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Abstract

Interpreting language models remains challenging due to the existence of residual stream,
which linearly mixes and duplicates information across adjacent layers. This leads to the
under-detection of features that exist in the specific layer being analyzed. Current re-
search works either analyze neural representations at single layers, thereby overlooking this
cross-layer superposition, or utilize a cross-layer variant of sparse autoencoder (SAE) for
analysis. However, SAEs operate in continuous space, so there are no clear boundaries be-
tween neurons representing different concepts. We address these limitations by introducing
Cross-Layer vector quantized-variational autoencoder (VQ-VAE), a novel framework that
maps representations across layers through vector quantization. This causes the collapse
of duplicated features in the residual stream, thus resulting in compact, interpretable con-
cept vectors. Our approach combines top-k temperature-based sampling during quantization
with exponential moving average (EMA) codebook updates, providing controlled exploration
of the discrete latent space while maintaining codebook diversity. Our experiments show
that this framework, when combined with appropriate initialization, can effectively discover
meaningful concepts. Our quantitative and qualitative experiments on the ERASER-Movie,
Jigsaw, and AGNews datasets show that cross-layer VQ-VAE (CLVQ-VAE) can discover
meaningful concepts that explain model predictions. 1

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural
language processing tasks, yet their internal mechanisms remain largely opaque. This opacity poses ma-
jor challenges for interpretability, limiting our scientific understanding and raising concerns around trust,
accountability, and responsible use (Dodge et al., 2021; Sheng et al., 2021).

The majority of interpretability research focus on representations at individual layers – either by analysis of
the activation patterns of neurons (Zhang et al., 2021) or by using probing classifiers that map the hidden
states into pre-defined concepts (Belinkov et al., 2017; Arps et al., 2022; Kumar et al., 2023). These single-
layer methods fail to account for how transformer residual streams duplicate and mix information across
layers, meaning the computational structure that only becomes visible when examining multiple layers
together, gets obscured (Team, 2024).

Recent advances in SAE methods (Härle et al., 2024; Lan et al., 2025) and transcoder architectures (Marks
et al., 2024; Dunefsky et al., 2024a) have highlighted the value of analyzing layer pairs. Empirical studies
show that cross-layer analysis often results in more interpretable features than single-layer approaches (Shi
et al., 2025; Balagansky et al., 2025; Laptev et al., 2025). This is largely due to the additive residual stream
in transformers, i.e., each layer contributes to the running representation, which causes features to persist
and appear duplicated when layers are viewed in isolation (Lindsey et al., 2025). However, SAE-based
methods operate in continuous spaces where concepts “split” across SAE neurons (Bricken et al., 2023).
This splitting complicates identifying the linear combination of decoder vectors required to reconstitute the
concept, hence forcing the use of arbitrary thresholds to isolate sparse activations (Oozeer et al., 2025).

1Anonymized code repository can be found here: https://anonymous.4open.science/r/CLVQVAE-09E9
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This continuity limits interpretability because the resulting individual neurons don’t align with the discrete
conceptual categories humans use for reasoning (Wu et al., 2024).

VQ-VAEs have been extensively explored in computer vision to discretize the continuous representations
of images into codebook vectors (van den Oord et al., 2018; Takida et al., 2022; Razavi et al., 2019). We
hypothesize that when VQ-VAEs are applied to language model activations, the codebook vectors will capture
interpretable linguistic concepts – such as syntactic patterns or semantic categories – that are essential for
reconstruction objective of VQ-VAE. Also, even though VQ-VAEs share the reconstruction objective of
SAEs, they critically differ by utilizing a single discrete codebook vector rather than a linear combination of
active decoder vectors. This discrete bottleneck naturally concentrates information, effectively sidestepping
the ambiguity of identifying which vectors to combine.

Building on these insights, we propose CLVQ-VAE, a framework that discovers concepts across transformer
layers. Unlike standard VQ-VAEs that reconstruct the same layer, our model acts as a transcoder, i.e.,
mapping activations from a lower layer l to a higher layer h through a discrete bottleneck, thus collapsing
redundant residual-stream features into interpretable codebook vectors. We further improve this architec-
ture by introducing a stochastic sampling mechanism that selects from the top-k nearest codebook vectors
using temperature-controlled probability distributions, resulting in better codebook utilization and concept
diversity compared to deterministic approaches.

We evaluate CLVQ-VAE on the ERASER-Movie (Pang & Lee, 2004), Jigsaw Toxicity (cjadams et al., 2017),
and AGNEWS (Gulli, 2005) datasets using fine-tuned RoBERTa (Liu et al., 2019b), BERT (Devlin et al.,
2019), and decoder-only models like LLaMA-2-7b and Qwen2.5-3B-Instruct. Perturbation-based experiments
shows that our approach identifies salient concepts that strongly influence the predictions, outperforming
clustering, single-layer VQVAE, and SAE baselines. The quality of these concepts is further validated by
an LLM-as-a-judge evaluation, which finds them more coherent than those from the competing methods.
Finally, human evaluation confirms their practical utility for interpretation, with CLVQ-VAE visualizations
achieving higher model-alignment and inter-annotator agreement scores than the clustering baseline.

2 Methodology

We propose CLVQ-VAE, a modular framework that discovers concepts by reconstructing higher-layer acti-
vations using quantized representations of the lower-layer activations. As shown in Figure 1, the framework
processes layer activations through three core components:

1. Adaptive Residual Encoder: This component applies controllable interpolation to input em-
beddings from a lower layer, hence preserving the semantic information encoded in the pre-trained
representations.

2. Vector Quantizer: This acts as a discrete bottleneck, which maps the continuous encoder outputs
to one of the codebook vectors, forcing the model to represent information compactly.

3. Transformer Decoder: Lastly, this component takes the codebook vectors corresponding to the
encoder output and reconstructs the target activations from a higher layer, hence learning to predict
the model’s cross-layer computations from the discrete concepts alone.

These components are jointly optimized through a reconstruction loss that encourages the encoder to map
inputs to relevant codebook vectors while training the decoder to accurately reconstruct higher-layer activa-
tions from these quantized representations.

2.1 Problem Formulation

We formalize concepts as vectors in a learned codebook E = {ej}K
j=1, where ej ∈ Rd and each corresponds to

a cluster of semantically related token representations. Unlike continuous sparse autoencoder activations, our
approach enforces discrete assignments: each encoder output ze from layer l maps to the closest codebook
vector zq ∈ E , where closeness is measured by Euclidean distance.
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Figure 1: Overview of the CLVQ-VAE framework for cross-layer concept discovery. Lower-layer activations
are passed through an adaptive residual encoder, discretized via vector quantization into concept vectors,
and decoded to reconstruct higher-layer representations.

2.2 Adaptive Residual Encoder

Transformer-based language models produce rich, contextualized embeddings at each layer that have been
shown to encode diverse linguistic information (Liu et al., 2019a; Sajjad et al., 2022b). A major challenge in
adapting the VQ-VAE encoder to language model embeddings lies in determining the appropriate amount
of embedding changes. These changes must be sufficient to enable codebook reassignment for effective
reconstruction, yet constrained enough to preserve the semantic knowledge encoded in the embeddings.

To address this, we propose an adaptive residual encoder that implements controlled manipulation of the
input embeddings. Rather than completely transforming the input, which would destroy valuable linguistic
features due to random initialization of encoder parameters, or leaving it unchanged, which would limit
concept discovery, our encoder introduces a learnable interpolation mechanism that respects the information-
rich nature of embeddings while enabling targeted refinements for cross-layer reconstruction.

Given an input embedding x ∈ Rd from layer l, the encoder produces an output ze through following:

ze = (1 − α) · x + α · LN(Wx + b) (1)

where α = σ(a) ∗ 0.5 is a mixing coefficient constrained to [0, 0.5] with a being a learnable parameter, and
LN is the layer normalization applied to the linearly transformed x. We limit α to a maximum of 0.5 to
prevent excessive modification of the original embedding, as we empirically found in Table 12 that allowing
complete transformation (α ∈ [0,1]) resulted in reduced codebook utilization.

In Table 12, we also observe that for an adaptive α, the model initially prefers a small value of α, which
constrains the modification of the original embedding. As training progresses and encoder parameters get
trained, the gradients gradually increase α, allowing the model to make progressively larger modifications.

2.3 Vector Quantizer

The vector quantizer maps the encoder outputs to discrete concept representations. To promote the stable
training and effective codebook utilization, we utilize three key mechanisms, i.e., k-means-based codebook
initialization, temperature-controlled top-k sampling and the EMA-based codebook updates.
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2.3.1 Codebook Initialization

The initial state of the codebook can significantly impact training stability and the quality of the learned
concepts. We explore two main initialization approaches: random initialization and k-means based ini-
tialization, which itself has two variants. Each offers a different trade-off between simplicity, computational
cost, and alignment with the data’s underlying structure.

Random Initialization: A naive baseline where we randomly sample K unique embedding vectors from
the training dataset to serve as the initial codebook entries. While computationally inexpensive, this ap-
proach does not guarantee that the initial codebook vectors are representative of the overall data distribution,
which can lead to slower convergence or “dead” codes.

K-Means Initialization: A more informed approach is to initialize the codebook with the centroids of
clusters found in the input data. This method provides better initial coverage of the data distribution
compared to random sampling and often leads to faster, more stable training. We evaluate two variants:

1. Default K-Means. Widely adopted in the VQ-VAE literature Łańcucki et al. (2020); Huh et al.
(2023); Zeghidour et al. (2021), this variant applies the standard k-means algorithm to the entire
set of training embeddings from layer l. The resulting K centroids, which represent the means of
the identified clusters in Euclidean space, are then used as the initial codebook vectors ej .

2. Spherical K-Means. This variant clusters vectors by angular similarity (cosine distance) rather
than Euclidean distance, motivated by the observation that semantic similarity in NLP is often
represented by vector direction (Banerjee et al., 2005). Input embeddings xi are first unit-normalized
(x̂i = xi

∥xi∥2
), then clustered using standard k-means on the hypersphere. The resulting unit-vector

centroids cj are rescaled by the average magnitude of their assigned vectors to reintroduce magnitude
information:

ej = cj · 1
|Cj |

∑
i∈Cj

∥xi∥2 (2)

where Cj is the set of original vectors assigned to cluster j. This initialization results in codebook
vectors that group semantically similar words together while preserving magnitude information.

2.3.2 Top-k Temperature-Based Codebook Sampling

Our vector quantization mechanism employs temperature-based sampling (Takida et al., 2022) from the
top-k nearest codebook vectors. For each encoder output ze, we compute distances to all codebook vectors
{ej}K

j=1 as:

d(ze, ej) = ∥ze − ej∥2
2 (3)

Rather than deterministically selecting the closest vector, we identify the top-k nearest codebook vectors
and sample from them using a temperature-controlled distribution:

p(j|ze) = exp(−d(ze, ej)/τ)∑
j′∈top-k exp(−d(ze, ej′)/τ) (4)

where τ is the temperature parameter. In our optimal configuration, we set k = 5 and τ = 1.0, balancing ex-
ploration with exploitation. This controlled stochasticity during training encourages more uniform codebook
utilization, reduces codebook collapse, and improves concept diversity (Appendix D.6).

2.3.3 EMA-Based Codebook Updates

To ensure the stable training dynamics, codebook is updated using the EMA (Łukasz Kaiser et al., 2018)
rather than the direct backpropagation. The gradient-based updates can oscillate or become unstable with
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the discrete assignments (van den Oord et al., 2018), and thus we instead maintain the running averages of
both the assignment counts and the accumulated vectors for each codebook entry.

For each codebook vector ej in a training batch, we update its accumulated vector sum mj and its total
assignment count Nj with a decay factor γ = 0.99. The codebook vector is then updated to the mean of
its assigned embeddings by normalizing the accumulated sum by the count. This update strategy, when
combined with our stochastic top-k sampling, ensures the codebook remains diverse and active throughout
the training while converging toward the stable representations of the cross-layer transformations. The
complete update equations are provided in Appendix B.1.

2.4 Transformer Decoder

The final component of our CLVQ-VAE architecture is a transformer-based decoder that maps the sequence
of the quantized representations to the higher-layer activations. It consists of 6 layers with 8 attention heads
each and uses both the self-attention and the cross-attention mechanisms.

Because the decoder reconstructs the target activations for the entire input sequence at once rather than
generating them sequentially, a causal mask is unnecessary. The self-attention is therefore fully bidirectional,
allowing each token to draw the context from the entire sequence to build a more accurate representation.

The cross-attention mechanism allows the decoder to leverage information from the unquantized encoder
outputs. Similar to the residual connection in skip-transcoders (Dunefsky et al., 2024b), which improves
reconstruction without compromising interpretability, the cross-attention mechanism offloads low-level re-
construction details, enabling the codebook to focus on distinct, high-level concepts as demonstrated in
auxiliary bottleneck models (Sheth & Kahou, 2023). We provide empirical evidence in Appendix D.3 that
this cross-attention mechanism indeed improves interpretability and reconstruction.

2.5 Training Objectives

Our training incorporates two weighted objectives combined into a single loss function. The primary objective
is the reconstruction loss, which minimizes the mean squared error between decoder output ŷ and target
higher-layer representation y, defined as Lrec = ∥y − ŷ∥2

2 (Dunefsky et al., 2024a). This ensures that the
model captures the transformations occurring between neural network layers. Additionally, we employ a
commitment loss that encourages encoder outputs to commit to codebook vectors, calculated as Lcommit =
∥ze−sg(zq)∥2

2, where sg denotes the stop-gradient operator. The total loss is given by Ltotal = Lrec+βLcommit,
where β controls the relative importance of the commitment term. We set β = 0.1 (van den Oord et al.,
2018) to avoid constraining the encoder output too strictly (Wu & Flierl, 2019).

3 Experimental Setup

Data We conducted experiments for CLVQ-VAE on three datasets: ERASER-Movie review dataset (Pang
& Lee, 2004) for sentiment classification, Jigsaw Toxicity dataset (cjadams et al., 2017) for toxicity classifi-
cation, and AGNEWS dataset (Gulli, 2005) for multi-class news categorization. The Appendix A.1 provides
detailed dataset information.

Model We use RoBERTa-base (Liu et al., 2019b) and BERT-base (Devlin et al., 2019) after fine-tuning
on the respective datasets, and decoder-only models like LLaMA-2-7B (Touvron et al., 2023) and Qwen2.5-
3B-Instruct with a task specific prompt and without finetuning. From these models, we extract paired
activations: representations from a lower layer l serve as input to CLVQ-VAE, while representations from a
higher layer h serve as reconstruction targets.

Baseline For comparison, we include three baselines: the clustering-based method from Yu et al. (2024), a
single-layer VQ-VAE variant on layer l (referred to as “Single-Layer”), and a cross-layer sparse autoencoder
(SAE). Implementation details for each are provided in Appendix A.3.
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Activation Extraction We utilized the NeuroX toolkit (Dalvi et al., 2023) to extract paired activations
from the 4 evaluated models. A key advantage of NeuroX is its ability to aggregate sub-word token represen-
tations of a model tokenizer into word-level activations. This aggregation enables the mapping of discovered
concepts to complete words rather than fragmented tokens, allowing us to employ visualization techniques
such as word clouds to represent and analyze the discrete concepts identified by CLVQ-VAE.

Layer-pair of analysis For our primary evaluation across models and datasets, we apply CLVQ-VAE
between intermediate-to-upper layer pairs: layers 8–12 for BERT/RoBERTa, layers 28–32 for LLaMA-2-
7B, and layers 32–36 for Qwen2.5-3B-Instruct. This specific layer pair is chosen based on theoretical and
empirical evidence, which we detail in Appendix D.2.

4 Evaluation

We evaluate the concepts discovered by CLVQ-VAE through quantitative and qualitative analyses to answer
three key research questions:

• RQ1 (Faithfulness): Does CLVQ-VAE identify concepts that are functionally important to the
model’s predictions?

• RQ2 (Interpretability): Are the discovered concepts semantically coherent and interpretable?

• RQ3 (Design Choice Analysis): How do architectural decisions in CLVQ-VAE impact concept
identification?

4.1 RQ1: Faithfulness Evaluation via Concept Ablation

We adopt the evaluation framework from Yu et al. (2024), which measures the faithfulness of discovered
concepts by ablating their representations from sentence embeddings and measuring the impact on model
performance for the task.

4.1.1 Methodology

We evaluate the efficacy of CLVQ-VAE in identifying salient concepts through concept ablation experiments.
For each sentence, we first identify the most salient token, then determine which codebook vector it maps
to. We remove this concept vector from the sentence representation embedding for that sentence at layer l
and measure the resulting drop in probe model performance to assess concept faithfulness.

To identify the most salient token in each input sentence, we use Layer Integrated Gradients (Layer IG) (Sun-
dararajan et al., 2017b). This attribution method quantifies the contribution of each token’s embedding to
the model’s final prediction, and the token with the highest attribution score is considered the most salient.
Our model-specific implementations are detailed in the Appendix B.2.

We then construct three variants of the sentence representation embeddings:

• Original CLS: Unmodified sentence representation.

• Perturbed CLS: Sentence representation with the most salient concept removed via orthogonal pro-
jection. 2 For each method (Clustering, Single-Layer VQ-VAE, SAE, and CLVQ-VAE), we identify
the concept vector associated with the salient token. In VQ-VAE-based approaches, this corresponds
to the nearest codebook vector. In clustering, it is the closest cluster centroid. For SAE, it is the
decoder vector associated with the highest activated neuron.

• Random perturbed CLS: Sentence representation with a random direction removed via orthogo-
nal projection. This serves as a sanity check that performance drops are due to removing meaningful
concepts rather than arbitrary perturbations.

2Details on the formulation of the orthogonal projection are provided in Appendix B.3.
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Table 1: Faithfulness comparison of methods across models and datasets. Lower perturbed accuracy indicates
more faithful concept identification. Values in parentheses show percentage accuracy drop after perturbation.
Best and second-best results are highlighted.

Dataset Method RoBERTa BERT Llama Qwen

ERASER-
Movie

Clustering 0.6271 (28.6%) 0.7757 (6.0%) 0.7779 (14.1%) 0.6740 (22.8%)
Single-Layer 0.0633 ± 0.0022 (92.8%) 0.7624 ± 0.0127 (7.6%) 0.8028 ± 0.0169 (11.3%) 0.6142 ± 0.0080 (29.6%)
SAE (2048) 0.3829 ± 0.1141 (56.4%) 0.8653 ± 0.0096 (-4.9%) 0.9072 ± 0.0009 (-0.2%) 0.8684 ± 0.0092 (0.5%)
SAE (4096) 0.5288 ± 0.3022 (39.8%) 0.8706 ± 0.0029 (-5.6%) 0.8978 ± 0.0069 (0.8%) 0.8625 ± 0.0064 (1.2%)
CLVQ-VAE 0.0594 ± 0.0009 (93.2%) 0.5311 ± 0.0354 (35.6%) 0.7851 ± 0.0606 (13.3%) 0.6113 ± 0.0241 (30.0%)

Jigsaw

Clustering 0.5628 (38.3%) 0.7577 (15.8%) 0.7793 (7.5%) 0.6352 (23.6%)
Single-Layer 0.9019 ± 0.0036 (1.1%) 0.8079 ± 0.0077 (10.2%) 0.7622 ± 0.0199 (9.6%) 0.5917 ± 0.0230 (28.8%)
SAE (2048 neurons) 0.9130 ± 0.0016 (-0.1%) 0.8994 ± 0.0047 (0.0%) 0.8458 ± 0.0029 (-0.4%) 0.8296 ± 0.0043 (0.2%)
SAE (4096 neurons) 0.9122 ± 0.0018 (-0.0%) 0.8943 ± 0.0048 (0.6%) 0.8444 ± 0.0019 (-0.2%) 0.8347 ± 0.0043 (-0.4%)
CLVQ-VAE 0.6127 ± 0.0421 (32.8%) 0.7372 ± 0.0090 (18.0%) 0.7931 ± 0.0101 (5.9%) 0.5809 ± 0.0121 (30.1%)

AGNEWS

Clustering 0.3875 (46.7%) 0.6675 (10.5%) 0.8485 (4.7%) 0.7542 (15.0%)
Single-Layer 0.1011 ± 0.0021 (86.1%) 0.6711 ± 0.0500 (10.0%) 0.8744 ± 0.0142 (1.8%) 0.7164 ± 0.0241 (19.3%)
SAE (2048) 0.3372 ± 0.0093 (53.6%) 0.6620 ± 0.0038 (11.2%) 0.8942 ± 0.0059 (-0.5%) 0.8953 ± 0.0061 (-0.9%)
SAE (4096) 0.3345 ± 0.0099 (54.0%) 0.7047 ± 0.0262 (5.5%) 0.8967 ± 0.0048 (-0.8%) 0.8911 ± 0.0050 (-0.4%)
CLVQ-VAE 0.0992 ± 0.0035 (86.4%) 0.6492 ± 0.0442 (13.0%) 0.8758 ± 0.0028 (1.6%) 0.7536 ± 0.0040 (15.1%)

To evaluate these variants, we train a simple probe (a 2-layer neural network with dropout) on the original
sentence representations/task labels and then evaluate it on all the three variants. The core idea is that
removing important concepts should cause significant performance drops, while removing random directions
should have minimal impact. Methods that produce larger drops in perturbed CLS accuracy demonstrate
stronger concept identification capabilities.

For encoder-based models like BERT and RoBERTa, we use the classification token ([CLS]) embedding as
the sentence representation. For decoder-only models like LLaMA and Qwen, which lack a classification
token, we use the mean of token embeddings (Lin et al., 2025). Throughout the paper, we will refer sentence
representations as “CLS” for notational convenience, regardless of the underlying architecture.

4.1.2 Results: Baseline Comparison

Table 1 shows that CLVQ-VAE achieves lowest perturbed accuracy in 7 out of 12 model-dataset combi-
nations. The percentage drops show that CLVQ-VAE consistently identifies concepts that, when removed,
substantially impair performance. Single-layer approaches achieve the second-best performance in 6 out of
12 configurations, which can be viewed as a variant of CLVQ-VAE operating on a single representation space.

SAE showed inconsistent behavior with some negative accuracy drops. We attribute this to the fact that while
VQ-VAE concentrates concepts, SAE “split” them across features (Bricken et al., 2023). Since perturbed
accuracy is lowest when the concept vector is more aligned with the task-specific direction, the minimal
drops for SAEs suggest that ablating a single decoder vector is insufficient to remove the distributed concept,
whereas significant drops for VQ-VAE confirm successful concentration.

Implementation Note: (1) All results are averaged across 3 random seeds.3. (2) No standard deviation
is reported for the clustering approach, as hierarchical clustering is deterministic by nature. (3) Also,
CLVQ-VAE and Single-Layer results are reported for kmeans initialization in this baseline comparison. The
reasoning behind this choice is detailed in section 4.3.1

4.2 RQ2: Interpretability Evaluation

We supplement our quantitative analysis with qualitative evaluation to assess the semantic coherence and
interpretability of discovered concepts using two methods: an LLM-as-a-judge evaluation and a human study.

3Reference baseline values for faithfulness evaluation (Original CLS and Random Perturbation accuracies across all model-
dataset combinations) are provided in C.3.
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Table 2: LLM-judge based evaluation of methods across models and datasets.

Method Mean Rating ± Std MRR Win Rate

CLVQ-VAE 1.807 ± 0.327 0.757 77.8%
Single-Layer 1.729 ± 0.312 0.438 47.2%
Clustering 1.578 ± 0.348 0.424 33.3%
SAE 1.570 ± 0.500 0.465 41.7%

4.2.1 LLM-as-a-Judge Evaluation

While faithfulness metrics quantify functional importance, they do not reveal semantic coherence. We
use LLM-based evaluation to assess whether discovered concepts provide plausible explanations for model
predictions.

Methodology Given an input text, its prediction, and the concept representation for its most salient
token, we use LLM judges to evaluate concept quality. Each judge receives: (1) the input text, (2) the
model’s predicted class with its semantic label (e.g., “Positive” for class 1 in sentiment analysis, “Sports” for
a news category), and (3) concept representations from all methods being compared.

To reduce individual biases from a single LLM, we use an ensemble of four LLMs (GPT-4o-mini, Claude 3.5
Haiku, Gemini 2.0 Flash, and Gemini 2.0 Flash Lite), excluding the judge with the highest disagreement
(measured as 1 − average Pearson correlation). We use stratified sampling to ensure balanced representation
across prediction categories: for binary tasks, we sample equally from true/false positives/negatives; for
multi-class tasks, we stratify by correctness.

We construct concept representations as follows: for each test instance, we first identify its most salient
token using Layer Integrated Gradients (as described in Section 4.1.1). For all methods, we identify which
concept (codebook vector, cluster centroid, or SAE neuron) this token was assigned to, then find all training
tokens assigned to that concept. If the concept represents more than half of the [CLS] token representation,
we present it as up to 5 exemplar sentences (5-30 words each); otherwise, we extract the 10 most frequent
words. If no training tokens were assigned to the concept, the representation is empty and automatically
receives a rating of 1.

Evaluation Metrics We evaluate concept quality using four metrics: mean rating (average score across
judges and instances), mean reciprocal rank (MRR, measuring consistent top performance), win rate (propor-
tion of configurations where a method ranks first), and Kendall’s W (inter-judge agreement, with W ≥ 0.7
indicating strong consensus (Kendall & Babington Smith, 1939)). Complete metric definitions are in Ap-
pendix C.1.

Results Table 2 summarizes LLM-judge based evaluation results. CLVQ-VAE achieves the best perfor-
mance with a mean rating of 1.807 ± 0.327, MRR of 0.757, and win rate of 77.8%, consistently ranking first
or second. Single-Layer shows competitive mean performance (1.729 ± 0.312) with the lowest variance, but
its lower MRR (0.438) and win rate (47.2%) indicate it less frequently produces top-ranked concepts. Both
CLVQ-VAE and Single-Layer used spherical initialization for this baseline comparison.

Other two baseline methods show weaker performance. SAE achieves a mean rating of 1.570 ± 0.500,
indicating inconsistent quality across configurations. Clustering shows similar mean performance (1.578 ±
0.348) but consistently weaker quality, reflected in its low win rate (33.3%) and MRR (0.424).

We calculate the inter-judge agreement via Kendall’s coefficient of concordance. The results (detailed in
Appendix D.7) show strong consensus (W = 0.782 overall), with highest agreement for Jigsaw (W = 0.833)
and ERASER-Movie (W = 0.828). This validates that observed performance differences reflect quality
distinctions rather than measurement noise.

8



Under review as submission to TMLR

Table 3: Human evaluation results comparing CLVQ-VAE with baseline clustering approach for ERASER-
Movie dataset. Higher values indicate better performance across all metrics.

Method Fleiss’ Kappa (κ) Avg. Confidence Model Alignment Rate

Clustering 0.59 5.981 54.14%
CLVQ-VAE 0.864 8.44 78.20%

4.2.2 Human Evaluation

To complement our LLM-based analysis, we conducted a human evaluation study comparing CLVQ-VAE
with the clustering baseline. This evaluation assesses whether discovered concepts can be effectively visual-
ized and interpreted by humans.

Methodology We randomly selected 19 sentences from the ERASER-Movie review dataset, while ensuring
that we have an equal representation of true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) based on the model’s predictions. This balanced selection allows us to evaluate concepts
underlying both correct and incorrect predictions. For each sentence, we generate word clouds using the
tokens mapped to the codebook vector associated with the sentence’s most salient token during training, for
both CLVQ-VAE and clustering. Examples of these word clouds across all four prediction categories are in
Appendix E.

14 annotators participated in the study, collectively reviewing 266 samples. Each annotator saw the word
cloud for each sentence without the original sentence, model prediction, or ground truth label. This way,
annotators relied solely on the visualizations to infer model behavior. For each visualization, annotators
were asked to:

1. Predict the model’s sentiment label by only using the information in the word cloud.

2. Rate their confidence in this prediction on a scale of 1-10 (10 is highest).

Evaluation Metrics : We assess the visualization quality using three metrics: Fleiss’ Kappa (inter-
annotator agreement beyond chance, ranging from -1 to 1), average confidence (mean annotator certainty
on a 1-10 scale) and model alignment rate (percentage of annotator predictions matching the model’s actual
prediction, regardless of correctness). Full metric formulations are provided in Appendix C.1.

Results Table 3 presents the results of the human evaluation comparing the clustering approach (Yu et al.,
2024) with our CLVQ-VAE framework. CLVQ-VAE achieved substantially higher inter-annotator agreement
(κ = 0.864, “almost perfect agreement”) compared to clustering (κ = 0.59, “moderate agreement”), sug-
gesting more consistent interpretations across annotators. Annotators also reported higher confidence (8.44
vs. 5.981) when interpreting CLVQ-VAE visualizations, indicating greater conceptual clarity. Additionally,
model alignment was over 24 percentage points higher (78.20% vs. 54.14%), showing that CLVQ-VAE more
faithfully communicates the model’s reasoning.

4.3 RQ3: Design Choice Analysis

We also analyse the effect of key architectural choices within the CLVQ-VAE framework on model perfor-
mance or convergence.

4.3.1 Codebook Initialization

We evaluate three codebook initialization strategies – random, k-means, and spherical k-means – across
multiple models and datasets to assess their impact on quantitative performance and qualitative concept
coherence.
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Table 4: Faithfulness comparison of different CLVQ-VAE initialization methods across models and dataset.
Best results are highlighted.

Model Dataset Spherical K-means Random

BERT
ERASER-Movie 0.6188 ± 0.0207 (25.0%) 0.5311 ± 0.0354 (35.6%) 0.5869 ± 0.0210 (28.8%)

Jigsaw 0.7637 ± 0.0631 (15.1%) 0.7372 ± 0.0090 (18.0%) 0.7283 ± 0.0123 (19.0%)
AGNEWS 0.6303 ± 0.0566 (15.5%) 0.6492 ± 0.0442 (13.0%) 0.6644 ± 0.0395 (10.9%)

RoBERTa
ERASER-Movie 0.0598 ± 0.0006 (93.2%) 0.0594 ± 0.0009 (93.2%) 0.0603 ± 0.0011 (93.1%)

Jigsaw 0.7176 ± 0.0240 (21.3%) 0.6127 ± 0.0421 (32.8%) 0.7171 ± 0.1033 (21.4%)
AGNEWS 0.1036 ± 0.0045 (85.8%) 0.0992 ± 0.0035 (86.4%) 0.1032 ± 0.0005 (85.8%)

LLaMA-2-7b
ERASER-Movie 0.8508 ± 0.0326 (6.0%) 0.7851 ± 0.0606 (13.3%) 0.8608 ± 0.0251 (4.9%)

Jigsaw 0.7819 ± 0.0165 (7.2%) 0.7931 ± 0.0101 (5.9%) 0.8066 ± 0.0128 (4.3%)
AGNEWS 0.8826 ± 0.0094 (0.8%) 0.8758 ± 0.0028 (1.6%) 0.8942 ± 0.0075 (-0.5%)

Qwen2.5-3B
ERASER-Movie 0.6273 ± 0.0099 (28.1%) 0.6113 ± 0.0241 (30.0%) 0.6189 ± 0.0295 (29.1%)

Jigsaw 0.5606 ± 0.0382 (32.6%) 0.5809 ± 0.0121 (30.1%) 0.6096 ± 0.0341 (26.7%)
AGNEWS 0.6883 ± 0.0429 (22.4%) 0.7536 ± 0.0040 (15.1%) 0.6525 ± 0.0621 (26.5%)

Table 5: LLM-judge based evaluation of initialization methods across models and datasets.

Method Mean Rating ± Std MRR Win Rate

Spherical 1.903 ± 0.306 0.694 62.5%
K-means 1.841 ± 0.330 0.667 58.3%
Random 1.800 ± 0.390 0.472 25.0%

Quantitative Analysis (Faithfulness) Table 4 presents faithfulness evaluation results for different code-
book initializations. Default k-means achieves lowest perturbed accuracy in 7 out of 12 model-dataset com-
binations, often outperforming the spherical variant. This suggests that traditional Euclidean distance-based
partitioning may be more effective than angular similarity for embedding space organization in this context.
Both k-means variants generally outperform random initialization, which introduces additional variance due
to its unstructured codebook initialization.

Qualitative Analysis (Interpretability) Table 5 summarizes LLM judge evaluation results for different
codebook initialization. Spherical initialization demonstrates the best performance, winning 62.5% of con-
figurations and achieving the highest mean rating with the lowest variance. K-means performs comparably
in mean rating but with slightly higher variance, suggesting less consistent quality. Random initialization
shows substantially weaker performance, particularly evident in its low MRR (0.472) and win rate (25.0%).
We observe strong inter-judge agreement (detailed in Appendix D.7) with an overall W = 0.793, where 9 of
12 configurations achieve W ≥ 0.7.

The contrast between quantitative faithfulness metrics and qualitative evaluation might be revealing a prac-
tical consideration here: while k-means identifies functionally important features affecting model decisions,
spherical initialization produces concepts that better align with human interpretation. This suggests initial-
ization choice depends on the primary goal – functional faithfulness or semantic coherence.

4.3.2 Codebook Size

Table 6 shows the impact of varying codebook size K on performance and utilization for ERASER-Movie–
Roberta configuration. Although perturbed accuracy varies only slightly across configurations, perplexity
reveals meaningful trends in codebook usage. At K = 400, CLVQ-VAE achieves a perplexity of 139.208,
hence striking a good balance between capacity and efficiency. Smaller codebooks (e.g., K = 50) lead to high
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Table 6: Impact of codebook size (K) on perturbed CLS accuracy and codebook perplexity for ERASER-
Movie on RoBERTa model

.

Codebook Size (K) Perturbed CLS Perplexity (Utilization %)

50 0.0769 30.121 (60.2%)
100 0.0665 49.600 (49.6%)
400 0.0606 139.208 (34.8%)
800 0.1214 168.444 (21.1%)
1200 0.1004 184.895 (15.4%)

utilization but often force multiple concepts to share the same codebook vector, reducing interpretability. In
contrast, very large codebooks (e.g., K = 800 or K = 1200) underutilize available entries and may fragment
the representation space.

4.3.3 Other Design Choices

Commitment Loss Weight Following van den Oord et al. (2018), we set commitment cost β = 0.1. Our
ablations (Appendix D.5) confirm this balances encoder-codebook alignment with representation flexibility:
higher values (β ≥ 0.6) over-constrain assignments and reduce perplexity below 82, while lower values
maintain diversity but risk training instability.

Sampling Parameters For stochastic sampling, we use temperature τ = 1.0 and top-k = 5. While
validation perplexity varies from 207 to 220 across different temperature settings (Appendix D.6), perturbed
accuracy remains stable (0.0783 to 0.0911), showing limited sensitivity to these parameters. We therefore
adopt conservative values that prioritize stable training dynamics while maintaining codebook diversity.

5 Related Work

Traditional interpretability methods for NLP models, such as the gradient-based and perturbation-based
techniques (Sundararajan et al., 2017a; Kapishnikov et al., 2021; Rajagopal et al., 2021; Zhao & Aletras,
2023), assess the input feature contributions to predictions but often fail to reveal the internal decision-making
processes. Similarly, the representation analysis literature provides insights into whether a predefined concept
is learned in the representation and how such knowledge is structured in the neurons of the model (Dalvi et al.,
2019; Sajjad et al., 2022a; Gurnee et al., 2023). However, the need for predefined concepts and annotated
data for probing limits this approach (Antverg & Belinkov, 2022). The polysemantic and superpositional
nature of neurons further complicates the neuron-level interpretation (Haider et al., 2025; Elhage et al., 2022;
Fan et al., 2023).

Concept-based approaches aim to address some of these limitations by interpreting the model behavior
through high-level concepts that are human-understandable. Techniques like TCAV measure the model
sensitivity to predefined concepts via directional derivatives in the activation space (Kim et al., 2018),
though they still rely on the manually specified concepts. Recent methods move toward discovering the latent
concepts directly from the internal representations, which enables a deeper and more flexible understanding
of the model functionality (Ghorbani et al., 2019; Dalvi et al., 2022; Jourdan et al., 2023; Yu et al., 2024).

Researchers have utilized sparse autoencoders (SAEs) (Härle et al., 2024) to extract interpretable features
from the large language models (LLMs). However, studies have highlighted the challenges in their stability
and utility. For instance, SAEs trained with different random seeds on the same data can learn divergent
feature sets, which indicates the sensitivity to initialization (Paulo & Belrose, 2025). Furthermore, their
performance on the downstream tasks does not consistently surpass the baseline methods, which questions
their practical benefits (Kantamneni et al., 2025).
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The cross-layer interpretability has garnered attention, with researchers introducing sparse crosscoders to
capture and understand the features across different model layers (Lindsey et al., 2024). These methods
facilitate the tasks like model diffing and circuit analysis, which enables the tracking of shared and unique
features across the layers and provides deeper insights into the model behavior (Minder et al., 2025; Dunefsky
et al., 2024b).

While VQ-VAE have shown success in the domains like image and speech processing (van den Oord et al.,
2018; Łukasz Kaiser et al., 2018; Huang et al., 2023; Guo et al., 2020; Huang & Ji, 2020; Bhardwaj et al.,
2022), their application in the NLP interpretability remains underexplored. The CLVQ-VAE framework
addresses this gap by integrating the transcoder-inspired objectives to map the lower-layer representations
to the higher-layer ones.

6 Conclusion

We presented CLVQ-VAE, a framework for discovering discrete concepts across transformer layers using vec-
tor quantization to collapse redundant residual-stream features into interpretable codebook vectors. Eval-
uation across four language models and three datasets shows that CLVQ-VAE consistently outperforms
clustering, single-layer VQ-VAE, and SAE baselines in identifying functionally important and semantically
coherent concepts.

Removing CLVQ-VAE-identified concepts degrades performance substantially by up to 93.4% accuracy drop.
LLM judges rank our concepts first in 77.8% of comparisons. Human annotators achieve 78% model-
alignment with our visualizations versus 54% for clustering methods, with higher inter-annotator agreement.
These results validate that CLVQ-VAE discovers concepts that both influence predictions and align with
human understanding.

Our design choices prove essential: the adaptive residual encoder balances knowledge preservation with
refinement, while the cross-attention mechanism ensures the capture of distinct, task-critical concepts. Fur-
thermore, temperature-based top-k sampling maintains codebook diversity. We also uncover a trade-off in
initialization, where k-means favors functional faithfulness and spherical k-means enhances semantic coher-
ence. Overall, by integrating discrete representation learning with cross-layer analysis, CLVQ-VAE provides
a robust framework for translating opaque model mechanisms into faithful, interpretable concepts.

7 Limitations

Despite the effectiveness of CLVQ-VAE, we acknowledge several limitations regarding resource demands,
evaluation precision, and architectural transferability.

Resource Demands Extracting activation pairs from multiple layers requires substantial memory, espe-
cially for larger models. K-means initialization adds further computational costs that scale with dataset size
and codebook dimensions. Models exceeding 70B parameters may need further optimization.

Evaluation Precision Our faithfulness measurement through perturbation differentiates methods but
shows limited sensitivity to hyperparameter changes like temperature, top-k values and codebook dimensions
(see Appendix 15 for details). Also, the LLM-based evaluation shows sensitivity to how prompts are con-
structed and may struggle with unusual cases, requiring careful prompt refinement to maintain evaluation
consistency across different inputs.

Architectural Transferability The framework requires training separate models for each layer combi-
nation, with optimal pairings varying by architecture. For decoder-only models, we utilize mean-pooled
embeddings as substitutes for CLS tokens, though these may encode distinct information compared to ded-
icated classification tokens.
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A Experimental Setup

A.1 Dataset

Table 7: The data size of each benchmark used in the evaluation: the ERASER Sentiment dataset, Jigsaw
Toxicity dataset, and the AGNEWS dataset

.

Benchmark Train Dev Tags
ERASER 13878 856 2
JIGSAW 9000 800 2
AGNEWS 16000 1200 4

A.2 Hyperparameters

Table 8 lists all hyperparameters used in our experiments. All weights use standard PyTorch random
initialization.

Table 8: Hyperparameters used across all experiments.

Component Value

Architecture

Codebook size 400
Commitment cost (β) 0.1
Decoder layers 6
Decoder attention heads 8
Feedforward dimension 2048
Dropout 0.1

Quantization

Sampling method Top-k temperature sampling
Top-k 5
Temperature (τ) 1.0
EMA decay (γ) 0.99

Encoder

α constraint Adaptive, max 0.5

Training

Optimizer Adam
Learning rate 5e-3
Weight decay 1e-4 (codebook and bias excluded)
LR scheduler ReduceLROnPlateau
Batch size 128
Max epochs 100 (early stopping enabled)
Random seed 42

A.3 Baseline Implementation Details

A.3.1 Clustering Baseline: LACOAT

We implement the Latent Concept Attribution (LACOAT) method from Yu et al. (2024), which discovers
latent concepts through hierarchical clustering of contextualized representations.
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Concept Discovery. For each word wi in the training dataset D, we extract all contextualized represen-
tations z⃗wi from layer l using NeuroX (Dalvi et al., 2023). Following Yu et al. (2024), we filter words with
frequency < 5 and randomly sample up to 20 contextual occurrences per word. Agglomerative hierarchical
clustering is then applied using squared euclidean distance and ward’s minimum-variance criterion to obtain
K = 400 cluster centroids {cj}K

j=1, each representing a latent concept.

Concept Assignment. At inference, a logistic regression classifier (ConceptMapper) maps salient token
representations to their nearest cluster. The classifier is trained using cross-entropy loss with L2 regular-
ization, the lbfgs solver, and 100 maximum iterations. We use Integrated Gradients with a zero-vector
baseline and 500 approximation steps to identify salient tokens, selecting those that comprise 50% of the
total attribution mass.

Faithfulness Evaluation. For concept ablation, we use the assigned cluster centroid cj as the concept
vector in our orthogonal projection framework (Appendix B.3). Note that while the original LACOAT
implementation removes concepts through direct subtraction of the centroid vector, we employ orthogonal
projection for more targeted concept removal.

A.3.2 Cross-Layer Sparse Autoencoder

Following Dunefsky et al. (2024b), we implement a sparse autoencoder that learns to map representations
from layer l to layer h through a sparse latent space.

Architecture. The encoder projects layer l representations to a high-dimensional space, and the decoder
reconstructs layer h:

h = ReLU(Wencx + benc) (5)
ŷ = Wdech + bdec (6)

where Wenc ∈ Rdhidden×d with dhidden ∈ {4096, 12288}. We use untied weights (Wenc ̸= WT
dec) to reduce

feature suppression (Bricken et al., 2023).

Training. The model minimizes the reconstruction loss with an L1 penalty on activations:

L = ∥y − ŷ∥2
2 + λ∥h∥1 (7)

We set λ = 1e-4 and train using Adam (lr = 5e-3, weight decay 1e-4), ReduceLROnPlateau scheduling
(patience=5, factor=0.5), batch size 128, and early stopping (patience=10). The decoder bias is zero-
initialized.

Concept Extraction. For ablation, we identify the neuron with the highest activation:

i∗ = arg max
i

hi (8)

We use its corresponding decoder vector di∗ (the i∗-th column of Wdec) as the concept vector.

A.3.3 Single-Layer VQ-VAE

This baseline uses identical architecture and hyperparameters as CLVQ-VAE but reconstructs layer l from
itself rather than mapping from layer l to layer h, isolating the contribution of cross-layer analysis.
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B Methodological Details

B.1 EMA Update Details

During training, we perform temperature-based top-k sampling to select codebook vectors, then apply EMA
updates using hard assignments. For each codebook vector ej :

N
(t)
j = γN

(t−1)
j + (1 − γ)

∑
i

I[j sampled for z(i)
e ] (9)

m(t)
j = γm(t−1)

j + (1 − γ)
∑

i

z(i)
e I[j sampled for z(i)

e ] (10)

e(t)
j =

m(t)
j

N
(t)
j

(11)

where γ = 0.99, N
(t)
j tracks assignment counts, m(t)

j accumulates vectors, and I[·] indicates whether vector j
was selected via stochastic top-k sampling. This provides stable codebook updates with improved utilization.

B.2 Saliency Calculation Details

Our token saliency calculations are performed using the Layer Integrated Gradients (IG) method, which
attributes a model’s prediction back to its initial word embeddings. This approach allows us to see which
input tokens were most important. However, because encoder and decoder-only models make predictions in
fundamentally different ways, our attribution strategy is tailored to each architecture.

Encoder-based Models (BERT and RoBERTa). For standard classification models like BERT and
RoBERTa, the attribution process is straightforward. These models produce a final logit score for each class.
We apply Layer IG to explain the logit of the predicted class, tracing its value back to the input embeddings.
This directly measures how much each token contributed to the final classification decision.

Decoder-only Models (LLaMA and Qwen). Decoder-only models are generative and perform next-
token prediction. To adapt them for classification, we frame the task as having the model generate a single
token representing the class label (e.g., “0” or “1”) immediately following the input prompt. The saliency
calculation, therefore, aims to explain why the model generated that specific class token. We target the logit
of the predicted class token and attribute its value back to the embeddings of the original prompt. This
reveals which parts of the input text were most responsible for steering the model’s generation towards the
final class label.

B.3 Orthogonal Projection Details

In our faithfulness evaluation, we remove concepts from sentence representations using orthogonal projec-
tion. Given a sentence representation x ∈ Rd and a concept vector zc ∈ Rd, we compute the perturbed
representation as:

xperturbed = x − projzc
(x) = x − x · zc

∥zc∥2 zc (12)

where projzc
(x) denotes the orthogonal projection of x onto zc, and x · zc represents the dot product. The

concept vector zc corresponds to a codebook vector for VQ-VAE-based methods, a cluster centroid for the
clustering baseline, or a decoder vector for SAE.
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C Evaluation Framework

C.1 Evaluation Metric Formulations

C.1.1 LLM-as-a-Judge Metrics

1. Mean Rating. For each method m, the mean rating is computed as:

MeanRating(m) = 1
|C| · |I| · |J |

∑
c∈C

∑
i∈I

∑
j∈J

rm,c,i,j (13)

where C is the set of configurations (dataset-architecture pairs), I is the set of instances, J is the set
of judges, and rm,c,i,j is the rating assigned by judge j to method m on instance i in configuration
c.

2. Mean Reciprocal Rank (MRR). For each configuration c, methods are ranked by their mean
rating, with rank 1 assigned to the best-performing method. The MRR is:

MRR(m) = 1
|C|

∑
c∈C

1
rankm,c

(14)

where rankm,c is the rank of method m in configuration c. Higher MRR indicates more consistent
top performance across diverse settings.

3. Win Rate. The proportion of pairwise comparisons where a method achieves a higher mean rating
than its competitor:

WinRate(m) = 1
|C| · (|M | − 1)

∑
c∈C

∑
m′ ̸=m

⊮[MeanRatingm,c > MeanRatingm′,c] × 100% (15)

where C is the set of configurations, M is the set of methods, m′ ̸= m denotes all methods except
m, and MeanRatingm,c is the average rating for method m in configuration c.

4. Kendall’s W. Kendall’s coefficient of concordance measures agreement among judges on ranking
methods. Given n judges ranking m methods:

W = 12S

n2(m3 − m) (16)

where S =
∑m

i=1

(
Ri − n(m+1)

2

)2
and Ri =

∑n
j=1 rij is the sum of ranks assigned to method i across

all n judges. Values of W ≥ 0.7 indicate strong inter-judge consensus.

C.1.2 Human Evaluation Metrics

1. Fleiss’ Kappa (κ). The measure of inter-annotator agreement beyond chance, ranging from -1
(worse than chance) to 1 (perfect agreement). We use the standard Fleiss’ Kappa formula for N
instances, n annotators, and k categories.

2. Average Confidence. The mean confidence score reported by annotators across all instances and
visualizations, measured on a scale from 1 (lowest) to 10 (highest).

3. Model Alignment Rate. The proportion of cases where annotator predictions match the model’s
actual prediction:

Alignment(m) = 1
|A| · |I|

∑
a∈A

∑
i∈I

⊮[pred(m)
a,i = predmodel,i] × 100% (17)

where A is the set of annotators, I is the set of instances, pred(m)
a,i is annotator a’s sentiment prediction

for instance i based on method m’s word cloud visualization, and predmodel,i is the model’s actual
prediction for that instance.
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C.2 LLM-as-a-Judge Prompt and Details

This section provides the exact prompt template used for the LLM-as-a-Judge evaluation.

C.2.1 Prompt Template

The following template was provided to each LLM judge. Placeholders like {sentence} were populated
dynamically for each sample.

You are an expert AI and Linguistics researcher. Your task is to evaluate how well
each "Concept Representation" explains a model’s prediction for a given sentence.

**Context:**
- Sentence: "{sentence}"
- Model’s Prediction: The model classified this as ’{prediction}’

(Meaning: {label_meaning}).

**Your Task:**
For each "Concept Representation" below, rate how well it provides a plausible reason
for the model’s prediction. A concept representation is a group of words or sentences
that together represent a meaningful concept.

**Key Question:** If a model only focused on this "Concept Representation", how well
would it support making a prediction of ’{label_meaning}’?

**Important Guidelines:**
- Similar representations with significant overlap should receive the same rating -

if two concepts contain many of the same words or convey similar meanings, they
should be rated equally.

- Words are not inherently better than sentences - concept sentences may be more
detailed, but focus on the final sentiment/meaning inferred from the concept rather
than the level of detail.

- Be flexible with pattern matching - as long as the overall concept or general theme
can be identified and reasonably supports the prediction, it should be considered
a good concept even if not perfectly precise.

{guidance_text}

**Rating Rubric:**
- 3 (Good): The concept representation shows a general connection to the predicted

label ’{label_meaning}’ - even if not perfectly precise, the overall theme or
pattern is recognizable and plausibly supportive.

- 2 (Fair): The concept representation has some connection to the prediction but may
be broad, mixed, or only partially relevant.

- 1 (Poor): The concept representation shows little to no connection to the prediction,
is mostly irrelevant, or clearly contradicts the expected label.

**Concept Representations to Evaluate:**
---
[This section is dynamically generated based on the configurations]

Concept from Configuration: "{config_1_name}"
- Concept Words: {words_for_config_1}

Concept from Configuration: "{config_2_name}"
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- Representative Sentences:
- "{sentence_1_for_config_2}"
- "{sentence_2_for_config_2}"

[...additional configurations...]
---

**Output Instructions:**
Respond with a single valid JSON object. Use each configuration name as a key, with
the value being an object containing:
- ‘rating’: An integer from 1-3 based on the rubric above
- ‘reason’: A brief explanation justifying your rating

Example Format:
{

"Config_A": {
"rating": 3,
"reason": "Contains words that strongly support the predicted label and form a

coherent concept"
},
"Config_B": {

"rating": 2,
"reason": "Somewhat supports the prediction but contains mixed concepts"

},
"Config_C": {

"rating": 1,
"reason": "Does not support the prediction, contains irrelevant words"

}
}

CRITICAL: You must respond with ONLY valid JSON in the exact format requested above.
Do not include any explanatory text before or after the JSON. Your entire response
should be parseable JSON.

C.2.2 Dataset-Specific Guidance

The {guidance_text} placeholder in the prompt was populated with the following instructions depending
on the dataset to provide task-specific context to the LLM judges.

Jigsaw Toxicity Detection.

**Guidance for Toxicity Detection:**
Be lenient with borderline cases since non-toxic sentences can be confused with toxic
ones. Context matters greatly - strong emotions, passionate language, or criticism
doesn’t automatically mean toxicity. For ‘Toxic’ predictions: Look for patterns
suggesting harmful intent, but accept that detection is challenging. For ‘Non-toxic’
predictions: Accept concepts suggesting civil discourse, even if emotionally charged
or critical. Sarcasm and irony can be easily misinterpreted.

ERASER-Movie Sentiment Analysis.

**Guidance for Sentiment Analysis:**
Movie reviews are often nuanced and mixed. For positive predictions: Accept concepts
suggesting overall appreciation, enjoyment, or recommendation, even if some criticisms
are present. For negative predictions: Accept concepts suggesting overall disappointment
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or criticism, even if some positive aspects are mentioned. Focus on the dominant
sentiment direction rather than requiring pure positive/negative language.

AGNews Topic Classification.

**Guidance for Topic Classification:**
News topics frequently overlap - a tech company’s earnings (Business + Science/Tech),
sports business deals (Sports + Business), or international conflicts affecting markets
(World + Business) are common. Accept concepts that show connection to the predicted
category even if they could reasonably fit multiple categories. Look for: World News
(countries, politics, conflicts, international themes), Sports (teams, games, players,
athletic activities), Business (companies, markets, financial concepts), Science/Tech
(technology, research, innovations, technical concepts).

C.3 Reference Baseline Values

Table 9 provides the original CLS and random perturbed CLS accuracy values used as baselines across all
faithfulness evaluation experiments. These values serve as reference points for calculating performance drops
when salient concepts are removed from sentence representations.

Table 9: Reference baseline values for faithfulness evaluation across different model-dataset combinations
and layer pairs.

Model Dataset Layer Pair Original CLS Random Perturbed CLS

RoBERTa ERASER-Movie 8–12 0.8777 0.8190
RoBERTa Jigsaw 8–12 0.9121 0.9121
RoBERTa AGNews 8–12 0.7275 0.6875

BERT ERASER-Movie 8–12 0.8248 0.8237
BERT Jigsaw 8–12 0.8995 0.8995
BERT AGNews 8–12 0.7458 0.7433

LLaMA-2-7b ERASER-Movie 28–32 0.9051 0.9039
LLaMA-2-7b Jigsaw 28–32 0.8428 0.8407
LLaMA-2-7b AGNews 28–32 0.8900 0.8900

Qwen2.5-3B ERASER-Movie 32–36 0.8727 0.8751
Qwen2.5-3B Jigsaw 32–36 0.8312 0.8363
Qwen2.5-3B AGNews 32–36 0.8875 0.8883

D Additional Quantitative Results

D.1 Computational Complexity Analysis

We analyze the computational complexity of CLVQ-VAE compared to SAE during training. Let B denote
batch size, L sequence length, D model dimension, Hsae the SAE hidden dimension, K the codebook size,
and N the number of transformer decoder layers.

D.1.1 SAE Complexity

The SAE performs encoder projection, ReLU activation, and decoder projection:

OSAE = O(B · L · D · Hsae) (18)

where Hsae ∈ {4096, 12288} must be substantially larger than D for feature disentanglement. Complexity
scales linearly with sequence length but is dominated by large matrix multiplications.
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D.1.2 CLVQ-VAE Complexity

CLVQ-VAE consists of encoder transformation, vector quantization, and transformer decoder:

Oenc+quant = O(B · L · D2) + O(B · L · D · K) (19)
Odecoder = O(N · B · (L2 · D + L · D2)) (20)

Ototal = O(B · L · D · K) + O(N · B · (L2 · D + L · D2)) (21)

Complexity scales quadratically with sequence length due to self-attention in the N = 6 decoder layers.
Vector quantization remains efficient with compact codebook size K = 400.

D.2 Layer Pair Analysis

We analyze the impact of layer pair selection on concept discovery by evaluating several combinations across
RoBERTa and BERT models fine-tuned on ERASER-Movie, Jigsaw, and AGNews. Our final choice of layers
8–12 is motivated both by theoretical understanding and empirical evidence.

Theoretical Motivation. Transformer-based architectures such as RoBERTa and BERT are known to
exhibit hierarchical processing, where lower layers capture surface-level linguistic patterns and intermediate
layers encode rich semantic information (Yu et al., 2024). We hypothesize that the transformation between
Layers 8 and 12 best captures the transition from semantically meaningful representations to task-specific
decision-making features. While our method is layer-agnostic in design, selecting this range enables optimal
interpretability.

Empirical Validation. We conducted systematic experiments across multiple layer pairs, comparing the
impact of concept removal using our perturbation-based faithfulness metric. Table 10 presents accuracy
after perturbing the [CLS] token using discovered concepts, alongside baselines using original and randomly
perturbed inputs.

Table 10: Layer pair analysis showing that layers 8–12 capture the most meaningful transformations across
all datasets.

Model–Dataset Layer Pair Perturbed CLS Original CLS Random Perturbed

RoBERTa–ERASER 0–4 0.5140 0.4988 0.5012
RoBERTa–ERASER 4–8 0.7069 0.5374 0.5269
RoBERTa–ERASER 8–12 0.0583 0.8777 0.8190

RoBERTa–Jigsaw 0–4 0.4962 0.4962 0.4962
RoBERTa–Jigsaw 4–8 0.1734 0.7692 0.7653
RoBERTa–Jigsaw 8–12 0.5853 0.9121 0.9121

RoBERTa–AGNews 0–4 0.2567 0.2500 0.2500
RoBERTa–AGNews 4–8 0.3575 0.4092 0.3783
RoBERTa–AGNews 8–12 0.0967 0.7275 0.6875

BERT–ERASER 0–4 0.5035 0.5012 0.5024
BERT–ERASER 4–8 0.7593 0.7642 0.7631
BERT–ERASER 8–12 0.4813 0.8248 0.8237

BERT–Jigsaw 0–4 0.4962 0.4936 0.4936
BERT–Jigsaw 4–8 0.8154 0.8919 0.8906
BERT–Jigsaw 8–12 0.7308 0.8995 0.8995

BERT–AGNews 0–4 0.2408 0.2500 0.2500
BERT–AGNews 4–8 0.7283 0.8125 0.8175
BERT–AGNews 8–12 0.7117 0.7458 0.7433
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These results support three key observations. First, early layers (0–4) encode minimal task-relevant concepts,
as perturbing them leads to no meaningful change in prediction accuracy. Second, the 4–8 layer range
shows inconsistent behavior across datasets–on ERASER-Movie, we observe an unexpected accuracy increase
following concept perturbation, possibly due to the removal of noisy or redundant features, whereas on Jigsaw
and AGNews, the expected performance drop suggests some level of concept relevance. Finally, the 8–12
configuration consistently reveals meaningful concepts across all datasets: perturbing this range significantly
degrades model performance, indicating that it captures the most faithful and impactful transformations
from semantic features to final task-specific representations.

D.3 Cross-Attention Ablation Study

We ablate the cross-attention mechanism to assess its impact on codebook learning and concept quality.
Table 11 compares CLVQ-VAE with and without cross-attention across all models and datasets. We mea-
sure two metrics: (1) Faithfulness: perturbed CLS accuracy after concept removal (lower values indicate
concepts are more critical to model predictions), and (2) Codebook Quality: average pairwise cosine
similarity between codebook vectors (lower values indicate more orthogonal, distinct concepts).

Table 11: Impact of cross-attention on faithfulness and codebook quality. With Res includes cross-attention;
No Res removes it. Lower values indicate better performance for both metrics. Bold indicates better
performance.

Model Dataset Faithfulness Cosine Sim.
(With vs. No Res) (With vs. No Res)

RoBERTa ERASER-Movie 0.0594 vs 0.0560 0.751 vs 0.924
RoBERTa Jigsaw 0.6127 vs 0.5152 0.575 vs 0.484
RoBERTa AGNews 0.0992 vs 0.1067 0.906 vs 0.976

BERT ERASER-Movie 0.5311 vs 0.7560 0.479 vs 0.760
BERT Jigsaw 0.7372 vs 0.8752 0.312 vs 0.666
BERT AGNews 0.6492 vs 0.7442 0.597 vs 0.839

Qwen ERASER-Movie 0.6113 vs 0.7254 0.684 vs 0.690
Qwen Jigsaw 0.5809 vs 0.5934 0.719 vs 0.746
Qwen AGNews 0.7536 vs 0.8033 0.687 vs 0.790

Including cross-attention yields lower cosine similarity in 8 out of 9 configurations and lower faithfulness
scores in 7 out of 9 configurations. The improved codebook quality (more orthogonal vectors) and stronger
faithfulness (larger performance drops upon ablation) indicate that cross-attention enables the discrete bot-
tleneck to learn more distinct, task-critical concepts.

D.4 Adaptive Alpha Parameter Study

Table 12 shows the impact of different α strategies on training dynamics and codebook utilization across
training epochs on ERASER-Movie dataset and RoBERTa model.

These results reveal that training of adaptive α behaves like a curriculum mechanism: it begins with low
values that preserve the original input embeddings and gradually increases to allow more expressive trans-
formations. For instance, the limited adaptive setting starts around 0.28 and converges to 0.45, achieving
high perplexity from early epochs and maintaining it consistently. This facilitates effective concept discovery
while optimizing for low validation loss. In contrast, fixed low α values such as 0.1 retain high perplexity but
restrict the model’s ability to adapt representations, resulting in higher loss. On the other hand, fixed high
α values (e.g., 0.75 or 1.0) take significantly longer to reach useful perplexity levels, delaying convergence.
Notably, when α = 0, the encoder remains an identity function throughout training and becomes decoupled
from decoder and quantization gradients, leading to stagnation.

We limit the adaptive α to do a maximum of 0.5 change. We noticed that allowing complete change of input
embedding using adaptive α resulted in a high α which reduced final perplexity.
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Table 12: Alpha parameter analysis showing perplexity evolution across training epochs and final validation
loss.

Alpha Strategy Initial Epoch 10 Epoch 30 Final Best Val Loss

Adaptive (Limited) 1.97 198.5 216 210.6 0.033
Adaptive (Complete) 1.86 25.54 50.70 63.21 0.033

Fixed α=0.0 238.1 237.3 239.8 237.2 0.045
Fixed α=0.1 180.9 232.3 238.1 230.8 0.040
Fixed α=0.4 1.95 126.9 160.2 157.2 0.036
Fixed α=0.75 1.077 1.883 27.517 40.106 0.033
Fixed α=1.0 1.155 2.397 15.219 147.470 0.032

D.5 Commitment Weight Analysis

Table 13 shows the impact of commitment cost β on codebook utilization across ERASER and Jigsaw
datasets for RoBERTa model.

Table 13: Impact of commitment cost β on validation perplexity across datasets.

Commitment Cost (β) ERASER Perplexity Jigsaw Perplexity

0.0 213.45 163.45
0.1 210.26 164.07
0.3 189.74 145.65
0.6 170.76 81.38
1.0 23.94 30.71

Higher β values force stronger commitment to assigned codebook vectors, reducing perplexity but limiting
concept diversity. Lower β values allow more flexible assignments, promoting diverse concept identification.
β=0.1 achieves optimal balance between concept diversity and training stability.

D.6 Sampling Parameter Analysis

We analyze the impact of temperature and top-k parameters on codebook utilization and concept identi-
fication performance. Table 14 shows validation perplexity across different configurations, while Table 15
presents faithfulness evaluation results.

Table 14: Impact of temperature and top-k parameters on codebook utilization (validation perplexity) for
ERASER-Movie on RoBERTa model. Higher perplexity indicates more diverse codebook usage.

Temperature Top-k Validation Perplexity

0.5 5 207.14
1.0 5 210.63
2.0 5 217.14
3.0 5 220.09

1.0 1 207.07
1.0 10 210.37
1.0 50 211.57
1.0 100 212.51
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Increasing temperature from 0.5 to 3.0 increases validation perplexity from 207.14 to 220.09, reflecting greater
exploration in codebook selection. For top-k values with τ = 1.0, perplexity increases more gradually from
207.07 (k=1) to 212.51 (k=100), indicating that the exploration-exploitation balance shifts more gradually
compared to temperature adjustments.

Table 15: Impact of temperature and top-k values on concept identification performance for ERASER-
Movie on RoBERTa model. Despite significant differences in sampling parameters, perturbed CLS accuracies
remain within a narrow range (0.0783–0.0911).

Top-k Temperature Perturbed CLS Accuracy

1 1.0 0.0911
10 1.0 0.0864
100 1.0 0.0817
400 1.0 0.0877

400 0.1 0.0806
400 1.0 0.0877
400 2.0 0.0783
400 4.0 0.0911

Reference values:
Original CLS: 0.7604 Random Perturbed CLS: 0.7264

While temperature and top-k parameters significantly affect codebook utilization (as measured by perplex-
ity), perturbed accuracy exhibits limited sensitivity to these hyperparameters. They varied only within
a narrow 0.0783–0.0911 range across all configurations, despite substantial differences in codebook usage
patterns. This suggests that while different sampling strategies lead to different concept distributions,
the resulting concepts remain comparably important for model predictions. We adopt conservative values
(τ = 1.0, k=5) to balance stable training dynamics with reasonable codebook diversity.

D.7 Inter-Judge Agreement Analysis

To validate the reliability of our LLM-as-a-judge evaluation, we calculated Kendall’s coefficient of concor-
dance (W ) across our ensemble of judges. Table 16 presents the agreement for the baseline comparison
(corresponding to Section 4.2.1), and Table 17 presents the agreement for the initialization analysis (corre-
sponding to Section 4.3.1).

Table 16: Inter-judge agreement on baseline rankings measured by Kendall’s coefficient of concordance.
Dataset Kendall’s W Agreement Level
Jigsaw 0.833 Strong
ERASER-Movie 0.828 Strong
AGNews 0.686 Moderate
Overall Average 0.782 Strong
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Table 17: Inter-judge agreement on initialization method rankings measured by Kendall’s coefficient of
concordance.

Dataset Kendall’s W Agreement Level
Jigsaw 0.910 Strong
ERASER-Movie 0.639 Moderate
AGNews 0.843 Strong
Overall Average 0.793 Strong

E Qualitative Analysis

To show how CLVQ-VAE represents concepts related to sentiment analysis, we examine examples from the
ERASER-Movie review dataset. We present word clouds generated by our method for different prediction
outcomes.

E.1 False Negative Example

Figure 2: False negative example (Model: 0, Ground Truth: 1) showing concept clusters related to imitation
and parody.

In Figure 2, we show a false negative example where the model incorrectly predicts negative sentiment for
a positive review. The review describes actors performing imitations, with Lloyd Bridges doing a “decent
imitation of Brando’s godfather” and Pamela Gidley performing a “dead-on mockery of Sharon Stone”.

The word cloud in Figure 2 contains many terms related to imitation (“lifted”, “fake”, “parody”, “imitation”,
“ripped”). Despite the review framing these imitations positively as “decent” and “dead-on”, the model as-
sociates these imitation concepts with negative sentiment. This shows a limitation in distinguishing between
criticism of unoriginality and praise for good impersonations.
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Figure 3: False positive example (Model: 1, Ground Truth: 0) showing terms of moderate approval despite
the overall negative sentiment.

E.2 False Positive Example

Figure 3 shows a false positive case where the model incorrectly predicts positive sentiment for a negative
review. The review describes a film that “isn’t so bad” but leaves “the unpleasant impression that it could
have been better”.

The word cloud in Figure 3 shows terms of moderate approval (“fine”, “enjoyed”, “decent”, “right”, “good”).
The model focused on the mild praise while missing the more subtle negative sentiment. This shows a limi-
tation in distinguishing between faint praise and genuine positive sentiment in reviews with mixed language.

E.3 True Negative Example

Figure 4 shows a true negative example where the model correctly predicts negative sentiment. The review
states “this film has neither the quality of cinematography nor the moments of glory to be highlighted”.

The word cloud in Figure 4 contains terms expressing absence or lack (“nothing”, “barely”, “whatsoever”,
“little”, “nowhere”, “zero”). This shows how CLVQ-VAE effectively captures concepts related to deficiency,
correctly identifying negative sentiment in the review.

E.4 True Positive Example

In Figure 5, we show a true positive example where the model correctly predicts positive sentiment for “the
acting is superb from everyone involved”. This direct praise is an ideal case for sentiment analysis.

The word cloud in Figure 5 shows many positive descriptors (“outstanding”, “fantastic”, “awesome”, “mag-
nificent”). This demonstrates how our model captures related positive terms, particularly for straightforward
expressions of praise.

These examples show how CLVQ-VAE captures discrete concepts for sentiment classification, which often
includes sentiment-laden terms and their semantic relationships. The false prediction cases (Figures 2 and 3)
highlight limitations identified by CLVQ-VAE in RoBERTa model.
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Figure 4: True negative example (Model: 0, Ground Truth: 0) showing terms expressing absence or defi-
ciency.

Figure 5: True positive example (Model: 1, Ground Truth: 1) showing positive descriptors for “the acting
is superb from everyone involved”.
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