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Abstract

Structural causal models (SCMs) are a powerful tool for understanding the complex
causal relationships that underlie many real-world systems. As these systems grow
in size, the number of variables and complexity of interactions between them does,
too. Thus, becoming convoluted and difficult to analyze. This is particularly true in
the context of machine learning and artificial intelligence, where an ever increasing
amount of data demands for new methods to simplify and compress large scale
SCM. While methods for marginalizing and abstracting SCM already exist today,
they may destroy the causality of the marginalized model. To alleviate this, we
introduce the concept of consolidating causal mechanisms to transform large-scale
SCM while preserving consistent interventional behaviour. We show consolidation
is a powerful method for simplifying SCM, discuss reduction of computational
complexity and give a perspective on generalizing abilities of consolidated SCM.

1 Introduction

Even complex real world systems might be modeled using structural causal models (SCM) [Pearl,
2009] and several methods exist for doing so automatically from data [Spirtes et al., 2000, Pearl,
2009, Peters et al., 2017]. While technically reflecting the causal structure of the systems under
consideration, SCM might not entail intuitive interpretations to the user. Large scale SCM like,
appearing for example in genomics, medical data [Squires et al., 2022, Ribeiro-Dantas et al., 2023] or
machine learning [Schölkopf et al., 2021, Berrevoets et al., 2023], may become increasingly complex
and thereby less interpretable. Contrary to this, computing average treatment effects might be too
uninformative given the specific application, as the complete causal mechanism is compressed into a
single number. Ideally a user could express the factors of interest and yield a reduced causal system
that isolates the relevant mechanism from the rest of the model.

In contrast to other probabilistic models, SCM model the additional aspect of interventions. Consider
for example a row of dominoes and its corresponding causal graph as shown in Figure 1. If the starting
stone it tipped over, it will affect the following stones, causing the whole row to fall. Humans usually
have a good intuition about predicting the unfolding of such physical systems [Gerstenberg, 2022,
Beck and Riggs, 2014, Zhou et al., 2023]. Second to that, it is easy to imagine what would happen,
if we were to hold onto a domino stone, that is, intervening actively upon the domino sequence.
Alternatively, we can programmatically simulate these systems to reason about their outcomes. A
simulator tediously computes and updates positions, rotations and collision states of all objects in
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Figure 1: Consolidation vs. Marginalization. Even simple real-world systems, like this row of
dominoes, are composed of numerous intermediate steps. Classical structural causal models require
the explicit evaluation of the individual structural equations to respect possible interventions along the
computational chain and yield the final value of X5. The intermediate steps (X2, X3, X4) might be
marginalized to obtain a simplified functional representation. Marginalization, however, loses some
causal interpretation of the process, as interventions on the marginalized variables can no longer be
performed. Consolidation of causal models simplifies the graph structure (compare to Appendix D.1),
while respecting interventions on the marginalized variables. Thus, preserving the ability to intervene
on the underlying causal mechanisms. (Best viewed in color.)

the system. Depending on the abstraction level of our SCM, computations might be simplified to
represent individual stones as binary variables, indicating a stone standing up or getting pushed over.
Nonetheless, classical evaluation of simplified SCM is still performed step by step to be able to
respect possible interventions on the individual stones. Given that we might only be interested in the
outcome. That is, whether or not the last stone will tip over, computing all intermediate steps seems
to be a waste of computation, as already noted by Peters and Halpern [2021]. Under these premises,
we are interested in preserving the ability to intervene while also being computationally efficient.
Classical marginalization [Pearl, 2009, Rubenstein et al., 2017] is of no help to us as it destroys the
causal aspect of interventions attached to the variables.

Consolidation vs. Marginalization. By marginalizing we do not only remove variables, but also
all associated interventions, destroying the causal mechanisms of the marginalized variables. The
insight of this paper, as alluded to in Figure 1 (center), is that there exists an intermediate tier of
consolidated models that fill the gap between unaltered SCM and ones with ‘classical’ marginalization
applied. Consolidation simplifies the causal graph by compressing computations of consolidated
variables into the equations of compositional variables that are functionally equivalent to the initial
model, while still respecting the causal effects of possible interventions. As such consolidation
generalizes marginalization in the sense that marginalization can be modeled by consolidating
without interventions (I = ∅; see Def. 1 and Sec. 3). If questions involve causality, then consolidation
necessarily needs to be considered since it can actually handle interventions (all cases where I ≠ ∅).
If causal questions are not of concern, then marginalization can be considered as remaining the
‘standard’ marginalization procedure. One perspective on our approach is to describe consolidation
as ‘intervention preserving marginalization’.

Structure and Contributions of this paper. In section two we discuss the foundation of SCM and
related work. In section three we formally establish the composition of structural causal equations,
partitioned SCM, and finally consolidated SCM. In section four we discuss the possible compression
and computational simplifications resulting from consolidating models. We present an applied
example for simplifying time series data and in a second example demonstrate how consolidation
reveals the policy of a game agent. Finally, in section five, we discuss generalizing abilities of
our method and provide a perspective on the broader impact and further research. The technical
contributions of this paper are as follows:

• We define causal compositional variables that yield functionally equivalent distributions to
SCM under intervention.

• We formalize (partially) consolidated SCM by partitioning SCM under a constraint that
guarantees the consistent evaluation with respect to the initial SCM.

• We discuss conditions under which consolidation leads to compressed causal equations.

• We demonstrate consolidation on two examples. First, obtaining a causal model of reduced
size and, secondly, revealing the underlying policy of a causal decision making process.
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2 Preliminaries and Related Work

In general we write sets of variables in bold upper-case (X) and their values in lower-case (x). Single
variables and their values are written in normal style (X , x). Specific elements of a set are indicated
by a subscript index (Xi). Probability distributions over a variable X or a set of variables X are
denoted by PX and PX respectively. A detailed list of notation can be found in Appendix E.

Structural Causal Models provide a framework to formalize a notion of causality via graphical models
[Pearl, 2009]. From a computational perspective, structural equation models (SEM) can be considered
instead of SCM [Halpern, 2000, Spirtes et al., 2000]. While focusing on computational aspects of
consolidating causal equations, we use Pearl’s formalism of SCM. Modeling causal systems using
SCM over SEM does not affect our freedom, as Rubenstein et al. [2017] show consistency between
both frameworks. Similar to earlier works of Halpern [2000], Beckers and Halpern [2019] and
Rubenstein et al. [2017], we do not assume independence of exogenous variables and model SCM
with an explicit set of allowed interventions.

Definition 1 A structural causal model is a tupleM = (V,U,F, I,PU) forming a directed acyclic
graph G over variables X = {X1, . . . , XK} taking values inXXX =

∏
k∈{1...K} Xk subject to a strict

partial order <X, where

• V = {X1, . . . , XN} ⊆ X, N ≤ K is the set of endogenous variables.

• U = X \V = {XN+1, . . . , XK} is the set of exogenous variables.

• F is the set of deterministic structural equations, Vi := fi(X
′), where the parents are

X′ ⊆ {Xj ∈ X |Xj <X Vi}.

• I ⊆ {{Ii,vi}i⊆{1...N}}v∈XXX where vi is the i-th element of v, Ii,vi indicates an intervention
do(Xi = vi) and such that J ⊂ I ∈ I → J ∈ I. I is the set of perfect interventions
under consideration. A perfect intervention do(Vi = vi) replaces the unintervened fi by the
constant assignment Vi := vi.

• PU is the probability distribution over U.

As we focus on computational aspects of SCM, we do not regard exogenous variables to be latent,
but rather consider them to take values which are not under control of the causal system itself. As
such, their values are not determined via any structural equation. By construction of I at most
one intervention on any specific variable can be included in any intervention set I. The additional
constraint enforces that I is closed under subsets, i.e. that any subset of any I ∈ I is also part of I.
This condition is placed to yield valid intervention sets when partitioning the SCM. EveryM entails
a DAG structure G = (X, E) consisting of vertices X and edges E , where a directed edge from Xj to
Xi exists if ∃x0, x1 ∈ Xj .fi(x

′, x0) ̸= fi(x
′, x1). For every variable Xi we define ch(Xi),pa(Xi)

and an(Xi) as the set of direct children, direct parents and ancestors respectively, according to G.2
Additionally, everyM entails an observational distribution PM

3 by propagating PU through the
structural equations. Any perfect intervention I on a variable Xi replaces fi with a new probability
distribution PI . As a consequenceM entails infinitely many intervened distributions PI

M.

Related Work. Several works acknowledge the need for model simplification when working with
causal models at different levels of modeling detail or finding consistent mappings between two
already existing causal models [Rubenstein et al., 2017, Chalupka et al., 2016, Beckers et al., 2020,
Zennaro et al., 2023, Brehmer et al., 2022]. However, whenever providing explicit methods of
mapping SCM, marginalization is considered as a tool of removing variables. Several other works
have been dedicated to proving consistency and identifiability results for grouping or clustering
variables in general [Anand et al., 2022, Squires et al., 2022]. Works on τ abstractions by [Beckers
and Halpern, 2019, Beckers et al., 2020] focus on simplifying models by mapping between SEM
of different levels of abstractions. With regard to computational aspects, Rubenstein et al. [2017]

2We define ch(X), pa(X) and an(X) for sets of variables X, as the union of sets gained by individual
variable evaluations, e.g., pa(X) =

⋃
X∈X pa(X).

3We always reference a distribution with respect to some SCM M, therefore, if we write PM then this the
distribution over the full variable set, that is, PX.
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demonstrate the causal consistency of SEM, providing simplifications results for marginalizing SEM.
However, their theorems (cf. Sec.5) explicitly exclude interventions on the marginalized variables.

3 Consolidation of Causal Graphical Structures

In this section, we present an approach to consolidating structural equation systems under interven-
tion. This is the key contribution of this work compared to previous works that only considered
marginalization of unintervened subsystems [Pearl, 2009, Peters et al., 2017, Rubenstein et al., 2017].
The focus is on computational aspects of marginalizing intermediate variables while preserving
effects of interventions. A formalization of marginalizing intervenable structural equation systems
is introduced in this section. Section 4 examines conditions under which consolidation leads to an
actual reduction in complexity, followed by two practical examples.

We start with the definition of a Causal Compositional Variable (CCV) that has similar semantics to
cluster DAGs [Anand et al., 2022], in that both capture the causal semantics over a set of variables.
In contrast to cluster DAGs, CCVs are defined over an SCMM and moreover expose an interface for
explicitly applying interventions to the individual variables inside the CCV. We define a CCV with a
corresponding function ρ, that takes the exogenous variables U as its input and outputs the values of
a subset E ⊆ V. Thus we write ρE to denote the set of computed variables. To be able to condition
on interventions, ρ takes the set of interventions I as it would be applied to the SCM as its second
argument.

Definition 2 (Causal Compositional Variable) A variable XI
E := ρE(U, I) ∈ X |E | 4 is a causal

compositional variable over some subset E ⊆ V of an SCMM, if a consolidation function ρE :
(X |U |, I)→ X |E | exists for which PXI

E
= PI

E for all I ∈ I, where PI
E is the distribution of target

variables E in under some intervention set I.

Put in simple terms, ρE yields the same values for E as would be determined by evaluation of the
initial SCM M given any u ∼ PU. Naturally, there always exists such a function ρE for every
E ⊆ V, which is computing e ∈ E via evaluation of M itself. However, ρE is not required to
adhere to the computation sequence imposed by the structural causal modelM. In particular, ρE is
not required to explicitly compute the intermediate values of any Vi ∈ V \E, which gives way to
simplifying internal computations. As such a CCV serves as a possible stand-in for replacing whole
SCM by a function of possibly simpler computational complexity:

Definition 3 (Consolidated SCM) Given a causal compositional variable XI
E := ρE(U, I) and

some base SCMM, we callME = (E,UM, ρE, IM,PUM) a consolidated SCM.

The distributions of the consolidated SCM PME
are not equal to that of the initial SCM PM, since

ME only computes a subset E ⊆ V of all endogenous variables. However, for that subset E, the
initial SCM and consolidated model yield the same PI

E for all I ∈ I.

3.1 Partition of Structural Causal Models

So far, we considered constructing compositional variables from SCM such that they exhibit functional
equivalent behaviour and, by doing so, are able to replace base SCM by consolidated SCMs using
CCVs. However, compositional variables trade off the ‘semantic’ graph structure of a classical SCM
against a computationally simpler (refer to Sec. 4), but ‘black box’ function. In practice we might,
therefore, only want to replace certain parts of an SCM with consolidated functions. To achieve
this goal, we formalize a partition of base SCM into multiple sub SCM. Multiple other works have
considered the existence of joint variable clusters within SCM [Anand et al., 2022, Squires et al.,
2022]. However, allowing for arbitrary clusters may induce cycles to the model, which would be
undesirable. In our work we constrain the clustering by requiring partitions that enforce acyclicity
and, therefore, ensure a well defined evaluation order that is consistent with that of the initial SCM.

Endogenous nodes of a base SCM M can be partitioned into L mutually exclusive exhaustive
components A = {Ai ∈ P(V) \ ∅ : i ∈ {1, . . . , L}} with ∀Ai,Aj ∈ A : i ̸= j⇒Ai ∩Aj = ∅
and

⋃
i∈{1...L} Ai = V. We also call A the (exhaustive) partition. We can use any cluster A ∈ A to

4To be precise X |E | =
∏

Vi∈E Xi, where
∏

is the n-ary Cartesian product.
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Figure 2: Consolidating SCMs. (Left) The base graph of an exemplary SCMM gets deconstructed
into three sub SCM using the partition set A = {{A}, {B,D}, {C,E}}. Exogenous variables
are displayed with dashed circles. (Center) A subgraph G′ within a larger base SCM. There
exists a directed path that exits and re-enters G′, thus preventing self-enclosed evaluation of G′.
(Right) Consolidation of a sub SCM into a multivariate compositional variable. X2 is an aspect
variable chosen by the user, (X2 ∈ E). X4 and X5 are needed for further computation, thus
E′ = {X2, X4, X5}. The value of X2 is computed via ρE′ and interventions can be performed via
its parameter I. The dotted line indicates that X2 is not an ‘independent’ variable. Specifically it is
not allowed to intervene on X2 via ’edge cutting’, making it independent of ρE′ (and in consequence
causing ρE′ to compute inconsistent values for X6 and X7).

form a new sub SCMMA:MA = (A,UA,FA, IA,PUA
) where UA = pa(A) \A, FA are the

structural equations of A, and PUA
is the distribution over UA induced by the base SCM. As some

intervention I ∈ I might intervene on variables which are no longer part ofMA, we define a mapping
ψA : I→ IA which removes those invalid interventions: ψA(I) := {do(Vi = vi) ∈ I : Vi ∈ VA}.
Consequently we define IA := {ψA(I) : I ∈ I}. As expected, whenever a set of interventions I
does not intervene on any V ∈ A, ψA maps it to the empty set. For notational brevity, we assume
the implicit application of ψ on any I whenever we apply interventions to a sub SCM. Figure 2 (left)
presents an exemplary construction of sub SCM from a given partition of a base SCM.

Unconstrained partitions may divide SCM in an arbitrary way. To guarantee an evaluation order
of the individual sub SCM that is consistent with that of the base SCM we need to ensure that any
particular sub SCM can be evaluated in a continuous, self-enclosed manner. That is, no intermediate
evaluation of external nodes, V /∈ A, is required. Figure 2 (center) illustrates a counter-example of a
non-complying partition where an intermediate external evaluation to G′ is required. To prevent such
cases we require the partitions to yield a strict partial ordering under the following definition: the
binary relation A1 RX A2 ⇐⇒ ∃Ai ∈ A1, Aj ∈ A2 : Ai <X Aj holds if at least one variable in
A1 needs to be evaluated before some other variable in A2 according to <X of the base SCM. We
call a partition A “according toM” iff RX is a strict partial order5 over all A ∈ A.

Definition 4 (Partitioned SCM) Given an exhaustive partition A, a partitioned SCM MA for
some base SCM M is defined as MA = (

⋃
Ai,

⋃
UAi

,
⋃

FAi
,
⋃
IAi

,
⋃

PUAi
), i ∈ {1 . . . L}

s.t. there exists a strict partial order RX over all Ai ∈ A according to M and every MAi
=

(Ai,UAi
,FAi

, IAi
,PUAi

) forms a valid sub SCM.

Consistency of partitioned SCM evaluation. To ensure for the consistent evaluation of all sub SCM
MA within a partitioned SCMMA we need to ensure that the evaluation is carried out according
to some RX that is compliant according to the base SCMM.6 Doing so, guarantees that the value
of every exogenous variable Ui of a sub SCM MAs – that is not truly exogenous (Ui /∈ MU)
– is computed as an endogenous variable Vj inside another MAt , that is evaluated before MAs

with Ui := Vj . For example G2 in Fig. 2 (left) computes the values of B and D, required as
exogenous variables by G3. Lastly, during evaluation, allMA need to agree on the same set of
applied interventions. This is done by fixing a particular I′ during evaluation and computing the
intervention set I′A := ψA(I′) specific to everyMA. An algorithm for evaluating partitioned SCM
and its proof of consistency are presented in Appendix A.

5In particular RX is a strict partial order, if it is asymmetric: ∀A1,A2 ∈ A : A1 RX A2 ⇒¬(A2 RX A1),
implying that the evaluation of no two sub SCM mutually depend on each other.

6As <X is a partial order, there may exist multiple total orders which comply with the partial ordering of M.
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Algorithm 1 Consolidation of Structural Causal Models

1: procedure CONSOLIDATE(M,A,E)
2: for all Ai in A do
3: Ei ← Ai ∩E ▷ Filter aspect variables for the current Ai.
4: E′

i ← Ei ∪ (pa(V \Ai) ∩Ai) ▷ Add variables that are required by other sub SCM.
5: UAi

← pa(Ai) \Ai ▷ Define exogenous variables and interventions.
6: IAi

← {ψAi
(I) : I ∈ I} = {{do(Xi = v) ∈ I : Xi ∈ Ai} : I ∈ I}

7: ρE′
i
(UAi

, I)← {Fj : Xj ∈ Ai} ▷ Define a causal compositional variable via ρE′
i
.

8: ρ⋆E′
i
← argminρ′

E′
i

K(ρ′E′
i
) ▷ Minimize representation (see Sec. 4).

s.t. ρ′E′
i
(UAi) = ρE′

i
(UAi)

9: MAi,E ← (E′
i,UAi , ρ

⋆
E′

i
, IAi ,PUAi

) ▷ Define the sub SCM resulting from Ai and E.
10: end for
11: MA,E ← (

⋃
E′

i,
⋃
UAi

,
⋃
ρ⋆E′

i
,
⋃
IAi

,
⋃
PUAi

), i ∈ {1 . . . | A |} ▷ Merge allMAi,E.
12: returnMA,E ▷ Return the consolidated SCM.
13: end procedure

Figure 3: CONSOLIDATE Algorithm. The above pseudo-code summarizes the consolidation
algorithm as described in this paper by utilizing causal compositional variables and partitioned SCM
to obtain simplified SCM. Depending on the use-case Step 11 might be skipped and the partitioned
SCM might be returned instead.

Partial consolidation of SCM. Having defined partitioned SCM allows us to selectively swap out
arbitrary sub SCM by their consolidated SCM. In Def. 3 we placed no constraints on E to allow for
arbitrary consolidation of variables. For sub SCMMA that appear within a partitioned SCMMA
we need to constrain E to additionally include all variables V ∈ UA such that evaluation ofMA

additionally computes all variables needed as exogenous by other sub SCMs. Fig. 2 (right) shows an
exemplary sub SCM with X2 (green) chosen as a relevant aspect variable by the user, and X4, X5

being required by evaluations of subsequent SCM. Thus E′ = {X2, X4, X5}. Whether to consider
E or E′ depends on the standpoint of the user. From a computational perspective E′ is important as
it holds all variables that need to be computed by ρ. On the other hand, the set E captures aspects of
the SCM important to the user i.e., variables of interest. We will therefore refer to sub SCM with
ME′ (and in the same breath write ρE′ ) but useMA,E (see the following Def. 5) to retain the initial
set of variables chosen by the user. Having defined consolidated SCMME, partitioned SCMMA
and the required constraint on E we are now equipped with the tools to define a partially consolidated
SCM that yields a consistent PE with the base SCM.

Definition 5 (Partially Consolidated SCM) A partially consolidated SCMMA,E is a partitioned
SCMMA such that a subset of sub SCMMA are being replaced by consolidated SCMME′ where
E′

i := {Vi ∈ VA : (Vi ∈ E) ∨ (∃MA′ = (V′,U′,F′, I ′,P′
U′).Vi ∈ U′)}.

Algorithm 1 summarizes all considerations of this chapter, starting out from a subset E and partitionA
up to a (partially) consolidated SCMMA,E. An exemplary step-by-step application of the algorithm
can be found in Appendix D.3. The purpose of the argmin operation in Line 8 is to minimize
complexity of ρ′E′

i
by finding a minimal encoding. We discuss this step in more detail in the following

section. After formally introducing consolidation, we are ready to illustrate its applicability.

4 Compression of Causal Equations

Model consolidation can lead to compression by reducing the model’s graph structure and leveraging
redundant computations across equations. This may result in smaller, simpler models that are
computationally more efficient and easier to analyze. Compressing structural equations to a minimal
representation is highly dependent on the equations under consideration and probably incomputable
for most problems. As there is ultimately no way of measuring compressibility of SCM by only
considering their connecting graph structure, we provide a discussion with regard to some of the
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information-theoretical implications. Specifically, we discuss compression properties for some of the
basic structures appearing within SCM; namely chains, forks and colliders. In this section, we, first,
analyze how consolidated models may leverage redundant computations for reducing complexity
within chained equation in general. Second, we give a condition under which equations, and their
interventions can be dropped from the consolidation model altogether. Thirdly, we analyse how
interventions within the consolidated model affect our ability to compress equations. Lastly, we will
walk through two examples of model compression.

General compression of equation systems. Using our formalization of (partially) consolidated
SCM, we now have the chance to replace certain parts of an SCM with computationally simpler
expressions. The notion of what a ‘simple’ expression may be, varies depending on the application
and is subjective to the user. To define a measurable metric, we reside to a simplified notion of
complexity by measuring the representation length of our consolidated equations. We assume that
all structural equations of an SCM can be expressed in terms of elementary operators, where each
term contributes the same amount of complexity. As such, we can apply Kolmogorov complexity K
[Kolmogorov, 1963]. Then a desirable minimal representation of a structural equation f⋆i is one that
minimizes K(fi): f⋆i := argminf ′

i
K(f ′i) s.t.f ′i(pa(Xi)) = fi(pa(Xi)).

Classical marginalization reduces the number of variables in a graph. To keep the model consistent
after marginalization, all children B := ch(A) of a marginalized variable A additionally need to
incorporate the values of pa(A) to accommodate for the causal effects that where previously flowing
throughA into B. This modifies the structural equations of anyB ∈ B, f ′B := fB ◦fA, where fB and
f ′B are the structural equations of B before and after marginalization, respectively. Evaluation of the
separate equations fA, fB provides an upper bound on the complexity of the composed representation
K(f ′⋆B ) ≤ K(f⋆A) +K(f⋆B) [Zvonkin and Levin, 1970]. Since the consolidated system is not required
to compute A explicitly, the encoding length of f ′⋆B might resort to directly computing B from
the values of pa(A). Also, the chain rule for Kolmogorov complexity only considers the case of
reproducing fA and fB in their initial forms. In addition to that, we might also use semantic rules to
reduce equation length, e.g. by collapsing consecutive additions ∀a, b ∈ R.∃c ∈ R.a+ b = c and so
on. Whether consolidation actually leads to simplified equations depends strongly on the specific
equations and their connecting graph structure. No simplification effects occur in cases of already
minimal systems, while strong cancellation occurs in the case of fB , fA being inverses to each other
(see Appendix B.1). Lastly, we want to refer to Appendix B.2, where we showcase the insufficiency
of matrix composition to obtain minimal function representations in the case of linear systems.

Marginalizing child-less variables. Regardless of the particular causal graph structure, all equations
which do not affect PE′ can be removed from the model to reduce its overall complexity. In particular
we point out that PE′ is invariant to all X /∈ an(E′). By the following deduction we infer that
we can always consolidate all child-less variables (if not part of E′ themselves) fromM: ∀X ∈
X \E′ .[(ch(X) = ∅)⇒(∀X ′ ∈ X .X /∈ pa(X ′))⇒(∀X ′ ∈ X .X /∈ an(X ′))⇒X /∈ an(E′)].
Since child-less variables do not affect PE′ , we can not only consolidate but marginalize them.
(Reducing to the same scenario as in Rubenstein et al. [2017, Thm. 9]). Therefore, we are allowed to
drop interventions do(Xi = c) with Xi /∈ an(E′) from the set of allowed interventions. This process
can be applied repeatedly until we have pruned the SCM from all child-less variables irrelevant to E′.

4.1 Simplifying Graphical Structures

In contrast to marginalization, consolidation preserves the effects of interventions for consolidated
variables. This effectively adds conditional branching to every structural equation fi if some I ∈ I
with do(Vi = c) ∈ I exists:

Vi :=

{
c if do(Vi = c) ∈ I

fi(pa(Vi)) else
(1)

While conditional branching might prevent us from compressing equations, we consider that not all
variables might be affected by interventions. As such, we might be able to utilize local structures
within the graph to simplify equations. In the following we briefly discuss the possibilities of
simplifying chains, forks and collider structures within the graphs of SCMs:

Simplifying Chains. Consolidating chains of consequent variables corresponds to ‘stacking’ struc-
tural equations and computing the last non-consolidated variable directly. In the general case,
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Figure 4: Consolidating a real world mechanism. (Left) The causal time-series model of a milling
machine, representing tool length L, utilization U , sharpness S and accuracy A. (Center-Left)
Removing child-less nodes Lt and At and controlling for the parents Ut yields a simplified causal
structure. (Center-Right) Plots for the consolidated structural equation of S. Colored areas show the
effects of varying Ū by one and two sigma (±0.05, ±0.1) respectively. Dashed grey lines indicate
interventions, which are respected truthfully by the consolidated function. (Right) Marginalization,
likewise, simplifies the model, but does not allow us to investigate the effects of interventions.

conditional branching complicates the simplification of the stacked equations into a single closed-
form representation. When considering the case of marginalization, that is without considering
interventions, as done in Rubenstein et al. [2017], composition of equations turns into direct function
composition Xi := fi ◦ fi−1 ◦ fi−2 ◦ . . . . To this end, a complexity bound on chained equations
over finite discrete domains is discussed in Appendix B.3, as well as consolidation of the motivating
dominoes example in Appendix D.1.

Simplifying Forks. Consolidating the parent node B of a fork structure, A← B → C, might lead
to a duplication of fB into the equations of both child nodes, f ′A := fA ◦ fB , f ′C := fC ◦ fB . If
pa(B) ⊂ U, then A and C will be confounded by exogenous variables. This is the reason why we
did not require independence of exogenous variables in Def. 1. Still, consistency with the initial SCM
is guaranteed, since we require all structural equations to be deterministic. As a consequence, every
evaluation of the duplicated structural equations fB inside f ′A and f ′C yields the same value when
given the same inputs. While determinism of structural equations is formally required, we illustrate a
consistent reparameterization of non-deterministic models in Appendix C.

Simplifying Colliders. Colliders are the most promising graphical structures for simplifying equa-
tions. When consolidatingA andC of a colliderA→ B ← C, we might leverage mutual information
between fA and fC to simplify fB . Especially in the case of pa(A) = pa(C), considerA← X → C
for example, we might be able to discard fA and fC altogether and compute B directly from X .

4.2 Time Series Example: Tool Wear

We will now demonstrate a simple application of consolidation for a possibly more applied scenario.
Imagine that we want to create a causal model of an industrial unit under continuous use, e.g. a
milling machine. At the end of every work day the length L and sharpness S of the milling cutter are
measured. From these measurements other metrics such as the cutting accuracy A can be derived.
Interventions on the process are performed by grinding the cutter, ‘resetting’ it to a certain sharpness.
While every intervention grinds away some material, the weight and size changes are negligible for
the considered aspect of accuracy. Throughout our recordings we might encounter multiple such
interventions. From the data we fit a ‘classical’ SCM that models the time series on a day-to-day
basis, Vt−1 → Vt. We observe the tool to loose some percentage of its sharpness per day depending
on its utilization Ut. The intervention do(St = 1) resets the sharpness to a constant value, while
do(St = 1, Lt = 1) models a tool replacement. As by Def. 1, I needs to include do(Lt = 1), which
might be a recalibration of the machine. Figure 4 (left) shows the initial causal graph of the time
series model as defined by the following SCM:

M =



U = {Ut = N (0.5, 0.052)}
V = {Lt,St,At}
I = P({do(St = 1), do(Lt = 1.0), do(St = 1,Lt = 1)})

F =


fl(l, u) := (1.0− 0.002u)l

fst(st−1, u) := (1.0− 0.3u)st−1

fa(s) := 0.8s2
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ps1 := ‘coin’ if do(target_coin = 0) /∈ I else ‘flag’ ps3 := ‘finished’
ps2 := ‘finished’ if do(target_coin = 0) /∈ I else ‘flag’ ps4 := ‘finished’
ps1 := ‘coin’ ps3 := ‘finished’
ps2 := ‘finished’ ps4 := ‘finished’

(2)

(3)

Figure 5: Complex situations can be easy to understand using consolidation. Encoding the
behaviour of agents acting in game environments (left) often results in complex causal graphs (right;
indeed unreadable due to complexity. A readable version is contained in the Appendix). Even very
simple levels with a single agent, coin, power-up and enemy, entail causal graphs that are intuitively
non-interpretable. Especially the intertwining of game mechanics and agent behaviour complicates
the inference of the agents’ actual policy and makes it impossible to judge its performance. In our
example a suboptimal greedy policy is embedded within the causal graph, which can be made visible
using consolidation (bottom, Eq. (2)). Please note that ps abbreviates ‘planning_sequence’. In
contrast to marginalization (Eq. (3)), one can still intervene on the consolidated system.

Now, we might be interested in extracting a formula for the total tool sharpness St at an arbitrary
point in time t. Thus, our consolidation set consists of all St, E = {St}. Since Ut is exogenous, we
make the additional assumption that the utilization follows a normal distribution and we simplify
to the expected value ū = 0.5 (Figure 4, center-left). As laid out before, we can marginalize all
child-less variables Lt and At not part of E′. As all Lt are no longer part of ME′ , ψE′ maps
interventions do(St = st, Lt = lt) → do(St = st). Considering the unintervened case, structural
equation are now simplified via function composition, fSt := fSt ◦ . . . fS1 , which results in the
following equation fSt := (1 − 0.3 · 0.5)t = 0.85t. According to Eq. (1), we now have to inspect
interventions as potential candidates for conditional branching. All remaining interventions are of
the form do(St = 1.0). Applying an intervention at time t0 equals shifting the following equations
by the time of that last intervention t′ := t − t0. Finally, we arrive at the following consolidated
equation:

fS(t) := 0.85t−t0

where t0 = maxi{i | ∃ do(Si) ∈ I ∧ i ≤ t}

Fig. 4 (center-right) shows the resulting plot of the consolidated model under interventions do(S12 =
1) and do(S24 = 1). We successfully demonstrated the power of consolidation models for dynamical
system while preserving the ability to intervene. In theory more complex dynamical systems could be
consolidated. However, as these kind of self-referential models require a more involved discussion,
we kindly refer the reader to Bongers et al. [2018, 2021], Peters et al. [2022] for further considerations.

4.3 Revealing Agent Policy

In our second example we apply consolidation to a more complex causal graph relating the game
state of a simple platformer environment to the actions of an agent. See Appendix D.4 for the full
causal graph and structural equations. Throughout the level the agent ((1) in Fig. 5) can interact with
a coin ((2) in Fig.), a power-up (3), an enemy (4) and the finish flag (5) to accumulate a certain reward
(6) by doing so. The power-up is required to interact with the enemy. During play, the agent takes
the state of the environment as its input and outputs the state of ‘towards_coin’, ‘towards_powerup’,
etc. The order of the agent actions is then recorded via four ‘planning_sequence_i’ for i ∈ {1 . . . 4}
variables. A causal graph, like the one presented in Appendix D.4, might be extracted automatically
from observational data, or designed by an expert. Due to the sheer number of variables and
edges, dependencies in the obtained SCM are hard to trace. To get a better understanding, we use
consolidation to reveal the policy of our agent. We consolidate all endogenous variables except player-
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entity ‘distance’ and the ‘planning_sequence’ variables. To be able to modify the agents behaviour,
we allow interventions by forbidding the agent to target certain entities: I = P({do(target_coin =
0), do(target_enemy = 0), do(target_powerup = 0)}).
Like before, we consolidate equations considering the unintervened case, and then add back in
conditional branching for interventions to yield equations (2) in Figure 5. Contrary to the very
complex structure of the SCM, the consolidated equation reveals the actually very simple policy
of the agent. We find from the consolidated equation that the agent only collects the coin, if not
intervened upon, and then heads directly towards the flag. This insight might not be obvious from the
initial SCM and, at least, is difficult to spot a priori by looking at the unconsolidated equations. When
inspecting the original SCM more closely we find, that a constant factor is added to the calculation of
‘targeting_cost_powerup.’ This factor might serve to accommodate for the time lost when speeding
up or slowing down towards a target. Furthermore, we see that the agent pursues a greedy policy,
thus, never considering the overall higher reward of the power-up and enemy together. Instead the
policy ignores the power-up, due to its low reward and in consequence also never targets the enemy.
This behaviour not only leads to strong simplification of the SCM, but also allows us to discard the
imperfect policy, without the need to run possibly costly trials, just to come to the same conclusion.

To summarize, consolidation is a strictly more powerful operation than marginalization. More
examples and domains can be found in Appendix D.

5 Conclusions

Consolidation is a powerful tool for transforming SCMs, while preserving the causal aspect of
interventions. In addition, consolidating SCMs can lead to more general models. For example, recall
the tool wear example of Sec. 4.2. While the initial causal graph operates on discrete time steps our
consolidated function provides a continuous relaxation of the causal process. We can evaluate it at any
point in time t ∈ R and are no longer dependent on the day-to-day basis which was modeled by the
initial graph. Additionally, the consolidated equation of our motivating example of rows of dominoes
(compare Appendix D.1), yields a generalized formula that is independent of the actual number of
dominoes that compose the row, by making use of first-order quantifiers. In our discussion of Sec. 4
we saw that we can further benefit from consolidation in all cases where the initial SCM does not
already represent the smallest possible causal model. Lastly, these simplifications align with our goal
of making SCMs more interpretable. Consider that the initial domino SCM only provides a ‘local’
view on the system, by only providing equations for every individual stone, “If stone A falls it pushes
over stone B, except in the case of an intervention. If stone B falls, . . . ” and so on. The equation of
the consolidated SCM can be directly translated into a single natural language sentence, e.g. “The last
domino will fall, if the first domino is pushed over, except in the case of holding onto or pushing over
a stone along the way”, capturing the causal mechanisms of the system much more intuitively. Our
last example of Sec. 4.3 strikingly revealed the sub-optimal, greedy agent behaviour in a game setting.
While we illustrated examples that are well suited for consolidation, we are positively inclined to
expect consolidation to be helpful towards a broad range of applications.

Limitations and Broader Impact. Throughout the paper we considered exact consolidations, in
that Def. 2 requires strict equality between ρE(U, I) and PI

E. This assumption might be met in
logic and idealized scenarios, but may hinder consolidation of SCM in other applications due to
noise inherent to the system. The definition might be relaxed by allowing for small deviations of ρE
from the distribution of the unconsolidated SCM. Thus, relaxing the strict equality PXI

E
= PI

E with
|PXI

E
−PI

E | < ϵ for some small ϵ > 0, provides a relaxed consolidation constraint for noisy systems.
SCM constitute a well suited framework for representing causal knowledge in the form of graphical
models. The ability to trace effects through structural equations that yield explanations about the
role of variables within causal models is required to make results accessible to non-experts. Actual
causation, and only recently, causal abstractions and constrained causal models have come to attention
in the field of causality [Halpern, 2016, Zennaro et al., 2023, Beckers and Halpern, 2019, Blom
et al., 2020] and might be beneficial for future works on consolidation. Apart from computational
advantages, consolidation of SCMs presents itself as a method that enables researchers to break down
complex structures and present aspects of causal systems in a broadly accessible manner. Without
such tools, SCMs run the danger of being only useful to specialized experts.
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Supplementary Material
“Do Not Marginalize Mechanisms, Rather Consolidate!”

A Evaluation of Partitioned SCM

A partitioned SCMMA consists of several sub SCMMA, that, in sum, cover all variables and
structural equations of an initial SCMM. Thus, evaluation of a partitioned SCM yields the same set
of values v ∈ V as the originalM. Similar to the evaluation of structural equation in the initialM,
sub SCM need to be evaluated in a specific order to guarantee all u ∈M′

U exist. As such, sub SCM
can be considered multivariate variables that establish another high-level DAG. The evaluation order
is determined via the relation RX as defined in Sec. 3.1 and depends on the graph partition A and the
order of X imposed by the the initial SCM.

Algorithm 2 Evaluation of partitioned SCM

1: procedure PARTITIONEDSCMEVAL(MA,u, I)
2: x← u ▷ x will gradually collect all values x ∈ X ofM
3: for A in sort(A,RX) do ▷ Sort clusters by strict partial order imposed byM
4: M′

A ←M
′
A′ ∈MA whereA′ = A

5: u′ ← {xi ∈ x |Xi ∈M′
U}

6: I′ ← ψA(I)

7: v =M′ I′
A (u′)

8: x = x ∪ v
9: end for

10: v = {xi ∈ x |Xi ∈M′
V} ▷ Filter all u ∈ U to get v ∈ V

11: return v
12: end procedure

Algorithm 2 shows the evaluation of partitioned SCM, whereMA is the partitioned SCM we want to
evaluate, u are the values of exogenous variables to the initial modelM and I is the set of applied
interventions. The outcomes of sub SCM that are not related via RX are invariant to the evaluation
order among each other. Even though RX defines the ordering of sub SCM only up to some partial
order, sort(A,RX) can pick any total ordering that is valid with RX.

Proof 1 (Consistency of Partitioned SCM Evaluation) Evaluations ofM′
A every, in step 7, com-

pute all variables Vi ∈ A by evaluating fi of the original SCM, yielding the same values as the
evaluation of A inM. Therefore PM′

A
= PMA

. By Def. 4 every variable V ∈ V is contained
within some sub SCMM′

A. The evaluation of PartitionedSCMEval is complete, in the sense that
all V =

⋃
A =

⋃
A∈A A are evaluated, as the evaluation of allM′

A ∈ MA is guaranteed by
iterating over all A in step 2. Finally PM′

A
=

⋃
A∈A PM′

A
=

⋃
A∈A PMA

= PMV
.

B Complexity reduction in function composition

Reduction of encoding length might vary depending on the type and structure of the equations under
consideration. No compression of structural equation is gained when the system of consolidated
equations is already minimal. Compression of equation to an identity function is showcased in the
following.

B.1 Compression of chained inverses

Reduction to constant complexity for the unintervened system is reached in the case of fB = f−1
A .

Consider the equation chain of X → A → B with A getting marginalized. Immediately f ′B :=

fB ◦ fA = f−1
A ◦ fA = Id follows. Therefore, B := X , which is a single assignment of the value(s)

of X into B. Remaining complexity within the consolidated function is then only due to conditional
branching in cases of do(A = a), do(B = b) ∈ I.
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B.2 Matrix composition is not sufficient for compressing equations

The operation of matrix multiplication, as a way of expressing composition of linear functions, stays
within the class of matrices. Matrix multiplication, therefore, serves as a possible candidate to be
considered when consolidating equations and reducing the encoding length of a linear structural
systems. When written down an a ‘high-level’ view, matrices can expressed in terms of single
variables A,B ∈ RM×N and matrix multiplication × : RM×N × RN×O → RM×O. Assuming
equations fY := A × X and fZ := B × X , we can reduce the length of the composed equation
f ′Z := A × B × X by multiply the matrices A and B together, fi = C × X with C = A × B.
While we effectively reduced the number of high-level symbols written in the equation, we are hiding
computational complexity in the structure of the matrix C. The following simple counterexample
demonstrates a situation where the size, as well as, the number of non-zero entries even increases:

C A B[
0 1 1
0 1 1
0 1 1

]
=

[
0 1
0 1
0 1

]
×

[
0 0 0
0 1 1

]
Thus, proving that pure matrix multiplication, is not suitable to keep, or even minimize, the size of
composed function representations.

B.3 Compression over Finite Discrete Domains

Consolidation may reduce the number of variables within a graph, but burdens the remaining equations
with the complexity of the consolidated variables. Without the need to explicitly compute values of
consolidated variables, we might leverage cancellation effects to simplify equations, as outlined in
the main paper. In terms of compression, no guarantees can be given in the general case. However,
we will now show, that the often considered case of chained maps between finite discrete domains
simplifies or at least preserves complexity.

The cardinality of the image of a deterministic function f : X → Y between two finite discrete sets
X , Y is bounded by the cardinality of its domain: | Img(f)| ≤ |Dom(f)| ≤ |X |, where Img(f) is
the image and Dom(f) the domain of f . In particular, the strict inequality | Img(f)| < |Dom(f)|
holds for all non-injective maps. Function composition may further reduce the ‘effective’ domain
Domeffective(f) of a function, by only considering values of the image of the previous map as
inputs to the next function. In contrast considering to all possible values of X in the case of the
non-composed map, the image of the previous function may only be a subset of X . Therefore,
f2 ◦ f1⇒| Imgeffective(f2)| ≤ |Domeffective(f2)| = | Img(f1)| ≤ |Dom(f1)|. In particular, the
effective image of a composition chain fn ◦ · · · ◦ f1 is bounded by the function with the smallest
image: | Imgeffective(fn ◦ · · · ◦ f1)| ≤ min | Img(fi)|. Thus, equation chains over finite discrete
domains strictly preserve or reduce the effective size of the image, allowing for a possibly simpler
combined representation in comparison to representing the functions individually.

C Reparameterization of non-deterministic structural equations.

Consolidation of structural equations might lead to duplication of non-deterministic terms within
consolidated systems. For example when consolidating fork structures (compare to Sec. 4.1). Without
further precautions, different values might be sampled from the duplicated non-deterministic equa-
tions. An example where consolidating a variable B with a non-deterministic equation fB (indicated
by a squiggly line) leads to inconsistent behaviour is shown in 6. InM1, C and D both copy on the
value of B. Therefore, c = d yields always.M1′ shows a graph where B is consolidated fromM1.
As a result the non-deterministic equation fB is duplicated into the equations of C and D, such that
fC := Bern(A) and fD := Bern(A). Within the consolidated modelM1′ different values might be
be sampled from the different noise terms Bern(A) in fC and fD. Consequently c ̸= d might occur
inM1′ . To obtain consistent behaviour with the initialM1, we need to ensure agreement about the
value of Bern(A) across all instances of the duplicated equation. To do so, we reparameterizeM1

and explicitly store a fixed value, sampled from Bern(A), into a new exogenous variable R. The
equation fB is then reparameterized into a deterministic structural equation taking the variable R as
an additional argument, resulting inM2. When consolidating B withinM2, all instances of fB now
yield the same value, as the noise term is fixed via R and finally PM′

2
= PM1

.
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Figure 6: Reparameterization of non-deterministic models. The SCM M1 contains a non-
deterministic equation B := Bern(A) (marked with a squiggly line). With C := B and D := B,
M1 always yields C = D. Simply consolidating (or marginalizing) B creates a modelM1′ with
C := Bern(A) and D := Bern(A), such that possibly C ̸= D. Reparameterizing fB by introducing
an exogenous random variable R := U(0, 1) and B := A < R, yields the SCM M2 with only
deterministic equations. Consolidating (or marginalizing)B inM2 leads toM2′ where C := A < R
and D := A < R, thus always C = D.

D Consolidation Examples

In this section we show further detailed applications of consolidation. Section D.1 presents the worked
out consolidation of the dominoes motivating example of the paper, with regard to generalizing
abilities of consolidates models. Section D.2 considers consolidation of the classical firing squad
example. In contrast to the other examples, we focus on consolidating graphs with multiple edges
in the causal graph. Lastly we provide the causal graph and structural equations of the game agent
policy discussed in the main paper, in Section D.4.

D.1 Motivating Example: Dominoes

While we applied consolidation to a particular SCMs in the main paper, we will discuss the motivating
example with focus on obtaining representations that cover generalize over populations of SCM. We
demonstrate this on the particular example of a rows of dominoes, as a simple SCM with highly
homogenous structure. Regardless of whether the SCM is obtained by using methods for direct
identification of causal graphs from image data, as presented by Brehmer et al. [2022], or abstracting
physical simulation using τ -abstractions [Beckers and Halpern, 2019]; we assume to be provided
with a binary representation of the domino stones. The state of every domino Si indicates whether
it is standing up or getting pushed over. In this case, the structural equations for all dominoes are
the same: fi := Si−1. As a result tipping over the first stone in a row will lead to all stones falling.
Also, we are only interested in the final outcome of the chain. That is, whether the last stone will
fall or not (E = {Sn}). Again, we use consolidation to collapse the structural equations in the
unintervened case: Sn := fn ◦ · · · ◦ f1 := S1. We consider a single active allowed intervention of
holding up any of the dominoes or tipping it over, I = {do(Si = 0), do(Si = 1)}. Upon evaluation,
the unconsolidated model needs to check for every domino if it is being intervened or not, requiring
n conditional branches. Using the fact that perfect interventions ‘overwrite’ the variable state for the
following dominoes, we introduce a first order quantifier that handles all intervention in a unified way.
Finally, by combining the formulas of the intervened and unintervened case, we find the following
simple equation:

Sn :=

{
xi if ∃ do(Si = xi) ∈ I

S1 else

The resulting equation no longer has a notion of the actual number of dominoes and, in fact, it is
invariant to it. We realise that introducing the first-order for-all ∀ and exists ∃ quantifiers allows for a
unified representation of arbitrary chains of dominoes. Similar observations are discussed in Peters
and Halpern [2021] and Halpern and Peters [2022] which introduce generalized SEM (GSEM). As
intermediate the equations are no longer computed explicitly, the structural equations of consolidated
models for different row lengths only differ in the set of allowed interventions I. That is, for a
row of three domino stones I = {do(V1 = v1), do(V2 = v1), do(V3 = v1)}, while for four stones
the additional do(V4 = v1) is defined. As set out in the introduction of this paper, we consider
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fB(A) :=

{
0 if A ≤ 5

1 if A > 5

fC(B) :=


true if B = 0

false if 0 ≤ B ≤ 10

true otherwise

fE(A) := A%5 = 0

fF (A) := A%10 = 0

fG(E,F ) := E ∧ F
fD(C) := ¬C
fH(C,G) := C ∨G

Figure 7: Example SCM for the Application of CONSOLIDATE. The figure shows a toy SCM for
demonstrating application of the CONSOLIDATE algorithm. Consider the following SCM with its
structural equations and resulting graph (endogenous variables are B,C,D,E, F,G,H with only
one exogenous A with each structural equation highlighted on the r.h.s., note that the subscript on
f_ denotes the variable to be determined e.g. B ← fB(A)). In the first step, the algorithm’s user
decides on a partition. Let’s consider for instance the following partition i.e., allowed intervention
and consolidation sets: A = {{E,F,G}, {B,C}, {D,H}};E = {C,F,H}; I = {{do(D =
true)}, {do(D = false)}, {do(G = false)}}.

consolidation as a tool for obtaining more interpretable SCM. Towards this end, consolidation might
help us in detecting similar structures within an SCM. Doing so eases understanding of causal systems,
as the user only has to understand the general mechanisms of a particular SCM once and is then able
to apply the gained knowledge to all newly appearing SCM of the same type.

D.2 Firing Squad Example

While the dominoes and tool wear examples where mainly considering the consolidation of sequential
structures, we want to briefly demonstrate the consolidation of structural equations that are arranged
in a parallel fashion. We consider a variation of the well known firing squad example [Hopkins
and Pearl, 2007] with a variable number N of rifleman. A commander (C) gives orders to rifleman
(Ri, i ∈ {1 . . . N}), which shoot accurately and the prisoner (P ) dies. For the sequential stacking
of equations we found that interventions exert an ‘overwriting’ effect. That is, every intervention
fixes the value of a variable, making the unfolding of the following equations independent of
all previous computations. To yield a similar effect for parallel equations we need to block all
paths between the cause and effect. In this scenario, this can easily be expressed by using an
all-quantifier. When consolidating the SCM, we consider only the captain C and prisoner P ,
E = {C,P}, while allowing for any combination of interventions that prevent the rifleman from
shooting I = P({do(Ri = 0)}i∈{1...N}). After consolidation, we obtain the following equation:

P :=

{
lives if C = 0 ∨ (∀Si. do(Si = 0) ∈ I)

dies else

As with the dominoes example, we are again in a situation where the consolidated equation intuitively
summarizes the effects of individual: “The prisoner lives if the captain does not give orders, or if all
riflemen are prevented from shooting”.

D.3 Step-by-step CONSOLIDATE Application

In this section we provide a step-by-step application of the CONSOLIDATE algorithm given in
Algorithm 1. Consider the SCM shown in Figure 7 with its structural equations and resulting graph.
The endogenous variables are B,C,D,E, F,G,H with only one exogenous A. Structural equation
are highlighted on the right-hand side. Note that the subscript on fx denotes the variable to be
determined e.g. B ← fB(A)).

In a first step, the algorithm’s user has to decide on a suitable partition. Consider for instance the
following partition (indicated by dashed lines in the figure), the following allowed intervention and
consolidation set:

A = {{E,F,G}, {B,C}, {D,H}}
I = {{do(D = true)}, {do(D = false)}, {do(G = false)}}
E = {C,F,H}
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The following example presents a step-by-step application of the CONSOLIDATE algorithm for the
cluster A1 = {E,F,G}:

Step 3: E1 ← {E,F,G} ∩ {C,F,H} = {F}
Step 4: E′

1 ← {F} ∪ (pa(V \ {E,F,G}) ∩ {E,F,G})
= {F} ∪ ({A,B,C,G} ∩ {E,F,G}) = {F,G}

Step 5: UA1
← pa({E,F,G}) \ {E,F,G} = {A,E, F} \ {E,F,G} = {A}

Step 6: IA1
← {{do(Xi = v) ∈ I : Xi ∈ {E,F,G}} : I ∈ I} = {{do(G = false)}}

Step 7: ρE′
1
← {fE(A) := A mod 5 = 0;

fF (A) := A mod 10 = 0;

fG(E,F ) := E ∧ F}
Step 8: ρ⋆E′

1
← argminK(ρE′

1
) = {

ρF (A) := A mod 10 = 0;

ρG(F, IA1
) := F ∧ (do(G = false) /∈ IA1

)}
Step 9: MA1,E ← ({F,G}, {F}, ρ⋆E′

1
, {{do(G = false)}}, PA)

Note how computing fE is no longer required. In a similar fashion, equations in A2 resemble a chain
that can be composed: fC ◦ fB (previously called ’stacked’; cf. Sec. 4.1). Since |Img(fB)| = 2, at
least one of the three conditions of fC (since fC is a 3-case function) will be discarded. (Eventually
yielding ρ⋆E′

2
←{ρC(A):=A ≤ 5}). As D is not in E and not required by any other sub SCM it can

be marginalized. A3 then reduces to ρ⋆E′
3
←{ρH(C,G) := C ∨G}.

D.4 Revealing Agent Policy: Causal Graph and Equations

In this section we explicitly list the structural equations representing observed interactions between a
platformer environment and a possible rule based agent. The resulting causal graph is shown in Fig.8
at the end of the appendix. Except for the parentless variables ‘coin_reward’, ‘powerup_reward’,
‘enemy_reward’, ‘flag_reward’, ‘player_position’, ‘position_coin’, ‘position_powerup’, ‘posi-
tion_enemy’, ‘position_flag’ and ‘target_flag’, which are exogenous and determined by the en-
vironment, all variables are considered endogenous:

player_position, position_coin, position_powerup, position_enemy, position_flag ∈ [0..1]2

coin_reward := 3; powerup_reward := 1; enemy_reward := 9;flag_reward := 2

With X in {coin, powerup, enemy,flag} :
distance_X := ∥position_X − player_position_X∥2
near_X := distance_X < 3.0

targeting_cost_X := 1.0 + 0.5× distance_X
target_coin := targeting_cost_coin < enemy_reward
target_powerup := targeting_cost_powerup < powerup_reward
target_enemy := targeting_cost_enemy < enemy_reward ∧ powered_up
target_flag := True
powered_up := target_powerup

towards_coin := target_coin ∧ coin_reward > max({X_reward|target_X}X∈{powerup,enemy,flag})

towards_powerup := target_powerup ∧ powerup_reward > max({X_reward|target_X}X∈{coin,enemy,flag})

towards_enemy := target_enemy ∧ enemy_reward > max({X_reward|target_X}X∈{enemy,powerup,flag})

towards_flag := target_flag ∧ flag_reward > max({X_reward|target_X}X∈{coin,powerup,enemy})

jump := near_enemy ∧ ¬powered_up
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planning_sequencei :=



finished if towards_flag ∧ (flag ∈
i−1⋃
j=1

planning_sequence_j)

coin if towards_coin ∧ (coin /∈
i−1⋃
j=1

planning_sequence_j)

powerup if towards_powerup ∧ (powerup /∈
i−1⋃
j=1

planning_sequence_j)

enemy if towards_enemy ∧ (enemy /∈
i−1⋃
j=1

planning_sequence_j)

flag if towards_flag ∧ (flag /∈
i−1⋃
j=1

planning_sequence_j)

finished else
score := 20− time_taken

+ coin_reward if coin ∈ planning_sequencei
+ powerup_reward if powerup ∈ planning_sequencei
+ enemy_reward if enemy ∈ planning_sequencei ∧ powerup ∈ planning_sequencei
+ flag_reward if flag ∈ planning_sequencei

E Mathematical symbols and notation

The following table contains mathematical functions and notation used throughout the paper.

Notation Meaning
X; X A (set of) variable(s).
x; x Value(s) of X;X.
Xi The i-th variable of X.
XS The subset {Xi : i ∈ S} of X.
PX A probability distribution over variables X.
x ∼ PX A value x sampled from a distribution over X .
P(·) The power set.
f ◦ g Function composition, (f ◦ g)(x) = f(g(x)).∏

Xi∈X Xi N-ary Cartesian product over the domain of X.
∥·∥2 l2 vector norm.
U(a, b) Uniform Distribution.
N (µ, σ2) Normal Distribution.
Bern(p) Bernoulli distribution; Takes value 1 with probability p and 0 otherwise.
PM Probability distribution over the SCMM.
PI
M Probability distribution over the SCMM under intervention I.

Vi An endogenous variable of an SCMM.
Ui An exogenous variable of an SCMM.
fi Structural equation of the variable Xi.
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