
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLOW-FAST POLICY OPTIMIZATION: REPOSITION-
BEFORE-UPDATE FOR LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has become central to enhancing reasoning in large
language models (LLMs). Yet on-policy algorithms such as Group Relative Policy
Optimization (GRPO) often suffer in early training: noisy gradients from low-
quality rollouts lead to unstable updates and inefficient exploration. We introduce
Slow-Fast Policy Optimization (SFPO), a simple yet efficient mechanism to address
the above limitations via decomposing each iteration into three stages: a short fast
trajectory of inner steps on the same batch, a reposition step to control off-policy
drift, and a final slow correction. This reposition-before-update design preserves
the objective and rollout process unchanged, making SFPO plug-compatible with
existing policy-gradient pipelines. Extensive experiments demonstrate that SFPO
consistently improves stability, reduces number of rollouts, and accelerates conver-
gence of reasoning RL training. Specifically, it outperforms GRPO by up to 2.80
points on math reasoning benchmarks. It also achieves up to 4.93× fewer rollouts
and a 4.19× reduction in wall-clock time to match GRPO’s best accuracy.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress on complex multi-step
reasoning tasks, especially in mathematics problem solving and scientific question answering (OpenAI
et al., 2024; DeepSeek-AI et al., 2025b). A central driver of these advances has been reinforcement
learning (RL), which fine-tunes LLMs using reward signals tied to semantic correctness and solution
quality. For example, DeepSeekMath (Shao et al., 2024) demonstrates that Group Relative Policy
Optimization (GRPO) can substantially improve open-source LMs on mathematical reasoning, while
DeepSeek-R1 (Guo et al., 2025) shows that RL signals alone can induce emergent reasoning behaviors
across various domains.

Despite these successes, GRPO inherits structural inefficiencies that make training fragile in the con-
text of LLM reasoning. During the early stages of training, when rollouts are weak or uninformative,
stochastic rewards induce high-variance gradients that destabilize updates. Prior studies corroborate
this issue: early rollouts often fail to provide useful signals (Zheng et al., 2025), reward shaping can
trigger sudden collapse (Dai et al., 2025), and noisy group normalization further impairs learning
under imbalanced responses (Shen et al., 2025). Although group normalization partially mitigates
variance, GRPO still applies only a single gradient update per batch, discarding information that
multiple inner steps could exploit (Schulman et al., 2017; Engstrom et al., 2020). As a result, sample
efficiency remains low and early exploration highly brittle, with progress overly sensitive to noise
and rollout quality in LLM reasoning tasks.

In this work, we introduce Slow–Fast Policy Optimization (SFPO), a simple yet efficient mechanism
that augments on-policy policy-gradient methods such as GRPO while keeping the loss, rollout
collection, and KL/clip regularization intact. Each iteration is restructured into three coordinated
stages: (i) fast—multiple inner updates on the same batch to stabilize the search direction; (ii)
reposition—interpolation back toward the starting point to control off-policy drift; and (iii) slow—
an extra gradient correction to align with local curvature. This reposition-before-update design
transforms noisy one-shot updates into structured trajectories, yielding more stable optimization,
higher sample efficiency, and faster convergence. We summarize our contributions as follows:

• We propose SFPO, a plug-compatible update rule that reuses rollout batches via a
fast–reposition–slow decomposition, with theoretical insights for each stage.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Pipeline of SFPO at iteration s. Starting from the current policy πθs,0 , we first generate
rollouts for training. Stage I (Fast Trajectory): apply K successive gradient updates on the same
batch to obtain θs,K . Stage II (Reposition): interpolate between θs,K and the starting point θs,0 to
form θ̃s,K , controlling off-policy drift. Stage III (Slow Correction): perform one additional update
on θ̃s,K , yielding πθs+1,0 for the next iteration.

• SFPO introduces no changes to the underlying objective, rollout generation, or regularization,
enabling drop-in integration into existing LLM reasoning pipelines.

• Through extensive experiments on math reasoning benchmarks, we show that SFPO consis-
tently improves stability, sample efficiency, and convergence speed over GRPO.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a policy gradient method that
has been widely applied in large-scale LLM training pipelines. GRPO dispenses with an explicit value
function and instead normalizes rewards across a group of responses to the same prompt. Given an
input q, the policy πθ generates G candidate sequences {oi}Gi=1 with corresponding rewards {ri}Gi=1.
The normalized advantage for each candidate is defined as

Âi =
ri−mean({ri}G

i=1)

std({ri}G
i=1)

. (1)

This group-based normalization can be interpreted as a form of reward shaping: by emphasizing
relative differences among candidate sequences for the same input, GRPO strengthens the reliability of
the gradient signal. Instead of embedding a KL penalty inside the reward, GRPO directly regularizes
the policy by including an explicit KL term between the learned policy and a reference policy. The
training objective is

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold

(O|q)

1
G

G∑
i=1

1
|oi|

|oi|∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− βDKL[πθ∥πref] (2)

where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the token-level importance ratio between the new and old policies,
ϵ is the clipping range that prevents overly aggressive updates, β controls the KL regularization
strength, and πref is a fixed reference policy. Here, q denotes the input prompt, oi a generated
sequence, and oi,t its t-th token.

Limitations of GRPO. Despite its popularity, GRPO inherits structural drawbacks from the
underlying on-policy update rule. At each iteration, the parameters are updated via a single stochastic
gradient step estimated from a batch of rollouts. The randomness of rewards leads to high-variance
gradient estimates, making updates unstable. Group normalization partially dampens this effect but
remains sensitive to fluctuations within each batch. Moreover, restricting each batch to a single
update discards potentially useful gradient information across inner steps, leading to inefficient data
use and limited variance reduction. These drawbacks underscore the need for an update mechanism
that can stabilize gradient directions while making more effective use of available samples.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 SFPO: unified fast–reposition–slow update.
Require: Initial policy πθ0,0 , dataset D, hyperparameters S,K, α0, η, ω, τ , loss L(θ)

Initialize rolling bufferH ← ∅, stats (µ, σ)← (0, 1), trigger index s⋆ ← +∞
for s = 0, 1, . . . , S − 1 do

Generate rollouts with the current policy πθs,0 on prompts from D.
α← α0 · 1[s < s⋆] // Set α for this iteration from past trigger (non-anticipatory)
if α = 0 then

θ̃s,K ← θs,0 // Skip fast trajectory & reposition
else

for k = 0, 1, . . . ,K − 1 do
θs,k+1 ← θs,k − η∇θL(θs,k) // Stage I: Fast Trajectory

end for
θ̃s,K ← θs,0 + α

(
θs,K − θs,0

)
// Stage II: Reposition

end if
θs+1,0 ← θ̃s,K − η∇θL(θ̃s,K) // Stage III: Slow Correction
Compute entropy Hs; update rolling bufferH (keep last ω ones) and (µs, σs).
Zs ← Hs−µs

σs+ε (ε for numerical stability)
if s⋆ = +∞ and |Zs| ≥ τ then
s⋆ ← s+ 1 // will set α = 0 for all future s′ ≥ s⋆

end if
end for
return final policy πθS,0

3 METHOD

To address the instability and inefficiency of one-shot policy updates, we propose Slow-Fast Policy
Optimization (SFPO), a simple yet general update mechanism that reuses rollouts more effectively
while remaining plug-compatible with standard on-policy policy gradient algorithms. Each iteration
consists of three stages: (i) a fast trajectory of multiple inner updates on the same batch, (ii) a
reposition step that interpolates back toward the on-policy point to control drift, and (iii) a slow
correction via an extra-gradient update. As illustrated in Fig. 1 and Alg. 1, this fast–reposition–slow
design transforms noisy one-shot updates into well-structured update trajectories, yielding more
stable optimization and higher sample efficiency without additional rollouts.

Notation. To align with standard gradient-based optimization notation, we define L(θ) = −J (θ), so
that maximizing the objective J is equivalent to minimizing the loss L.

3.1 STAGE I: FAST TRAJECTORY

In standard on-policy policy-gradient methods such as GRPO, each outer iteration is updated by a
single stochastic gradient:

θs+1 = θs − η∇θL(θs), (3)
where ∇θL(θs) is estimated from one batch of rollouts. Such one-shot updates suffer from high
variance and often drive the policy in unstable directions, especially during early training. SFPO
mitigates this by performing multiple inner updates on the same batch or rollouts.

Formally, starting from parameters θs,0 at the beginning of iteration s, we execute a short fast
trajectory of K inner updates:

θs,k+1 = θs,k − η∇θL(θs,k), k = 0, . . . ,K − 1. (4)

This produces a sequence θs,0 → θs,1 → · · · → θs,K , where each step refines the gradient direction
using the same rollout data.

Intuition. Unlike one-shot updates that rely on a single noisy gradient, the displacement

θs,K − θs,0 = −η
K−1∑
k=0

∇θL(θs,k) (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

captures the cumulative effect of K sequential corrections. Even if some individual steps are perturbed
by noise, their composition tends to damp idiosyncratic fluctuations and align with the underlying
gradient direction. Geometrically, this can be viewed as integrating the local gradient field along a
short trajectory in parameter space rather than trusting a single noisy vector at θs,0. As a result, the
update direction at the end of Stage I is typically more stable and less sensitive to randomness in any
single gradient estimate.

Compact Mathematical Intuition. Let θk := θs,k and consider the K inner steps θk+1 =
θk − η∇L(θk) starting at θ0 = θs,0. In a small neighborhood, linearizing the gradient field,
∇L(θ) ≈ g0 + H0(θ − θ0) with g0 = ∇L(θ0) and H0 = ∇2L(θ0), yields the closed-form
displacement

θK − θ0 ≈ −
[
I − (I − ηH0)

K
]
H†

0 g0, (6)

where H†
0 denotes the (pseudo)inverse on the range of H0 (the λ→0 case is understood by continuity).

Spectrally, along an eigen-direction with curvature λ ≥ 0, the scalar gain is
(
1− (1− ηλ)K

)
/λ: for

small λ it behaves like Kη (steadily accumulating progress in gentle directions), while for larger λ it
saturates below 1 (damping stiff-direction oscillations). Thus the fast trajectory acts as a curvature-
aware low-pass filter that stabilizes the endpoint direction relative to a one-shot step. We use this as
local intuition under a sufficiently small step size (e.g., η < 1/∥H0∥2) and in neighborhoods where
positive-curvature directions dominate; in practice, KL/clip regularization and Stage II reposition
mitigate adverse effects of negative curvature.

3.2 STAGE II: REPOSITION

While the fast trajectory of Stage I improves stability, it also changes the nature of the update from
on-policy to off-policy. Since all inner steps θs,1, . . . , θs,K reuse the same rollouts generated at
θs,0, the endpoint θs,K no longer corresponds to the distribution that produced those samples. This
distribution mismatch is a fundamental drawback of off-policy learning, as it biases gradient estimates
and can destabilize training.

Inspired by Lookahead Optimization (Zhang et al., 2019), SFPO introduces a reposition step that
interpolates the fast trajectory back toward its starting point:

θ̃s,K = θs,0 + α(θs,K − θs,0), α ∈ [0, 1]. (7)

Here α regulates the degree of off-policy drift: smaller values keep the update close to the original
on-policy iterate, while larger values rely more on the fast trajectory at the risk of greater mismatch.

Intuition. The interpolation is equivalent to solving a linearized proximal subproblem around θs,0:

min
θ

〈K−1∑
k=0

∇θL(θs,k), θ − θs,0
〉
+ λ

2 ∥θ − θs,0∥2, (8)

whose unique solution coincides with θ̃s,K for λ = 1
αη . Thus, α acts as an implicit trust-region

radius: smaller α implies a larger proximal weight λ, enforcing stronger contraction toward the
on-policy point. 1

3.3 STAGE III: SLOW CORRECTION

After repositioning, SFPO applies one more (slow) correction step at the interpolated point:

θs+1 = θ̃s,K − η∇θL(θ̃s,K). (9)

This yields a predictor—corrector structure: Stage I produces a stabilized fast trajectory, Stage II
tempers off-policy drift via reposition, and Stage III applies a slow correction aligned with the local
curvature at the update point.

1A heuristic alternative is obtained if one replaces
∑

k ∇θL(θs,k) by the averaged gradient ḡ and uses the
approximation θs,K − θs,0 ≈ −ηK ḡ, leading to λ ≈ 1/(αηK).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theoretical intuition. Under L-smoothness and sufficiently small η, the descent lemma implies

E[L(θs+1)] ≤ L(θs,0)− c η∥∇L(θs,0)∥2 +O
(
η2L · F(K,α)

)
, (10)

where F(K,α) represents the combined effect of Stage I (fast trajectory length K) and Stage II
(reposition factor α). Intuitively, F(K,α) reflects a balance between exploiting more gradient
information and controlling distributional drift: increasing K leverages the same rollout data across
multiple steps but also amplifies off-policy mismatch, while larger α interpolates more aggressively
toward the fast trajectory at the risk of greater instability. In practice, since increasing K raises both
wall-clock cost and F(K,α), we adopt small K with moderately large α, while the slow correction
in Stage III mitigates overshooting and preserves progress along the stabilized trajectory direction.

3.4 SCHEDULING α

A nonzero α is essential to exploit the stabilized fast trajectory when K > 0: if α = 0, the reposition
collapses to θs,0 and the fast trajectory is discarded, eliminating the benefit of Stage I. However,
the same aggressiveness that helps early can be counter-productive near a minimizer. When ∥∇L∥
is large, a nonzero α accelerates progress by moving along the stabilized fast direction; but as we
approach a minimum, the signal weakens while curvature and stochastic noise dominate, so a large α
amplifies drift and instability. This motivates an adaptive schedule for α.

Why adapt α rather than K? K controls both stabilization and wall-clock runtime: increasing K
reduces oscillations but incurs proportional compute cost, making mid-training changes impractical.
By contrast, α is a soft trust parameter: it decides how much of the stabilized fast trajectory is
exploited, without changing runtime or discarding the already-computed K steps. Thus α is the
natural lever to adapt dynamically.

Adaptive rule in practice. In our implementation, α is scheduled online at each iteration. After
generating rollouts with the current policy, we compute the policy entropy Hs and maintain a rolling
buffer of the past ω entropy values (window size ω). Let µs and σs denote the mean and standard
deviation within this buffer. We define the one-sided z-score

Zs =
Hs−µs

σs
. (11)

If |Zs| ≥ τ for a threshold τ , we mark the current step s⋆ and set α = 0 for all s ≥ s⋆. Otherwise we
keep α = α0. Intuitively, sharp entropy fluctuations signal that the policy is close to a local optimum
where noise dominates, so interpolation should be disabled. This entropy-triggered schedule exploits
the fast trajectory in the high-signal early phase, while reverting to pure on-policy updates near
convergence for stability.2

3.5 UNIFIED SFPO UPDATE

Collecting the three stages, the unified SFPO update for each step s is:

θs+1 = θs,0 − η
[
α

K−1∑
k=0

∇θL(θs,k)︸ ︷︷ ︸
fast trajectory & reposition

+ ∇θL(θ̃s,K)︸ ︷︷ ︸
slow correction

]
, (12)

As shown in Alg. 1, SFPO unifies the three stages into a single update rule and serves as a plug-
compatible drop-in replacement for on-policy policy-gradient methods such as GRPO. Our exper-
iments show that this structural change consistently improves stability and sample efficiency on
diverse math reasoning benchmarks, with minimal engineering overhead.

2Although a decaying schedule on α could be a formal solution, we find little empirical difference, as shown
in Fig. 7 of Sec. 5. Hence, for simplicity and efficiency, we downgrade SFPO to GRPO once the iteration reaches
s ≥ s⋆.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance on math reasoning benchmarks with DAPO and Math training dataset.
Model Method Math-500 AIME24 AIME25 AMC Minerva Olympiad Avg

Qwen2.5-Math-1.5B
Base 55.55 9.17 5.83 37.65 17.74 28.45 25.73
GRPO 77.15 16.67 11.67 53.31 31.89 39.42 38.35
SFPO 78.35 20.00 15.00 56.02 32.07 39.72 40.19

Qwen2.5-Math-7B
Base 71.65 21.67 9.17 53.61 27.02 38.54 36.94
GRPO 82.50 34.20 20.83 71.08 36.76 44.80 48.36
SFPO 82.30 35.00 20.83 74.49 36.94 45.59 49.19

DS-distilled-Qwen-1.5B
Base 73.80 16.67 20.00 47.59 28.86 36.94 37.27
GRPO 84.65 30.00 23.33 66.86 31.71 49.85 47.73
SFPO 86.10 32.50 30.83 70.28 32.81 50.67 50.53

DS-distilled-Qwen-7B
Base 83.60 28.33 25.00 61.75 41.73 48.89 48.21
GRPO 91.7 50.00 35.83 80.42 43.65 61.24 60.47
SFPO 92.60 54.17 37.50 83.75 44.49 65.73 63.04

Qwen3-4B-Base
Base 45.25 2.50 0.83 20.48 15.99 20.66 17.62
GRPO 83.35 16.67 17.50 59.03 38.78 48.59 43.99
SFPO 84.30 21.67 20.83 57.23 40.81 48.67 45.59

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models. We conduct the reasoning rl training with our proposed SFPO on a wide range of models:
Qwen2.5-Math-1.5B (Yang et al., 2024), DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al.,
2025a), Qwen3-4B-Base (Yang et al., 2025), Qwen2.5-Math-7B (Yang et al., 2024), and DeepSeek-
R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025a). For Qwen2.5-Math-1.5B/7B, we set the context
length in the training process as 4096 the same as their maximum context length; while for Qwen3-
4B-Base and DeepSeek-R1-Distill-Qwen-1.5B/7B, we set the context length as 8192 for the better
accuracy-efficiency tradeoff.

Reasoning RL Training. We conduct the reasoning RL training on two different training datasets
to test the effectiveness of SFPO on different scales of dataset. The first one is the combination of
DAPO training dataset (Yu et al., 2025a) and Math training dataset (Hendrycks et al., 2021), which is
a total of approximate 24K data. The second one is the Skywork-OR1 Math RL training dataset (He
et al., 2025b) with 105k data. The training batch size is set to 256, and the number of responses for
each question is set to 8 by default. The total trianing step is set to 400 by default. All the training
experiments are done based on verl (Sheng et al., 2025) with a single 8xH100 GPUs node.

Baseline and Evaluation. We compare SFPO with vanilla GRPO and the base model without
rl training on six commonly used mathematical reasoning benchmarks with variant difficulty:
Math500 (Hendrycks et al., 2021), AIME24 (Art of Problem Solving, 2024a), AIME25 (MAA),
AMC (Art of Problem Solving, 2024b), MinervaMath (Lewkowycz et al., 2022), Olympiad Bench (He
et al., 2024). Each benchmark is evaluated multiple times with rollout temperature being 1, and we
report the average Pass@1 accuracy by default.

4.2 MAIN RESULTS

4.2.1 MATH REASONING BENCHMARKS

As illustrated in Table 1, our proposed SFPO consistently outperforms vanilla GRPO across all
base models and benchmarks. Specifically, for small-scale models such as Qwen2.5-Math-1.5B
and DS-distilled-Qwen-1.5B, SFPO demonstrates superior performance enhancements on math
reasoning benchmarks, raising the average accuracy from 38.35 to 40.19 with an absolute gain of
+1.84, and from 47.73 to 50.53 with a gain of +2.80, respectively. The improvements are particularly
pronounced on challenging tasks such as AIME24 and AIME25, where DS-distilled-Qwen-1.5B
achieves an absolute gain of +7.5 on AIME25. The larger models also exhibit similar performance
gains. For Qwen2.5-Math-7B, SFPO raises the average accuracy from 48.36 to 49.19 with an
absolute gain of +1.80. For DS-distilled-Qwen-7B, SFPO boosts the average accuracy from 60.47
to 63.04, corresponding to an absolute gain of +0.8. For Qwen3-4B-Base model, SFPO improves

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

200 Steps 295 Steps240 Steps

(a) (b) (c) (d)

Figure 2: Average validation accuracy of different base models throughout the learning process.

(a) (b) (c)
Figure 3: Comparison of training behaviors in terms of response length, entropy loss, and reward.

average accuracy from 43.99 to 45.59, an absolute gain of +1.60, highlighting its robustness across
various models. Moreover, Table 2 demonstrates that SFPO can consistently achieve better training
performance compared to GRPO for the larger training dataset Skywork-or1, proving the robustness
of SFPO across different scales and distributions of training datasets.

4.2.2 TRAINING DYNAMICS.

Table 2: Performance on AIME24/25 with
Skywork-or1 training dataset.

Model Method AIME24 AIME25

DS-Qwen-1.5B
Base 20.40 17.90
GRPO 32.92 25.83
SFPO 34.17 27.50

DS-Qwen-7B
Base 25.42 22.92
GRPO 42.50 29.20
SFPO 43.75 30.00

We compare the training dynamics between SFPO
and GRPO to better understand the differences in
optimization behavior as shown in Fig. 2 and Fig. 3.

Validation. From Fig. 2, we can clearly spot that
SFPO consistently outperforms GRPO across all base
models throughout the training process. Not only
does SFPO achieve faster convergence in the early
stages, but it also sustains higher global accuracy
by the end of training. For example, Qwen3-4B-
Base model achieves a sharper rise and stabilizes at
a higher accuracy within only 150 training steps, while vanilla GRPO cannot surpass this accuracy
even after 400 steps.

Response Length. Moreover, distinct training behaviors between SFPO and GRPO for DeepSeek-
R1-Distill-Qwen-7B are shown in Fig. 3 including the response length, entropy loss, and the reward
throughout the training process. Specifically, GRPO gradually collapses to overly short responses
while SFPO quickly converges to a stable range of around 2700 tokens with better accuracy, high-
lighting SFPO’s ability to regulate response length more effectively and avoid overthinking with
verbose responses (Liu et al., 2025).

Entropy. From Fig. 3(b), we can observe that SFPO makes model’s entropy loss lower compared to
GRPO. Typically, lower entropy means weak exploration ability for reasoning models; however, the
entropy reduction under SFPO mainly reflects the model’s ability to eliminate unproductive search
paths early, rather than suppressing exploration altogether as evidenced by its sustained accuracy
gains. In fact, the model still explores a sufficiently broad set of reasoning trajectories; therefore, the
lower entropy observed under SFPO should be viewed as a sign of more efficient exploration rather
than a sign of limited exploration.

Reward Score. SFPO also achieves a higher and more stable reward throughout the training
process compared to GRPO, indicating stronger alignment with the reward function and more robust
convergence. This is further reflected in its superior accuracy and well-controlled response length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2.3 EFFICIENCY ANALYSIS.

3.21×
3.50× 4.93×

2.62×

2.65×

4.19×

(a) (b)

Figure 4: Comparison of GRPO and SFPO. (a)
Number of rollouts required to achieve the best ac-
curacy of GRPO. (b) Corresponding training time.

We evaluate the efficiency gains of SFPO over
GRPO by comparing the total number of rollouts
and the wall-clock time required to reach the
same benchmark accuracy. The results in Fig. 4
illustrate that SFPO consistently outperforms
GRPO in both rollout efficiency and training
time across all model scales. To be specific,
SFPO requires 3.21×, 3.50×, and 4.93× fewer
rollouts than GRPO for DS-Qwen-1.5B, Qwen3-
4B-Base, and DS-Qwen-7B, respectively, to
reach the same best accuracy. This advantage
directly translates into reduced training time,
where SFPO achieves 2.62×, 2.65×, and 4.19×
speedups over GRPO for the same models, significantly lowering the training cost. Note that SFPO
does not introduce extra GPU memory overhead as it does not need to store the heavy optimizer
status. The detailed profiling results for GPU memory usage in the training process can be found
in Appendix B. These significant efficiency gains align with our expectations, since the primary
bottleneck in the training process lies in rollout generation, which accounts for more than 70% of the
overall inference time (He et al., 2025a). By substantially reducing the number of rollouts required
and harnessing the reposition mechanism, SFPO alleviates this bottleneck and achieves faster training.

5 ANALYSIS AND ABLATION STUDY

Impact of α and K. As discussed in Sec. 3, α and K strongly affect the stability of SFPO. To better
understand their impacts, we investigate two scenarios: (i) a small K = 3 under varying α, and (ii) a
large K = 7 under varying α, with results shown in Fig. 5. With small K, SFPO stays stable across
α values and consistently outperforms GRPO, consistent with our intuition. With large K, however,
fast weights drift substantially; a large α further amplifies this mismatch, injecting noise into updates.
A smaller α mitigates this drift and restores stability.

Interpolation Against Off-Policy Overfitting. When α = 1 (no interpolation), performance initially
rises but steadily declines as training progresses. Without interpolation, the model quickly adapts by
overfitting to small batches of rollouts, yielding short-term gains but injecting increasing noise into
gradient updates over time, which leads to instability and degraded long-term performance. This issue
is amplified when K is large, as shown in Fig. 5(b): fast weights drift substantially, and with α = 1
the original weights fully adopt these noisy trajectories, causing sharp performance degradation.

The Importance of Stage III: Slow Correction. As shown in Fig. 5(d), incorporating slow cor-
rection consistently improves stability and accuracy over GRPO. Without this stage, the reposition
stage leaves the iterate at an interpolated point that may deviate from the true descent direction.
Intuitively, slow correction provides a curvature-aware adjustment that realigns updates with the
correct optimization trajectory.

Necessity of Entropy Control. We evaluate the effect of adaptive entropy control (EC) on SFPO
using the DS-Qwen-7B model. As shown in Fig. 6, removing EC leads to an accuracy drop after
roughly 100 steps. This degradation coincides with a rapid divergence of entropy loss, indicating that
the policy becomes unstable and overfits to noisy rollouts. These results highlight entropy control as
a crucial component for ensuring the stability and reliability of SFPO.

Strategies for Decaying α. We further evaluate different strategies for reducing the value of α once
the stop step is identified by the z-score. In particular, we compare our default approach of directly
setting α to zero with a linear decay schedule. As shown in Fig. 7, the choice of decay strategy has
negligible impact on the overall performance.

6 RELATED WORKS

RL for LLM Reasoning. OpenAI O1 (OpenAI) introduced a paradigm shift in LLM reasoning
by extending the reasoning horizon before final responses. DeepSeek-R1 (Guo et al., 2025) further

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(d)

Impact of Stage IIIImpact of K

(a) (b) (c)

Figure 5: Average training accuracy of different base models throughout the learning process.

Figure 6: Comparison between SFPO w/ and
w/o entropy control (EC). The blue dashed line
indicates the stop step identified by z-score.

Figure 7: Comparison between SFPO with dif-
ferent α decay strategies. The blue dashed line
indicates the stop step identified by z-score.

advanced this line by open-sourcing both its training algorithm, the value-model-free GRPO (Shao
et al., 2024), and model weights, achieving performance comparable to O1. Subsequent work
has focused on stabilizing and simplifying GRPO: DAPO (Yu et al., 2025b) identifies entropy
collapse as a key challenge and proposes effective remedies, while Dr. GRPO (Liu et al., 2025)
removes normalization terms without sacrificing performance. In contrast, SFPO is orthogonal to both
families: it leaves the objective unchanged yet restructures the update itself into a fast–reposition–slow
decomposition, improving variance reduction, stability, and sample efficiency in LLM reasoning.

Data Efficiency for LLM Reasoning. Despite focusing on designing novel training pipelines,
a complementary line of work (Ivison et al., 2025; Xia et al., 2024; Muennighoff et al., 2025; Ye
et al., 2025) improves the efficiency of LLM training through data filtering. One direction focuses
on pruning data for supervised fine-tuning (Xia et al., 2024; Chen et al., 2023; Ivison et al., 2022).
Another direction targets reinforcement learning, where studies (Muldrew et al., 2024; Liu et al.,
2024; Das et al., 2024; Li et al., 2025; Fatemi et al., 2025; Wang et al., 2025) show that GRPO
requires only a small subset of the training data to improve reasoning ability. However, these methods
largely optimize which data is used rather than how updates are performed. SFPO is orthogonal:
it assumes no change to the data pipeline but restructures the policy update itself. By converting
one-shot updates into a fast–reposition–slow trajectory, SFPO reduces variance and stabilizes learning,
thereby yielding higher data efficiency even under random rollout sampling.

7 CONCLUSION

We proposed Slow-Fast Policy Optimization (SFPO), a simple three-stage update mechanism that
stabilizes early training by combining a fast trajectory, a reposition step, and a slow correction. SFPO
directly addresses the instability of one-shot GRPO updates, achieving higher reasoning accuracy
and fewer generated tokens without added wall-clock cost. Beyond these gains, its modular structure
naturally opens avenues for curriculum or meta-learning extensions, and our entropy-triggered α
schedule suggests richer adaptive rules. We believe SFPO offers not only an effective plug-in for
current policy optimization, but also a foundation for scalable and data-aware optimization strategies
in the LLM reasoning area.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All results reported in Sec. 4 are fully reproducible. We will release the code and experiment scripts
upon acceptance.

REFERENCES

Art of Problem Solving. Aime problems and solutions. https://artofproblemsolving.
com/wiki/index.php/AIME, 2024a. Accessed: 2025-04-20.

Art of Problem Solving. Amc problems and solutions. https://artofproblemsolving.
com/wiki/index.php?title=AMC, 2024b. Problems and Solutions, 2024b. Accessed:
2025-04-20.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023.

Muzhi Dai, Shixuan Liu, and Qingyi Si. Stable reinforcement learning for efficient reasoning. arXiv
preprint arXiv:2505.18086, 2025. URL https://arxiv.org/abs/2505.18086.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active preference
optimization for sample efficient rlhf. arXiv preprint arXiv:2402.10500, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025a.
URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,

10

https://artofproblemsolving.com/wiki/index.php/AIME
https://artofproblemsolving.com/wiki/index.php/AIME
https://artofproblemsolving.com/wiki/index.php?title=AMC
https://artofproblemsolving.com/wiki/index.php?title=AMC
https://arxiv.org/abs/2505.18086
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.19437.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep policy gradients: A case study on ppo and
trpo. arXiv preprint arXiv:2005.12729, 2020.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

D. Guo et al. Deepseek-r1: Incentivizing reasoning capability in llms through rl. Nature, 2025. URL
https://doi.org/10.1038/s41586-025-09422-z. To appear / in press.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. OlympiadBench: A challenging benchmark for
promoting AGI with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024. URL https://arxiv.org/abs/2402.14008.

Jingkai He, Tianjian Li, Erhu Feng, Dong Du, Qian Liu, Tao Liu, Yubin Xia, and Haibo Chen.
History rhymes: Accelerating llm reinforcement learning with rhymerl, 2025a. URL https:
//arxiv.org/abs/2508.18588.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An,
Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report, 2025b. URL https:
//arxiv.org/abs/2505.22312.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. Data-efficient finetuning
using cross-task nearest neighbors. arXiv preprint arXiv:2212.00196, 2022.

Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, and Pradeep Dasigi. Large-scale data
selection for instruction tuning. arXiv preprint arXiv:2503.01807, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, and et al. Solving
quantitative reasoning problems with language models. In Advances in Neural Information
Processing Systems (NeurIPS), volume 35, pp. 3843–3857, 2022.

11

https://arxiv.org/abs/2412.19437
https://doi.org/10.1038/s41586-025-09422-z
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2508.18588
https://arxiv.org/abs/2508.18588
https://arxiv.org/abs/2505.22312
https://arxiv.org/abs/2505.22312
https://arxiv.org/abs/2103.03874

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. arXiv preprint
arXiv:2502.11886, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Zijun Liu, Boqun Kou, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Enabling weak llms
to judge response reliability via meta ranking. arXiv preprint arXiv:2402.12146, 2024.

MAA. American invitational mathematics examination (aime). https://maa.org/
math-competitions/aime. Mathematics Competition Series; n.d.a.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
large language models. arXiv preprint arXiv:2402.08114, 2024.

OpenAI. Learning to reason with llms: Openai o1 preview. URL https://openai.com/
index/introducing-openai-o1-preview.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie

12

https://maa.org/math-competitions/aime
https://maa.org/math-competitions/aime
https://openai.com/index/introducing-openai-o1-preview
https://openai.com/index/introducing-openai-o1-preview

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Si Shen, Peijun Shen, Wenhua Zhao, and Danhao Zhu. Mitigating think-answer mismatch in llm
reasoning through noise-aware advantage reweighting. arXiv preprint arXiv:2508.05928, 2025.
URL https://arxiv.org/abs/2508.05928.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297.
ACM, March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025a. URL https://arxiv.org/
abs/2503.14476.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025b.

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2508.05928
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information processing systems, 32, 2019.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large language models (LLMs) were used solely to improve the writing of this paper, including
grammar, clarity, and readability. They were not used for generating ideas, designing experiments,
conducting analyses, or producing scientific content. All research contributions, technical claims,
and conclusions are entirely the work of the authors.

B GPU MEMORY PROFILING RESULTS

SFPO GRPO

(b)(a)

132G

128G

124G

120G

116G

112G

132G

128G

124G

120G

116G

112G

Figure 8: Comparison of GPU memory during one training step between SFPO and GRPO for
Deepseek-R1-Distill-Qwen-1.5B model.

From Fig. 8, we can clearly observe that SFPO and GRPO demonstrate similar GPU memory
consumption during one training step. This aligns with our expectation: SFPO does not need to store
the heavy optimizer states and parameters but only need to store one copy of the model weight, which
does not introduce significant overhead, especially when the model is sharded across GPUs.

15

	Introduction
	Preliminaries
	Method
	Stage I: Fast Trajectory
	Stage II: Reposition
	Stage III: Slow Correction
	Scheduling alpha
	Unified SFPO Update

	Experiments
	Experimental Settings
	Main Results
	Math Reasoning Benchmarks
	Training Dynamics.
	Efficiency Analysis.

	Analysis and Ablation Study
	Related Works
	Conclusion
	LLM Usage
	GPU Memory Profiling Results

