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(a) Qualitative comparison between our GEODIFFUSION and the state- (b) Curve of mAP with respect to
of-the-art layout-to-image (L2I) generation method (Jahn et al., 2021). See the portion (%) of real data usage
more applications (e.g., 3D geometric controls) in Appendix D-E. (c.f. Tab. 8).

Figure 1: (a) GEODIFFUSION can generate object detection data by encoding different geometric
conditions (e.g., bounding boxes (bottom left) and camera views (bottom middle & right)) with a
unified architecture. (b) For the first time, we demonstrate that L2I-generated images can benefit
the training of object detectors (Ren et al., 2015), especially under annotation-scarce circumstances.

ABSTRACT

Diffusion models have attracted significant attention due to the remarkable ability
to create content and generate data for tasks like image classification. However,
the usage of diffusion models to generate the high-quality object detection data
remains an underexplored area, where not only image-level perceptual quality but
also geometric conditions such as bounding boxes and camera views are essential.
Previous studies have utilized either copy-paste synthesis or layout-to-image (L2I)
generation with specifically designed modules to encode the semantic layouts. In
this paper, we propose the GEODIFFUSION, a simple framework that can flexibly
translate various geometric conditions into text prompts and empower pre-trained
text-to-image (T2I) diffusion models for high-quality detection data generation.
Unlike previous L2I methods, our GEODIFFUSION is able to encode not only the
bounding boxes but also extra geometric conditions such as camera views in self-
driving scenes. Extensive experiments demonstrate GEODIFFUSION outperforms
previous L2I methods while maintaining 4 X training time faster. To the best of
our knowledge, this is the first work to adopt diffusion models for layout-to-image
generation with geometric conditions and demonstrate that L2I-generated images
can be beneficial for improving the performance of object detectors.

1 INTRODUCTION

The cost of real data collection and annotation has been a longstanding problem in the field of deep
learning. As a more cost-effective alternative, data generation techniques have been investigated for
potential performance improvement (Perez & Wang, 2017; Bowles et al., 2018). However, effective-
ness of such techniques has not met the expectation, mainly limited by the quality of generated data.
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Recently, diffusion models (DMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) have emerged as one
of the most popular generative models, owing to the remarkable ability to create content. Moreover,
as demonstrated by He ef al. (He et al., 2022), DMs can generate high-quality images to improve
the performance of classification models. However, the usage of DMs to generate data for complex
perception tasks (e.g., object detection (Caesar et al., 2020; Han et al., 2021; Li et al., 2022)) has
been rarely explored, which requires to consider about not only image-level perceptual quality but
also geometric controls (e.g., bounding boxes and camera views). Thus, there is a need to investigate
how to effectively utilize DMs for generating high-quality data for such perception tasks.

Existing works primarily utilize two manners to employ generative models for controllable detection
data generation: 1) copy-paste synthesis (Dvornik et al., 2018; Zhao et al., 2022) and 2) layout-to-
image (L2I) generation (Sun & Wu, 2019; Zhao et al., 2019). Copy-paste synthesis involves by
generating the foreground objects and placing them on a pre-existing background image. Although
proven beneficial for detectors, it only combines different parts of images instead of generating a
complete scene, leading to less realistic images. L2I generation, on the other hand, adopts classical
generative models (VAE (Kingma & Welling, 2013) and GAN (Goodfellow et al., 2014)), to directly
generate realistic detection data conditional on semantic layouts. However, L2I generation relies on
specifically designed modules (e.g., Rol Align (Zhao et al., 2019; He et al., 2021) and layout atten-
tion (Li et al., 2023b; Cheng et al., 2023)) to encode layouts, limiting its flexibility to incorporate
extra geometric conditions such as camera views. Therefore, the question arises: Can we utilize a
pre-trained powerful text-to-image (T21) diffusion model to encode various geometric conditions for
high-quality detection data generation?

Inspired by the recent advancement of language models (LMs) (Chen et al., 2023b; Gou et al., 2023),
we propose GEODIFFUSION, a simple framework to translate different geometric conditions as a
“foreign language” via text prompts to empower pre-trained text-to-image diffusion models (Rom-
bach et al., 2022) for high-quality object detection data generation. Different from the previous L2I
methods which can only encode bounding boxes, our work can encode various additional geometric
conditions flexibly benefiting from translating conditions into text prompts (e.g., GEODIFFUSION is
able to control image generation conditioning on camera views in self-driving scenes). Considering
the extreme imbalance among foreground and background regions, we further propose a foreground
re-weighting mechanism which adaptively assigns higher loss weights to foreground regions while
considering the area difference among foreground objects at the same time. Despite its simplicity,
GEODIFFUSION generates highly realistic images consistent with geometric layouts, significantly
surpassing previous L2I methods (+21.85 FID and +27.1 mAP compared with LostGAN (Sun &
Wu, 2019) and +12.27 FID and +11.9 mAP compared with the ControlNet (Zhang et al., 2023)).
For the first time, we demonstrate generated images of L2I models can be beneficial for training ob-
ject detectors, particularly in annotation-scarce scenarios. Moreover, GEODIFFUSION can generate
novel images for simulation (Fig. 4) and support complicated image inpainting requests (Fig. 5).

The main contributions of this work contain three parts:

1. We propose GEODIFFUSION, an embarrassingly simple framework to integrate geometric
controls into pre-trained diffusion models for detection data generation via text prompts.

2. With extensive experiments, we demonstrate that GEODIFFUSION outperforms previous
L2I methods by a significant margin while maintaining highly efficient (approximately 4 x
training acceleration).

3. For the first time, we demonstrate that the generated images of layout-to-image models can
be beneficial to training object detectors, especially for the annotation-scarce circumstances
in object detection datasets.

2 RELATED WORK

Diffusion models. Recent progress in generative models has witnessed the success of diffusion
models (Ho et al., 2020; Song et al., 2020), which generates images through a progressive denoising
diffusion procedure starting from a normal distributed random sample. These models have shown
exceptional capabilities in image generation and potential applications, including text-to-image syn-
thesis (Nichol et al., 2021; Ramesh et al., 2022), image-to-image translation (Saharia et al., 2022a;b),
inpainting (Wang et al., 2022), and text-guided image editing (Nichol et al., 2021; Hertz et al., 2022).
Given the impressive success, employing diffusion models to generate perception-centric training
data holds significant promise for exploiting the boundaries of perceptual model capabilities.
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Table 1: Key differences between our GEODIFFUSION and existing works. GEODIFFUSION can
generate highly realistic detection data with flexible fine-grained text-prompted geometric controls.

Paradigm | Realistic Layout Control Extra Geo. Control
Copy-paste (Zhao et al., 2022) X v X
Layout-to-image (Li et al., 2023b) v v X
Perception-based (Wu et al., 2023) v X X
GeoDiffusion |V v v

Copy-paste synthesis. Considering that object detection models require a large amount of data,
the replication of image samples, also known as copy-paste, has emerged as a straightforward way to
improve data efficiency of object detection models. Nikita ez al. (Dvornik et al., 2018) first introduce
Copy-Paste as an effective augmentation for detectors. Simple Copy-Paste (Ghiasi et al., 2021) uses
a simple random placement strategy and yields solid improvements. Recently, (Ge et al., 2022; Zhao
et al., 2022) perform copy-paste synthesis by firstly generating foreground objects which are copied
and pasted on a background image. Although beneficial for detectors, the synthesized images are:
a) not realistic; b) no controllable on fine-grained geometric conditions (e.g., camera views). Thus,
we focus on integrating various geometric controls into pre-trained diffusion models.

Layout-to-image generation aims at taking a graphical input of a high-level layout and generating
a corresponding photorealistic image. To address, LAMA (Li et al., 2021) designs a locality-aware
mask adaption module to adapt the overlapped object masks during generation, while Taming (Jahn
et al., 2021) demonstrates a conceptually simple model can outperform previous highly specialized
systems when trained in the latent space. Recently, GLIGEN (Li et al., 2023b) introduces extra gated
self-attention layers into pre-trained diffusion models for layout control, and LayoutDiffuse (Cheng
et al., 2023) utilizes novel layout attention modules specifically designed for bounding boxes. The
most similar with ours is ReCo (Yang et al., 2023), while GEODIFFUSION further 1) supports extra
geometric controls purely with text prompts, 2) proposes the foreground prior re-weighting for better
foreground object modeling and 3) demonstrates L2I-generated images can benefit object detectors.

Perception-based generation. Instead of conducting conditional generation given a specific input
layout, perception-based generation aims at generating corresponding annotations simultaneously
during the original unconditional generation procedure by adopting a perception head upon the pre-
trained diffusion models. DatasetDM (Wu et al., 2023) learns a Mask2Former-style P-decoder upon
a fixed Stable Diffusion model, while Li et al. (Li et al., 2023c) further propose a fusion module to
support open-vocabulary segmentation. Although effective, perception-based methods 1) can hardly
outperform directly combining pre-trained diffusion models with specialized open-world perception
models (e.g., SAM (Kirillov et al., 2023)), 2) solely rely on pre-trained diffusion models for image
generation and cannot generalize to other domains (e.g., driving scenes) and 3) only support textual-
conditional generation, neither the fine-grained geometric controls (e.g., bounding boxes and camera
views) nor sophisticated image editing requests (e.g., inpainting).

3 METHOD

In this section, we first introduce the basic formulation of our generalized layout-to-image (GL2I)
generation problem with geometric conditions and diffusion models (DMs) (Ho et al., 2020) in
Sec. 3.1.1 and 3.1.2 separately. Then, we discuss how to flexibly encode the geometric conditions
via text prompts to utilize pre-trained text-to-image (T2I) diffusion models (Rombach et al., 2022)
and build our GEODIFFUSION in Sec. 3.2 and 3.3.

3.1 PRELIMINARY
3.1.1 GENERALIZED LAYOUT-TO-IMAGE GENERATION

Let L = (v, {(c;,b;)}¥.) be a geometric layout with N bounding boxes, where ¢; € C denotes the
semantic class, and b; = [x;.1, Yi,1, %i.2, ¥i,2] represents locations of the bounding box (i.e., top-left
and bottm-right corners). v € V can be any extra geometric conditions associated with the layout.
Without loss of generality, we take camera views as an example in this paper. Thus, the generalized
layout-to-image generation aims at learning a G(-, -) to generate images I € RH*W>*3 conditional
on given geometric layouts L as I = G(L, z), where z ~ N(0, 1) is a random Gaussian noise.
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Figure 2: Model architecture of GEODIFFUSION. (a) GEODIFFUSION encodes various geometric
conditions via text prompts to empower text-to-image (T2I) diffusion models for generalized layout-
to-image generation with various geometric conditions, even supporting the 3D geometric conditions
as shown in Fig. 11. (b) GEODIFFUSION can generate highly realistic and diverse detection data to
benefit the training of object detectors.

3.1.2 CONDITIONAL DIFFUSION MODELS

Different from typical generative models like GAN (Goodfellow et al., 2014) and VAE (Kingma &
Welling, 2013), diffusion models (Ho et al., 2020) learn data underlying distribution by conducting a
T-step denoising process from normally distributed random variables, which can also be considered
as learning an inverse process of a fixed Markov Chain of length 7". Given a noisy input x; at the
time step ¢ € {1,..., T}, the model € (x4, t) is trained to recover its clean version x by predicting
the random noise added at time step ¢, and the objective function can be formulated as,

Lo =Eq; cono1).4ll€ — ealze, )] (1

Latent diffusion models (LDM) (Rombach et al., 2022) instead perform the diffusion process in the
latent space of a pre-trained Vector Quantized Variational AutoEncoder (VQ-VAE) (Van Den Oord
et al., 2017). The input image z is first encoded into the latent space of VQ-VAE encoder as z =
E(x) e RH "xW'D' “and then taken as clean samples in Eqn. 1. To facilitate conditional generation,
LDM further introduces a conditional encoder 74(-), and the objective can be formulated as,

Loy =EBeayemno1),lle — €o(ze,t,70(m) |17, )
where y in the introduced condition (e.g., text in LDM (Rombach et al., 2022)).

3.2 GEOMETRIC CONDITIONS AS A FOREIGN LANGUAGE

In this section, we explore encoding various geometric conditions via text prompts to utilize the
pre-trained text-to-image diffusion models for better GL2I generation. As discussed in Sec. 3.1.1, a
geometric layout L consists of three basic components, including the locations {b; } and the semantic
classes {c;} of bounding boxes and the extra geometric conditions v (e.g., camera views).

Location “Translation”. While classes {c; } and conditions v can be naturally encoded by replac-
ing with the corresponding textual explanations (see Sec. 4.1 for details), locations {b;} can not
since the coordinates are continuous. Inspired by (Chen et al., 2021b), we discretize the continuous
coordinates by dividing the image into a grid of location bins. Each location bin corresponds to a
unique location token which will be inserted into the text encoder vocabulary of diffusion models.
Therefore, each corner can be represented by the location token corresponding to the location bin
it belongs to, and the “translation” procedure from the box locations to plain text is accomplished.
See Fig. 2 for an illustration. Specifically, given a grid of size (Hp;y, Whin ), the corner (zq,yo) is
represented by the o (zg, yo) location token as,

o(z0,Y0) = T [Yvin * Whain + Tpinl, 3)
Toin = 2o/ W * Whin], Ybin = Yo/ H * Hpin |, €]

where T = {< L; >}/7t»*Wrin is the set of location tokens, and 7 is the index operation. Thus, a
bounding box (¢;, b;) is encoded into a “pharse” with three tokens as (¢;, (4.1, ¥i,1), 0(Zi2, ¥i2))-
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(a) Constant re-weighting. (b) Area re-weighting.
Figure 3: Foreground prior re-weighting. (a) Constant re-weighting assigns equal weight to all
the bounding boxes, while (b) area re-weighting adaptively assigns higher weights to smaller boxes.

Prompt construction. To generate a text prompt, we can serialize multiple box “phrases” into a
single sequence. In line with (Chen et al., 2021b), here we utilize a random ordering strategy by ran-
domly shuffling the box sequence each time a layout is presented to the model. Finally, we construct
the text prompts with the template, “An image of {view} camera with {boxes}”. As
demonstrated in Tab. 2, this seemingly simple approach can effectively empower the T2I diffusion
models for high-fidelity GL2I generation, and even 3D geometric controls as shown in Fig. 11.

3.3 FOREGROUND PRIOR RE-WEIGHTING

The objective function presented in Eqn. 2 is designed under the assumption of a uniform prior
distribution across spatial coordinates. However, due to the extreme imbalance between foreground
and background, we further introduce an adaptive re-weighting mask, denoted by m € R W
to adjust the prior. This enables the model to focus more thoroughly on foreground generation and
better address the challenges posed by the foreground-background imbalance.

Constant re-weighting. To distinguish the foreground from background regions, we employ a re-
weighting strategy whereby foreground regions are assigned a weight w(w > 1), greater than that
assigned to the background regions.

Area re-weighting. The constant re-weighting strategy assigns equal weight to all foreground
boxes, which causes larger boxes to exert a greater influence than smaller ones, thereby hindering
the effective generation of small objects. To mitigate this issue, we propose an area re-weighting
method to dynamically assign higher weights to smaller boxes. A comparison of this approach can
be seen in Fig. 3. Finally, the re-weighting mask m can be represented as,

, [ w/c (i,7) € foreground 5)
"ii T\ 1/(H' « WP (i, ) € background °
mij:H’*W’*m;j/Zm;—j, (6)

where ¢;; represents the area of the bounding box to which pixel (7, j) belongs, and p is a tunable
parameter. To improve the numerical stability during the fine-tuning process, Eqn. 6 normalizes the
re-weighting mask m’. The benefits of this normalization process are demonstrated in Tab. 9.

Objective function. The final objective function of our GEODIFFUSION can be formulated as,

Lgeobiftusion = Eg(a),e,tll€ — € (2, t, T0(y))[I> © m, @)
where y is the encoded layout as discussed in Sec. 3.2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset. Our experiments primarily utilize the widely used Nulmages (Caesar et al., 2020) dataset,
which consists of 60K training samples and 15K validation samples with high-quality bounding box
annotations from 10 semantic classes. The dataset captures images from 6 camera views (front, front
left, front right, back, back left and back right), rendering it a suitable choice for our GL2I generation
problem. Moreover, to showcase the universality of GEODIFFUSION for common layout-to-image
settings, we present experimental results on COCO (Lin et al., 2014; Caesar et al., 2018) in Sec. 4.3.
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Table 2: Comparison of generation fidelity on NuIlmages. 1) Effectiveness: GEODIFFUSION sur-
passes all baselines by a significant margin, suggesting the effectiveness of adopting text-prompted
geometric control. 2) Efficiency: Our GEODIFFUSION generates highly-discriminative images even
under annotation-scarce circumstances. “Const.” and “ped.” suggests construction and pedestrian
separately. *: represents the real image Oracle baseline.

Input Average Precision
Method Res. Ep.| FID] mAP  AP5o AP75;[AP™ AP'|trailer const. ped. car
Oracle* - - - ‘ 482 75.0 52.0‘46.7 60.5‘ 17.8 309 48.5 649

LostGAN 256x256|256] 59.95 4.4 9.8 33|21 123| 03 13 2.7 122

LAMA 256x256|256| 63.85 32 83 19|20 94|14 10 13 88
Taming 256x256|256| 32.84 74 19.0 48 |28 188 6.0 4.0 3.0 173
ReCo 512x5121 64 | 27.10 17.1 41.1 11.8|109 36.2| 8.0 11.8 7.6 31.8

GLIGEN 512x512| 64 16.68 213 4211 19.1|159 40.8| 8.5 143 14.7 38.7
ControlNet |512x512| 64| 23.26 22.6 439 20.7|17.3 41.9| 10.5 15.1 16.7 40.7

GeoDiffusion 256 x256| 64 |14.58 15.6 31.7 134 6.3 383|133 10.8 6.5 263
GeoDiffusion|512x512| 64 | 9.58 31.8 62.9 28.7(27.0 53.8| 21.2 27.8 18.2 46.0
GeoDiffusion|800x456| 64 |10.99 34.5 68.5 30.6 |31.1 54.6| 20.4 29.3 21.6 48.8

Optimization. We initialize the embedding matrix of the location tokens with 2D sine-cosine em-
beddings (Vaswani et al., 2017), while the remaining parameters of GEODIFFUSION are initialized
with Stable Diffusion (v1.5), a pre-trained text-to-image diffusion model based on LDM (Rombach
et al., 2022). With VQ-VAE fixed, we fine-tune all parameters of the text encoder and U-Net using
AdamW (Loshchilov & Hutter, 2019) optimizer and a cosine learning rate schedule with a linear
warm-up of 3000 iterations. The batch size is set to 64, and learning rates are set to 4e~> for U-Net
and 3e~" for the text encoder. Layer-wise learning rate decay (Clark et al., 2020) is further adopted
for the text encoder, with a decay ratio of 0.95. With 10% probability, the text prompt is replaced
with a null text for unconditional generation. We fine-tune our GEODIFFUSION for 64 epochs, while
baseline methods are trained for 256 epochs to maintain a similar training budget with the COCO
recipe in (Sun & Wu, 2019; Li et al., 2021; Jahn et al., 2021). Over-fitting is observed if training
baselines longer. During generation, we sample images using the PLMS (Liu et al., 2022a) scheduler
for 100 steps with the classifier-free guidance (CFG) set as 5.0.

4.2 MAIN RESULTS

The quality of object detection data is predicated on three key criteria: the fidelity, trainability, and
generalizability. Fidelity demands a realistic object representation while consistent with geometric
layouts. Trainability concerns the usefulness of generated images for the training of object detectors.
Generalizability demands the capacity to simulate uncollected, novel scenes in real datasets. In this
section, we conduct a comprehensive evaluation of GEODIFFUSION for these critical areas.

4.2.1 FIDELITY

Setup. We utilize two primary metrics on the Nulmages validation set to evaluate Fidelity. The
perceptual quality is measured with the Frechet Inception Distance (FID)' (Heusel et al., 2017),
while consistency between generated images and geometric layouts is evaluated via reporting the
COCO-style average precision (Lin et al., 2014) using a pre-trained object detector, which is similar
to the YOLO score in LAMA (Li et al., 2021). A Mask R-CNN? (He et al., 2017) model pre-trained
on the Nulmages training set is used to make predictions on generated images. These predictions
are subsequently compared with the corresponding ground truth annotations. We further provide the
detection results on real validation images as the Oracle baseline in Tab. 2 for reference.

Discussion. Asin Tab. 2, GEODIFFUSION surpasses all the baselines in terms of perceptual quality
(FID) and layout consistency (mAP) with 256 x 256 input, accompanied with a 4x acceleration (64
vs. 256 epochs), which indicates that the text-prompted geometric control is an effective approach.
Moreover, the simplicity of LDM empowers GEODIFFUSION to generate higher-resolution images
with minimal modifications. With 800x456 input, GEODIFFUSION gets 10.99 FID and 34.5 mAP,

'Images are all resize into 256 x 256 before evaluation.
“https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages
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Table 3: Comparison of generation trainability on Nulmages. 1) GEODIFFUSION is the only
layout-to-image method showing consistent improvements over almost all classes, 2) especially on
rare ones, verifying that GEODIFFUSION indeed helps relieve annotation scarcity during detector
training. By default the 800x456 GEODIFFUSION variant is utilized for all trainability evaluation.

Method \ mAP \ car truck trailer bus const. bicycle motorcycle ped. cone barrier
Real only | 369 |52.9 409 155 421 240 447 46.7 31.3 325 389
LostGAN 35.6-+3|51.7 39.6 129 413 227 424 45.6 30.0 31.6 379
LAMA 35.6-13|51.7 39.2 143 405 229 432 44.9 30.0 31.3 383
Taming 35.8-11|51.9 393 147 41.1 224 43.1 45.4 304 31.6 38.1
ReCo 36.1-08|522 409 143 41.8 242 428 459 29.5 31.2 383
GLIGEN 36.3-06|52.8 40.7 14.1 42.0 23.8 435 46.2 30.2 31.7 38.4
ControlNet  [36.4-05|52.8 40.5 13.6 42.1 24.1 439 46.1 30.3 31.8 38.6

GeoDiffusion | 38.3 ' *|53.2 43.8 183 45.0 27.6 45.3 46.9 30.5 32.1 39.8

marking a significant progress towards bridging the gap with real images, especially for the large
object generation (54.6 vs. 60.5 AP'). Fig. la provides a qualitative comparison of generated images.
GEODIFFUSION generates images that are more realistic and tightly fitting to the bounding boxes,
making it feasible to enhance object detector training, as later discussed in Sec. 4.2.2.

We further report the class-wise AP of the top-2 frequent (i.e., car and pedestrian) and rare classes
(e.g., trailer and construction, occupying only 1.5% of training annotations) in Tab. 2. We observe
that GEODIFFUSION performs relatively well in annotation-scarce scenarios, achieving higher trailer
AP even than the Oracle baseline and demonstrating ability to generate highly-discriminative objects
even with limited annotations. However, similar to previous methods, GEODIFFUSION encounters
difficulty with high variance (e.g., pedestrians) and occlusion (e.g., cars) circumstances, highlighting
the areas where further improvements are still needed.

4.2.2 TRAINABILITY

In this section, we investigate the potential benefits of GEODIFFUSION-generated images for object
detector training. To this end, we utilize the generated images as augmented samples during the
training of an object detector to further evaluate the efficacy of our proposed model.

Setup. Taking data annotations of the Nulmages training set as input, we first filter bounding boxes
smaller than 0.2% of the image area, then augment the bounding boxes by randomly flipping with 0.5
probability and shifting no more than 256 pixels. The generated images are considered augmented
samples and combined with the real images to expand the training data. A Faster R-CNN (Ren et al.,
2015) initialized with ImageNet pre-trained weights is then trained using the standard 1x schedule
and evaluated on the validation set.

Discussion. As reported in Tab. 3, for the first time, we demonstrate that the generated images
of layout-to-image models can be advantageous to object detector training. Our GEODIFFUSION is
the only method to achieve a consistent improvement for almost all semantic classes, which is much
more obvious for rare classes (e.g., +2.8 for trailer, +3.6 for construction and +2.9 for bus, the top-3
most rare classes occupying only 7.2% of the training annotations), revealing that GEODIFFUSION
indeed contributes by relieving annotation scarcity of rare classes, thanks to the data efficiency as
discussed in Sec. 4.2.1.

Necessity of real data brought by GEODIFFUSION is further verified by varying the amount of
real data usage. We randomly sample 10%, 25%, 50%, and 75% of the real training set, and each
subset is utilized to train a Faster R-CNN together with generated images separately. We consider
two augmentation modes, 1) Full: GEODIFFUSION trained on the full training set is utilized to aug-
ment each subset as in Tab. 3. 2) Subset: we re-train GEODIFFUSION with each real data subset
separately, which are then used to augment the corresponding subset. The number of gradient steps
are maintained unchanged for each pair experiment with the same amount of real data by enlarging
the batch size adaptively. As shown in Fig. 1b, GEODIFFUSION achieves consistent improvement
over different real training data budgets. The more scarce real data is, the more significant improve-
ment GEODIFFUSION achieves, as in Tab. 8, sufficiently revealing that generated images do help
ease the data necessity. With only 75% of real data, the detector can perform comparably with the
full real dataset by augmenting with GEODIFFUSION.
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Figure 4: Visualization of generation generalizability on Nulmages. From left to right, we present
the query layout, the generated images conditional on the original, the flipped and shifted layouts.
GEODIFFUSION performs surprisingly well on the real-life collected geometric layouts (2nd & 3rd
columns), while revealing superior robustness for out-of-distribution situations (4th column).

4.2.3 GENERALIZABILITY

In this section, we evaluate the generalizability and robustness of GEODIFFUSION on novel layouts
unseen during fine-tuning.

Setup. To guarantee that the input geometric layouts are reasonable (e.g., no violation of the basic
physical laws like objects closer to the camera seem larger), we first randomly sample a query layout
from the validation set, based on which we further disturb the query bounding boxes with 1) flipping
and 2) random shifting for no more than 256 pixels along each spatial dimension, the exact same
recipe we utilze in Sec. 4.2.2 for bounding box augmentation. Check more generalizability analysis
for OoD circumstances in Appendix C.

Discussion. We visualize the generated results in Fig. 4. GEODIFFUSION demonstrates superior
generalizability to conduct generation on the novel unseen layouts. Specifically, GEODIFFUSION
performs surprisingly well given geometric layouts collected in real-world scenarios and its corre-
sponding flip variant (2nd & 3rd columns in Fig. 4). Moreover, we observe GEODIFFUSION demon-
strates strong robustness to layout augmentation even if the resulting layouts are out-of-distribution.
For example, GEODIFFUSION learns to generate a downhill for boxes lower than current grounding
plane (e.g., the shift column of the 1st row), or an uphill for bounding boxes higher than the current
grounding plane (e.g., shift of 2nd & 3rd rows) to maintain consistent with given geometric layouts.
The remarkable robustness also convinces us to adopt bounding box augmentation for the object
detector training in Sec. 4.2.2 to further increase annotation diversity of the augmented training set.

4.3 UNIVERSALITY

Setup. To demonstrate the universality of GEODIFFUSION, we further conduct experiments on
COCO-Stuff dataset (Caesar et al., 2018) following common practices (Li et al., 2021; 2023b). We
keep hyper-parameters consistent with Sec. 4.1, except we utilize the DPM-Solver (Lu et al., 2022)
scheduler for 50-step denoising with the classifier-free guidance ratio set as 4.0 during generation.

Fidelity. We ignore object annotations covering less than 2% of the image area, and only images
with 3 to 8 objects are utilized during validation following Li et al. (2021). Similarly with Sec. 4.2.1,
we report FID and YOLO score (Li et al., 2021) to evaluate perceptual quality and layout consistency
respectively. As shown in Tab. 4, GEODIFFUSION outperforms all baselines in terms of both the FID
and YOLO score with significant efficiency, consistent with our observation on Nulmages in Tab. 2,
revealing the universality of GEODIFFUSION. More qualitative comparison is provided in Fig. 12.

Trainability. We then utilize GEODIFFUSION to augment COCO detection training set following
the exact same box augmentation pipeline in Sec. 4.2.2. As demonstrated in Tab. 5, GEODIFFUSION
also achieves significant improvement on COCO validation set, suggesting that GEODIFFUSION can
indeed generate high-quality detection data regardless of domains.
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Table 4: Comparison of generation fidelity on Table 5: Comparison of trainability on

COCO. t: our re-implementation. COCO. Indeed, GEODIFFUSION can bene-
Method Epoch| FID| |mAPT APsgt APr51 fit detection training regardless of domains.
256x%256 Method ‘ mAP ‘ APso AP75 ‘ AP™ AP!

LostGAN 200 [4255| 9.1 153 98  Realonly |37.3 | 582 408|407 482
LAMA 200131120 134197 149 A T 13655 [ 57.0 39.5 | 397 47.5

CAL.ZIM 200 129.56| 100 149 111 L.Diffuse 36.6 | 57.4 39.5|40.0 474

Taming 68+60(33.68| - - -

TwFA 300 12215 - 282 201 GLIGEN 36.8 | 57.6 39.9 |40.3 479
ControlNet 369 | 57.8 39.6 | 404 49.0

Frido 200 |37.14| 17.2

L Diffusiont 180 |22.65| 149 275 149 GeoDiffusion| 38.4 [ 58.5 42.4]42.1 503
GeoDiffusion 60 |20.16| 29.1 389 33.6 Table 6: Comparison of COCO inpainting.

512x512
ReCof 100 |29.69| 18.8 335 19.7 Method | mAP | APso  APrs
ControlNet' 60 [28.14| 252 46.7 22.7 Stable Diffusion| 17.6 23.2 20.0
L.Diffuse’ 60 [22.20| 11.4 23.1 10.1 ControlNet 17.8 25.7 20.2
GLIGEN 86 [21.04| 224 365 24.1 GLIGEN 18.3 25.8 20.9

GeoDiffusion 60 [18.89| 30.6 41.7 35.6 GeoDiffusion |19.0°'*|26.23° 21.6'°¢

Ground Truth Inpainting Mask Stable Diffusion ControlNet GLIGEN Ours

“ | 1 ; . H ]
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Figure 5: Visualization of image inpainting on COCO. Due to the existence of multiple people,
Stable Diffusion cannot properly deal with the inpainting request, while GEODIFFUSION solves by
successfully understanding location of missing areas thanks to the text-prompted geometric control.

Inpainting. We further explore applicability of inpainting for GEODIFFUSION. Similarly with the
fidelity evaluation, we randomly mask one object for each image of COCO detection validation set,
and ask models to inpaint missing areas. A YOLO detector is adopted to evaluate recognizability of
inpainted results similarly with YOLO score following Li et al. (2023b). GEODIFFUSION surpasses
SD baseline remarkably, as in Tab. 6. We further provide a qualitative comparison in Fig. 5, where
GEODIFFUSION can successfully deal with the sophisticated image synthesis requirement.

4.4 ABLATION STUDY

In this section, we conduct ablation studies on  Table 7: Ablations on location grid size.
the essential components of our GEODIFFUSION.  Foreground re-weighting is not adopted here.
Check detailed experiment setups, more ablations  Default settings are marked in gray .

and discussions in Tab. 9-10 and Appendix B-D.

Grid size # Pixels
Location grid size (Hpyp, Wyin) is ablated in (Hyin, Wyin)  /bin | T 1ID4 mAPT
Tab. 7. A larger grid size can achieve consistent 10057 8x8 |1494 208
improvement for both the perceptual quality and 200% 114 4x4 | 1183 214
the layout consistency. Indeed, a larger grid size 400%228 2%x2 |11.63 237

stands for a smaller bin size and less coordinate
discretization error, and thus, a more accurate encoding of geometric layouts. Due to the restriction
of hardware resources, the most fine-grained grid size we adopt is 2 x2 pixels per bin.

5 CONCLUSION

This paper proposes GEODIFFUSION, an embarrassingly simple architecture with the text-prompted
geometric control to empower pre-trained text-to-image diffusion models for object detection data
generation. GEODIFFUSION is demonstrated effective in generating realistic images that conform
to specified geometric layouts, as evidenced by the extensive experiments that reveal high fidelity,
enhanced trainability in annotation-scarce scenarios, and improved generalizability to novel scenes.
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Table 8: Necessity of real data. GEODIFFUSION achieves consistent improvement over various
real data budget, which is more significant on more annotation-scarce subsets.

Method ‘ 10% 25% 50% 75%

w/o GeoDiffusion 24.6 30.0 33.6 35.8
w/ GeoDiffusion (Subset) |27.8 33.1 35.7 37.2
w/ GeoDiffusion (Full) |30.1 333 35.8 37.3

APPENDIX

A MORE EXPERIMENTS

Detailed results of real data necessity. As discussed in Sec. 4.2.2, the usage of the augmented
dataset generated by GEODIFFUSION can significantly ease the necessity of real data during object
detector training in different real training data budget ranging from 10% to 75%. We provide detailed
experimental results in Tab. 8.

B MORE ABLATION STUDY

Setup. We conduct ablation studies mainly with respect to fidelity and report the FID and COCO-
style mAP following the exact same setting in Sec. 4.2.1. Specifically, the input resolution is set
to be 800x456, and our GEODIFFUSION is fine-tuned for 64 epochs on the Nulmages training set.
The optimization recipe is maintained the same with Sec. 4.1.

Pre-trained text encoder. To verify the necessity of using the pre-trained text encoder, we only
initialize the VQ-VAE and U-Net with Stable Diffusion, while randomly initializing the parameters
of the text encoder for comparison following the official implementation of LDM. As demonstrated
in Tab. 9, the default GEODIFFUSION significantly surpasses the variant without the pre-trained text
encoder by 4.82 FID and 14.2 mAP, suggesting that with a proper “translation”, the pre-trained text
encoder indeed possesses transferability to encode geometric conditions and enable T2I diffusion
models for high-quality object detection data generation.

Foreground prior re-weighting. In Tab. 9, we study the effect of foreground re-weighting.
Adopting the constant re-weighting obtains a significant +3.4 mAP improvement (27.1 vs. 23.7),
which further increases to 30.1 mAP with the help of area re-weighting, revealing that foreground
modeling is essential for object detection data generation. Note that the mAP improvement comes at
a cost of a minor FID increase (11.99 vs. 11.63) since we manually adjust the prior distribution over
spatial locations. We further verify the effectiveness of mask normalization in Eqn. 6, which can
significantly decrease FID while maintaining the mAP value almost unchanged (5th & 7th rows),
suggesting that mask normalization is mainly beneficial for fine-tuning the diffusion models after
foreground re-weighting.

Importance of camera views. In this work, camera views are considered as an example to demon-
strate that text can be indeed used as a universal encoding for various geometric conditions. A toy
example is provided in Fig. 1a, fully proving text indeed has the potential to decouple various condi-
tions with a unified representation. Moreover, we further build a GEODIFFUSION w/o camera views,
significantly worse than the default GEODIFFUSION as shown in Tab. 10, revealing the importance
of adopting camera views. Check Fig. 9 for more qualitative comparison.

Location tokens. As stated in Sec. 4.1, location tokens are first initialized with 2D sine-cosine
embeddings and then fine-tuned together with the whole model. We further train a GEODIFFUSION
with fixed location tokens, which performs worse than the default GEODIFFUSION as in Tab. 10.
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Pre-trained text encoder \ Constant w Areap Norm \ FID{ mAP?T
X 1.0 (no re-weight) 0 v 16.45 9.5
v 1.0 (no re-weight) 0 v 11.63 237
v 2.0 0 v 11.77  27.1
v 4.0 0 v 1290  26.2
v 2.0 0.2 v 11.99  30.1
v 2.0 0.4 v 1499 283
v \ 2.0 0.2 X | 1476  29.8

Table 9: Ablations on the text encoder and foreground re-weighting. The best result is achieved
when both constant and area re-weighting are adopted. Default settings are marked in gray .

Camera views | Learned Location Token | FID] mAP 1
v v 10.99 34.5
X v 11.95 31.0
v X 14.36 27.7

Table 10: Ablations on camera views and location tokens. Default settings are marked in gray .

C MORE DISCUSSIONS

More generalizability analysis. We first provide more visualization for augmented bounding
boxes similar to Sec. 4.2.3. As shown in Fig. 6, GEODIFFUSION demonstrates superior robustness
towards the real-life collected and augmented layouts, convincing us to flexibly perform bounding
box augmentation for the more diverse augmented set.

We further explore the generalizability for totally out-of-distribution (OoD) layouts (i.e., unseen
boxes and classes) in Fig. 7. GEODIFFUSION performs surprisingly well for OoD bounding boxes
(e.g., unusually large bounding boxes with only one object in an entire image) as in Fig. 7a, but still
suffers from unseen classes as in Fig. 7b, probably due to the inevitable forgetting during fine-tuning.
Parameter-efficient fine-tuning (PEFT) (Cheng et al., 2023; Li et al., 2023b) might ease the problem
but at a cost of generation quality as shown in Tab. 4. Considering our focus is to generate high-
quality detection data to augment real data, fidelity, and trainability are considered as the primary
criteria in this work.

Advantage over ControlNet mainly lies in the simplicity of GEODIFFUSION emerging especially
when extended to multi-conditional generation, where usually more than 3 conditions are considered
for a single generative model simultaneously (e.g., 3D geometric controls (Gao et al., 2023), multi-
object tracking (Li et al., 2023a) and the implicit concept removal (Liu et al., 2023)). Different from
ControlNet (Zhang et al., 2023) requiring different copies of parameters for different conditions, our
GEODIFFUSION utilizes the text prompt as a shared and universal encoding of the various geometric
controls (as shown in Fig. 9), which is more scalable, deployable, and computationally efficient.

Advantage over methods with more complicated designs contains three perspectives, including:
1) Utilization of foundational pre-trained models. Unlike GAN-based methods, GEODIFFUSION
leverages large-scale pre-trained text-to-image diffusion models (e.g., Stable Diffusion), enabling
the generation of highly realistic and diverse detection data, which is crucial for data augmentation.
2) Transferability of the text encoder. Different from existing methods (e.g., GLIGEN (Li et al.,
2023b)) requiring specifically designed bounding box encoding modules and training the parameters
from scratch, GEODIFFUSION capitalizes on the transferability of text encoder (verified in Tab. 10,
Rows 1 and 2), empowering more efficient adaptation and decreased need for the annotated training
data, which is particularly beneficial for long-tailed classes with scarce data annotation. Specifically,
GEODIFFUSION shows remarkable improvement in rare classes compared to GLIGEN, achieving
+11.9 and +15.0 mAP for trailers and construction respectively, the Top-2 rare classes on Nulmages,
as reported in Tab. 2. 3) Usage of foreground prior re-weighting, which significantly enhances the
generation performance of foreground objects, as evident in Tab. 10 (Rows 2 and 5).

Location translation via text. Although seeming cumbersome, the main purpose is to adopt text
as a universal encoding for various geometric conditions and empower pre-trained T2I DMs for
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Real w/ Query Layout Generated w/ Query Layout  Generated w/ Flipped Layout Generated w/ Shifted Layout

-~ '(, | f

n,'\ > . 2
Figure 6: More visualization of generation generalizability for augmented bounding boxes.
GEODIFFUSION demonstrates superior performance for real-life collected and augmented layouts,
consistently with what we have observed in Fig. 4.

Seed 0 Seed 1 Seed 2 Seed 3

(b) Out-of-distribution classes.

Figure 7: More visualization of generation generalizability for totally out-of-distribution lay-
outs. Our GEODIFFUSION demonstrates strong robustness towards (a) OoD bounding boxes, but
suffers from (b) unseen classes (i.e., dog, cat and tiger) during fine-tuning.

detection data generation, which, however, might not support the dense pixel-level semantic control
currently (e.g., mask-to-image generation).

Extendibility. Thus, GEODIFFUSION can be extended to other descriptions as long as they can be
discretized (e.g., locations) or represented by text prompts (e.g., car colors).

Adaptation of the Foreground Re-weighting with existing methods can be beneficial if appli-
cable. However, existing methods utilize specific modules to encoder layouts (e.g., Rol Align to
take foreground features only in LAMA), suggesting that specific designs might still be required for
the adaptation, which is beyond the scope of this work.

Limitation. We notice that the GEODIFFUSION-generated images by now can only contribute
as augmented samples to train object detectors together with the real images. It is appealing to
train detectors with generated images solely, and we will explore it in the future work. We hope
that our simple yet effective method can bring researchers’ attention to large-scale object detection
dataset generation with more flexible and controllable generative models. The incorporation among
GEODIFFUSION with the annotation generation (Reza et al., 2019; 2020) and even perception-based
methods (Wu et al., 2023; Li et al., 2023c¢) is also appealing, which will be explored in the future.

Meanwhile, more flexible usage of the generated images beyond data augmentation, especially in-
corporation with generative pre-training (Chen et al., 2023a; Zhili et al., 2023), contrastive learn-
ing (Chen et al., 2021a; Liu et al., 2022b), is also an appealing future research direction.
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D MORE APPLICATIONS

Camera views are introduced in GEODIFFUSION primarily to demonstrate that text prompts can
serve as a unified representation for various geometric conditions, facilitating independent manipu-
lation without interdependencies. As illustrated in Fig. 9, simply converting the camera view tokens
“{view}” can effectively generate images from different camera views while maintaining semantic
consistency, revealing GEODIFFUSION’s flexible ability to handle various geometric conditions.

Domain adaptation among different weather conditions and times of day can be supported simply
by integrating the extra conditions into the text prompts as, “A {weather} {time} image of
{view} camera with {bboxes}”. Fig. 10 showcases the capability of our GEODIFFUSION
to flexibly adapt between daytime, rainy and night scenes.

Long-tailed generation. We further train a GEODIFFUSION on the challenging LVIS (Gupta et al.,
2019) dataset, an extremely long-tailed scenario, with the exact same optimization recipe with the
COCO-Stuff as in Sec. 4.3, and provide a qualitative evaluation in Fig. 13, where the annotations of
“rare classes” are highlighted in the images. As shown in Fig. 13, GEODIFFUSION demonstrates
superior generation capabilities even for the long-tailed rare classes.

3D geometric controls (e.g., 3D locations, depth and angles) can be supported in GEODIFFUSION
by projecting 3D bounding boxes into the 2D image planes. Specifically, the 3D LiDAR coordinates
of all corners of the 3D bounding boxes are first projected into the 2D image plane as {(z;, v:)}5_1,
where (z;,y;) denotes the projected i-th corner of the given 3D bounding box, and then discretized
and encoded separately following the exact same manner with Sec. 3.2. Note that different from the
2D scenario, a 3D bounding box is determined by 8 corners. Thus, GEODIFFUSION can control the
3D locations and depth with the same text-prompted geometric controls, as demonstrated in Fig. 11,
while angles can be supported simply by reversing the encoding order of the 8 corners into the text
prompts to change the object orientation, as shown in Fig. 11 (4th column). We will support more
3D geometric controls in the future work.

E MORE QUALITATIVE COMPARISON

We provide more qualitative comparison on Nulmages, COCO-Stuff and LVIS datasets in Fig. 8-13.
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Figure 8: More qualitative comparison on the Nulmages (Caesar et al., 2020) dataset.
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Figure 9: More qualitative comparison for camera-dependent generation on Nulmages (Caesar
et al., 2020) dataset.
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Figure 10: More qualitative comparison for the weather and time day control generation on
the Nulmages (Caesar et al., 2020) dataset.
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Figure 11: More qualitative comparison for the 3D geometric controls on the NuScenes (Caesar
et al., 2020) dataset.
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Figure 12: More qualitative comparison on the COCO-Stuff (Caesar et al., 2018) dataset. Our
GEODIFFUSION can successfully deal with both outdoor (1st-4th rows) and indoor (5th-7th rows)
scenes, while demonstrating significant fidelity and diversity (4th-6th columns are generated images
by GEODIFFUSION under three different random seeds).
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Figure 13: More qualitative comparison on the LVIS (Gupta et al., 2019) dataset. Within each
group, we demonstrate the input layouts (left), the ground truth images (middle) and the generated
images by GEODIFFUSION (right). We also highlight the annotations of long-tail rare classes on the
images. Our GEODIFFUSION can successfully generate highly realistic images consistent with the
given layouts, even for the long-tail rare classes.
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