with multi-target sequences

