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ABSTRACT

Machine learning tasks are generally formulated as optimization problems, where
one searches for an optimal function within a certain functional space. In practice,
parameterized functional spaces are considered, in order to be able to perform
gradient descent. Typically, a neural network architecture is chosen and fixed,
and its parameters (connection weights) are optimized, yielding an architecture-
dependent result. This way of proceeding however forces the evolution of the
function during training to lie within the realm of what is expressible with the
chosen architecture, and prevents any optimization across possible architectures.
Costly architectural hyper-parameter optimization is often performed to compensate
for this. Instead, we propose to adapt the architecture on the fly during training. We
show that the information about desirable architectural changes, due to expressivity
bottlenecks when attempting to follow the functional gradient, can be extracted
from the backpropagation. To do this, we propose a new mathematically well-
grounded method to detect expressivity bottlenecks on the fly and solve them by
adding suitable neurons when and where needed. Thus, while the standard approach
requires large networks, in terms of number of neurons per layer, for expressivity
and optimization reasons, we are able to start with very small neural networks and
let them grow appropriately. As a proof of concept, we show results on the MNIST
dataset, matching large neural network accuracy, with competitive training time,
while removing the need for standard architectural hyper-parameter search.

1 INTRODUCTION

Issues with the fixed-architecture paradigm. Universal approximation theorems such as Hornik
et al. (1989) are historically among the first theoretical results obtained on neural networks, stating
the family of neural networks with arbitrary width as a good candidate for a parameterized space of
functions to be used in machine learning. However the current common practice in neural network
training consists in choosing a fixed architecture, and training it, without any possible architecture
modification meanwhile. This inconveniently prevents the direct application of these universal
approximation theorems, as expressivity bottlenecks that might arise in a given layer during training
will not be able to be fixed. There are two approaches to circumvent this in daily practice. Either
one chooses a (very) large width, to be sure to avoid expressivity issues (Hanin & Rolnick, 2019b;
Raghu et al., 2017), but then consumes extra computational power to train such big models, and
often needs to reduce the model afterwards, possibly using probabilistic edges (Liu et al., 2019).
Or one tries different architectures and keeps the most suitable one (in terms of performance-size
compromise for instance), which multiplies the computational power by the number of trials. This
latter approach relates to the Auto-DeepLearning field, where different exploration strategies over the
space of architecture hyper-parameters (among other ones) have been tested, including reinforcement
learning (Baker et al., 2017; Zoph & Le, 2016), Bayesian optimization techniques (Mendoza et al.,
2016), and evolutionary approaches (Miller et al., 1989) (Miikkulainen et al., 2017), that rely on
random tries and consequently take time for exploration. Within that line, Net2Net (Chen et al.,
2015), AdaptNet (Yang et al., 2018) and MorphNet (Gordon et al., 2018) propose different strategies
to explore possible variations of a given architecture, possibly guided by model size constraints.
Instead, we aim at providing a way to locate precisely expressivity bottlenecks in a trained network,
which might speed up neural architecture search significantly. Moreover, based on such observations,
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we aim at modifying the architecture on the fly during training, in a single run (no re-training), using
first-order derivatives only, while avoiding neuron redundancy.

Neural architecture growth. A related line of work consists in growing networks neuron by
neuron, by iteratively estimating the best possible neurons to add, according to a certain criterion.
For instance, Wu et al. (2019) and Firefly (Wu et al., 2020) aim at escaping local minima by adding
neurons that minimize the loss under neighborhood constraints. These neurons are found by gradient
descent or by solving quadratic problems involving second-order derivatives. Another example is
GradMax (Evci et al., 2022), which seeks to minimize the loss as fast as possible and involves another
quadratic problem. However the neurons added by these approaches are possibly redundant with
existing neurons, in particular if one does not wait for training convergence to a local minimum (which
is time consuming) before adding neurons, therefore producing larger-than-needed architectures. On
the opposite we will explicitly take redundancy into account in our growing criterion.

Optimization properties. An important reason for common practice to choose wide architectures
is the associated optimization properties: sufficiently larger networks are proved theoretically and
shown empirically to be better optimizers than small ones Jacot et al. (2018). Typical, small networks
exhibit issues with spurious local minima, while wide ones usually find good nearly-global minima.
One of our goals is to train small networks without suffering from such optimization difficulties.

Notions of expressivity. Several concepts of expressivity or complexity exist in the Machine
Learning literature, ranging from Vapnik-Chervonenkis dimension and Rademacher complexity to
the number of pieces in a piecewise affine function (as networks with ReLU activations are) Serra
et al. (2018); Hanin & Rolnick (2019a). Bottlenecks have been also studied from the point of view of
Information Theory, through mutual information between the activities of different layers (Tishby &
Zaslavsky, 2015); this quantity is difficult to estimate though. Also relevant and from Information
Theory, the Minimum Description Length paradigm and Kolmogorov complexity enable to search for
a compromise between performance and model complexity.

In this article, we aim at measuring lacks of expressivity as the difference between what the back-
propagation asks for and what can be done by a small parameter update (such as a gradient step), that
is, between the desired variation for each activation in each layer (for each sample) and the best one
that can be realized by a parameter update. Intuitively, differences arise when a layer does not have
sufficient expressive power to realize the desired variation. Our main contributions are that we:

• take a functional analysis viewpoint over gradient descent on neural networks, suggesting to
attempt to follow the functional gradient. We optimize not only the weights of the current
architecture, but also the architecture itself on the fly, in order to progressively move towards
more suitable parameterized functional spaces.

• properly define and quantify the notion of expressivity bottlenecks, globally at the neural
network output as well as at each layer, and this in an easily computionable way. This allows
to localize the expressivity bottelenecks, by spotting layers with great lacks of expressivity;

• mathematically define the best possible neurons to add to a given layer to decrease lacks of
expressivity as a quadratic problem; compute them and their associated expressivity gain;

• check that adding these best neurons is better indeed than adding random ones;
• are able to train a neural network without gradient descent (yet still relying on backpropaga-

tion) by just adding such best neurons, without parameter update;
• naturally obtain a series of compromises between performance and number of neurons,

in a single run, thus removing the need for layer width hyper-optimization, and this in
competitive computational complexity with respect to classically training a large model just
once. One could define a target accuracy and stop adding neurons when it is reached.

2 NOTATIONS AND DEFINITIONS

2.1 NOTATIONS

We consider a feedforward neural network with L hidden layers, fθ : Rp → Rd, where the parameters
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θ := (W1, ...,WL) are organized into affine layers followed by activation functions σl.We denote
the dataset by D := {(x1,y1), ..., (xN ,yN )}, with xi ∈ Rp and yi ∈ Rd, and the loss function by L.
We will assume that σl is differentiable at 0 and that L is differentiable on Rd and that σl(0) = 0.
Except in Part 3.4, the dataset D is fixed. The network iteratively computes:

Figure 1: Notations

b0(x) =

(
x
1

)
al(x) = Wlbl−1(x) bl(x) =

(
σl(al(x))

1

)
with fθ(x) = σL(aL(x)). To any vector-valued function noted
t(x) and any batch of inputs X := [x1, ...,xn], we associate the
concatenated matrix T (X) := (t(x1) ... t(xn)). The matrices
of pre-activation and post-activation activities at layer l over a mini-
batch X are thus respectively Al(X) = (al(x1) ... al(xn))
and Bl(X) = (bl(x1) ... bl(xn)).

2.2 APPROACH

We take a functional perspective on the use of neural networks. Ideally in a machine learning
task, one would search for a function f : Rp → Rd that minimizes the loss L by gradient descent:
∂f
∂t = −∇fL(f) for some metric on the functional space F (typically, L2), where ∇f denotes the
functional gradient. For a chosen η > 0, the descent direction vgoal := −η∇fL(f) is a function of
the same type as f , indicating the best infinitesimal variation to add to f to decrease the loss.

In practice, to compute the gradient, a finite-dimensioned parametric space of functions is considered
by choosing a particular neural network architecture A with weights θ ∈ ΘA. The associated
parametric search space FA then consists of all possible functions fθ that can represented with such a
network for any parameter value θ.

Gradient descent reminder. For the sake of simplicity, let us consider a loss of the form L(f) =
E(x,y)∼D

[
L(f(x),y)

]
. Under standard weak assumptions (A.1), and up to a multiplicative learning

rate, the gradient descent is then of the form:

∂θ

∂t
= −∇θL(fθ) = − E

(x,y)∼D

[
∇θL(fθ(x),y)

]
Using the chain rule, this yields a function change :

vGD := η
∂fθ
∂t

= η
∂fθ
∂θ

∂θ

∂t
=

∂fθ
∂θ

E
(x,y)∼D

[
∂fθ
∂θ

T

(x) vgoal(x)

]

Optimal move. We name T fθ
A , or just TA,

the tangent space of FA at fθ, that is, the
set of all possible infinitesimal variations
around fθ under small parameter variations:
T fθ
A := {∂fθ∂θ δθ | s.t. δθ ∈ Θ}. This linear

space is a first order approximation of the
neighborhood of fθ within FA.
The direction vGD obtained above by gradi-
ent descent is actually not the best one to
consider within TA. Indeed, the best move
v∗ would be the orthogonal projection of
the desired direction vgoal := −η∇fθL(fθ)
onto TA. This projection depends on the
chosen metric and is what a (generalization
of the notion of) natural gradient computes
(Ollivier, 2017).

functional
gradient

optimal move with

the current architecture

expressivity
bottleneck

TA

fθ v∗ = ProjTA(vgoal)

FA

vgoal

Figure 2: The expressivity bottleneck is measured
as the difference between the optimal functional
move v∗ given the architecture A and the func-
tional gradient vgoal. The former is the projection
of the latter onto the tangent space TA.
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Lack of expressivity. When −η∇fθL(fθ) does not belong to the reachable subspace TA, there is a
lack of expressivity, that is, the parametric space A is not rich enough to follow the ideal functional
gradient descent. This happens frequently with small neural networks.

Example. Suppose one tries to estimate the function y = ftrue(x) =
2 sin(x) + x with a linear model fpredict(x) = ax + b. Consider (a, b) =
(1, 0) and the square loss L . For the dataset of inputs (x0, x1, x2, x3) =
(0, 1.5, π, 4.5), there exists no parameter update (δa, δb) that would im-
prove prediction at x0, x1, x2 and x3 simultaneously, as the space of linear
functions {f : x→ ax+ b | a, b ∈ R} is not expressive enough. To im-
prove the prediction at x0, x1, x2 and x3, one should look for another, more
expressive functional space such that for i = 0, 1, 2, 3 the functional update
∆fpredict(xi) := f t+1

predict(xi)−f t
predict(xi) goes into the same direction as mi-

nus the functional gradient vgoal(xi) := −η∇fpredict(xi)L(fpredict(xi), yi) =
−η2(fpredict(xi)− yi) where yi = ftrue(xi).
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Figure 3: Linear inter-
polation

2.3 UPDATING LAYER ACTIVITIES

Ideal updates. The same reasoning can be applied to the pre-activations al, seen as func-
tions defined over the input space of the neural network. The optimal update of the weights
of the different layers is then the projection of the desired update direction of pre-activation
functions, i.e. η∇al

L(fθ), obtained by back-propagation, onto the linear subspace T al
A of pos-

sible variations within the architecture, as we will detail now just like in the intuition part.
Training a neural network is usually done by gradient descent, which consists in updating the
weight matrices Wl recursively using back-propagation. More precisely, the gradient of the
loss w.r.t. W l

i,j is the product of the backpropagation from the loss L till layer preactivations
al(x) and of the layer-specific derivative from these preactivations till the weight in question:
∂al(x)

∂W l
i,j

∇uL (σL(WL(...σl(u))))|u = al(x)
. The opposite of the second term times η the positive

real number, vgoal
l(x) := −η ∇uL(σL(W

L(...σl(u))))|u = al(x)
, indicates the desired update

direction for u = al(x). Mathematically speaking, if at time t any activity update were possible at
each layer l, we would choose at t+ 1 the pre-activation function updates such that for all samples
i = 1, ..., n:

∆al(xi) := a t+1
l (xi)− a t

l (xi) = −η∇a t
l (x)

L(σL(WL(...(a
t
l(x))),y)|(x,y) = (xi,yi)

(1)

Unfortunately, most of the time no parameter move δθ is able to induce this progression for each
xi at the same time, because the θ-parameterized family of functions al is not expressive enough.
Intuitively the ideal update above does not result from a parameter update but from an update of
the pre-activation functions in their functional spaces. Following this ideal update rather than the
classical gradient descent would optimally decrease the loss, with an order-1 effect in η provided the
gradient is non-0. Unlike this ideal update, the classical gradient descent decreases the global loss at
first order in η but does not necessarily improve the prediction for all xi.

For the rest of the paper we will note vl
goal(xi) := −η∇al(x)L(fθ(x),y)|(x,y)=(xi,yi).

Activity update resulting from a parameter change. Given a subset of parameters θ̃, an incre-
mental direction δθ̃ to update θ̃, and an amplitude η > 0, the impact of the parameter update δθ̃ on
the pre-activity al at layer l at order 1 in δθ̂ is vl(xi, δθ̃) :=

∂al(x)

∂θ̃
δθ̃.

Remark 1. We could have choose to study the desired update for bl, our choice for al is explained
in section A.2.

3 EXPRESSIVITY BOTTLENECKS

We now define expressivity bottlenecks based on the activity updates, both actual vl(.) and desired
vl

goal(.) ones (cf Figure 2):
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Definition 3.1 (Lack of expressivity). For a neural network fθ and a minibatch of points
{(xi,yi)}ni=1, we define the lack of expressivity at layer l as how far the desired activity update V l

goal
is from the closest possible activity update realizable by a parameter change δθ:

min
vl∈T al

A

n∑
i=1

∥∥vl(xi)− vl
goal(xi)

∥∥2 = min
δθ

∥∥V l(X, δθ)− V l
goal(X)

∥∥2
Tr

(2)

where ||.|| stands for the L2 norm and ||.||Tr for the Frobenius norm.

In the two following parts we fix a minibatch {(xi,yi)}ni=1, i.e. a subset of the full dataset D.
As X := [x1, ...,x1] is then fixed, we simplify the notation: Al := Al(X), Bl := Bl(X),
V l := V l(X) . . .

3.1 BEST MOVE WITHOUT MODIFYING THE ARCHITECTURE OF THE NETWORK

Let δW ∗
l be the solution of 2 when the parameter variation δθ is restricted to involve only layer

l parameters, i.e. Wl. This move is sub-optimal in that it does not result from an update of all
architecture parameters but only of the current layer ones:

δW ∗
l = argmin

δWl∈M(Wl.shape)

∥∥V l(δWl)− V l
goal

∥∥2
Tr

(3)

whereM(k, l) is the set of matrices of size k × l, i.e. here of the size of Wl. We denote by V l∗
0 the

associated activity variation:

V l∗
0 = δW ∗

l Bl−1 vl∗
0 (xi) = δW ∗

l bl−1(xi)

Proposition 3.1. The solution of 3 and its associated activity variation are:

δW ∗
l =

1

n
V l

goalB
T
l−1(

1

n
Bl−1B

T
l−1)

+

where P+ denotes the generalized inverse of matrix P .

This update δW ∗
l is not equivalent to the usual gradient descent update, whose form is δW GD

l ∝
V l

goalB
T
l−1. In fact V l∗

0 is the projection of V l
goal on the post-activation matrix of layer l − 1,

that is to say onto the span of all possible directions from post-activation, through the projec-
tor 1

nB
T
l−1(

1
nBl−1B

T
l−1)

+Bl−1. To increase expressivity if needed, we will aim at increasing this
span with the most useful directions to close the gap between this best update and the desired one.
Note that the update δW ∗

l consists of a standard gradient (V l
goalB

T
l−1) and of a (kind of) natural

gradient only for the last part (projector).

3.2 REDUCING EXPRESSIVITY BOTTLENECK BY MODIFYING THE ARCHITECTURE

To get as close as possible to V l+1
goal and to increase the expressive power of the current neural

network, we modify each layer of its structure. At layer l, we add K neurons n1, ..., nK with input
weights α1, ...,αk and output weights ω1, ...,ωK (cf Figure 4). We have the following change :
W T

l ←
(
W T

l α1 ... αK

)
and Wl+1 ← (Wl+1 ω1 ... ωK).

We note this modification of architecture θ ← θ ⊕ θKl↔l+1 where ⊕ is the concatenation sign and
θKl↔l+1 := (αk,ωk)

K
k=1 are the added neurons.

The added neurons could be chosen randomly, as in usual neural network initialisation, but this would
not yield any guarantee regarding the impact on the system loss. Another possibility would be to set
either input weights (αk)

K
k=1 or output weights (ωk)

K
k=1 to 0, so that the function fθ(.) would not be

modified, while its gradient w.r.t. θ would be enriched from the new parameters. Another option is to
solve a optimization problem as in the previous section with the modified structure θ ← θ ⊕ θKl↔l+1

and jointly search for both the optimal new parameters θKl↔l+1 and the optimal variation δWl of the
old ones.

argmin
θK
l↔l+1,δWl

∥∥∥Vgoal
l+1 − V l+1((δWl, θ

K
l↔l+1))

∥∥∥2
Tr
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Figure 4: Adding two neurons at layer l in purple (K = 2), with connections in purple. We have
αi ∈ R3 et ωi ∈ R3 for i = 1, 2.

As the displacement V l+1 at layer l + 1 is actually a sum of the moves induced by the neurons
already present (δWl) and by the added neurons (θKl↔l+1), our problem rewrites as :

argmin
θK
l↔l+1,δWl

||Vgoal
l+1 − V l+1(δWl)− V l+1(θKl↔l+1)||2Tr (4)

With vl+1(x, θKl↔l+1) :=
∑K

j=1 wk (bl−1(x)
Tαk). Refering to the definition of vl+1(x) this choice

have to be explained because the partial derivative with respect to (αk,ωk) is actually 0 (See A.2).
We solve this problem in two steps. Let us fix for the moment δWl ∈ M(|vgoal

l+1(x)|, |bl(x)|),
standing for an update of the matrix Wl+1, and search for the best new parameters θKl↔l+1.
We note Vgoal

l+1
proj

= Vgoal
l+1
proj

(δWl) := Vgoal
l+1 − V l+1(δWl). We are looking for the following

quantity :

( θ̂K,∗
l↔l+1︷ ︸︸ ︷

(α̂∗
k, ω̂

∗
k)

K∗

k=1,K
∗) := argmin

(αk,ωk)Kk=1,K

{
||Vgoal

l+1
proj
− V l+1(θKl↔l+1)||2Tr

}
(5)

We define the matrices N := 1
nBl−1

(
Vgoal

l+1
proj

)T
and S := 1

nBl−1B
T
l−1. Note that N depends on

δWl. Using the low-rank matrix approximation theorem (Eckart & Young, 1936), we can solve this
quadratic optimization problem as follows.
As S is semi-positive definite, let us denote its Cholesky decomposition by S = S1/2S1/2T , and
consider the SVD of the matrix S1/2−1

N =
∑R

k=1 λkukv
T
k with λ1 ≥ ... ≥ λR ≥ 0, where R is

the rank of the matrix N . Then:

Proposition 3.2. The solution of (5) can be written as:

• optimal number of neurons: K∗ = R

• their optimal weights: (α̂∗
k, ω̂

∗
k) = (S1/2T

−1
uk,vk) for k = 1, ..., R.

Moreover for any number of neurons K ⩽ R, and associated scaled weights θ̂K,∗
l↔l+1, the expressivity

gain and the first order in η of the loss improvement due to the addition of these K neurons are equal
and can be quantified very simply as a function of the eigenvalues λk:

1

n
||Vgoal

l+1
proj − V l+1(θ̂K,∗

l↔l+1)||
2
Tr =

1

n
||Vgoal

l+1
proj ||

2
Tr −

K∑
k=1

λ2
k

1

n

n∑
i=1

L(fθ⊕θ̂K,∗
l↔l+1

(xi),yi) =
1

n

n∑
i=1

L(fθ(xi),yi) +
σ′
l(0)

η

K∑
k=1

λ2
k + o(||θ̂K,∗

l↔l+1||
2)
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Proposition 3.3. If S is positive definite, then solving (5) is equivalent to taking ωk = Nαk and
finding the K first eigenvectors αk associated to the K largest eigenvalues λ of the generalized
eigenvalue problem :

NNTαk = λSαk

This formulation is useful when dimensions of N and S are large. Considering LOBPCG method
(Peter Benner, 29 Apr 2020) allows not to invert the matrix and to compute the Cholesky factorization
in proposition 3.2. In practice the matrix S is positive definite except for l − 1 = 0, and even in this
last case it is possible to define the Cholesky decomposition of S (cf Appendix).
Corollary. The matrix δWl which minimizes (6) (through its impact on Vgoal

l+1
proj) or equivalently

minimizes the sum of orders zero and one in η of (7) is given by δW ∗
l+1 in Proposition 3.1.

Corollary. For all integers m,m′ such that m+m′ ⩽ R, at order one in η it is equivalent to add
m + m′ neurons simultaneously according to the previous method or to add m neurons then m′

neurons by applying successively the previous method twice.

Minimizing the distance (6), ie the distance between V l+1
goal (δWl) and V l+1(θl↔l+1), is equivalent

to minimize the loss L at order one in γ, and it is directly due to the following development:

L(fθ⊕θK
l↔l+1

) = L(fθ)− σ′
l(0)

1

η

1

n
σ′
l(0)

〈
Vgoal

l+1(δWl), V
l+1(θl↔l+1)

〉
Tr
+ o(||V l+1(θl↔l+1)||)

When solving (6), we notice that the family {V l+1((αk,ωk))}Kk=1 of pre-activity variations induced
by adding the neurons θ̂K,∗

l↔l+1 is orthogonal for the trace scalar product. We could say that the added
neurons are orthogonal to each other in that sense. The addition of each neuron k has an impact on
the order of λk, which can be used to define a criterion to decide whether the neuron k should be
added to the layer or not, i.e. only if λ2

kL(fθ) > τ . We name the operation θ ← θ ⊕ θ̂K,∗
l↔l+1 the

K-update of the network at layer l.

3.3 CHOOSING THE AMPLITUDE FACTOR γ WHEN ADDING NEURONS

Let us consider the l+1-th layer of the network. Having the best update for linear layer l+1, δW ∗
l+1,

and the best neurons to add accordingly to layer l, (α̂∗
k, ω̂

∗
k)

K
k=1, we estimate the best factors γ0

and γ to multiply the new neurons with, in order to speed up the learning. Defining the updates
θδ(l+1)(γ0) = (W1, ...,Wl+1 + γ0 δW

∗
l+1, ...,WL) and θ̂K,∗

l↔l+1(γ) = (γα̂∗
k, ω̂

∗
k)

K
k=1, we apply a

line search algorithm to find a local minimum of the loss function :

γ∗
0 := argmin

γ0∈V(0)

1

n

n∑
i=1

L(fθδ(l+1)(γ0)(Xi), Yi) (6)

γ∗ := argmin
γ∈V(0)

1

n

n∑
i=1

L(fθδ(l+1)(γ∗
0 )⊕θ̂K,∗

l↔l+1(γ)
(Xi), Yi) (7)

where V(0) is a positive neighbourhood of zero.
Remark : the amplitude factor can also be defined differently, for example by choosing a different
amplitude factor for the input and output parameters, ie (

√
γ1αk,

√
γ2ωk)

K
k=1.

3.4 VARIANCE OF THE ESTIMATOR

Noting nl the number of neurons already in layer l before the K-update, we discuss the variance of
our estimate δθ̂K,∗

l↔l+1 for l = 1, ..., L− 1, as a function of the minibatch. At layer l + 1, the solution
of (5) is an estimator of θK,∗

l↔l+1 := (α∗
k,ω

∗
k)

K
k=1, which is the minimizer of :

θK,∗
l↔l+1 := argmin

α,ω
E

∥∥∥∥∥vgoal
l+1
proj

(Xi)−
K∑

k=1

vl+1
k (Xi)

∥∥∥∥∥
2
 (8)

where the expectation is taken over all possible random samples Xi ∼ D. The variance of the
directions (α̂∗

k, ω̂
∗
k)

K
k=1 grows in

√
p where p := max(nl−1, nl+1) and decreases in

√
N where N is

the minibatch size used for the estimation of (8). In practice we will start with N = 100 and increase
N with the architecture growth.
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4 EXPERIMENTAL RESULTS

In Figures 5 and 6, we run an experiment on the MNIST dataset ((LeCun et al., 1998)), with 7
CPUs, repeated 20 times. All models are trained for 50 seconds with Adam(lr = 0.0001, µ = 0)
with constant mini-batch of size 100. The activation functions are σl = selu if l = 1, 2 and
σ3 = Softmax. We plot accuracy mean and standard deviation on test set for our approach with
architecture growth and for standard training with a fixed architecture. For our approach, we start
with a feedforward model with 2 hidden layers of widths [1, 1], initialized with Kaiming normal.
Every 0.05 seconds (with Adam(lr = 0.0001)), we extend the two hidden layers according to our
method. We compare the performance of our method with classical training of large models (Fig. 5),
or of models with the same final architecture as ours (Fig. 6), to check performance when one already
knows the correct architecture. Classic models are initialized with Kaiming normal. More graphics
can be found in Appendix C. We note that large models take more computational time to train, and
that architecture growth yields better or similar performance while avoiding layer width tuning.
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Figure 5: All graphics represent the same experiment but from a different perspective. Left : after
partitioning computational time on intervals of size 0.1 seconds, we compute a linear interpolation
for the accuracy value. Middle : the accuracy value against number of epochs, where the time needed
to compute the optimal neurons is not noticeable. Right : accuracy against computational time,
where durations due to Cholesky decompositions and their happening instants are averaged over
experiments, for better visualisation purposes.

Figure 6: Left : we plot the interpolation of accuracy on intervals of size 0.1 second. Middle : zoom
of the top left plot. Right : the accuracy value against number of epochs, unlike middle plot in graphic
5, our method is trained on fewer epochs compared to classic model, indeed with equal architecture
our method spends time computing the best neurons while the classic method continues its training.

5 ABOUT GREEDY GROWTH SUFFICIENCY

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal state.
We derive the following series of propositions in this regard. Since in this work we add neurons layer
per layer independently, we study here the case of a single hidden layer network, to spot potential
layer growth issues. For the sake of simplicity, we consider the task of least square regression towards
an explicit continuous target f∗, defined on a compact set. That is, we aim at minimizing the loss:

inf
f

∑
x∈D
∥f(x)− f∗(x)∥2

8
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where f(x) is the output of the neural network and D is the training set.
Proposition 5.1 (Greedy completion of an existing network). If f is not f∗ yet, then there exists a
set of neurons to add to the hidden layer such that the new function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well minimized. Furthermore:
Proposition 5.2 (Greedy completion by one single neuron). If f is not f∗ yet, there exists a neuron
to add to the hidden layer such that the new function f ′ will have a lower loss than f .

As a consequence, there exists no situation where one would need to add many neurons simultaneously
to decrease the loss: it is always feasible with a single neuron. One can express a lower bound on
how much the loss has improved (for the best such neuron), but it is not a very good bound without
further assumptions on f .
Proposition 5.3 (Greedy completion by one infinitesimal neuron). The neuron in the previous
proposition can be chosen to have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function f and
consequently manipulates infinitesimal quantities. Though we perform line search in a second step and
consequently add non-infinitesimal neurons, our first optimization problem relies on the linearization
of the activation function by requiring the added neuron to have infinitely small input weights, to
make the problem easier to solve. This proposition confirms that such neuron exists indeed.

Correlations and higher orders. Note that, as a matter of fact, our approach exploits linear
correlations between inputs of a layer and desired output variations. It might happen that the loss is
not minimized yet but there is no such correlation to exploit anymore. In that case the optimization
problem (5) will not find neurons to add. Yet following Prop. 5.3 there does exist a neuron with
arbitrarily small input weights that can reduce the loss. This paradox can be explained by pushing
further the Taylor expansion of that neuron output in terms of weight amplitude (single factor ε on
all of its input weights), for instance σ(εα · x) ≃ σ(0) + σ′(0)εα · x+ 1

2σ
′′(0)ε2(α · x)2 +O(ε3).

Though the linear term α · x might be uncorrelated over the dataset with desired output variation,
i.e. Ex∼D[α ·x] = 0, the quadratic term (α ·x)2, or higher-order ones otherwise, might be correlated.
Finding neurons with such higher-order correlations can be done by increasing accordingly the power
of (α · x) in the optimization problem (4). Note that one could consider other function bases that the
polynomials from Taylor expansion. In all cases, one does not need to solve such problems exactly
but just to find an approximate solution, i.e. a neuron improving the loss.

Adding random neurons. Another possibility to suggest additional neurons, when expressivity
bottlenecks are detected but no correlation (up to order p) can be exploited anymore, is to add random
neurons. The first p order Taylor expansions will show 0 correlation with desired output variation,
hence no loss improvement nor worsening, but the correlation of the p+ 1-th order will be non-0,
with probability 1, in the spirit of random projections. The loss can then be improved, all the more
with a line search to optimize the neuron amplitude.

However, such random neurons also contribute to other directions in the functional space than the
desired one. This hinders the loss improvement expectable from them, as the line search will need
to find a compromise with the loss changes brought by these other directions. This is confirmed
experimentally in Appendix C.4. To alleviate this, in the spirit of common neural network training
practice, one could consider brute force combinatorics by adding many random neurons and hoping
that one will be close enough to the desired direction. The difference with standard training is that we
would perform such computationally-costly searches only when and where relevant, exploiting all
simple information (linear correlations in each layer) first.

6 CONCLUSION

We have properly defined lacks of expressivity, and their minimization has allowed us to optimize the
architecture on the fly, to better follow the functional gradient, enabling architecture growth. Apart
from straightforward extension to other types of layers (such as convolutions) and to the addition
of new layers, future work will pay attention to overfit possibilities (which we have not we have
not observed so far, thanks to the optimally small number of parameters) and to neuron addition
strategies.

9



Under review as a conference paper at ICLR 2023

REFERENCES

URL https://en.wikipedia.org/wiki/Leibniz_integral_rule#Measure_
theory_statement.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=S1c2cvqee.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1(3):211–218, September 1936. ISSN 1860-0980. doi: 10.1007/BF02288367. URL
https://doi.org/10.1007/BF02288367.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pedregosa, and Max Vladymyrov.
Gradmax: Growing neural networks using gradient information. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=qjN4h_
wwUO.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1586–1595, 2018.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2596–2604.
PMLR, 09–15 Jun 2019a. URL https://proceedings.mlr.press/v97/hanin19a.
html.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation pat-
terns. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019b. URL https://proceedings.neurips.cc/paper/2019/file/
9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and general-
ization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Towards
automatically-tuned neural networks. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren
(eds.), Proceedings of the Workshop on Automatic Machine Learning, volume 64 of Proceedings
of Machine Learning Research, pp. 58–65, New York, New York, USA, 24 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v64/mendoza_towards_2016.html.

Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving
deep neural networks. CoRR, abs/1703.00548, 2017. URL http://arxiv.org/abs/1703.
00548.

10

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement
https://openreview.net/forum?id=S1c2cvqee
https://doi.org/10.1007/BF02288367
https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=qjN4h_wwUO
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://proceedings.mlr.press/v64/mendoza_towards_2016.html
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548


Under review as a conference paper at ICLR 2023

Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. Designing neural networks using genetic
algorithms. In ICGA, 1989.

Yann Ollivier. True asymptotic natural gradient optimization, 2017. URL https://arxiv.org/
abs/1712.08449.

Xin Liang Peter Benner. Convergence analysis of extended lobpcg for computing extreme eigenvalues.
29 Apr 2020.

Allan Pinkus. Approximation theory of the mlp model in neural networks. ACTA NUMERICA, 8:
143–195, 1999.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 2847–2854. PMLR, 06–11 Aug 2017. URL https://proceedings.
mlr.press/v70/raghu17a.html.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4558–4566. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/serra18b.html.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck princi-
ple. CoRR, abs/1503.02406, 2015. URL http://dblp.uni-trier.de/db/journals/
corr/corr1503.html#TishbyZ15.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural archi-
tectures. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
22373–22383. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2016. URL
http://arxiv.org/abs/1611.01578. cite arxiv:1611.01578.

11

https://arxiv.org/abs/1712.08449
https://arxiv.org/abs/1712.08449
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v80/serra18b.html
https://proceedings.mlr.press/v80/serra18b.html
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#TishbyZ15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#TishbyZ15
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf
http://arxiv.org/abs/1611.01578


Under review as a conference paper at ICLR 2023

A ASSUMPTIONS

A.1 MEASURE THEORY STATEMENT

Let X be an open subset of R, and Ω be a measure space. Suppose f : X × Ω −→ R satisfies the
following conditions:

• f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X .
• For almost all ω ∈ Ω , the partial derivative fx or f accordinf to x exists for all x ∈ X .
• There is an integrable function θ : Ω −→ R such that |fx(x, ω)| ≤ θ(ω) for all x ∈ X and

almost every ω ∈ Ω.

Then, for all x ∈ X ,

d

dx

∫
Ω

f(x, ω) dω =

∫
Ω

fx(x, ω) dω

See proof and details :mea.

A.2 REMARKS

When increasing the size of layer l with θKl↔l+1 := (αk,ωk)
K
k=1 starting with (αk,ωk)

K
k=1 = 0,

the outcome for vl+1(x, θKl↔l+1) is 0 because the gradient with respect to (αk,ωk)
K
k=1 is 0 in

(αk,ωk)
K
k=1 is 0. In mathematical terms :

vl+1(x, θKl↔l+1) :=
∂al+1(x)

∂θKl↔l+1 |θK
l↔l+1=0

θKl↔l+1 = 0 (9)

The impact of this modification of structure has to be seen differently. The first point of view is to say
that we choose (ωk)

k
k=1 then compute vl+1(x, (αk)

K
k=1) as a function of the family (ωk)

K
k=1. We

have then :

vl+1(x, θKl↔l+1) := vl+1(x, (αk)
K
k=1) =

∂al+1(x)

∂( (αk)Kk=1 ) |(αk)Kk=1=0

(αk)
K
k=1 =

K∑
k=1

ωkbl−1(x)
Tαk

This is equivalent to say that for each family (ωk)
K
k=1, the tangent space in al+1 restricted to move in

the family (αk)
K
k=1, ie T al+1

A := { ∂al+1

∂(αk)Kk=1 |(αk)Kk=1=0
(αk)

K
k=1|(αk)

K
k=1 ∈

(
R|bl−1(x)|

)K} varies

with the family (ωk)
K
k=1, ie T al+1

A := T al+1

A ((ωk)
K
k=1). Optimizing over the ωk is equivalent

to search for the better tangent space while optimizing on the αk is equivalent to find the better
projection on the tangent space defined by the ωk.

Note that making the derivative according to the αk ease the problem by removing the non-
linearity in σl. When reversing the roles of the αk and of the ωk, ie fixing the αk and compute
vl+1(x, (ωk)

K
k=1), it makes the problem harder to solve because the non linearity in σl remains in

the optimisation problem.

Taking an other point of view, you can consider the second order of al+1(x) in (αk,ωk)
K
k=1 in 0 to

recover the same expression. Indeed taking the Taylor expansion in (αk,ωk)
K
k=1

al+1(x) = al+1(x)|(αk,ωk)Kk=1=0 +

K∑
k=1

ωkbl−1(x)
Tαk + o

(
(||(αk)

K
k=1||+ ||(ωk)

K
k=1||)2

)
[TODO] A faire
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Figure 7: changing the tangent space with different values for the family (ωk)
K
k=1.

B PROOFS

B.1 PROPOSITION 3.1

Define δWl
+ the generalized inverse of δWl then :

δW ∗
l =

1

n
Vgoal

lBT
l−1

( 1
n
Bl−1B

T
l−1

)+
and V l

0 =
1

n
Vgoal

lBT
l−1

( 1
n
Bl−1B

T
l−1

)+
Bl−1

Proof
Consider the function g(δWl) = ||Vgoal

l − δWlBl−1||2Tr, then

g(δWl +H) = ||Vgoal
l − δWlBl−1 −HBl−1||2Tr

= g(δWl)− 2⟨Vgoal
l − δWlBl−1,HBl−1⟩Tr + o(||H||)

= g(δWl)− 2Tr
((
Vgoal

l − δWlBl−1

)T
HBl−1

)
+ o(||H||)

= g(δWl)− 2Tr
(
Bl−1

(
Vgoal

l − δWlBl−1

)T
H

)
+ o(||H||)

= g(δWl)− 2⟨
(
Vgoal

l − δWlBl−1

)
BT

l−1,H⟩Tr + o(||H||)

By identification∇δWl
g(δWl) = 2

(
Vgoal

l − δWlBl−1

)
BT

l−1

∇δWl
g(δWl) = 0 =⇒ Vgoal

lBT
l−1 = δWlBl−1B

T
l−1

Using the definition of the generalized inverse of M+:

δW ∗
l =

1

n
Vgoal

lBT
l−1

( 1
n
Bl−1B

T
l−1

)+
B.2 PROPOSITION 3.2

If S is positive definite, consider the Cholesky decomposition S = S1/2S1/2T , note R the rank
of the matrix N and the SVD of the matrix S1/2−1

N =
∑R

k=1 λkukv
T
k with 0 ≤ λ1 ≤ ... ≤

λR then the solution of (4) is written as K̂∗ = R and (α̂∗
k, ω̂

∗
k) = (S1/2T

−1
uk,vk) for k =

1, ..., Rl+1. Moreover for all K ≤ R and θ̂K,∗
l↔l+1 := (α̂∗

k, ω̂
∗
k)

K
k=1 and for γ positive, θ̂K,∗

l↔l+1(γ) :=

13
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(γ̂α∗
k, ω̂

∗
k)

K
k=1, we have that:

1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1)||2Tr =

1

n
||Vgoal

l+1
proj
||2Tr −

K∑
k=1

λ2
k (10)

1

n

n∑
i=1

L(fθ⊕θ̂K,∗
l↔l+1(γ)

(xi),yi) =
1

n

n∑
i=1

L(fθ(xi),yi)− σ′
l(0)

γ

η

K∑
k=1

λ2
k + o(γ) (11)

Proof

argmin
θ̂K
l↔l+1

{ 1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1)||2Tr

}
= argmin

θ̂K
l↔l+1

{
− 2

n

〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
〉
Tr

+
1

n
||V l+1(θ̂Kl↔l+1)||2Tr

}
= argmin

θ̂K
l↔l+1

1

n
g(θ̂Kl↔l+1)

We note

1

n
g(θ̂Kl↔l+1) = −

2

n

n∑
i

∑
k

vgoal
l+1
proj

(xi)
T
(
αT

k bl−1(xi)
)
ωk

+
1

n

K∑
k,j

n∑
i

(
αT

k bl−1(xi)
)
ωT

k ωj

(
αT

j bl−1(xi)
)

= − 2

n

K∑
k

αT
k

( 1

n

n∑
i

bl−1(xi)vgoal
l+1
proj

(xi)
T
)
ωk

+
1

n

K∑
k,j

ωT
k ωjα

T
k

( 1

n

n∑
i

bl−1(xi)bl−1(xi)
T
)
αj

= −2
K∑
k

αT
kNωk +

K∑
k,j

ωT
k ωjα

T
kSαj

with N =
1

n

n∑
i

bl−1(xi)vgoal
l+1
proj

(xi)
T =

1

n
Bl−1

(
Vgoal

l+1
proj

)T
,

S =
1

n

n∑
i

bl−1(xi)bl−1(xi)
T =

1

n
Bl−1B

T
l−1
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Suppose S is semi definite positive and note S = S1/2S1/2T , γk = S1/2Tαk and S1/2−1

N =∑R
r=1 λrvre

T
r the SVD of matrix S1/2−1

N .

−
K∑

k=1

αT
kNωk = −

∑
k

γT
k S

1/2−1

Nωk

= −
∑
k

R∑
r=1

γT
k λrvre

T
r ωk

= −Tr
(∑

k

∑
r

λr

(
(γT

k vr)e
T
r

)
ωk

)
= −Tr

(∑
k

∑
r

λrωkγ
T
k vre

T
r

)
= −Tr

(∑
k

ωkγ
T
k

∑
r

λrvre
T
r

)
= −

〈∑
k

γkω
T
k ,

∑
r

λrvre
T
r

〉
Tr

with ⟨A,B⟩Tr = Trace(ATB)

K∑
k,j

ωT
k ωjα

T
k Sαj =

∑
k,j

(
ωT

k ωj

)(
γT
j γk

)
= Tr

(∑
k,j

(
(ωT

k ωj)γ
T
j

)
γk

))
= Tr(

(∑
k,j

γkω
T
k ωjγ

T
j

)
= ||

∑
k

ωkγ
T
k ||2Tr avec ||A||Tr =

√
Trace(ATA)

= ||
∑
k

γkω
T
k ||Tr

Then we have :

argmin
K,θ̂l↔l+1

1

n
g(α,ω) = argmin

K,α=S−1/2Tγ,ω

||S−1/2N −
K∑

k=1

γkω
T
k ||2Tr

Then the solution is giving by the paper Eckart & Young (1936) chosing K = rank(S−1/2N) and∑K
k=1 γkω

T
k =

∑K
r=1 λrvre

T
r . Choosing K = R is the best option. We now consider the matrix

M .The minimization gives also the following properties at the optimum :

for k ̸= j ⟨γkω
T
k ,γjω

T
j ⟩Tr = 0

||S−1/2N −
K∑

k=1

γkω
T
k ||2Tr =

R∑
r=K+1

λ2
r

= ||S−1/2N ||2Tr − ||
K∑

k=1

γkω
T
k ||2Tr
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Furthermore :

1

n
||Vgoal

l+1
proj
− V (θ̂K,∗

l↔l+1)||
2
Tr =

1

n
||Vgoal

l+1
proj
||2Tr + ||

(
S1/2

)−1
N −

∑
k

γkω
T
k ||2 − ||

(
S1/2

)−1
N ||2Tr

=

R∑
r=K+1

λ2
r +

1

n
||Vgoal

l+1
proj
||2Tr − ||

(
S1/2

)−1
N ||2Tr

= −
K∑
r=1

λ2
r +

1

n
||Vgoal

l+1
proj
||2Tr

Before looking at the impact on the Loss let’s prove the corollary 3.2. We are looking for the matrix
δWl minimizing the last equality. Consider the span of matrix S = {δWlBl|δWlmatrix} and P the
matrix projection on span S :

argmin
D∈S, θ

||Vgoal
l+1 −D − V l+1(θ)||2Tr = argmin

D∈S
||PVgoal

l+1 −D||2Tr

+ argmin
θ
||(Id− P )(Vgoal

l+1 − V (θ)||2Tr

Then δW ∗
l+1Bl at proposition 3.1 minimize the first norm and is the orthogonal projection of Vgoal

l+1

on span S.

(Id− P )Vgoal
l+1 = Vgoal

l+1 − δW ∗
l+1Bl

We also have that : 〈
V l+1(δW ∗

l+1),V
l+1(θ̂K,∗

l↔l+1)
〉
Tr

= 0

And by definition of the orthogonal projection on linear span:〈
V l+1(θK,∗

l↔l+1),Vgoal
l+1

〉
Tr

=
〈
V l+1(θK,∗

l↔l+1),Vgoal
l+1
proj

(δW ∗
l+1)

〉
Tr

We note Vgoal
l+1
proj

(δW ∗
l+1) := Vgoal

l+1
proj

The impact on the global loss is :

1

n

n∑
i=1

L(fθ(γ∗
0 δW

∗
l+1,l+1)⊕(α̂∗

k,ŵ
∗
k)

R
k=1(γ)

(xi),yi)

=
1

n

n∑
i=1

(
L(fθ(xi),yi) + σ′

l(0)
〈
∇al+1(xi)L(fθ(xi),yi), v

l+1(xi, (θ
K,∗
l↔l+1(γ), γ0δW

∗
l+1)

〉)
+ o(max(γ, γ0))

‘ =
1

n

n∑
i=1

L(fθ(xi),yi)−
γ

η

1

n
σ′
l(0)

〈
V l+1(θK,∗

l↔l+1),Vgoal
l+1

〉
Tr
− 1

η

1

n
σ′
l(0)

〈
V l+1(δγ0W

∗
l+1),Vgoal

l+1
〉
Tr

+ o(max(γ, γ0))

=
1

n

n∑
i=1

L(fθ(xi),yi)−
γ

η

1

n
σ′
l(0)

〈
V l+1(θK,∗

l↔l+1),Vgoal
l+1
proj

〉
Tr
− γ0

η

1

n
σ′
l(0)

〈
V l+1(δW ∗

l+1),Vgoal
l+1

〉
Tr

+ o(max(γ, γ0))
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We also have the following property :

argmin
θ̂K
l↔l+1

{ 1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1)||2Tr

}
= argmin

H≥0
argmin

θ̂K
l↔l+1,||V l+1(θ̂K

l↔l+1)||Tr=H

{ 1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1, δW

∗
l+1)||2Tr

}
= argmin

H≥0
argmin

θ̂K
l↔l+1,||V l+1(θ̂K

l↔l+1)||Tr=H

{
− 2

n

〈
Vgoal

l+1
proj

(,V l+1(θ̂Kl↔l+1)
〉
Tr

+
1

n
||VK(θ̂Kl↔l+1)||2Tr

}
= argmin

H≥0
argmin

θ̂K
l↔l+1,||V l+1(θ̂K

l↔l+1)||Tr=H

{
− 2

n

〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
〉
Tr

+
1

n
H2

}
= argmin

H≥0
argmin

θ̂K
l↔l+1,||V l+1(θ̂K

l↔l+1)
∗||Tr=1

{
−H

〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
〉
Tr

+
1

2
H2

}

With V l+1(θ̂Kl↔l+1)
∗ the solution of the second argmin (ie for H = 1).

Then the norm minimizing the first argmin is given by :

H∗ =
〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
∗
〉
Tr

=
〈
Vgoal

l+1,V l+1(θ̂Kl↔l+1)
∗
〉
Tr
− 0

Furthermore

min
θ̂K
l↔l+1

{ 1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1)||2Tr

}
= −

K∑
r=1

λ2
r +

1

n
||Vgoal

l+1
proj
||2Tr

min
θ̂K
l↔l+1

{ 1

n
||Vgoal

l+1
proj
− V l+1(θ̂Kl↔l+1)||2Tr

}
= − 1

n
H∗2

+
1

n
||Vgoal

l+1
proj
||Tr

=⇒ H∗ =
〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
∗
〉
Tr

=

√√√√ K∑
r=1

λ2
r ×
√
n

V l+1(θ̂K,∗
l↔l+1) = H∗V l+1(θ̂Kl↔l+1)

∗〈
V l+1(θK,∗

l↔l+1),Vgoal
l+1
proj

〉
Tr

= H∗ ×
〈
Vgoal

l+1
proj

,V l+1(θ̂Kl↔l+1)
∗
〉
Tr

= H∗2

where the last equality is given by the optimisation of ||S−1/2N −
∑K

k=1 ukω
T
k ||2Tr. So minimizing

the scalar product −
〈
Vgoal

l+1
proj

(δW ∗
l+1),V

l+1(θ̂Kl↔l+1)
∗
〉
Tr

setting the norm of V l+1(θ̂Kl↔l+1) is

equivalent to minimizing the norm ||Vgoal
l+1
proj

(δW ∗
l+1)− V l+1(θ̂Kl↔l+1)||2Tr.

1

n

n∑
i=1

L(fθ(γ∗
0W

∗
l+1)⊕(α̂l+1,∗

k ,ω̂∗
k)

R
k=1(γ)

(xi),yi)

=
1

n

n∑
i=1

L(fθ(xi),yi)−
γ

η
σ′
l(0)

K∑
r=1

λ2
k −

γ0
η

1

n
σ′
l(0)⟨V l+1(W ∗

l+1),Vgoal
l+1⟩Tr + o(max(γ, γ0))

B.3 CHOLESKY DECOMPOSITION FOR S POSITIVE SEMI-DEFINITE

When matrix S is not positive definite, the following trick can be apply. Consider S = UΣV T the
svd of S. As S is symmetric U = V T . Perform the QR-decomposition of matrix

√
ΣUT = QR,

Q an orthogonal matrix and R an upper triangular matrix. Defining P+ the pseudo inverse of P ,
one can remark that RTR = U

√
Σ(Q−1)TQ−1U

√
ΣUT . As Q is orthogonal RTR = UΣUT =

UΣV T = S.
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B.4 PROPOSITION 3.3

Suppose S is semi definite, we note S = S1/2S1/2T . Solving (7) is equivalent to taking ωk =
NTαk and find the K first eigenvectors ωk associated to the K largest eigenvalues λ of the generalized
eigenvalue problem :

NNTαk = λSαk

Proof The LOBPCG problem is equivalent to maximise the generalized Rayleigh quotient which is :

α∗ = maxx
αTNNTα

αTSα

p∗ = maxp=S1/2Tα

pTS1/2−1

NNTS1/2−1T

p

pTp

p∗ = max||p||=1||NTS1/2−1T

p||

α∗ = S1/2−1T

p∗

And considering the SVD of S1/2−1

N =
∑R

r=1 λrurv
T
r , then S1/2−1

NNTS1/2−1T

=∑R
r=1 λ

2
ruru

T
r because j ̸= i =⇒ uT

i uj = 0 and vT
i vj = 0. So maximise the first formula is

equivalent to p∗
k = uk, then αk = S1/2−1T

uk. And NTαk = NTS1/2−1T

uk = λkvk

We prove second corollary 3.2 by induction. For m = m′ = 1 :

al+1(x)
t+1 = al+1(x)

t + V (θ̂1,∗l↔l+1,x)γ + o(γ)

vgoal
l+1,t+1(x) = vgoal

l+1,t(x) +∇al+1(x)L(fθ(x),y)
Tv(θ̂1,∗l↔l+1,x)γ + o(γ)

Adding the second neuron we obtain the minimization problem:

argmin
α2,ω2

||Vgoal
l+1,t − V l+1(α2,ω2)||Tr + o(1)

B.5 SECTION Theory behind Greedy Growth WITH PROOFS

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal state.
We derive the following series of propositions in this regard. Since in this work we add neurons layer
per layer independently, we study here the case of a single hidden layer network, to spot potential
layer growth issues. For the sake of simplicity, we consider the task of least square regression towards
an explicit continuous target f∗, defined on a compact set. That is, we aim at minimizing the loss:

inf
f

∑
x∈D
∥f(x)− f∗(x)∥2

where f(x) is the output of the neural network and D is the training set.
Proposition B.1 (Greedy completion of an existing network). If f is not f∗ yet, there exists a set of
neurons to add to the hidden layer such that the new function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well minimized.

Proof. The classic universal approximation theorem about neural networks with one hidden layer
Pinkus (1999) states that for any continuous function g defined on a compact set ω, for any desired
precision γ, and for any activation function σ provided it is not a polynomial, then there exists a
neural network ĝ with one hidden layer (possibly quite large when γ is small) and with this activation
function σ, such that

∀x, ∥g(x)− g∗(x)∥ ⩽ γ

We apply this theorem to the case where g∗ = f∗ − f , which is continuous as f∗ is continuous, and
f is a shallow neural network and as such is a composition of linear functions and of the function σ,
that we will suppose to be continuous for the sake of simplicity. We will suppose that f is real-valued
for the sake of simplicity as well, but the result is trivially extendable to vector-valued functions (just
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concatenate the networks obtained for each output independently). We choose γ = 1
10∥f

∗ − f∥L2,
where ⟨a| b⟩L2 = 1

|ω|
∫
x∈ω

a(x) b(x) dx. This way we obtain a one-hidden-layer neural network g

with activation function σ such that:

∀x ∈ ω, −γ ⩽ g(x)− g∗(x) ⩽ γ

∀x ∈ ω, g(x) = f∗(x)− f(x) + a(x)

with ∀x ∈ ω, |a(x)| ⩽ γ.

Then:
∀x ∈ ω, f∗(x)− (f(x) + g(x)) = −a(x)

∀x ∈ ω, (f∗(x)− h(x))
2
= a2(x) (12)

with h being the function corresponding to a neural network consisting in concatenating the hidden
layer neurons of f and g, and consequently summing their outputs.

∥f∗ − h∥2L2 = ∥a∥2L2

∥f∗ − h∥2L2 ⩽ γ2 =
1

100
∥f∗ − f∥2L2

and consequently the loss is reduced indeed (by a factor of 100 in this construction).

The same holds in expectation or sum over a training set, by choosing γ =
1
10

√
1

|D|
∑

x∈D ∥f(x)− f∗(x)∥2, as Equation (12) then yields:

∑
x∈D

(f∗(x)− h(x))
2
=

∑
x∈D

a2(x) ⩽
1

100

∑
x∈D

(f∗(x)− f(x))
2

which proves the proposition as stated.

For more general losses, one can consider order-1 (linear) developpment of the loss and ask for a
network g that is close to (the opposite of) the gradient of the loss.

Proof of the additional remark. The proof in Pinkus (1999) relies on the existence of real values cn
such that the n-th order derivatives σ(n)(cn) are not 0. Then, by considering appropriate values
arbitrarily close to cn, one can approximate the n-th derivative of σ at cn and consequently the
polynomial cn of order n. This standard proof then concludes by density of polynomials in continuous
functions.

Provided the activation function σ is not a polynomial, these values cn can actually be chosen
arbitrarily, in particular arbitrarily close to 0. This corresponds to choosing neuron input weights
arbitrarily close to 0.

Proposition B.2 (Greedy completion by one single neuron). If f is not f∗ yet, there exists a neuron
to add to the hidden layer such that the new function f ′ will have a lower loss than f .

Proof. From the previous proposition, there exists a finite set of neurons to add such that the loss
will be decreased. In this particular setting of L2 regression, or for more general losses if considering
small function moves, this means that the function represented by this set of neurons has a strictly
negative component over the gradient g of the loss (g = 2(f∗ − f) in the case of the L2 regression).
That is, denoting by aiσ(Wi · x) these N neurons:

〈 N∑
i=1

aiσ(wi · x)
∣∣ g〉

L2
= K < 0

i.e.
N∑
i=1

⟨aiσ(wi · x)| g⟩L2 = K < 0
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Now, by contradiction, if there existed no neuron i among these ones such that

⟨aiσ(wi · x) | g⟩L2 ⩽
1

N
K

then we would have:
∀i ∈ [1, N ], ⟨aiσ(wi · x)| g⟩L2 >

1

N
K

N∑
i=1

⟨aiσ(wi · x)| g⟩L2 > K

hence a contradiction. Then necessarily at least one of the N neurons satisfies

⟨aiσ(wi · x)| g⟩L2 ⩽
1

N
K < 0

and thus decreases the loss when added to the hidden layer of the neural network representing f .
Moreover this decrease is at least 1

N of the loss decrease resulting from the addition of all neurons.

As a consequence, our greedy approach will not get stuck in a situation where one would need to add
many neurons simultaneously to decrease the loss: it is always feasible by a single neuron. On can
express a lower bound on how much the loss has improved (for the best such neuron), but it not a
very good one without further assumptions on f .
Proposition B.3 (Greedy completion by one infinitesimal neuron). The neuron in the previous
proposition can be chosen to have arbitrarily small input weights.

Proof. This is straightforward, as, following a previous remark, the neurons found to collectively
decrease the loss can be supposed to all have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function f and
consequently manipulates infinitesimal quantities. Though we perform line search in a second
step and consequently add non-infinitesimal neurons, our first optimization problem relies on the
linearization of the activation function by requiring the added neuron to have infinitely small input
weights, without which it would be much harder to solve. This proposition confirms that such neuron
does exist indeed.
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C ADDITIONAL EXPERIMENTAL RESULTS

All the experiements are performed 20 times on MNIST Dataset and the models are trained with
Adam(lr = 0.0001, µ = 0, batchsize = 100) with 7 CPU. For the classic model, neurons are
initialized with Kaiming Normal. For our approach, we always start with a model of size [1, 1]
initialized with Kaiming Normal and we expand its architecture using 3.2 every 0.05 seconds.
The batch-size, nl

mb, for estimating θ(γ)l↔l+1(γ) and δW ∗
l+1 is nl

mb = 100 at first step and
for every layer. After applying our method on every layers, nmb is updated as nl

mb ←− nl
mb ×√

max(neuronsl−1, neuronsl+1), where neuronsl indicates the amount of neurons at layer l . In
the following section, we modify the value for the training time between architecture growth 8 and
the architecture growth 10. The y − axis is accuracy on test set.

C.1 CHANGING TRAINING TIME BETWEEN EACH ARCHITECTURE EXPANSION STEP

In this part we modify the training time between each architecture growth. We apply 8 times our
method on each hidden layer, the final architecture is [222, 71]
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Figure 8: The different shades of red correspond to different training time between each architectures
growth in seconds.

C.2 SMALL ARCHITECTURE

Same plot as 6 but with others architecture.
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Figure 9: Right interpolation on interval of size 0.01. Middle : accuracy as a function of mini-batches.
Right : accuracy plotted as a function of the mean of time in each category : classic training and our
approach.

C.3 EIGENVALUES

In this section we apply our method 15 times on each layer. After applying 8 times our method, the
accuracy of the system does not increase significantly. We have that Ex,y∼D[z

Tvgoall(x)] for every
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vector z, as explained in part 5. Looking at the eigenvalues for the first and second hidden layers and
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Figure 10: Comparison between the classic training of architecture [1000, 1000] and our approach
of architecture [929, 141]. All models are trained for 20 seconds we plot here mean and standard
deviation for accuracy on test set. For our method we trained the model for 0.05 seconds between
each architecture growth. Right interpolation on interval of size 0.01. Middle : accuracy as a function
of epochs. Right : accuracy plotted as a function of the mean of time in each category : classic
training and our approach.

estimate decrease for the loss, ie
∑

k λ
2
k :

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
number of architecture growth

0

5000

10000

15000

20000

25000

30000

35000

m
ea

n,
 la

ye
r 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
number of architecture growth

0.0

0.1

0.2

0.3

0.4

0.5

m
ea

n,
 la

ye
r_

2 

Figure 11: mean and standard deviation for 1
k

∑
k λ

2
k for first and second hidden layers as a function

of the number of architecture growths

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
number of architecture growth

0

50

100

150

200

250

300

m
ax

, l
ay

er
 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
number of architecture growth

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

, l
ay

er
_2

 

Figure 12: mean and standard deviation for max(λk) for first and second hidden layers as a function
of the number of architecture growths
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C.4 RANDOM VS OPTIMIZATION

When performing the quadratic optimization (5), we obtain the optimal direction for (α̂∗
k, ω̂

∗
k)

R
k=1.

It is also possible to generate randomly the new neurons and compute the amplitude factors. This
second option have the benefit of being less time consuming, but it would project the desired direction
on those random vectors and would affect the accuracy score compared to optimal solution defined in
3.1.
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Figure 13: Experiment performed 20 times on the MNIST dataset: a starting model in black [1, 1] is
initialized according to normal Kaiming, then is duplicated to give the red and the green model. The
structure of the red model is modified by our method to reach the structure [110, 51] while the green
model is extended with random neurons. Then all models are trained for 5 seconds. The white space
for the red model corresponds to the quadratic optimisation and the computation of the amplitude
factor while for the green model it corresponds only to the computation of the amplitude factor.
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