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ABSTRACT

Reinforcement learning (RL) has become central to enhancing reasoning in large
language models (LLMs). Yet on-policy algorithms such as Group Relative Policy
Optimization (GRPO) often suffer in early training: noisy gradients from low-
quality rollouts lead to unstable updates and inefficient exploration. We introduce
Slow-Fast Policy Optimization (SFPO), a simple yet efficient mechanism to address
the above limitations via decomposing each iteration into three stages: a short fast
trajectory of inner steps on the same batch, a reposition step to control off-policy
drift, and a final slow correction. This reposition-before-update design preserves
the objective and rollout process unchanged, making SFPO plug-compatible with
existing policy-gradient pipelines. Extensive experiments demonstrate that SFPO
consistently improves stability, reduces number of rollouts, and accelerates conver-
gence of reasoning RL training. Specifically, it outperforms GRPO by up to 2.80
points on math reasoning benchmarks. It also achieves up to 4.93× fewer rollouts
and a 4.19× reduction in wall-clock time to match GRPO’s best accuracy.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress on complex multi-step
reasoning tasks, especially in mathematics problem solving and scientific question answering (OpenAI
et al., 2024; DeepSeek-AI et al., 2025b). A central driver of these advances has been reinforcement
learning (RL), which fine-tunes LLMs using reward signals tied to semantic correctness and solution
quality. For example, DeepSeekMath (Shao et al., 2024) demonstrates that Group Relative Policy
Optimization (GRPO) can substantially improve open-source LMs on mathematical reasoning, while
DeepSeek-R1 (Guo et al., 2025) shows that RL signals alone can induce emergent reasoning behaviors
across various domains.

Despite these successes, GRPO inherits structural inefficiencies that make training fragile in the con-
text of LLM reasoning. During the early stages of training, when rollouts are weak or uninformative,
stochastic rewards induce high-variance gradients that destabilize updates. Prior studies corroborate
this issue: early rollouts often fail to provide useful signals (Zheng et al., 2025), reward shaping can
trigger sudden collapse (Dai et al., 2025), and noisy group normalization further impairs learning
under imbalanced responses (Shen et al., 2025). Although group normalization partially mitigates
variance, GRPO still applies only a single gradient update per batch, discarding information that
multiple inner steps could exploit (Schulman et al., 2017; Engstrom et al., 2020). As a result, sample
efficiency remains low and early exploration highly brittle, with progress overly sensitive to noise
and rollout quality in LLM reasoning tasks.

In this work, we introduce Slow–Fast Policy Optimization (SFPO), a simple yet efficient mechanism
that augments on-policy policy-gradient methods such as GRPO while keeping the loss, rollout
collection, and KL/clip regularization intact. Each iteration is restructured into three coordinated
stages: (i) fast—multiple inner updates on the same batch to stabilize the search direction; (ii)
reposition—interpolation back toward the starting point to control off-policy drift; and (iii) slow—
an extra gradient correction to align with local curvature. This reposition-before-update design
transforms noisy one-shot updates into structured trajectories, yielding more stable optimization,
higher sample efficiency, and faster convergence. We summarize our contributions as follows:

• We propose SFPO, a plug-compatible update rule that reuses rollout batches via a
fast–reposition–slow decomposition, with theoretical insights for each stage.
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Figure 1: Pipeline of SFPO at iteration s. Starting from the current policy πθs,0 , we first generate
rollouts for training. Stage I (Fast Trajectory): apply K successive gradient updates on the same
batch to obtain θs,K . Stage II (Reposition): interpolate between θs,K and the starting point θs,0 to
form θ̃s,K , controlling off-policy drift. Stage III (Slow Correction): perform one additional update
on θ̃s,K , yielding πθs+1,0 for the next iteration.

• SFPO introduces no changes to the underlying objective, rollout generation, or regularization,
enabling drop-in integration into existing LLM reasoning pipelines.

• Through extensive experiments on math reasoning benchmarks, we show that SFPO consis-
tently improves stability, sample efficiency, and convergence speed over GRPO.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a policy gradient method that
has been widely applied in large-scale LLM training pipelines. GRPO dispenses with an explicit value
function and instead normalizes rewards across a group of responses to the same prompt. Given an
input q, the policy πθ generates G candidate sequences {oi}Gi=1 with corresponding rewards {ri}Gi=1.
The normalized advantage for each candidate is defined as

Âi =
ri−mean({ri}G

i=1)

std({ri}G
i=1)

. (1)

This group-based normalization can be interpreted as a form of reward shaping: by emphasizing
relative differences among candidate sequences for the same input, GRPO strengthens the reliability of
the gradient signal. Instead of embedding a KL penalty inside the reward, GRPO directly regularizes
the policy by including an explicit KL term between the learned policy and a reference policy. The
training objective is

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold

(O|q)

1
G

G∑
i=1

1
|oi|

|oi|∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− βDKL[πθ∥πref ] (2)

where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the token-level importance ratio between the new and old policies,
ϵ is the clipping range that prevents overly aggressive updates, β controls the KL regularization
strength, and πref is a fixed reference policy. Here, q denotes the input prompt, oi a generated
sequence, and oi,t its t-th token.

Limitations of GRPO. Despite its popularity, GRPO inherits structural drawbacks from the
underlying on-policy update rule. At each iteration, the parameters are updated via a single stochastic
gradient step estimated from a batch of rollouts. The randomness of rewards leads to high-variance
gradient estimates, making updates unstable. Group normalization partially dampens this effect but
remains sensitive to fluctuations within each batch. Moreover, restricting each batch to a single
update discards potentially useful gradient information across inner steps, leading to inefficient data
use and limited variance reduction. These drawbacks underscore the need for an update mechanism
that can stabilize gradient directions while making more effective use of available samples.
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Algorithm 1 SFPO: unified fast–reposition–slow update.
Require: Initial policy πθ0,0 , dataset D, hyperparameters S,K, α0, η, ω, τ , loss L(θ)

Initialize rolling bufferH ← ∅, stats (µ, σ)← (0, 1), trigger index s⋆ ← +∞
for s = 0, 1, . . . , S − 1 do

Generate rollouts with the current policy πθs,0 on prompts from D.
α← α0 · 1[ s < s⋆ ] // Set α for this iteration from past trigger (non-anticipatory)
if α = 0 then

θ̃s,K ← θs,0 // Skip fast trajectory & reposition
else

for k = 0, 1, . . . ,K − 1 do
θs,k+1 ← θs,k − η∇θL(θs,k) // Stage I: Fast Trajectory

end for
θ̃s,K ← θs,0 + α

(
θs,K − θs,0

)
// Stage II: Reposition

end if
θs+1,0 ← θ̃s,K − η∇θL(θ̃s,K) // Stage III: Slow Correction
Compute entropy Hs; update rolling bufferH (keep last ω ones) and (µs, σs).
Zs ← Hs−µs

σs+ε (ε for numerical stability)
if s⋆ = +∞ and |Zs| ≥ τ then
s⋆ ← s+ 1 // will set α = 0 for all future s′ ≥ s⋆

end if
end for
return final policy πθS,0

3 METHOD

To address the instability and inefficiency of one-shot policy updates, we propose Slow-Fast Policy
Optimization (SFPO), a simple yet general update mechanism that reuses rollouts more effectively
while remaining plug-compatible with standard on-policy policy gradient algorithms. Each iteration
consists of three stages: (i) a fast trajectory of multiple inner updates on the same batch, (ii) a
reposition step that interpolates back toward the on-policy point to control drift, and (iii) a slow
correction via an extra-gradient update. As illustrated in Fig. 1 and Alg. 1, this fast–reposition–slow
design transforms noisy one-shot updates into well-structured update trajectories, yielding more
stable optimization and higher sample efficiency without additional rollouts.

Notation. To align with standard gradient-based optimization notation, we define L(θ) = −J (θ), so
that maximizing the objective J is equivalent to minimizing the loss L.

3.1 STAGE I: FAST TRAJECTORY

In standard on-policy policy-gradient methods such as GRPO, each outer iteration is updated by a
single stochastic gradient:

θs+1 = θs − η∇θL(θs), (3)
where ∇θL(θs) is estimated from one batch of rollouts. Such one-shot updates suffer from high
variance and often drive the policy in unstable directions, especially during early training. SFPO
mitigates this by performing multiple inner updates on the same batch or rollouts.

Formally, starting from parameters θs,0 at the beginning of iteration s, we execute a short fast
trajectory of K inner updates:

θs,k+1 = θs,k − η∇θL(θs,k), k = 0, . . . ,K − 1. (4)

This produces a sequence θs,0 → θs,1 → · · · → θs,K , where each step refines the gradient direction
using the same rollout data.

Intuition. Unlike one-shot updates that rely on a single noisy gradient, the displacement

θs,K − θs,0 = −η
K−1∑
k=0

∇θL(θs,k) (5)

3
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captures the cumulative effect of K sequential corrections. Even if some individual steps are perturbed
by noise, their composition tends to damp idiosyncratic fluctuations and align with the underlying
gradient direction. Geometrically, this can be viewed as integrating the local gradient field along a
short trajectory in parameter space rather than trusting a single noisy vector at θs,0. As a result, the
update direction at the end of Stage I is typically more stable and less sensitive to randomness in any
single gradient estimate.

Compact Mathematical Intuition. Let θk := θs,k and consider the K inner steps θk+1 =
θk − η∇L(θk) starting at θ0 = θs,0. In a small neighborhood, linearizing the gradient field,
∇L(θ) ≈ g0 + H0(θ − θ0) with g0 = ∇L(θ0) and H0 = ∇2L(θ0), yields the closed-form
displacement

θK − θ0 ≈ −
[
I − (I − ηH0)

K
]
H†

0 g0, (6)

where H†
0 denotes the (pseudo)inverse on the range of H0 (the λ→0 case is understood by continuity).

Spectrally, along an eigen-direction with curvature λ ≥ 0, the scalar gain is
(
1− (1− ηλ)K

)
/λ: for

small λ it behaves like Kη (steadily accumulating progress in gentle directions), while for larger λ it
saturates below 1 (damping stiff-direction oscillations). Thus the fast trajectory acts as a curvature-
aware low-pass filter that stabilizes the endpoint direction relative to a one-shot step. We use this as
local intuition under a sufficiently small step size (e.g., η < 1/∥H0∥2) and in neighborhoods where
positive-curvature directions dominate; in practice, KL/clip regularization and Stage II reposition
mitigate adverse effects of negative curvature.

3.2 STAGE II: REPOSITION

While the fast trajectory of Stage I improves stability, it also changes the nature of the update from
on-policy to off-policy. Since all inner steps θs,1, . . . , θs,K reuse the same rollouts generated at
θs,0, the endpoint θs,K no longer corresponds to the distribution that produced those samples. This
distribution mismatch is a fundamental drawback of off-policy learning, as it biases gradient estimates
and can destabilize training.

Inspired by Lookahead Optimization (Zhang et al., 2019), SFPO introduces a reposition step that
interpolates the fast trajectory back toward its starting point:

θ̃s,K = θs,0 + α(θs,K − θs,0), α ∈ [0, 1]. (7)

Here α regulates the degree of off-policy drift: smaller values keep the update close to the original
on-policy iterate, while larger values rely more on the fast trajectory at the risk of greater mismatch.

Intuition. The interpolation is equivalent to solving a linearized proximal subproblem around θs,0:

min
θ

〈K−1∑
k=0

∇θL(θs,k), θ − θs,0
〉
+ λ

2 ∥θ − θs,0∥2, (8)

whose unique solution coincides with θ̃s,K for λ = 1
αη . Thus, α acts as an implicit trust-region

radius: smaller α implies a larger proximal weight λ, enforcing stronger contraction toward the
on-policy point. 1

3.3 STAGE III: SLOW CORRECTION

After repositioning, SFPO applies one more (slow) correction step at the interpolated point:

θs+1 = θ̃s,K − η∇θL(θ̃s,K). (9)

This yields a predictor—corrector structure: Stage I produces a stabilized fast trajectory, Stage II
tempers off-policy drift via reposition, and Stage III applies a slow correction aligned with the local
curvature at the update point.

1A heuristic alternative is obtained if one replaces
∑

k ∇θL(θs,k) by the averaged gradient ḡ and uses the
approximation θs,K − θs,0 ≈ −ηK ḡ, leading to λ ≈ 1/(αηK).
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Theoretical intuition. Under L-smoothness and sufficiently small η, the descent lemma implies

E[L(θs+1)] ≤ L(θs,0)− c η∥∇L(θs,0)∥2 +O
(
η2L · F(K,α)

)
, (10)

where F(K,α) represents the combined effect of Stage I (fast trajectory length K) and Stage II
(reposition factor α). Intuitively, F(K,α) reflects a balance between exploiting more gradient
information and controlling distributional drift: increasing K leverages the same rollout data across
multiple steps but also amplifies off-policy mismatch, while larger α interpolates more aggressively
toward the fast trajectory at the risk of greater instability. In practice, since increasing K raises both
wall-clock cost and F(K,α), we adopt small K with moderately large α, while the slow correction
in Stage III mitigates overshooting and preserves progress along the stabilized trajectory direction.

3.4 SCHEDULING α

A nonzero α is essential to exploit the stabilized fast trajectory when K > 0: if α = 0, the reposition
collapses to θs,0 and the fast trajectory is discarded, eliminating the benefit of Stage I. However,
the same aggressiveness that helps early can be counter-productive near a minimizer. When ∥∇L∥
is large, a nonzero α accelerates progress by moving along the stabilized fast direction; but as we
approach a minimum, the signal weakens while curvature and stochastic noise dominate, so a large α
amplifies drift and instability. This motivates an adaptive schedule for α.

Why adapt α rather than K? K controls both stabilization and wall-clock runtime: increasing K
reduces oscillations but incurs proportional compute cost, making mid-training changes impractical.
By contrast, α is a soft trust parameter: it decides how much of the stabilized fast trajectory is
exploited, without changing runtime or discarding the already-computed K steps. Thus α is the
natural lever to adapt dynamically.

Adaptive rule in practice. In our implementation, α is scheduled online at each iteration. After
generating rollouts with the current policy, we compute the policy entropy Hs and maintain a rolling
buffer of the past ω entropy values (window size ω). Let µs and σs denote the mean and standard
deviation within this buffer. We define the one-sided z-score

Zs =
Hs−µs

σs
. (11)

If |Zs| ≥ τ for a threshold τ , we mark the current step s⋆ and set α = 0 for all s ≥ s⋆. Otherwise we
keep α = α0. Intuitively, sharp entropy fluctuations signal that the policy is close to a local optimum
where noise dominates, so interpolation should be disabled. This entropy-triggered schedule exploits
the fast trajectory in the high-signal early phase, while reverting to pure on-policy updates near
convergence for stability.2

3.5 UNIFIED SFPO UPDATE

Collecting the three stages, the unified SFPO update for each step s is:

θs+1 = θs,0 − η
[
α

K−1∑
k=0

∇θL(θs,k)︸ ︷︷ ︸
fast trajectory & reposition

+ ∇θL(θ̃s,K)︸ ︷︷ ︸
slow correction

]
, (12)

As shown in Alg. 1, SFPO unifies the three stages into a single update rule and serves as a plug-
compatible drop-in replacement for on-policy policy-gradient methods such as GRPO. Our exper-
iments show that this structural change consistently improves stability and sample efficiency on
diverse math reasoning benchmarks, with minimal engineering overhead.

2Although a decaying schedule on α could be a formal solution, we find little empirical difference, as shown
in Fig. 7 of Sec. 5. Hence, for simplicity and efficiency, we downgrade SFPO to GRPO once the iteration reaches
s ≥ s⋆.

5
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Table 1: Performance on math reasoning benchmarks with DAPO and Math training dataset.
Model Method Math-500 AIME24 AIME25 AMC Minerva Olympiad Avg

Qwen2.5-Math-1.5B
Base 55.55 9.17 5.83 37.65 17.74 28.45 25.73
GRPO 77.15 16.67 11.67 53.31 31.89 39.42 38.35
SFPO 78.35 20.00 15.00 56.02 32.07 39.72 40.19

Qwen2.5-Math-7B
Base 71.65 21.67 9.17 53.61 27.02 38.54 36.94
GRPO 82.50 34.20 20.83 71.08 36.76 44.80 48.36
SFPO 82.30 35.00 20.83 74.49 36.94 45.59 49.19

DS-distilled-Qwen-1.5B
Base 73.80 16.67 20.00 47.59 28.86 36.94 37.27
GRPO 84.65 30.00 23.33 66.86 31.71 49.85 47.73
SFPO 86.10 32.50 30.83 70.28 32.81 50.67 50.53

DS-distilled-Qwen-7B
Base 83.60 28.33 25.00 61.75 41.73 48.89 48.21
GRPO 91.7 50.00 35.83 80.42 43.65 61.24 60.47
SFPO 92.60 54.17 37.50 83.75 44.49 65.73 63.04

Qwen3-4B-Base
Base 45.25 2.50 0.83 20.48 15.99 20.66 17.62
GRPO 83.35 16.67 17.50 59.03 38.78 48.59 43.99
SFPO 84.30 21.67 20.83 57.23 40.81 48.67 45.59

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We conduct the reasoning rl training with our proposed SFPO on a wide range of models:
Qwen2.5-Math-1.5B (Yang et al., 2024), DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al.,
2025a), Qwen3-4B-Base (Yang et al., 2025), Qwen2.5-Math-7B (Yang et al., 2024), and DeepSeek-
R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025a). For Qwen2.5-Math-1.5B/7B, we set the context
length in the training process as 4096 the same as their maximum context length; while for Qwen3-
4B-Base and DeepSeek-R1-Distill-Qwen-1.5B/7B, we set the context length as 8192 for the better
accuracy-efficiency tradeoff.

Reasoning RL Training. We conduct the reasoning RL training on two different training datasets
to test the effectiveness of SFPO on different scales of dataset. The first one is the combination of
DAPO training dataset (Yu et al., 2025a) and Math training dataset (Hendrycks et al., 2021), which is
a total of approximate 24K data. The second one is the Skywork-OR1 Math RL training dataset (He
et al., 2025b) with 105k data. The training batch size is set to 256, and the number of responses for
each question is set to 8 by default. The total trianing step is set to 400 by default. All the training
experiments are done based on verl (Sheng et al., 2025) with a single 8xH100 GPUs node.

Baseline and Evaluation. We compare SFPO with vanilla GRPO and the base model without
rl training on six commonly used mathematical reasoning benchmarks with variant difficulty:
Math500 (Hendrycks et al., 2021), AIME24 (Art of Problem Solving, 2024a), AIME25 (MAA),
AMC (Art of Problem Solving, 2024b), MinervaMath (Lewkowycz et al., 2022), Olympiad Bench (He
et al., 2024). Each benchmark is evaluated multiple times with rollout temperature being 1, and we
report the average Pass@1 accuracy by default.

4.2 MAIN RESULTS

4.2.1 MATH REASONING BENCHMARKS

As illustrated in Table 1, our proposed SFPO consistently outperforms vanilla GRPO across all
base models and benchmarks. Specifically, for small-scale models such as Qwen2.5-Math-1.5B
and DS-distilled-Qwen-1.5B, SFPO demonstrates superior performance enhancements on math
reasoning benchmarks, raising the average accuracy from 38.35 to 40.19 with an absolute gain of
+1.84, and from 47.73 to 50.53 with a gain of +2.80, respectively. The improvements are particularly
pronounced on challenging tasks such as AIME24 and AIME25, where DS-distilled-Qwen-1.5B
achieves an absolute gain of +7.5 on AIME25. The larger models also exhibit similar performance
gains. For Qwen2.5-Math-7B, SFPO raises the average accuracy from 48.36 to 49.19 with an
absolute gain of +1.80. For DS-distilled-Qwen-7B, SFPO boosts the average accuracy from 60.47
to 63.04, corresponding to an absolute gain of +0.8. For Qwen3-4B-Base model, SFPO improves
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200 Steps 295 Steps240 Steps

(a) (b) (c) (d)

Figure 2: Average validation accuracy of different base models throughout the learning process.

(a) (b) (c)
Figure 3: Comparison of training behaviors in terms of response length, entropy loss, and reward.

average accuracy from 43.99 to 45.59, an absolute gain of +1.60, highlighting its robustness across
various models. Moreover, Table 2 demonstrates that SFPO can consistently achieve better training
performance compared to GRPO for the larger training dataset Skywork-or1, proving the robustness
of SFPO across different scales and distributions of training datasets.

4.2.2 TRAINING DYNAMICS.

Table 2: Performance on AIME24/25 with
Skywork-or1 training dataset.

Model Method AIME24 AIME25

DS-Qwen-1.5B
Base 20.40 17.90
GRPO 32.92 25.83
SFPO 34.17 27.50

DS-Qwen-7B
Base 25.42 22.92
GRPO 42.50 29.20
SFPO 43.75 30.00

We compare the training dynamics between SFPO
and GRPO to better understand the differences in
optimization behavior as shown in Fig. 2 and Fig. 3.

Validation. From Fig. 2, we can clearly spot that
SFPO consistently outperforms GRPO across all base
models throughout the training process. Not only
does SFPO achieve faster convergence in the early
stages, but it also sustains higher global accuracy
by the end of training. For example, Qwen3-4B-
Base model achieves a sharper rise and stabilizes at
a higher accuracy within only 150 training steps, while vanilla GRPO cannot surpass this accuracy
even after 400 steps.

Response Length. Moreover, distinct training behaviors between SFPO and GRPO for DeepSeek-
R1-Distill-Qwen-7B are shown in Fig. 3 including the response length, entropy loss, and the reward
throughout the training process. Specifically, GRPO gradually collapses to overly short responses
while SFPO quickly converges to a stable range of around 2700 tokens with better accuracy, high-
lighting SFPO’s ability to regulate response length more effectively and avoid overthinking with
verbose responses (Liu et al., 2025).

Entropy. From Fig. 3(b), we can observe that SFPO makes model’s entropy loss lower compared to
GRPO. Typically, lower entropy means weak exploration ability for reasoning models; however, the
entropy reduction under SFPO mainly reflects the model’s ability to eliminate unproductive search
paths early, rather than suppressing exploration altogether as evidenced by its sustained accuracy
gains. In fact, the model still explores a sufficiently broad set of reasoning trajectories; therefore, the
lower entropy observed under SFPO should be viewed as a sign of more efficient exploration rather
than a sign of limited exploration.

Reward Score. SFPO also achieves a higher and more stable reward throughout the training
process compared to GRPO, indicating stronger alignment with the reward function and more robust
convergence. This is further reflected in its superior accuracy and well-controlled response length.
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4.2.3 EFFICIENCY ANALYSIS.

3.21×
3.50× 4.93×

2.62×

2.65×

4.19×

(a) (b)

Figure 4: Comparison of GRPO and SFPO. (a)
Number of rollouts required to achieve the best ac-
curacy of GRPO. (b) Corresponding training time.

We evaluate the efficiency gains of SFPO over
GRPO by comparing the total number of rollouts
and the wall-clock time required to reach the
same benchmark accuracy. The results in Fig. 4
illustrate that SFPO consistently outperforms
GRPO in both rollout efficiency and training
time across all model scales. To be specific,
SFPO requires 3.21×, 3.50×, and 4.93× fewer
rollouts than GRPO for DS-Qwen-1.5B, Qwen3-
4B-Base, and DS-Qwen-7B, respectively, to
reach the same best accuracy. This advantage
directly translates into reduced training time,
where SFPO achieves 2.62×, 2.65×, and 4.19×
speedups over GRPO for the same models, significantly lowering the training cost. Note that SFPO
does not introduce extra GPU memory overhead as it does not need to store the heavy optimizer
status. The detailed profiling results for GPU memory usage in the training process can be found
in Appendix B. These significant efficiency gains align with our expectations, since the primary
bottleneck in the training process lies in rollout generation, which accounts for more than 70% of the
overall inference time (He et al., 2025a). By substantially reducing the number of rollouts required
and harnessing the reposition mechanism, SFPO alleviates this bottleneck and achieves faster training.

5 ANALYSIS AND ABLATION STUDY

Impact of α and K. As discussed in Sec. 3, α and K strongly affect the stability of SFPO. To better
understand their impacts, we investigate two scenarios: (i) a small K = 3 under varying α, and (ii) a
large K = 7 under varying α, with results shown in Fig. 5. With small K, SFPO stays stable across
α values and consistently outperforms GRPO, consistent with our intuition. With large K, however,
fast weights drift substantially; a large α further amplifies this mismatch, injecting noise into updates.
A smaller α mitigates this drift and restores stability.

Interpolation Against Off-Policy Overfitting. When α = 1 (no interpolation), performance initially
rises but steadily declines as training progresses. Without interpolation, the model quickly adapts by
overfitting to small batches of rollouts, yielding short-term gains but injecting increasing noise into
gradient updates over time, which leads to instability and degraded long-term performance. This issue
is amplified when K is large, as shown in Fig. 5(b): fast weights drift substantially, and with α = 1
the original weights fully adopt these noisy trajectories, causing sharp performance degradation.

The Importance of Stage III: Slow Correction. As shown in Fig. 5(d), incorporating slow cor-
rection consistently improves stability and accuracy over GRPO. Without this stage, the reposition
stage leaves the iterate at an interpolated point that may deviate from the true descent direction.
Intuitively, slow correction provides a curvature-aware adjustment that realigns updates with the
correct optimization trajectory.

Necessity of Entropy Control. We evaluate the effect of adaptive entropy control (EC) on SFPO
using the DS-Qwen-7B model. As shown in Fig. 6, removing EC leads to an accuracy drop after
roughly 100 steps. This degradation coincides with a rapid divergence of entropy loss, indicating that
the policy becomes unstable and overfits to noisy rollouts. These results highlight entropy control as
a crucial component for ensuring the stability and reliability of SFPO.

Strategies for Decaying α. We further evaluate different strategies for reducing the value of α once
the stop step is identified by the z-score. In particular, we compare our default approach of directly
setting α to zero with a linear decay schedule. As shown in Fig. 7, the choice of decay strategy has
negligible impact on the overall performance.

6 RELATED WORKS

RL for LLM Reasoning. OpenAI O1 (OpenAI) introduced a paradigm shift in LLM reasoning
by extending the reasoning horizon before final responses. DeepSeek-R1 (Guo et al., 2025) further
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(d)

Impact of Stage IIIImpact of K

(a) (b) (c)

Figure 5: Average training accuracy of different base models throughout the learning process.

Figure 6: Comparison between SFPO w/ and
w/o entropy control (EC). The blue dashed line
indicates the stop step identified by z-score.

Figure 7: Comparison between SFPO with dif-
ferent α decay strategies. The blue dashed line
indicates the stop step identified by z-score.

advanced this line by open-sourcing both its training algorithm, the value-model-free GRPO (Shao
et al., 2024), and model weights, achieving performance comparable to O1. Subsequent work
has focused on stabilizing and simplifying GRPO: DAPO (Yu et al., 2025b) identifies entropy
collapse as a key challenge and proposes effective remedies, while Dr. GRPO (Liu et al., 2025)
removes normalization terms without sacrificing performance. In contrast, SFPO is orthogonal to both
families: it leaves the objective unchanged yet restructures the update itself into a fast–reposition–slow
decomposition, improving variance reduction, stability, and sample efficiency in LLM reasoning.

Data Efficiency for LLM Reasoning. Despite focusing on designing novel training pipelines,
a complementary line of work (Ivison et al., 2025; Xia et al., 2024; Muennighoff et al., 2025; Ye
et al., 2025) improves the efficiency of LLM training through data filtering. One direction focuses
on pruning data for supervised fine-tuning (Xia et al., 2024; Chen et al., 2023; Ivison et al., 2022).
Another direction targets reinforcement learning, where studies (Muldrew et al., 2024; Liu et al.,
2024; Das et al., 2024; Li et al., 2025; Fatemi et al., 2025; Wang et al., 2025) show that GRPO
requires only a small subset of the training data to improve reasoning ability. However, these methods
largely optimize which data is used rather than how updates are performed. SFPO is orthogonal:
it assumes no change to the data pipeline but restructures the policy update itself. By converting
one-shot updates into a fast–reposition–slow trajectory, SFPO reduces variance and stabilizes learning,
thereby yielding higher data efficiency even under random rollout sampling.

7 CONCLUSION

We proposed Slow-Fast Policy Optimization (SFPO), a simple three-stage update mechanism that
stabilizes early training by combining a fast trajectory, a reposition step, and a slow correction. SFPO
directly addresses the instability of one-shot GRPO updates, achieving higher reasoning accuracy
and fewer generated tokens without added wall-clock cost. Beyond these gains, its modular structure
naturally opens avenues for curriculum or meta-learning extensions, and our entropy-triggered α
schedule suggests richer adaptive rules. We believe SFPO offers not only an effective plug-in for
current policy optimization, but also a foundation for scalable and data-aware optimization strategies
in the LLM reasoning area.
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REPRODUCIBILITY STATEMENT

All results reported in Sec. 4 are fully reproducible. We will release the code and experiment scripts
upon acceptance.
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A LLM USAGE

Large language models (LLMs) were used solely to improve the writing of this paper, including
grammar, clarity, and readability. They were not used for generating ideas, designing experiments,
conducting analyses, or producing scientific content. All research contributions, technical claims,
and conclusions are entirely the work of the authors.

B GPU MEMORY PROFILING RESULTS
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Figure 8: Comparison of GPU memory during one training step between SFPO and GRPO for
Deepseek-R1-Distill-Qwen-1.5B model.

From Fig. 8, we can clearly observe that SFPO and GRPO demonstrate similar GPU memory
consumption during one training step. This aligns with our expectation: SFPO does not need to store
the heavy optimizer states and parameters but only need to store one copy of the model weight, which
does not introduce significant overhead, especially when the model is sharded across GPUs.
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