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ABSTRACT1

Singing voice synthesis (SVS) has advanced significantly,2

enabling models to generate vocals with accurate pitch,3

and consistent style. As these generative capabilities im-4

prove, the need for reliable evaluation and optimization5

becomes increasingly critical. However, current methods6

like reward systems often rely on single numerical scores,7

struggle to capture complex dimensions such as phrasing8

or expressiveness, and require costly annotations, limit-9

ing interpretability and generalization. To address these10

issues, we introduce a generative feedback (i.e., reward11

model) framework that outputs natural language commen-12

taries rather than a scalar value, providing interpretable13

and multi-dimensional evaluation signals for SVS. Our ap-14

proach traines a reward model capable of generating text15

commentary across melody, rhythm, creativity, and overall16

quality, integrating audio with contextual metadata within17

a pretrained model to yield multi-dimensional and inter-18

pretable feedback. Training is conducted on a comple-19

mentary dataset that combines commentary generated by20

MLLMs with authentic human feedback from real-world21

reactions, capturing both large-scale diversity and real-22

world evaluation patterns. Experiments demonstrate that23

this framework not only improves the style consistency,24

and expressiveness of SVS evaluation, but also delivers25

stronger interpretability and better generalization and di-26

versity compared to conventional baselines.27

1. INTRODUCTION28

Recent advancements in singing voice synthesis have ex-29

perienced rapid development [1–5]: current systems are in-30

creasingly capable of producing vocal performances with31

increasingly accurate pitch, precise rhythm and stylistic32

consistency based on given inputs. Effectively evaluating33

generated results and leveraging these evaluations to guide34

subsequent model optimization remains a key challenge in35

this field [6]. Feedback (e.g., predefined criterion rules36

[7–9] and learned reward models [6, 10]) play a crucial37

role in this process, as they provide essential signals during38

evaluation and training, enabling control over generation39

quality and facilitating iterative improvement. A promi-40

nent category of reward designs for singing generation is41

based on music theory and rule systems [7, 11, 12], which42
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define concrete functions in terms of rhythm, tonality, and43

other interpretable aspects. While conceptually straightfor-44

ward, the generalizability, as the ability to maintain perfor-45

mance for unseen singers or novel musical styles, is often46

limited. Consequently, existing SVS system [1,4] struggle47

to capture high-level characteristics and nuanced artistic48

expressiveness which are crucial for achieving authentic49

and compelling vocal synthesis.50

To address this challenge, multifaceted handcrafted re-51

ward designs construct composite metrics on semantic52

dimensions—such as emotional expression [8] and style53

alignment [9]. In addition, neural networks have been54

employed to extract these semantic features automatically55

for evaluation [13]. Learning rewards from human pref-56

erences [14, 15] is also a emerging approach for modeling57

this procedure. With these SVS-oriented reward functions,58

reinforcement learning algorithms such as PPO [16] have59

been employed to fine-tune singing voice synthesis mod-60

els. This paradigm is guided by a reward model [6, 10]61

that provides scalar-valued feedback signals quantifying62

aspects such as pitch accuracy and style consistency. Sub-63

sequently, users can directly influence the reward model64

by selecting preferred segments, enabling explicit specifi-65

cation of desired model output.66

However, several common issues exist across these re-67

ward systems. First, the reward output is typically a sin-68

gle numerical score, which fails to adequately capture the69

multi-dimensional nature of singing quality [17,18]. With-70

out a breakdown across these dimensions, the score re-71

stricts interpretability and hinders statistical analysis of72

representative factors, such as principal components, vari-73

ance ranges, or dimension-wise contributions. This makes74

it more difficult to explain differences in scores and to de-75

rive actionable optimization signals for training. Second,76

conventional reward model necessitates explicit definitions77

for each dimension. Yet, certain aspects of singing, for ex-78

ample, phrasing flow or tempo flexibility, are inherently79

difficult to quantify objectively. Some approaches that80

leverage semantic alignment between text and music [19]81

provide a potential direction, but robust automatic model-82

ing of these subtle dimensions remains challenging. Third,83

prevailing reward model is predominantly trained under84

supervised learning and therefore depends heavily on large85

volumes of high-quality annotated data. This requires sig-86

nificant resources, domain expertise, and consistent quality87

control. Such demand is particularly problematic in the au-88

dio domain due to its inherent complexities; for instance,89

inter-annotator disagreement like note boundaries can in-90

troduce label noise that misdirects model training.91



Table 1. Comparison of the two generated dataset types.
Data Feature MLLM-generated Data Human Reaction Data

Audio High-fidelity clean song clips In-the-wild noisy clips
Text MLLM-generated comments Human review transcripts
Critic Style Prompt-controlled persona Natural authentic expression
Quality Systematic & completeness Fragmented & diverse
Primary Use Performance coverage Authenticity & stylization

Motivated by these considerations, we propose an in-92

terpretable, generative reward modeling framework to pro-93

vide feedback for evaluating singing voice synthesis. Un-94

like conventional scalar score approaches, our reward95

model produces natural language commentary assessing96

outputs across multiple dimensions: content, style, struc-97

ture, and other aspects. This framework not only en-98

hances interpretability and increases evaluation coverage,99

but also facilitates user interaction via a language-level in-100

terface for aesthetic control. Specifically, our approach101

takes an singing voice audio together with an associated102

text as input, where the text is formed by concatenating103

two elements: background information about the music104

segment, and stylistic profile of the human/LLM critic.105

These inputs are processed by an audio-text understand-106

ing model, which generates a organized commentary - a107

multi-dimensional, text-based feedback covering aspects108

such as melody, creativity, and overall auditory impres-109

sion. Our training data consists of two complementory110

sources: 1) raw singing segments associated with text gen-111

erated by a multimodal large language model (MLLM) that112

this source enables data production with systematic com-113

mentary styles and rich textual content; and 2) singing seg-114

ments extracted from reaction videos in which individuals115

listen to and comment on music in real time, associated116

with corresponding texts combined with song information117

and critic’s profiles. Based on these datasets, we per-118

form supervised fine-tuning (SFT) [20] on the Qwen2.5-119

Omni-7B [21] pretrained model. We apply low-rank adap-120

tion (LoRA) [22] to all linear layers of the thinker mod-121

ule for efficiency, aiming to suppress overfitting and en-122

hance the generalization. After training, LoRA weights123

are merged back into the thinker module, and inference is124

performed autoregressively using top-p sampling to bal-125

ance coherence and diversity. To evaluate our framework126

in realistic settings, we also design an LLM-based bench-127

mark that integrates music-domain knowledge and audio128

analysis to assess singing-review quality. It scores on129

objective musical knowledge, completeness, factual ac-130

curacy, and novelty. Through this generative feedback,131

we obtain both textual commentary that can be used to132

train the generation model or support downstream tasks.133

This innovative paradigm integrates interpretability, multi-134

dimensional evaluation, and broad applicability into a135

framework for evaluating singing voice synthesis tasks.136

2. METHOD137

This section details the training framework for our pro-138

posed reward model, implemented via LoRA on the139

Qwen2.5-Omni-7B [21] foundation model. The model op-140
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Figure 1. Workflow for constructing the human reac-
tion dataset. Raw videos are split into audio and subtitle
streams, followed by speaker diarization and subtitle pre-
processing. Audio event detection is used to locate song
segments and their timestamps. These are then aligned
with the processed subtitle data to produce structured com-
mentary outputs for downstream training and evaluation.

erates on synthesized/collected audio–text data, enabling141

it to generate natural language commentary conditioned142

on given inputs. Our methodology comprises three core143

stages: dataset construction (Section 2.1), model architec-144

ture (Section 2.2), and evaluation protocol (Section 2.3).145

2.1 Dataset Construction146

Our dataset is designed to enable the generation of high-147

quality singing commentary conditioned on both musical148

performances and contextual metadata. Adopting a uni-149

fied audio-text structure, the dataset integrates two com-150

plementary sources: the first is a large set of synthetic151

feedback generated by MLLMs, providing systematic per-152

formance coverage; while the second is acquired from153

human-authored reaction videos, capturing authentic judg-154

ments to enhance realism. The differences between them155

are summarized in Table 1. The following sections outline156

the common data structure to clarify their composition.157

2.1.1 Data Structure158

Each dataset sample comprises a 10-60 second audio seg-159

ment preprocessed via sampling rate normalization to en-160

sure temporal consistency and mitigate source artifacts.161

The audio is associated with contextual text containing162

song attributes, critic profiles, and domain commentary163

grounded in contextual background. This unified multi-164

modal organization not only ensures consistent model in-165

put formatting, but also facilitates multi-source data inte-166

gration and cross-dataset evaluation. Crucially, contextual167

inputs guide commentary generation to capture both the168

sing voice content and the critic’s characteristics. The for-169

mer contains song attributes (creation background, com-170

poser/performer identities, thematic tags) enabling contex-171
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A lively, straightforward music reviewer who favors strong
groove and smooth melodies, now listening to an R&B/Soul
ballad with steady tempo and emotional build-up.

I really enjoy how warm and magnetic the vocals feel,
with pitch control that stays spot-on throughout. The
smooth, natural groove locks in perfectly with the bass
and percussion, giving the whole track a steady flow. The
singer's breath control is steady, and the phrasing feels
deliberate, making the performance sound confident.
That said, I wish a few transitions carried more dynamic
lift so the emotional peaks would hit harder. 

Figure 2. Overview of our reward model fine-tuned framework, which uses the Qwen2.5-Omni-7B thinker module’s audio
and text encoders with shared-attention fusion to align log-Mel spectrograms and tokenized text in a unified embedding
space, enabling hierarchical cross-modal interaction and autoregressive generation of context-aware singing commentary.

tual understanding beyond acoustic signals. The latter fo-172

cuses aesthetic preferences and linguistic style profiles, en-173

suring outputs exhibit contextual coherence, and stylistic174

fidelity to target personas. The following section details175

the acquisition methodology for each dataset type.176

2.1.2 Category 1: MLLM-generated Data177

The first category is built from curated song segments178

paired with systematically generated critical commen-179

taries. To ensure broad stylistic representation, ten di-180

verse musical genres are included, each with represen-181

tative songs. Professional critic profiles are parameter-182

ized through system prompts specifying critical tone (e.g.,183

analytical, reactionary), linguistic patterns (encompass-184

ing rhetorical devices and phonological mimicry), genre185

preferences, and cultural backgrounds, enabling contextu-186

ally nuanced references. Song metadata—including back-187

ground, composition, and stylistic attributes—is paired188

with these critic profiles. This integrated input is designed189

to equip MLLMs with objective, expert-level music eval-190

uation capabilities, fostering a comprehensive understand-191

ing of acoustic properties. This dataset contributes to pre-192

cise textual descriptions of vocal quality assessments, thus193

establishing a robust foundation for subsequent training.194

2.1.3 Category 2: Human Reaction Data195

The second dataset category derives from YouTube hu-196

man reaction videos, processed into audio-text pairs197

via the pipeline shown in Figure 1. Raw videos un-198

dergo audio extraction using yt-dlp and subtitle retrieval199

via the YouTube Transcript API. Audio segments are200

speaker-diarized (pyannote.audio) and merged into ut-201

terances by speaker. An AudioSet-finetuned classi-202

fier (MIT/ast-finetuned-audioset-10-10-0.4593) labels ut-203

terances as singing or spoken commentary. Contiguous204

singing segments are then aligned with subsequent critic205

commentary segments. Finally, critic speech timestamps206

are matched to subtitles to extract review text, form-207

ing training samples including song audio with commen-208

tary. Trimmed segments are stored alongside prepro-209

cessed reviewer persona metadata (from channel introduc-210

tions) and song metadata (from Wikipedia), creating mul-211

timodal samples. To ensure the data quality, we filter sam-212

ples with empty subtitles/text, audio segments <10 sec-213

onds, or text <8 words, ensuring sufficient linguistic and214

acoustic content. This curated data enhances model ca-215

pability to evaluate singing voice synthesis across diverse216

singing styles, speaker characteristics, and recording envi-217

ronments—critical for robust and diverse SVS assessment.218

We investigate several alternative approaches for the re-219

action data pipeline but found limitations. Applying audio220

event detection followed by ASR is hindered by overlap-221

ping singing and commentary, leading to imprecise seg-222

mentation. Speaker-based segmentation suffered from gar-223

bled transcriptions that compromised accuracy. Aligning224

YouTube subtitles with speaker diarization is also unreli-225

able due to numerous short-duration segments. Thus we226

adopt the previously described pipeline for this subset.227

2.2 Model Architecture228

Figure 2 illustrates the adapted training pipeline based on229

the Qwen2.5-Omni-7B pretrained model. While the orig-230

inal architecture incorporates a multimodal thinker mod-231

ule (integrating audio/visual encoders with a transformer-232

based language backbone) and a talker module for audio233

reconstruction, our implementation retains only audio-text234

capabilities since the task requires neither video input nor235

synthesized audio output. Audio inputs are resampled to236

16kHz using librosa and transformed into log-Mel spec-237

trograms, while text inputs are augmented with special to-238

kens (<im_start>, <audio>) before tokenization. Follow-239

ing feature extraction, both modalities are projected into a240

shared latent space and processed by the language model241

backbone, which autoregressively generates textual output242

tokens. The entire network is optimized via cross-entropy243

loss between predicted logits and ground-truth tokens.244

2.3 LLM-based Reaction Evaluation245

To obtain a quantitative assessment in generating singing246

reviews, we design a comprehensive evaluation framework247

that leverages the average of different LLMs to score out-248

puts across multiple dimensions. The framework consists249

of four complementary components. First, a multiple-250

choice audio QA module measures a model’s musical251

knowledge and auditory discrimination presenting 4-8 op-252

tions and calculating accuracy based on the chosen answer.253

Second, the completeness module employs several LLMs254

to score generated reviews against a set of structured crite-255

ria, ensuring coverage of all key aspects. Third, a precision256



Table 2. Main comparison results on loss on two validation sets and the LLM-based reaction benchmark. ’-’ denotes
unavailable metrics due to inherent constraints in calculating loss for closed-source models.

Model Variant
Validation Dataset Loss LLM-based Reaction Benchmark

MLLM ↓ Reaction ↓ QA ↑ Completeness ↑ Precision ↑ Novelty ↑

Gemini-2.5-Flash [23] - - 52.8% 0.606 0.917 0.523
Qwen2.5-Omni-7B (Pretrained) 2.532 2.419 22.9% 0.832 0.604 0.688
Fine-tuned (SFT+LoRA) 1.882 1.499 65.7% 0.937 0.669 0.813

module checks factual consistency against verified song in-257

formation, counting correct statements to compute a preci-258

sion score. Finally, a novelty module rewards unique in-259

sights that go beyond common or obvious knowledge. This260

design with diverse evaluation tasks and LLM-based scor-261

ing allows us to capture the breadth, correctness, and orig-262

inality of generated reviews, and thus serves as the evalua-263

tion framework for our reward model.264

3. EXPERIMENTS265

3.1 Setup266

Our dataset consists of two subsets: 37 hours of MLLM-267

generated data and 176 hours reaction data, from which268

we reserve 10% of the data as a validation set. For com-269

prehensive evaluation, we further employ the LLM-based270

framework introduced in Section 2.3. Within this frame-271

work, four complementary modules—QA, completeness,272

precision, and novelty—are defined, with each contribut-273

ing an independent score. Together, these modules form a274

coherent assessment protocol that captures different facets275

of review quality. LoRA rank is configured to 8 and ap-276

plied to all linear layers. Training is conducted with a per-277

device batch size of 2, gradient accumulation steps of 4,278

and the AdamW optimizer with weight decay of 0.01. The279

learning rate is set to 1e-4, with a cosine learning rate280

schedule and a warm-up ratio of 0.1. The total number of281

training steps is 10000 (about 2 epochs). Each experiment282

is conducted on a single NVIDIA A100 GPU.283

3.2 Main Results284

Table 2 reports results on both validation losses and the285

LLM-based evaluation benchmark. The fine-tuned model286

(SFT+LoRA) substantially reduces loss compared to the287

pretrained base model (from 2.532 to 1.882 on the MLLM288

set and from 2.419 to 1.499 on the reaction set), showing289

stronger alignment with reference commentary. Moreover,290

benchmark results reveal marked improvements across291

multiple dimensions: QA accuracy rises from 22.9% to292

65.7%, while completeness and novelty both show clear293

gains, reflecting reviews that are more detailed and orig-294

inal. As shown in Figure 3, the fine-tuned model pro-295

duces coherent and contextually integrated commentary,296

while the pretrained output appears fragmented. Preci-297

sion also improves, confirming stronger factual grounding.298

These benchmark gains also translate into advantages over299

the closed-source Gemini-2.5-Flash [23]: although Gemini300

achieves strong precision due to careful reasoning process,301

it falls behind our fine-tuned model in QA, completeness,302

and novelty, underscoring the strength of our framework.303

Together, these results demonstrate that our framework en-304

hances the effectiveness of generated reviews.305

Pretrained Output

Fine-tuned Output

This singer notes are on pitch.
They hold. The notes are

perfect together. Harmonics
pop out. It gives a feeling like...

They are like a sound wave, like, it
just, both of them are dead on pitch,

and then it just, it's held there and
the notes are so perfect together so
that you get this beautiful mix of
harmonics that pop out and give
you this hug. You're almost being

kind of surrounded by the harmonics
as if you're, it gives me like the
feeling of like throat singing.

Input
Song: Fire Away by Chris Stapleton
Style: Country, Americana
Keywords: Heartbreak, Vulnerability, Country
Critic Profile: You are a London-based vocal
coach. You delivers in-depth, and emotionally
engaging reactions to live vocal performances.

Figure 3. Showcase on pretrained and fine-tuned model.
3.3 Ablation Study306

We conduct ablatios to examine the impact of different307

training data configurations. As shown in Table 3, us-308

ing only the MLLM-generated dataset yields relatively low309

loss on the MLLM validation set but higher loss on the310

reaction set, while training with only the reaction dataset311

produces the opposite trend. This indicates that each312

data source contributes complementary strengths. Train-313

ing on the unfiltered dataset leads to higher losses on both314

datasets, suggesting that noisy or low-information samples315

leads to overfit. By contrast, combining both filtered sub-316

sets in the fine-tuned model achieves the best overall re-317

sults, demonstrating the importance of data quality and318

complementarity for improving model alignment.319

Table 3. Ablations on different datasets for training reward
models. Results are reported on two validation loss.

Model Variant
Validation Dataset Loss

MLLM ↓ Reaction ↓

Qwen2.5-Omni-7B 2.532 2.419

Fine-tuned (SFT+LoRA) 1.882 1.499
w. only MLLM dataset 1.809 1.832
w. only Reaction dataset 2.057 1.394
w. unfiltered data 2.262 1.951

4. CONCLUSION320

In this paper, we propose a novel framework combining321

natural language commentary with scalar scores to provide322

interpretable, multi-dimensional evaluation for SVS. Our323

approach trains a model to analyze melody, rhythm, and324

expressiveness by integrating audio and metadata, leverag-325

ing both MLLM-generated and real human feedback data.326
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