
Reinforcement Learning Journal 2025
∣∣ Cover Page

Adaptive Submodular Policy Optimization
Branislav Kveton, Anup Rao, Viet Lai, Nikos Vlassis, David Arbour

Keywords: policy gradients, submodularity, adaptive submodularity

Summary
We propose KL-regularized policy optimization for adaptive submodular maximization,

which is a framework for decision making under uncertainty with submodular rewards. Policy
optimization of adaptive submodular functions justifies a surprisingly simple and efficient policy
gradient update, where the optimized action only affects its immediate reward but not the future
ones. It also allows us to learn adaptive submodular policies with large action spaces, such as
those represented by large language models (LLMs). We prove that our policies monotonically
improve as the regularization diminishes and converge to the optimal greedy policy. Our
experiments show major gains in statistical efficiency, in both synthetic problems and LLMs.

Contribution(s)
1. We propose KL-regularized policy optimization for adaptive submodular maximization.

Context: There are prior works on gradient-based optimization of submodular (not adaptive)
functions. See Paragraph 2 in Section 6. There are prior works on policy gradients in more
general settings. See Paragraphs 1 and 3 in Section 6.

2. We derive more efficient policy gradient estimators than in more general settings, with O(n)
terms as opposing to O(n2), where n is the horizon.
Context: None

3. We prove that our policy converges to the optimal greedy policy for adaptive submodular
maximization as the regularization diminishes (Theorem 1). We prove that our policies
monotonically improve over reference policies used for their regularization as the regulariza-
tion diminishes (Theorem 4).
Context: None

4. We demonstrate the efficiency of new policy gradient estimators empirically, in both synthetic
problems and LLMs (Section 5).
Context: None

Adaptive Submodular Policy Optimization

Adaptive Submodular Policy Optimization

Branislav Kveton1, Anup Rao1, Viet Lai1, Nikos Vlassis1, David Arbour1

{kveton,anuprao,daclai,vlassis,arbour}@adobe.com

1Adobe Research

Abstract

We propose KL-regularized policy optimization for adaptive submodular maximization,
which is a framework for decision making under uncertainty with submodular rewards.
Policy optimization of adaptive submodular functions justifies a surprisingly simple and
efficient policy gradient update, where the optimized action only affects its immediate
reward but not the future ones. It also allows us to learn adaptive submodular policies
with large action spaces, such as those represented by large language models (LLMs).
We prove that our policies monotonically improve as the regularization diminishes and
converge to the optimal greedy policy. Our experiments show major gains in statistical
efficiency, in both synthetic problems and LLMs.

1 Introduction

Many real-world problems have diminishing returns. The number of influenced people in a social
network increases sublinearly with the number of influencers (Kempe et al., 2003). The information
gain due to adding a sensor decreases if other sensors have already been placed at similar locations
(Krause et al., 2008). The engagement with recommended items does not increase when many of the
items are similiar (Yue & Guestrin, 2011; Hiranandani et al., 2019). The property of diminishing
returns, known as submodularity, allows for an efficient optimization of such problems. Specifically,
it is well known that a greedy algorithm for maximizing submodular functions in n steps is (1− 1/e)-
optimal (Nemhauser et al., 1978).

We study adaptive decision making with submodular functions. Adaptive submodularity (Golovin &
Krause, 2011) is a generalization of submodularity where the expected gain in reward after taking an
action, in expectation over its observation, is a submodular function. One application of adaptive
submodularity is preference elicitation (Gabillon et al., 2013), which is a special case of question-
answering games (Dasgupta, 2005; Karbasi et al., 2012). These problems are submodular because
the information gain due to asking a question diminishes with more previously asked questions. A
greedy algorithm for adaptive submodular maximization in n steps, which takes the action with the
highest expected gain conditioned on the history, is (1− 1/e)-optimal (Golovin & Krause, 2011).

This work brings together the fields of adaptive submodular and policy optimization. Policy opti-
mization of adaptive submodular functions justifies a surprisingly simple and efficient policy gradient
update, where the optimized action only affects its immediate reward but not the future ones. This is
in contrast to other recent frameworks, such as submodular reinforcement learning (Prajapat et al.,
2024), where the policy gradient has a classic form. The additional benefit of our approach is that we
can efficiently learn policies for adaptive submodular maximization with large action spaces, such as
the responses of a large language model (LLM). Indeed, policy gradients (Williams, 1992) arose as a
versatile tool for reinforcement learning (Sutton & Barto, 1998) and play a critical role in learning
LLMs (Schulman et al., 2015; 2017; Ouyang et al., 2022).

We make the following contributions:

Reinforcement Learning Journal 2025

1. We propose KL-regularized policy optimization of adaptive submodular functions (Section 3). A
submodular view on policy optimization justifies a surprisingly efficient policy gradient update,
where the optimized action only affects its immediate reward but not the future ones. A policy
optimization view on adaptive submodular maximization allows us to learn policies with large
action spaces, such as those represented by LLMs.

2. We analyze our policies and prove two claims. First, we show that our policy converges to the
optimal greedy policy for adaptive submodular maximization as the regularization diminishes.
Second, we show that our policies monotonically improve over reference policies used for their
regularization as the regularization diminishes. The main contribution in our analysis is bringing
together techniques for analyzing KL-regularized policies and adaptive submodular maximization.
This requires generalization of existing concepts of near-optimal adaptive submodular policies to
stochastic policies.

3. We empirically evaluate our policies for adaptive submodular maximization. They can be learned
more efficiently than using a vanilla policy gradient and are applicable to LLMs.

2 Background

We start with introducing our notation. Random variables are capitalized, except for Greek letters like
θ. We denote the marginal and conditional probabilities under probability measure p by p(X = x)
and p(X = x | Y = y), respectively. When the random variables are clear from context, we write
p(x) and p(x | y). For a positive integer n, we define [n] = {1, . . . , n}. The indicator function is
1{·}. The i-th entry of vector v is vi. If the vector is already indexed, such as vj , we write vj,i.

We introduce our notation for decision making next. An agent interacts with the environment for n
steps. To simplify exposition, we assume that n is fixed. The agent initially observes a context x ∈ X ,
where X is the space of contexts. The context is a side information that could define the problem
instance, for example. In step t ∈ [n], the agent takes an action at and observes yt. The difference
between actions and observations is that the agent controls the actions. The observations depend on
actions but are provided by the environment. The history of n actions and their observations is a set
hn = {(at, yt)}t∈[n]. We denote by r(x, hn) ≥ 0 the reward associated with context x and history
hn. The probability that action a is taken in context x and history ht−1 is π(a | x, ht−1; θ), and is
parameterized by θ ∈ Θ. We call θ a policy and Θ the space of policy parameters. The action and
observation in step t are generated as at ∼ π(· | x, ht−1; θ) and yt ∼ p(· | x, ht−1, at), respectively.
Since the order of the observations in the history does not matter, our setting is less general than
classic reinforcement learning (Sutton & Barto, 1998) but more general than a bandit (Lattimore &
Szepesvari, 2019), because both at and yt depend on the history. We discuss relation of our paper to
prior works in Section 6.

We denote the probability of history hn in context x under policy θ by π(hn | x; θ). By the chain
rule and our modeling assumptions, we note that it factors as

π(hn | x; θ) =
n∏

t=1

p(yt | x, ht−1, at)π(at | x, ht−1; θ) . (1)

The value of policy θ is

V (θ) = Ex, hn∼π(·|x;θ) [r(x, hn)] ,

where x ∼ D is drawn from a distribution of contexts D. The optimal policy and its value are

θ∗ = argmax
θ∈Θ

V (θ) , V ∗ = max
θ∈Θ

V (θ) , (2)

respectively. The question-answering game in Section 1 can be formulated in our notation as follows.
The questions are actions, the answers are observations, and the reward is the fraction of objects that
the user does not think about, based on the questions and their answers in the history. We experiment
with these problems in Sections 5.2 and 5.3.

Adaptive Submodular Policy Optimization

2.1 Adaptive Submodularity

Adaptive submodularity (Golovin & Krause, 2011) is a framework for sequential decision making
under uncertainty with diminishing returns. Under this assumption, a near-optimal policy is greedy
conditioned on the history and thus can be computed efficiently.

Adaptive submodularity is formally defined as follows. Let

∆(a | x, ht−1) = Ey∼p(·|x,ht−1,a) [r(x, ht−1 + {(a, y)})]− r(x, ht−1) (3)

be the expected gain in reward after taking action a in context x and history ht−1. We make two
assumptions. First, the expected gain is non-negative; ∆(a | x, ht−1) ≥ 0 holds for any context x,
history ht−1, and action a. Second, the expected gain is submodular;

∆(a | x, ht−1) ≥ ∆(a | x, ht−1 + {(a′, y′)})

holds for any context x, history ht−1, actions a and a′, and observation y′. These assumptions are
analogous to those in classic submodularity (Nemhauser et al., 1978), except that the ground set are
actions and the assumptions are in expectation over the observations of the actions. Similarly to the
classic setting, they imply efficiency. Specifically, let

πg(a | x, ht−1) = 1

{
a = argmax

a′
∆(a′ | x, ht−1)

}
(4)

be the greedy policy with respect to ∆(a | x, ht−1). Then its expected value is at least (1− 1/e)V ∗

(Golovin & Krause, 2011), where V ∗ is defined in (2).

2.2 KL-Regularized Policy Optimization

One limitation of solving adaptive submodular problems as in (4) is that the maximization is difficult
when the action space is large or infinite, such as when the actions are responses of an LLM (Brown
et al., 2020; Wei et al., 2022). This motivates our work on solving (4) by policy learning. Learning
of policies for large action spaces is at the center of reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017). Specifically, once a reward model is learned, the policy is optimized
to maximize the expected reward under the reward model using proximal policy optimization (PPO)
(Schulman et al., 2017). The objective is

LPPO(θ) = Ex∼D, a∼π(·|x;θ)

[
r(x, a)− β log

π(a | x; θ)
π0(a | x)

]
, (5)

where x is a prompt sampled from a dataset of prompts D, a is its response, and π(a | x; θ) is the
probability of generating response a to prompt x by policy θ. The first term is the expected reward
for response a to prompt x. The second term penalizes for deviations of the optimized policy from a
reference policy π0, usually obtained by supervised fine-tuning (Mangrulkar et al., 2022; Hu et al.,
2022). The parameter β ≥ 0 trades off the two terms. In adaptive submodularity (Section 2.1), the
prompt x and its response a are the history and action, respectively.

PPO is a popular policy-learning framework with two benefits. First, it is suitable for large action
spaces. Specifically, once the policy is learned, the best action is just sampled from it. Second, the
prior information is incorporated through the reference policy. While PPO has been popularized by
RLHF, we note that the idea of KL-regularized policies goes back to Schulman et al. (2015), where it
was used to motivate trust-region policy optimization; and Todorov (2006), where it was proposed
and analyzed in the context of Markov decision processes (Puterman, 1994).

3 Algorithm

We bring together adaptive submodular maximization and KL-regularized policy optimization. This
has two benefits. First, we can learn policies for adaptive submodular maximization with large action
spaces, such as those represented by LLMs. Second, we justify a surprisingly efficient policy gradient
update, where the action only affects its immediate reward but not the future ones.

Reinforcement Learning Journal 2025

Algorithm 1 KL-PO

1: Input: Learning rate schedule (αi)i∈N
2: Initialize θ and i← 1
3: while not convergence do
4: Simulate hn ∼ π(· | x; θ)
5: θ ← θ + αi

∑n
t=1(ft(θ)− β)

∑t
ℓ=1

∇ log π(aℓ | x, hℓ−1; θ)
6: i← i+ 1

7: Output: Learned policy θ

Algorithm 2 KL-SubPO

1: Input: Learning rate schedule (αi)i∈N
2: Initialize θ and i← 1
3: while not convergence do
4: Simulate hn ∼ π(· | x; θ)
5: θ ← θ + αi

∑n
t=1(ft(θ)− β)×

∇ log π(at | x, ht−1; θ)
6: i← i+ 1

7: Output: Learned policy θ

3.1 Classic Policy Optimization

To understand the benefit of our method, we first introduce a classic n-step KL-regularized policy
optimization. When actions in (5) are replaced with histories, we immediately obtain

LKL-PO(θ, β) = Eθ

[
r(x, hn)− β log

π(hn | x; θ)
π0(hn | x)

]
,

where Eθ [·] = Ex∼D, hn∼π(·|x;θ) [·]. The problem of policy optimization is to maximize LKL-PO(θ, β)
with respect to θ. We call this algorithm KL-PO and present it in Algorithm 1.

The main challenge in optimizing LKL-PO(θ, β) is that its gradient has O(n2) terms. To see this, we
first note that the expected reward in n steps can be rewritten as the the sum of n expected gains,

Eθ [r(x, hn)] =

n∑
t=1

Eθ,t [∆(at | x, ht−1)] ,

where Eθ,t [·] = Ex∼D, ht−1∼π(·|x;θ),at∼π(·|x,ht−1;θ) [·]. This identity follows from the factorization
of π(hn | x; θ) in (1) and the definition of ∆(at | x, ht−1) in (3). Therefore, our n-step objective can
be written as

LKL-PO(θ, β) =

n∑
t=1

Eθ,t [ft(θ)] , (6)

where

ft(θ) = ∆(at | x, ht−1)− β log
π(at | x, ht−1; θ)

π0(at | x, ht−1)
. (7)

Using basic rules of differentiation and the score identity (Aleksandrov et al., 1968), we obtain

∇Eθ,t [ft(θ)] = Eθ,t

[
(ft(θ)− β)

t∑
ℓ=1

∇ log π(aℓ | x, hℓ−1; θ)

]
. (8)

Therefore, the policy gradient (Williams, 1992) of (6) involves n(n+ 1)/2 terms. This leads to an
O(n2) variance in the empirical estimate in KL-PO (line 5). The dependence on prior actions arises
because they all impact the gain in step t. This motivated many prior works on variance reduction of
policy gradients (Sutton et al., 2000; Baxter et al., 2001; Baxter & Bartlett, 2001; Munos, 2006).

3.2 Adaptive Submodular Policy Optimization

The key idea in our algorithm is to replace the empirical gradient estimate in KL-PO (line 5), which
involves

∑t
ℓ=1∇ log π(aℓ | x, hℓ−1; θ), with∇ log π(at | x, ht−1; θ). An informal justification for

this choice is that for any content x and history ht−1, a near-optimal policy in (4) only maximizes the
immediate gain conditioned on x and ht−1.

Adaptive Submodular Policy Optimization

Mathematically, this change can be viewed as follows. Suppose that (6) is replaced with

LKL-SUBPO(θ, β) =

n∑
t=1

Eθ,θh,t [ft(θ)] , (9)

where Eθ,θh,t [·] = Ex∼D, ht−1∼π(·|x;θh),at∼π(·|x,ht−1;θ) [·] and θh is a history-generating policy that
is independent of θ. Then, using basic rules of differentiation and the score identity (Aleksandrov
et al., 1968), we obtain

∇Eθ,θh,t [ft(θ)] = Eθ,θh,t [(ft(θ)− β)∇ log π(at | x, ht−1; θ)] . (10)

This gradient differs from (8) because we do not differentiate with respect to θh. The result is a major
gain in efficiency, due to replacing t terms in∇Eθ,t [ft(θ)] by a single one.

We call the resulting algorithm KL-SubPO and present it in Algorithm 2. Although (10) has fewer
terms than (8), the objective (9) needs to be properly justified and we do that in Section 4. Specifically,
we prove that when the problem is adaptive submodular, the maximization of (9) yields near-optimal
greedy policies for any history-generating policy θh. The learned policies monotonically improve
over reference policies π0 as β → 0 when the reward model is correctly specified. While a part of the
proof uses the fact that the order of past observations does not matter, this assumption alone is not
sufficient to derive (10).

4 Analysis

We make the following assumptions. First, we analyze an idealized variant of KL-SubPO, which is
formulated as a maximization of (9). Second, we assume that the optimal solution to (9) is realizable
and identifiable. Finally, we assume that the reward model is known.

We start with the observation that by the tower rule,

Eθ,θh,t [ft(θ)] = Ex∼D, ht−1∼π(·|x;θh)
[
Eat∼π(·|x,ht−1;θ) [ft(θ) |x, ht−1]

]
.

The inner expectation has the same algebraic form as (5). Thus, for any context x and history ht−1,
the maximizer has a closed form (Todorov, 2006) of

π(a | x, ht−1; θ) =
1

Z(x, ht−1)
π0(a | x, ht−1) exp

[
1

β
∆(a | x, ht−1)

]
, (11)

where Z(x, ht−1) is the normalizer. This allows us to analyze the properties of the optimal policy
irrespective of θh. In the following, we first show that as β → 0, the policy converges to the optimal
greedy policy. Then we introduce γ-approximate policies to analyze the non-asymptotic behavior of
KL-SubPO.

Theorem 1. Let θ̂(β) = argmaxθ LKL-SUBPO(θ, β). Let ∆(a | x, ht−1) be the expected gain in (3)
and πg be the greedy policy in (4). Then, if the best greedy action is unique,

lim
β→0

π(a | x, ht−1; θ̂(β)) = πg(a | x, ht−1)

holds for any context x, history ht−1, and action a.

Proof sketch. When β = 0, the KL regularizer in (7) vanishes and the maximizer of (9) is the greedy
policy in (4). See Appendix A for details.

This result confirms that as the KL regularization diminishes, our policy becomes the greedy policy
maximizing the expected gain in (3). Now we analyze the non-asymptotic behavior through the novel
concept of γ-approximate greedy policies.

Reinforcement Learning Journal 2025

4.1 γ-Approximate Greedy Policies

Traditional greedy policies take actions that maximize the expected gain. The maximizer of (9) does
that approximately. To analyze it, we extend the notion of the expected gain in (3) from individual
actions to entire policies. We denote by

∆(θ | x, ht−1) = Ea∼π(·|x,ht−1;θ) [∆(a | x, ht−1)]

the expected gain in reward after following policy θ in context x and history ht−1.

Definition 2 (γ-Approximate Greedy Policy). For γ ≥ 1, a policy θ is γ-approximate greedy if

∆(θ | x, ht−1) ≥
1

γ
max
a′

∆(a′ | x, ht−1)

holds for all contexts x and histories ht−1.

Our notion of γ-approximate greedy policies is inspired by but distinct from the approximate greedy
policies in Golovin & Krause (2011). Specifically, Golovin & Krause (2011) require that all actions
in the policy’s support are approximately optimal, while we only require the approximate optimality
of the expected gain with respect to a fixed policy. This relaxation is better suited for our setting,
where we learn stochastic policies for large action spaces that are regularized by pre-trained LLM
policies using KL.

Theorem 3 (Performance of γ-Approximate Greedy Policies). Let θ be a γ-approximate greedy policy
and V ∗ be the expected value of the optimal n-step policy. Under the assumptions in Section 2.1,

V ∗ − V (θ) ≤ (1− 1/e1/γ)V ∗ .

Proof sketch. The proof follows a standard submodularity argument. We define the optimality gap
and show that it decreases exponentially at rate 1/(γn). See Appendix A for details.

This generalizes the classic (1− 1/e)-approximation guarantee to γ-approximate greedy policies.
Specifically, when γ = 1, we recover the classic guarantee of the exact greedy policy. As γ → 0, the
approximation factor worsens smoothly with γ.

4.2 Improvement Guarantees

Having characterized the performance of γ-approximate greedy policies generally, we now establish
how KL-SubPO produces improved policies.

Theorem 4 (Policy Improvement). Let the reference policy π0 in (9) be γ-approximate greedy. Let
θ̂(β) = argmaxθ LKL-SUBPO(θ, β) be the maximizer of (9) and π̂(· | ·) = π(· | ·; θ̂(β)) denote the
corresponding policy. Let r̂(x, ht−1) = Ea∼π̂(·|x,ht−1)[r(x, ht−1∪{(a, y)})] be the expected reward
for following policy π̂ in context x and history ht−1. Then there exists γ′ ∈ [1, γ] such that

V ∗ − r̂(x, ht−1) ≤
(
1− 1

γ′n

)
(V ∗ − r(x, ht−1))

holds for all contexts x and histories ht−1. Furthermore:

1. π̂ is a (1− 1/e1/γ
′
)-optimal policy.

2. γ′ decreases monotonically with the regularization parameter β.

This claim establishes two important properties of our policies. First, they improve a γ-approximate
greedy reference policy to a policy with an approximation factor γ′ ≤ γ. Second, the regularization
parameter β affects this improvement: a stronger regularization (larger β) leads to more conservative
improvements, while a weaker regularization makes the policy more greedy. The core insight behind
this result is the closed-form solution in (11), which indicates monotonicity. We formalize this insight
and prove it properly.

Adaptive Submodular Policy Optimization

0 2000 4000 6000 8000 10000
Policy gradient step

1.5

2.0

2.5

3.0

3.5

4.0

Po
lic

y
va

lu
e

Problem linear max

KL-PO (¯ = 1)
KL-PO (¯ = 0.1)
KL-PO (¯ = 0.01)
KL-SubPO (¯ = 1)
KL-SubPO (¯ = 0.1)
KL-SubPO (¯ = 0.01)

0 2000 4000 6000 8000 10000
Policy gradient step

0.70

0.75

0.80

0.85

0.90

0.95

Po
lic

y
va

lu
e

Problem binary search

KL-PO (¯ = 1)
KL-PO (¯ = 0.1)
KL-PO (¯ = 0.01)
KL-SubPO (¯ = 1)
KL-SubPO (¯ = 0.1)
KL-SubPO (¯ = 0.01)

Figure 1: Experiments on the linear maximization problem in Section 5.1 and the binary search
problem in Section 5.2.

5 Experiments

We conduct three experiments. The first two experiments are on synthetic problems and the last one
is on an LLM. The synthetic problems showcase the statistical efficiency of KL-SubPO on easy to
reproduce benchmarks and the LLM experiment shows the potential of our approach.

5.1 Linear Maximization

In the first experiment, we study n-step maximization of a linear function with K unknown parameters.
The function is represented by a vector w ∈ RK where wk = (k/K)2. The actions are the standard
basis in RK , A = {ei}Ki=1. The non-zero entry of an action indicates the revealed entry of w. The
reward is the sum of the revealed entries r(x, ht) =

∑t
ℓ=1 a

⊤
ℓ w. The policy is parameterized as

π(a | x, ht; θ) ∝ exp[ϕ(ht, a)
⊤θ], where ϕ(ht, a) is the feature vector for history ht and action

a. The feature vector for action ei is a zero vector if the action was taken before and ei otherwise.
Formally, for any ei ∈ A and k ∈ [K], ϕk(ht, ei) = ei,k

∏t
ℓ=1(1 − aℓ,k). We set K = 20 and

the horizon is n = 5. The optimal policy selects the 5 highest entries of w and its value is 4.07.
We experiment with β ∈ {0.01, 0.1, 1.0} to show a range of operating modes of KL-SubPO. The
reference policy π0 is uniform. All policies are optimized by Adam (Kingma & Ba, 2015) and we
average all results of over 32 random runs.

Our results are reported in Figure 1a. We observe three main trends. First, KL-SubPO outperforms
KL-PO for all β. This is because optimization of near-optimal greedy policies by KL-SubPO is less
noisy at our sample sizes, and thus more statistically efficient, than optimizing n-step policies by
KL-PO. Second, KL-SubPO policies improve as β → 0 when the reward model is correctly specified
(Section 4). Finally, the KL-SubPO policy at β = 0.01 is near optimal.

5.2 Binary Search

In the second experiment, we have a binary search problem over [K]. A random integer k∗ is chosen
from [K] and our goal is to identify it. The actions are all possible halving questions on [K]. More
specifically, A = {qi}K−1

i=1 , where qi ∈ {0, 1}K is a vector whose first i entries are ones and the rest
are zeros. When the agent takes action qi in step t, the observation is yt = qi,k∗ . Simply put, the
answer is “yes” if k∗ ≤ i and “no” otherwise. The reward is the fraction of eliminated integers in
[K], that cannot be k∗ based on the answers thus far,

r(x, ht) =
1

K

K∑
k=1

t∏
ℓ=1

yℓ(1− aℓ,k) + (1− yℓ)aℓ,k .

Reinforcement Learning Journal 2025

The policy is parameterized as in Section 5.1. The feature vector for action qi is an outer product of
the state st, which indicates the remaining integers, and qi, ϕ(ht, qi) = vec(s⊤t qi). The state is

st,k = 1

{
t∑

ℓ=1

yℓaℓ,k + (1− yℓ)(1− aℓ,k) = t

}
.

We set K = 32 and the horizon is n = 5. The optimal policy is binary search and its value is 0.97.
We experiment with the same policies as in Section 5.1. All results are averaged over 20 random runs.

Our results are reported in Figure 1b. We observe three main trends. First, KL-SubPO outperforms
KL-PO when β is high and is comparable when β is low. This is because optimization of near-optimal
greedy policies by KL-SubPO is less noisy at our sample sizes, and thus more statistically efficient,
than optimizing n-step policies by KL-PO. Second, KL-SubPO policies improve as β → 0 when the
reward model is correctly specified (Section 4). Finally, the KL-SubPO policy at β = 0.01 is near
optimal.

5.3 Twenty Questions

The last experiment is a 20Q game (Karbasi et al., 2012) with 20 animals. The agent is an LLM. It is
optimized against a user represented by an LLM. The reward is the fraction of eliminated animals.
The horizon is n = 6 questions. The experimental setup is described in detail in Appendix B. We
conduct another experiment, where the animals are replaced with Amazon products, in Appendix C.

We let the agent interact with the user and generate a dataset of 200 trajectories of length n = 6. The
reward of the original LLM is 0.817±0.006. We standardize trajectory rewards to zero mean and unit
variance, and learn a policy by KL-PO. Its reward is 0.815± 0.006 and the policy does not improve
over the baseline. When the trajectory rewards are clipped at 0, the reward is 0.833 ± 0.005 (2%
improvement over the baseline). We also standardize per-step gains to zero mean and unit variance,
and learn a policy by KL-SubPO. Its reward is 0.829± 0.006 (1.5% improvement over the baseline).
When the per-step gains are clipped at 0, the reward is 0.876 ± 0.004 (7% improvement over the
baseline). We conclude that KL-SubPO outperforms KL-PO in both settings, irrespective of the rewards
being clipped or not.

6 Related Work

In submodular reinforcement learning (Prajapat et al., 2024), the n-step reward is assumed to be a
submodular function of the visited states and taken actions, and depends on their order. Our work can
be viewed as a special case of this setting where the order does not matter. This additional property
allow us to derive policy gradients that do not have a quadratic number of terms in the horizon n.
On the other hand, the work of Prajapat et al. (2024) allows for modeling a larger class of problems.
The limitations of adaptive submodularity have been noted before and therefore it was extended, for
instance to functions of sequences (Mitrovic et al., 2019).

Gradient-based optimization of submodular functions has also been explored before. For instance,
Hassani et al. (2017) showed that stochastic projected gradient methods can provide strong approxi-
mation guarantees for maximizing continuous submodular functions with convex constraints. Bai
et al. (2018) optimized deep submodular functions by gradient ascent. Our paper is the first work on
gradient-based optimization of adaptive submodular functions.

Policy gradients were proposed by Williams (1992) and build on the score identity of Aleksandrov
et al. (1968). It is well known that policy gradients have a high variance and therefore many variance
reduction techniques have been proposed (Sutton et al., 2000; Baxter et al., 2001; Baxter & Bartlett,
2001; Munos, 2006; Kveton et al., 2020). Our contribution to these works is a policy gradient that
does not have a quadratic number of terms in the horizon n.

Adaptive Submodular Policy Optimization

7 Conclusions

We propose KL-regularized policy optimization for adaptive submodular maximization, a framework
for decision making under uncertainty with submodular rewards. A policy gradient of an adaptive
submodular function has a surprisingly simple and efficient form, where the optimized action only
affects its immediate reward but not the future rewards. The additional benefit of viewing adaptive
submodular maximization as policy optimization is that we can learn policies with large action spaces,
such as those represented by LLMs.

Our analysis makes multiple simplifying assumptions, which allow us to study the problem more
cleanly. First, we analyze an idealized variant of KL-SubPO, which is formulated as a maximization
of (9). Second, we assume that the optimal solution to (9) is realizable and identifiable. Finally, we
assume that the reward model is known. However, in practice, the model is often estimated. We will
address these limitations in our future work.

References
V. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva. Stochastic optimization. Engineering

Cybernetics, 5:11–16, 1968.

Wenruo Bai, William Stafford Noble, and Jeff Bilmes. Submodular maximization via gradient ascent:
The case of deep submodular functions. In Advances in Neural Information Processing Systems
31, 2018.

Jonathan Baxter and Peter Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

Jonathan Baxter, Peter Bartlett, and Lex Weaver. Experiments with infinite-horizon, policy-gradient
estimation. Journal of Artificial Intelligence Research, 15:351–381, 2001.

Tom Brown et al. Language models are few-shot learners. In Advances in Neural Information
Processing Systems 33, 2020.

Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems 30, 2017.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems 17, pp. 337–344, 2005.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S. Muthukrishnan. Adaptive
submodular maximization in bandit setting. In Advances in Neural Information Processing Systems
26, pp. 2697–2705, 2013.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486,
2011.

Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular
maximization. In Advances in Neural Information Processing Systems 30, 2017.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen,
and Branislav Kveton. Cascading linear submodular bandits: Accounting for position bias and
diversity in online learning to rank. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence, 2019.

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proceedings of the 10th
International Conference on Learning Representations, 2022.

Reinforcement Learning Journal 2025

Amin Karbasi, Stratis Ioannidis, and Laurent Massoulie. Hot or not: Interactive content search using
comparisons. In 2012 Information Theory and Applications Workshop, pp. 291–297, 2012.

David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 137–146, 2003.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations, 2015.

Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9:235–284, 2008.

Branislav Kveton, Martin Mladenov, Chih-Wei Hsu, Manzil Zaheer, Csaba Szepesvari, and Craig
Boutilier. Differentiable meta-learning in contextual bandits. CoRR, abs/2006.05094, 2020. URL
http://arxiv.org/abs/2006.05094.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2019.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, and Amin Karbasi. Adaptive
sequence submodularity. In Advances in Neural Information Processing Systems 32, 2019.

Remi Munos. Geometric variance reduction in Markov chains: Application to value function and
gradient estimation. Journal of Machine Learning Research, 7:413–427, 2006.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions - I. Mathematical Programming, 14(1):265–294, 1978.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems 35, 2022.

Manish Prajapat, Mojmir Mutny, Melanie Zeilinger, and Andreas Krause. Submodular reinforcement
learning. In Proceedings of the 12th International Conference on Learning Representations, 2024.

Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, New York, NY, 1994.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL https://arxiv.org/abs/
1707.06347.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

Richard Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems 12, pp. 1057–1063, 2000.

http://arxiv.org/abs/2006.05094
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

Adaptive Submodular Policy Optimization

Emanuel Todorov. Linearly-solvable Markov decision problems. In Advances in Neural Information
Processing Systems 19, 2006.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew Dai, and Quoc Le. Finetuned language models are zero-shot learners. In Proceedings of
the 10th International Conference on Learning Representations, 2022.

Ronald Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified
retrieval. In Advances in Neural Information Processing Systems 24, pp. 2483–2491, 2011.

Reinforcement Learning Journal 2025

A Proofs

Proof of Theorem 1. This is trivial. When β = 0, there is the KL-term vanishes from LKL-SubPO. So
the optimal policy is the one that maximizes ∆(a|x, ht−1) at every x, ht−1. This is exactly what
greedy policy does.

Lemma 5 (Value Upper Bound). Let π(| x, ht−1, θ) be a γ-approximate greedy policy and V ∗ be
the expected reward of the optimal n-step policy. Then for all contexts x and histories ht−1:

V ∗ ≤ r
(
x, ht−1

)
+ γn∆

(
θ | x, ht−1

)
,

Proof. The proof is based on the the usual submodular "each step can’t help more than the first step"
argument. Let π∗ be an optimal n steps policy. Then

V ∗ − r
(
x, ht−1

)
≤ Ehn∼π∗ [r(x, ht−1 + hn)]− r(x, ht−1)

=

n∑
k=1

E
[
∆
(
a∗k | x, hk−1 + ht−1

)]
where hk−1 is the history after k − 1 steps under π∗ and a∗k ∼ π∗(· | x, hk−1). By adaptive
submodularity, each incremental gain satisfies

∆
(
a∗k | x, hk−1 + ht−1

)
≤ ∆

(
a∗k | x, ht−1

)
≤ max

a′
∆(a′ | x, ht−1)

≤ γ∆(θ | x, ht−1).

Summing over n steps gives

V ∗ − r
(
x, ht−1

)
≤ γn∆

(
θ | x, ht−1

)
.

Lemma 6 (One-step Gap Reduction). Under adaptive submodularity and for any γ-approximate
greedy policy π, the expected reduction in the optimality gap after one step satisfies:

E[Xt] ≤ (1− 1/(γn))E[Xt−1]. (12)

Proof. For any realized history ht, and any policy π we define the expected one-step reward as:

r(π | x, ht) := r(x, ht) + Ea∼π(·|x,ht;θ)[∆(a | x, ht)] (13)
= Ea∼π(·|x,ht;θ)[r(x, ht ∪ {(a, y)})] (14)

where the second equality follows from the definition of ∆(a | x, ht) in (3). By Lemma 5 adaptive
submodularity implies:

V ∗ ≤ r(x, ht−1) + γn∆(π | x, ht−1) (15)

This inequality captures the key property that the remaining value after history ht−1 is bounded by
γn times the one-step gain.

Expanding using the definition of r(π | x, ht−1):

V ∗ ≤ r(x, ht−1) + γn∆(π | x, ht−1) (16)
= r(x, ht−1) (17)
+ γn(r(π | x, ht−1)− V ∗ + V ∗ − r(x, ht−1)) (18)

Adaptive Submodular Policy Optimization

Rearranging terms gives:

V ∗ − r(π | x, ht−1) ≤ (1− 1

γn
)(V ∗ − r(x, ht−1)) (19)

Note that this holds for every history. Therefore, the result follows by noting that Xt = V ∗−r(x,Ht)
and taking expectations.

Proof of Theorem 3 (Performance of γ-Approximate Greedy Policies). Let Ht denote the (random)
history after t actions of policy π. Define the gap random variables Xt = V ∗ − r(x,Ht), which
measure how far we are from optimality after t steps. By Lemma 6 we have that E[Xi] decreases
exponentially:

E[Xt] ≤ (1− 1/(γn))E [Xt−1] . (20)

Iterating this inequality from t = 1 to n:

E[Xn] ≤ (1− 1/(γn))nE[X0] (21)

Since X0 = V ∗ − r(π | x,H0) where H0 is the empty history, and E[X0] = V ∗ − V (θ):

V ∗ − V (θ) ≤ (1− 1/(γn))nV ∗ ≤ e−1/γV ∗. (22)

When γ = 1, we recover the classical (1− 1/e)-approximation of the exact greedy policy.

Lemma 7. Let p(x) be a probability distribution, and let g(x) be a real valued function. Define
Ep[g(x)] =

∫
p(x) g(x) dx. Now define a new distribution p′(x) by reweighting p(x) with the factor

eg(x): p′(x) = p(x) eg(x)

Z , where Z = Ep[e
g(x)] =

∫
p(x) eg(x) dx.

Then,
Ep′ [g(x)] ≥ Ep[g(x)]

Proof. We want to show
1

Z
Ep[e

g(x)g(x)] ≥ Ep[g(x)].

Equivalently,
Ep[e

g(x) g(x)] ≥ Z Ep[g(x)] = Ep[e
g(x)] Ep[g(x)].

Thus it suffices to show
Ep[e

g(x) g(x)] ≥ Ep[e
g(x)] Ep[g(x)].

Let Y = g(x) be a real-valued random variable under p. We claim

E[eY Y] ≥ E[eY] E[Y].

Rewrite this as
E
[
eY (Y − E[Y])

]
= Cov

(
eY , Y

)
≥ 0.

But Cov
(
eY , Y

)
≥ 0 holds because eY is a strictly increasing function of Y . By a standard result

(e.g., Chebyshev’s sum inequality), an increasing function of a random variable is positively correlated
with that variable.

Proof of Theorem 6 (Policy Improvement). To establish the theorem, it suffices to show that for all
contexts x and histories ht−1:

∆(π̂|x, ht−1) ≥ ∆(π0|x, ht−1) (23)

This improvement in expected marginal gain directly implies the desired approximation bounds.

Reinforcement Learning Journal 2025

Dog Cat Elephant Lion Tiger
Giraffe Panda Kangaroo Horse Penguin
Dolphin Koala Zebra Wolf Shark
Eagle Cheetah Bear Monkey Snake

Figure 2: Animals in the 20Q game.

From the optimality conditions of KL-SubPO in (11), we know that:

π̂(a|x, ht−1) =
1

Z(x, ht−1)
π0(a|x, ht−1) exp

(
1

β
∆(a|x, ht−1)

)
, (24)

where Z(x, ht−1) is the normalization factor:

Z(x, ht−1) =
∑
a′∈A

π0(a
′|x, ht−1) exp

(
1

β
∆(a′|x, ht−1)

)
. (25)

Fix any context-history pair (x, ht−1). Let p(a) = π0(a|x, ht−1) and define g(a) = 1
β∆(a|x, ht−1).

Then π̂ can be written as:

p′(a) =
p(a) exp(g(a))∑
a′ p(a′) exp(g(a′))

(26)

By Lemma 7, we have:
Ea∼p′ [g(a)] ≥ Ea∼p[g(a)] (27)

which directly implies the desired improvement property.

For β2 < β1, we can express π(·|·; θ̂(β2)) as a reweighting of π(·|·; θ̂(β1)):

π(a|x, ht−1; θ̂(β2)) =
1

Ẑ(x, ht−1)
π̂(a|x, ht−1)

× exp

(
1

δ
∆(a|x, ht−1)

)
,

where δ = 1/β2 − 1/β1. Applying our previous result twice yields:

∆(π(·|·; θ̂(β2))|x, ht−1) ≥ ∆(π(·|·; θ̂(β1))|x, ht−1)

≥ ∆(π0(·|·)|x, ht−1).

This establishes the monotonicity of γ′ with respect to β.

B Twenty Questions Experiment

The last experiment is a 20Q game (Karbasi et al., 2012) with 20 animals. The agent is represented
by an LLM and it is optimized against a user, which is also represented by an LLM. The animals are
listed in Figure 2 and the horizon of the game is n = 6.

Both the agent and user are implemented using Llama-3.1-8B. The role of the agent is

You try to guess an animal. Respond with up to 6 words.

The question of the agent is generated using prompt

Ask a question.

It is conditioned on the history of the conversation. The role of the user is

Adaptive Submodular Policy Optimization

Question Answer Reward
Does it live on land? Yes 0.100
Does it have four legs? Yes 0.200
Does it have a tail? Yes 0.200
Does it primarily eat plants? No 0.600
Does it have sharp claws? Yes 0.600
Is it a carnivorous mammal? Yes 0.600

Figure 3: One 20Q game between the user and agent. The target animal is dog.

Bluetooth Speaker Phone Charger Air Fryer Yoga Mat
Water Bottle Ring Doorbell Echo Dot Wireless Earbuds
Protein Powder LED Strip Lights Portable Power Bank
Coffee Maker Weighted Blanket Desk Lamp Wireless Mouse
Reusable Straws Robot Vacuum Shower Curtain
Cast Iron Skillet Kindle Paperwhite

Figure 4: Products in the Amazon selection game.

Answer with Yes or No. No period.

The answer of the user is generated by prompt

You think of [animal]. You are asked: [question]

where [animal] is replaced by the target animal name from Figure 2 and [question] is replaced by the
last question of the agent. The reward is the fraction of eliminated animals. The animal is eliminated
if at least one property of the animal disagrees with at least one answer of the user. One conversation
between the user and agent is shown in Figure 3.

C Amazon Product Selection Experiment

The last experiment is a product selection game on a set of 20 Amazon products. The agent is tasked
with narrowing down to a specific product by asking yes/no questions. The products are listed in
Figure 4 and the horizon of the game is n = 4.

Both the agent and user are implemented using Llama-3.1-8B. The agent is provided with the system
message:

You are playing a 20 Questions game to guess an Amazon product from this list: [list of products].
Ask clear yes/no questions to efficiently narrow down the possibilities. Keep questions concise

(ideally under 10 words). The user will only respond with Yes or No.

The question of the agent is generated using prompt:

Ask a question.

It is conditioned on the history of the conversation. The user’s response is generated by prompt:

You think of [product]. You are asked: [question]

where [product] is replaced by the target product name from Figure 4 and [question] is replaced
by the last question of the agent. The reward is the fraction of eliminated products. A product is
eliminated if its response to a question differs from the target product’s response to the same question.
This reward calculation creates a natural submodular structure as questions eliminate overlapping
subsets of products.

Reinforcement Learning Journal 2025

Question Answer Reward
Is the product electronic? Yes 0.350
Can the product be held in your hand? Yes 0.550
Does the product plug into a wall outlet? No 0.850
Does the product require charging? Yes 0.850

Figure 5: Example run of the Amazon product selection game.

The baseline model achieves a reward of 0.837± 0.005. We compare this with various configurations
of our methods: (1) KL-SubPO with standardized trajectory rewards achieves 0.841 ± 0.004; (2)
KL-SubPO with clipped rewards from below at 0 achieves 0.858±0.004 ; (3) KL-PO with standardized
per-step gains achieves 0.828 ± 0.005; (4) KL-PO with clipped rewards from below at 0 achieves
0.847± 0.004.

