© ®©® N O o A~ W N =

o

11

SPG: Sandwiched Policy Gradient for
Mask Diffusion Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion large language models (dLLMs) are emerging as an efficient alternative
to autoregressive models due to their ability to decode multiple tokens in parallel.
However, aligning dLLMs with human preferences or task-specific rewards via
reinforcement learning (RL) is challenging because their intractable log-likelihood
precludes the direct application of standard policy gradient methods. While prior
work uses surrogates like the evidence lower bound (ELBO), these one-sided
approximations can introduce significant policy gradient bias. To address this, we
propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a
lower bound of the true log-likelihood. Experiments show that SPG significantly
outperforms baselines based on ELBO or one-step estimation. Specifically, SPG
improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in
GSMBS8K, 2.6% in MATHS500, 18.4% in Countdown and 27.0% in Sudoku.
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Figure 1: Test accuracy of SPG and baseline methods on four reasoning benchmarks. All methods
are evaluated with a generation length of 256 in 128 denoising steps. Full results are in Table

1 Introduction

Diffusion models have recently emerged as a powerful and efficient paradigm for text generation [3,
5,138L 1231130, 136]]. These models operate in discrete spaces but share architectural similarities with
their continuous counterparts [27]. They employ a noising process that progressively corrupts text
data, while a neural network is trained to learn the reverse process. For instance, Masked Diffusion
Language Model (MDLM) [30] uses random masking forward process and optimizes an Evidence
Lower Bound (ELBO) of the log-likelihood, which has also been widely adopted by subsequent
large-scale diffusion language models (dLLMs), including LLaDA [25] and DREAM [13]. A key
advantage of dLLMs over autoregressive (AR) models is their ability to decode multiple tokens in
parallel, which significantly reduces inference latency and improves scalability [43} [17].

Aligning large language models with human preferences [26] or task-specific rewards (e.g., inducing
reasoning behavior) [35][14]] typically requires a post-training stage of reinforcement learning (RL).
However, applying RL to dLLMs remains underexplored. A principal challenge is the computationally
intractable log-likelihood of dLLMs, which is essential for accurate policy gradient estimation. Recent
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Figure 2: The training process of SPG for MDLM. Left: From a prompt ¢, we generate responses
{7 }9_,. We then maximize a lower bound on the likelihood 7g (2 | c) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence of
length 9 with a block size of 3, where the current generation block is highlighted in yellow.

works [46] 45| 49]139] adapt standard RL and preference optimization algorithms, such as GRPO [33]
and DPO [28]], by using the ELBO or a one-step estimation as a surrogate for the true likelihood,
leading to misaligned policy gradients and potential suboptimal performance.

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel RL algorithm
for dLLMs that computes more robust and less biased policy gradients. As illustrated in Figure 2] our
core idea is to “sandwich” the intractable log-likelihood of generated sequences: we maximize the
tractable lower bounds for positive-reward sequences while minimizing the upper bounds for negative-
reward ones. We also propose a block-wise masking strategy that better aligns data distributions
during policy rollout. SPG achieves state-of-the-art performance on four mathematical and logical
reasoning benchmarks, improving accuracy by up to 3.6% on GSM8K, 2.6% on MATHS500, 18.4%
on Countdown, and 27.0% on Sudoku compared to the other RL algorithms for dLLMs.

2 Sandwiched Policy Gradient with Evidence Bounds

We introduce SPG, a new policy gradient algorithm for masked diffusion language models that
optimizes tractable evidence bounds (Algorithm|[I)). We build on the MDLM [30] framework with
complete background overview and notations in Appendix [BJand Appendix [C]

2.1 A Lower Bound Objective for Policy Optimization

Our approach is based on group relative policy optimization [35, 21]]. For a given prompt c, we
generate a group of g responses {x’ }5:1 from the policy mg. We then compute the advantage

Al(e,a’) = R(c,a’) — .39, R(c,a’). Moreover, we transform the conventional policy

optimization objective as an advantage-weighted log-likelihood objective:
1 ,
TE0) = Befor)or | + 3. A (e logmo(a [ ) | m
j=1

where sg[@)] indicates stop gradients for the policy rollout. This objective encourages generations
with positive advantages (A7 > 0) and discourages those with negative advantages (47 < 0).

For dLLMs, the log-likelihood log 7 is intractable. A common surrogate is the evidence lower bound
(ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood, minimizing
the ELBO for negatively-rewarded samples does not guarantee a reduction in the true log-likelihood.
To address this, we propose a sandwiched objective. For samples with positive advantages, we
maximize the ELBO. For samples with negative advantages, we instead minimize a tractable evidence
upper bound (EUBO), Lgypo. This creates a true lower bound for the original objective:
g
jsp(‘,(o) = E|: é Z (]]_A]‘ZO . A]»CELBO(CB] ‘ C; 9) + ILA_7‘<0 . A]»CEUBO(w] | C; 0)) s 2)
j=1

where the expectation is take with respect to ¢, {x?} ~ Tge0]. Since Lerpo < logme < Lguo, it
follows that Jspg(6) < J&°"P(0). Maximizing this tractable bound therefore serves as a valid proxy
for optimizing the true objective.
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2.2 A Tractable Evidence Upper Bound

To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require a
tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule o. For any 8 > 1 and a sequence xy.,,, we have:

n ar —
Lrugo(@1:n; 0 Zlog Z Ez iy lf_oﬁ:rll']l(zt-u,i =m) 7y (x; | 2i01) | +C(T), 3)

where C(T') := %bg E.prmg(l2) [q(zlzT \ w)_"} is a constant independent of 6.

Here, § > 1 is a hyperparameter that controls the tightness of the bound, with values closer to 1
yielding a tighter bound. The expectation is taken over the timestep ¢ ~ /[0, 1] and the noised latent
2zt ~ qyo(- | ).

Corollary 1. Taking the limit of T — oo, we have:

VoLryso(1:n;0) = Ve (EEUBO(-'ELn; ) VoLlrupo(®1.n;0), where

) Lo , )
Lounolwrn:0) = 5 D logErs, [w(r) - Uzes = m) 75 | 20)]
i=1

In practice, we estimate Leuso using Monte Carlo sampling and plug it in Equation [2|in place of
Lguso- The proof and theoretical analysis are provided in Appendix @}

2.3 Practical Considerations

Block-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate Lg; o
and Lgypo in Equation (2)) via Monte Carlo sampling: for each 7, we randomly sample m timesteps
{t-}™_, and generate the corresponding partially masked samples {2/ }"; ~ g(- | 7). One
straightforward approach as used in Yang et al. [45]] is applying random maskmg to clean sequences.
However, recent dLLMs like LLaDA [25] employ a block-wise semi-autoregressive unmasking
inference strategy and achieve sota performance. Thus, the policy rollout process actually encounters
a narrower and more structured set of partially masked sequences than with fully random masking.

To better match data distributions during policy rollout and optimization, we use block-wise masking,
where a random block is selected for masking, with earlier blocks kept clean and later blocks fully
masked. Tokens within the chosen block are masked randomly. We also apply light random masking
(Pmask = 0.15) to prompts and clean blocks, following D1 [46], to improve stability and generalization.

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation of
Equation (3] leads to a biased estimation to Leuso and potentially requires a substantial number of
samples to get reliable approximations, resulting in high computational costs and instability during
training. To address these challenges, we use a mixture of EEUBO and Lg o as a more practical
log-likelihood approximation for negative advantage traces:

EMix(w | C; 0) =w- EEUB()(SB | c; 0) + (1 — w) . £ELBO($ | C; 0) (@)

where 0 < w < 1 is a blend coeflicient. Intuitively, the upper bound LEUBO serves as a strong
correction for negative advantage traces, while the lower bound LELBO is easier to estimate but
introduces more bias and is less effective for penalization. Combining both leverages their strengths for
better log-likelihood estimation. See Appendix [E.T|and Appendix [E.2]for discussions and empirical
evidence on the reduced gradient variance when using the mixture, and Appendix [E.3] for a toy
example illustrating the distinct behaviors of the lower and upper bounds.

3 Experiments

Experimental Setup. We conduct RL with SPG following the setup from D1 [46]], employing
LLaDA-8B-Instruct as the base model and evaluating on four benchmarks: GSM8K, MATHS500,
Countdown, and Sudoku. We compare SPG to recent RL algorithms for dLLMs, including D1, WDI,
UniGRPO, LLaDA-1.5, and the base model LLaDA-8B-Instruct. For SPG, we report results using
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Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model/Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. ~ 69.5 772 798 282 324 346 188 168 168 57 277 262

LLaDA-1.5 70.4 80.5 81.9 26.8 322 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 72.2 80.6 81.3 31.4 36.0 394 30.9 30.9 34.4 7.2 325 29.3
WDI1 74.6 81.5 83.0 31.0 374 39.0 48.8 523 50.8 33.1 32.1 225
UniGRPO 74.9 82.5 82.7 324 374 394 445 43.0 57.0 59.0 67.0 62.9

SPG w/ EUBO 77.1 83.8 83.9 332 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ Mixture  78.5:3.6 86.1+36 84.5:15 33.4+1.0 40.0:26 41.8:24 68.8:20 70.7+18 70.3:13  82.9:24  94.0+27  93.1:30
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Figure 3: Reward dynamics during RL training. SPG w/ Mixture leads to faster convergence and
higher reward. We report mean and standard deviation over a rolling window of 50 steps.

both Lgygo (i.e., SPG w/ EUBO) and Ly« (i.e., SPG w/ Mixture) for negative advantage traces, with
B selected from {1.0,1.5,2.0} for best average accuracy across generation lengths and w fixed at
0.5. For both RL rollouts and evaluation, we use the semi-autoregressive confidence-based decoding
strategy. We evaluate every 100 steps, reporting the best checkpoint across generation lengths 128,
256, and 512. Further experimental details are in Appendix [F-I]and Appendix [F.2]

Results. As shown in Table[T] both SPG w/ EUBO and SPG w/ Mixture outperform all baselines
across benchmarks and generation lengths, with Mixture achieving the best results. In particular, at
generation length 256, SPG w/ Mixture outperforms the previous state-of-the-art by 3.6% on GSM8K,
2.6% on MATHS500, 18% on Countdown, and 27% on Sudoku, showcasing the effectiveness of SPG.
Reward dynamics in Figure 3| further highlight SPG’s rapid and stable training progress. We provide
additional results and comparisons to the baselines in Appendix[G.1]

Ablations on Inference Strategies. We evaluate the base and RL fine-tuned models under various infer-
ence strategies (see Figure[d), beyond our standard confidence-based, block-wise semi-autoregressive
setup with block size 32. Despite being trained with semi-AR decoding, SPG consistently outperforms
all baselines across inference methods, demonstrating strong robustness and generalization. Full
results for each benchmark are in Table [[3

Semi-AR, Block=16, Semi-AR, Block=32, Semi-AR, Block=64, Semi-AR, Block=32, Full Sequence, Full Sequence,
- Confidence Confidence Confidence Random Confidence Random
9 3.5 70.73:2 70.927
S0 +16.2% 1 68.7 +15.0% 1 : +8.7% 1 o +14.6% 1 o0 +16.7% 1 +9.4% 1
9 : 61.2
] 57.3 58.158.2 57.5
5e0 52.6) 53.5 sLo 52.90"
g s0 45.9 49.2 . 46.3
< 43.8 d 42.913.3 43.1 44.5 -
0 40]37.87.8 38.5%0-2 36.4 38.140:2 37.9
2 32.6 32.4 24:0
30 28.8 27.5 27.28.8
>
< LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 s UniGRPO mm SPG w/ EUBO Bl SPG w/ Mixture

Figure 4: Ablations on inference strategies, i.e., varying decoding orders (semi-AR with different
block sizes, full-sequence) and unmasking methods (confidence-based, random), with a generation
length of 256. SPG consistently achieves the highest average accuracy across all benchmarks.

4 Conclusion

We introduce SPG, a new RL algorithm for dLLMs that tackles intractable log-likelihoods by
optimizing tractable upper and lower bounds on rollout sequences, yielding a more robust and less
biased policy gradient. Extensive experiments on four benchmarks show that SPG significantly
outperforms baselines and achieves state-of-the-art results.
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A Related Work

Diffusion Language Models. Building on the remarkable success of diffusion models for image
generation in continuous domains [37, [16]], researchers have explored their extension to discrete data
such as text. Initial attempts focused on training continuous diffusion models in the text embedding
space 181112, [15L131]], while they face challenges in optimization and generalization due to the discrete
nature of text data. Masked diffusion models [23} 48l 16} 30, |36] address this by defining the diffusion
process directly in the discrete token space, using random masking as the forward process, and have
achieved strong empirical results. Block Diffusion [2] further advances this direction by combining
the strengths of autoregressive models, such as the capability to generate variable-length outputs and
using KV cache to accelerate inference, with the benefits of diffusion language models like parallel
decoding and flexible, any-order generation within blocks. Recently, large-scale diffusion language
models trained with masked diffusion objectives have demonstrated performance competitive with
similarly sized autoregressive models [25}[13]]. More recent works [44} 124120} 31}32] have introduced
caching and parallel decoding algorithms that greatly enhance the inference efficiency of dLLMs.

Reinforcement Learning for LLMs and Reasoning. The seminal works apply reinforcement
learning to large language models (LLMs) to align them with human preferences via reinforcement
learning from human feedback (RLHF) [7, [26]]. More recently, reinforcement learning has proven
highly effective at enhancing the reasoning abilities of LLMs during the post-training stage, where
rewards can be provided by a process reward model [[19] or verifiable reward signals. Algorithms
such as Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) constrain
policy updates to a trust region, reducing variance and promoting stable learning by preventing
excessive shifts from the reference policy [33}134]. Group Relative Policy Optimization (GRPO) [35]
introduces group-relative rewards, enabling efficient training without the need for an additional
value (critic) model. GRPO and its variants have demonstrated strong empirical performance in
state-of-the-art models such as DeepSeek-R1 [14], particularly on mathematical reasoning tasks,
where incorporating long reasoning traces with self-reflection and verification steps yields significant
improvements. Recent works [21} 47,140, 9] further improve RL algorithms for LLMs by reducing
the bias introduced by the GRPO objective, enhancing sample efficiency, and introducing additional
regularization.

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored
RL-based fine-tuning algorithms for diffusion models with continuous objectives [[L1} 4, 8]. While RL
algorithms have achieved notable success to LLMs and continuous diffusion models, their applications
to diffusion language models in the discrete space remain underexplored. DRAKES [42]] leverages
reward backpropagation along the denoising trajectory, but is computationally intensive for large
scale models as the gradients are propagated through each denoising step. Alternatively, methods like
D1 [46] and UniGRPO [45] utilize the GRPO framework, approximating the log-likelihood through
either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in UniGRPO).
VRPO [49]] adapts DPO [28] to fine-tune dLLMs by applying MC estimation of the ELBO. WD1 [39]]
starts from the GRPO formulation and the same log-likelihood estimation as in D1, while avoiding
direct estimation of the old and reference policy log-likelihoods by integrating them into a weighted
policy optimization objective. Despite these advances, a principled analysis of RL algorithms for
dLLMs, especially the challenging log-likelihood estimation, is missing. This results in substantial
bias in the optimization objective and suboptimal performance.

B Background

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and
reinforcement learning for text diffusion models.

Notation. We denote scalars by lowercase letters (), vectors by bold lowercase (x), and sequences
by x1.,,. A superscript (e.g., 7) denotes an item’s index within a group. We define the set of the first
k integers as [k] := {1,...,k} and the k-dimensional probability simplex as A*~!. Distributions
include the categorical Cat(- | p) and the uniform & [a, b]. Throughout the paper, we use the following
primary indices: ¢ € [n] for position, j € [g] for a sequence in a group, and ¢ € [0, 1] for the
continuous diffusion timestep.
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B.1 Masked Diffusion Language Models

Diffusion models for language learn to generate text by reversing a gradual noising process. Specifically,
Masked Diffusion Language Models (MDLMs) [30] start with clean text 1., and corrupt it into
Zi = 2z 1., OVer a continuous timestep ¢ € [0, 1] by progressively replacing tokens with a special
[mask] token. Att¢ = 0, the data is original (zg = ), while at t = 1, the sequence is fully masked
(z7 is all [mask] tokens). Each token is corrupted independently according to the forward transition
kernel:

aro(zei | ®i) = Cat(zy; | i + (1 — au)m), (6)

where m is the one-hot representation of the [mask] token. The noise schedule, ay € [0, 1], is a
strictly decreasing function, such as the linear schedule a; = 1 — ¢, with op = 1 and oy = 0.

In the reverse process, a neural network, which we denote as the policy 7, is then trained to perform
the reverse process: predicting the original tokens @ from a corrupted version z;. The transition from
z: 10 z5 (s < t) is parameterized with g as follows:

Cat(zs; z¢), Z; 7 m,

pO(Zs | Zt) = Q(zs | Zt, T = 7T9(' | zt)) = {Cat (Zs' (1fas)m+gozsfat)ﬂ'e(-\zt)> Z, = m.

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of
each clean sequence  ~ pga,, Which simplifies to the following objective:

n

Lerpo(x;0) = E; -, {Z w(t) - 1(z; = m) - log me(x; | zt)] : 7

i=1

where w(t) = o} /(ay — 1) is a time-dependent loss weight, and the expectation is over a random
timestep ¢ ~ U[0, 1] and the corrupted sequence z; ~ g¢o(- | ). In essence, this objective trains
the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more
comprehensive overview of MDLM, please refer to Appendix [C|and Sahoo et al. [30].

B.2 Reinforcement Learning for Diffusion Language Models

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as
a policy mg that generates a response « to a prompt c¢. A reward function R(c,x) provides a
scalar score for the response, and the training goal is to update 8 to maximize the expected reward:
J(0) = Egrry(.|c)[R(c, x)]. This objective is commonly optimized using policy gradient methods,
which rely on the following gradient estimator.

vgj(a) = Emwﬂ'e(-\c) R(C,QZ)VQ logm;(a: | C) . (8)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the
policy’s log-likelihood, log g ( | ¢), is intractable and cannot be computed directly. To overcome
this, prior work [49] [45]] approximates this term using its ELBO, effectively replacing log mg( | ¢)
with a score derived from the pre-training objective in Equation (7).

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the
true log-likelihood (ELBO < log mg). Consequently, the RL objective is only a valid lower bound on
the true expected reward if all rewards R(c, x) are non-negative. This constraint prevents the model
from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible
with advanced RL algorithms that use relative or negative rewards [335]], biasing the final policy. Our
work aims to resolve this limitation.

C Basics of dLLMs

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to
Sahoo et al. [30] for more details.
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We start from a discrete time version of the diffusion models with finite ¢ € [T']. Assume a one-hot
categorical variable © € {ej,..., e} C A*~L. Further assume we gradually corrupt z into an
absorbing state m (i.€., €[ask) ) With transition matrix @ at time ¢. Then:

¢
q(z: | ) = Cat(z | Qsx) = Cat(z | [ Q-=).

=1

Here, z; is also a one-hot categorical random variable in AF—L In practice, one could choose Q;
such that:

q(z | ) = Cat(z; | v + (1 — aq)m).
Here, a; = 1,a7 = 0, < 0.

Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this
particular case, consider the discretized Markov chain with 7" latent variables 21, 2o, . .., 27, where
zr = m and z; = x. We use the shorthand z = z;.7 and write

PG@»Z)}

ﬁELBO(m; 0) = ]Equ(|w) |:10g q(z | 1:)

T-1

Z log pe(zt | Zt+1) + log PB(ZT) ]

q(z | Zt+1a$) q(zr ‘ x)
————

=0 &)

:Equ(-\w) |:1ng9(:137 zl) +
—_—

t=1

Tz_:l]E {1 po(2t | z141) }
= Ziqp1~g | 108 — <
t=1 R (2t | Ze41, )

T-1 pg(Z |Z )
= ]Ez ~q(-|lx IEz ~q(-|z T lO tm:| ’
; t+1~q(-|®) Tz ~q (| ze41,2) |: & q(zt | Zt4+1, ZC)

Here, log pg(x, z1) = 0 because we assume 21 = x, and pg(zr) = ¢(zr | ) because we assume
zr = m. A common method to parameterize pg is via predicting « with model 7g in g:

po(zt | ze11) = q (2t | ze41,® = 7o (- | 2e41)) -

Now, given that z;,, is either m or = (assuming m # x). Then the KL term in equation [9]
decomposes into the following.

0 Zt = Zt41 = X,
log pe(z | ze41) 0 Zy =M, 241 = X, (Impossible) (10)
og — =
a(z¢ | Zt41, ) logmg( | ze41) 2t =T, 2041 = m,
0 2t = Zi41 = M.
Moreover, q(z; = @ | 241 = M, x) = al‘__Toj’fll and note that g (x | z;) = 1 when z; = x, so we

have:

T-—1
ar —
Leipo(;0) = > Espyy () [f_a:: log 7o (x| zeq1)1 (2441 = m)}
t=1

. O — Q441
= Z ]Ethrqu(,‘w) |:10[t 10g 71'9(:1: | Zt+1):| . (If Zt+1 — &, then 1()g ﬂg((E ‘ Zt+1) = 0)
t=1

+1
(11)
Taking the above limit as 7" — oo, we have:
1 /
«
LeLpo(x; 0) :/ E’ztqu(-m)|: L logme(x | zt)} (12)
t=0 ap—1

10
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Generalization to Sequence The above is for a single categorical variable . In practice as in
language modeling, it becomes a sequence of categorical variables x;.,,. Then we write

p@(ml:n; zl:n)
Faan(£1210) = v G

g Po(Zi, Z1:n N

= E{zimatlz), [Z log Z((le))} (Independence of g | z:))
i=1 L

(13)

pe(xiazlzn)]

n
=) Eiglzayn_, | l0g
Zz; {zir~aClza)}y_y { q(zi | x;)

Leigo(xi;0).

I
NgEN

i=1

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse
process pg is conditioned on all 2., instead of a single token’s z;.

D Evidence Upper Bound for dLLMs

In this section, we provide the derivation of the evidence upper bound. Following the above section,
we start from the discrete time version of the diffusion models.

Lemma 1 (Rényi Variational Bound; Rényi [29], Van Erven and Harremos [41]]). Fix an observation
x. Let q(- | ) be any distribution on Z such that p(- | ©) < q(- | ), denoting that p(- | x) is
absolutely continuous with respect to q(- | z). Then, the following holds for any 8 > 1:

B
E.nq(la) [log Z(;ii))} <logp(x) < %ngM(.‘m) [(%) ] . (14)

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the
following theorem.

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process
has T steps with a monotonic schedule . For any 3 > 1 and a sequence of categorical variables
x1.,,, we have:

log mo(x1:n) < Leugo(®1:0;0), (15)

where

n T-1
1 Qp — Qgp1
Lrupo(T1:0;0) = 3 > log Y E.,, llt—a:rl (2410 =m) - mp (@i | 2e41) | + C(T),
=1 t=1
(16)

and C(T) := % logE., ;~q(|z) [q(zl:T | w)_”} is a constant independent of 6.

Proof. We first consider the case with a single categorical variable . On the account of LemmalT]
and following a similar argument as in equation[9} for any 5 > 1, we can write

B
1 pe(x, 2)
logmg(x) < = logE, q(.1x <
(z) 3 q(-|z) q(z | x)
T-1 B
1 po(zt | zi41) > ]
=—logE, ... _ a7
B & Fmratie) [ tl;[l <Q(zt | zt41, )
Note that the sequence z1.7 has a form {, ..., x, m, ..., m}. Define the transition event:
A = {2z =, 2111 = m} (18)

11



a7a  Then, by the law of total expectations, equation[T7]can be expressed as:

T-1 8
1 po(2t | z141)
E logE.. rnq(|2) [ H (

=1 q(zt | zt41, )

1 T-1 T-1 Zs | Zs g
:Blog;P(At)Ez~q(-\m) lH (M) ‘At]

Q(zs | Zs4+1,

s=1
08 Y B H a(z = | >(p9(zﬁ:w|zw:m)>ﬁ]
=-—log 2y ~a(-lz zZ —m)q(z = | =z =m,x
,6 pot t+1 (1( | ) t+1 1 t+1 q(zt =@ | Zt+1 = m,m)
1 = oy — Oyl g
=5 log > Eeimatle) |z = T o, "e@ #) (19
t=1

374 The penultimate line is due to the fact that conditioned on the event .4, the ratio %ﬁf%
375 to one for any s # ¢. The last line uses the formula for g. The indicator 1(z; = m) appears in the
a7 final expression because the terms in the bound are only non-trivial when the model must make a

377 prediction from a corrupted state.

is equal

a7s Now we generalize the above to a sequence of categorical variables © = x;.,,. Similar as Equation (17)),
379 we have

T—1 n

B
log 7o (% 1.n) < BlogIEjz1 ra(c|z) { H H <pez“|zt+1)) }

th | Zt+1, T )

sso  The upper bound in the RHS can be further derived as

rT’—1 n

B
1 Do thzt+1)):|
—logE,, ;g |I|I<
B = q(|:c)_t“1 (216 | 2¢41, )

1 —n - be ytz | yt+1 P
:BIOgEzmew) q(z17 | @) H Z iz | 2) 1Yy = 217 H A A A A

1= ly t=1 yt1|yt+1’ )
1:T
T—1 8

1 po(yi |yt+1

710gE21T~q( |w) ZIT|33 nH E y1T|w H ( i

B P o \ai, |y @)

T-1 8

1 o (Y ; | yf+1
=_log IEZLTNQ(.@)[ (z1.7 | @) "} (H E q(Yi.r | ) H (“

B 1yt =1 ytz‘yt+1ﬂ )

1 L rt po(zti | zt41) A 1
ti | 241 n
=B logHEWq(-m)[H ( Z)) }Wk’g&ww ja(zir | )]

=1 t=1 q(

1 — = po(zei | ze41) \’
:EZngzwwq(.,w) [ H <)) } +C(T) (20)
=1

=1 q(zei | zeq1,

a8t Here, yi , are copies of z1.7 enforced to agree with z;.7 using the indicator 1(y%., = z1.7). C(T)
ss2 is a constant independent of 6, and the first term in Equation (20) can be derived similar to the single
ss3  variable case in Equation (T9):

Lo T-1 po(zei | ze41) ’
EZlogEZLTNQHE) H (25 | z101, @)

=1 ‘I(th | Zt+1,$)

1 -y

a —
Z log Z E.,\imq ) [ LR Y (2400 = m) - (@ | ztm]
384 O

12
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Furthermore, we can derive the continuous time version by omitting the constant term that does not
affect the gradient with respect to 0, and taking the limit of 7" — oo similar as the derivations for
Lo, as shown in Corollary [T}

Corollary 1. Taking the limit of T — oo, we have:

VoLrupo(T1:m;0) = Vo (EEUBO(ml:na ) VoLrupo(®1.m;0), where

- , @1
Leupo (150 EZ OgEtzt{ )Lzt =m) mg(mi | 2¢) |-

Remark. A key structural difference from L go is that the logarithm in Lgygo (Equation )
appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the
concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate
of the true EUBO. One could certainly further loosen the bound using the inequality logz < x — 1:

Leupo(x ZEt~u[o 1) ztwq[ (t) - 1L(zti =m) 'Wg(flfi \ Zt)] - % (22)

we found this approach empirically worse by widening the gap to the true log-likelihood, as shown in
Table[T0] We therefore retain the tighter, albeit slightly biased, formulation.

E Additional Analysis on Upper and Lower Bounds

E.1 Advantages of Using the Mixture

In the following proposition, we formalize the advantages of using the mixture by deriving the gradient
of the mixture loss and analyzing the variance of the gradient.

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let
pp = w(t,zt)wg(mi | z¢,¢)/E |w(t, Zt)ﬂ'g(.’l}i | zt,c)],
where w(t, z;) == w(t)1(z; = m). Then, the gradient of mixture objective (5)) is given by
Guk = (1 —w)w(t, z¢) + wpg) Og, log me(x | 24, C). (23)

If Var((pg — w(t, z¢))0e, log me(x | 2¢,¢)) > 0, then Varlg,, x| is a strictly convex quadratic in w
and thus admits a unique minimizer wy. Moreover,

Var[gwi’k] < min{ Var[go. k] Var[ng]},

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example z;.
The gradient of the Lg; o and Lggo are given by:

VeoLripo = E [w(t, z:)Vlog g (x; | 2, ¢)] 24
) E [w(t, z0)75 @ | 21, ¢)V log mo(w: | 21,¢)]
Ve Leupo = 2 (25)
E [w(t, z)my (@i | 2,¢)]
Then the gradient of the mixture objective Lix is given by:
Volwix = E [ ((1 = w)u(t, 2) +wps) Vo log mo(a; | 2i,¢)] (26)

We further compute the per-parameter (per-dimension) variance of the gradient of Ly, and consider
the optimal mixture coefficient w to minimize the variance. For simplicity, we use the following
short-hand notation:

s = Og,, logme(x; | 2¢,€)

13



409
410

411
412

413

414
415

416
417

418
419

420

421

422
423

424
425
426
427

428
429
430

431
432

433
434

We denote the k-th coordinate of the gradient Vg EMix by g., k- Then, the coordinate-wise variance of
the gradient is given by

Var g k] = ]E[((l —w)w + wpg)2 sﬁ} - (E[((l —w)w +w pg) sk])2
= Var(wsg) + 2w Cov(wsg, (pg — w)sk) + w? Var((ps — w)si)

where we used the shorthand w = w(¢, z¢). The above expression is quadratic in w and we find the
optimal w by setting the derivative of variance to zero:

8% Var[gw7k] =2 Cov(w Sk, (pg —w) sk) + 2w Var((pﬁ —w) sk) =0
B Cov(w sg, (pg —w) sk)
Var((ps — w) si)

The above yields a per-coordinate optimal wj. Equivalently, we can write wj; as follows:

= wp =

i = Var(w sk) — Cov(w Sk, P8 sk)

Var(w sk) + Var(pﬁ sk) —2 Cov(w Sk, PB sk)
Furthermore, wj is a minimizer of coordinate-wise variance in the non-degenerative case with
Var((ps — w) si) > 0, as the variance is strongly convex in w.

The coordinate-wise variance of gradients in Lggo (w = 0) and ﬁELBO (w = 1), and the optimal
mixture coefficient w* are then given by

Lgipo: Var [g&k] = Var [w Sk},
Leipo :  Var[gi ] = Var[wsi] +2 Cov(w sy, (pg —w) si) + Var((ps — w) sx),

2
(Cov(w Sk, (pg —w) Sk-))
Var((pg — w) si)

The difference between the variance of Lg;po and EELBO with the optimal mixture coefficient can
then be derived as follows:

Optimal: Var[g.: ] = Var[w sg| —

)

2
(Cov(w Sky (ps —w) 5k)>
Var((ps — w) si)
(Cov(w Sky (pg — w) Sk) + Val“((ﬂﬂ —w) Sk))
Var((pg — w) si)

Var[w sk] — Var [gw,:’k] = >0

>0

Var [pﬁ sk] — Var [gwi,k] =

A few remarks are in order:

* Confidence-aware weighting: The mixture gradient in Equation (23) realizes a confidence-aware
weighting: uncertain tokens with small 7Tg (z; | z¢, ¢), indicating a low recovery chance, have a

smaller weight, while confident tokens with large 7rg (z; | ¢, c) are upweighted. The sharpness
is controlled by parameter 5 and the blend by w. Furthermore, the convex interpolation of the
confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny gradients
to a minimum value and thus prevents vanishing gradients.

* Lower variance and more stable training: According to Proposition[I] the gradient of the optimal
mixture, i.e., Gt ks has strictly smaller coordinate-wise variance than the gradient of either the lower
bound (go,%) or the upper bound (g1, kﬂ In our experiments, we fix /3 and w as hyperparameters for
simplicity. These values can also be adaptively adjusted during training to better match the evolving
training dynamics and data distribution.

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound
alone, as supported by our experimental results in Section [3} Appendix[G.T} and Appendix[G.3]

1Propositionextends directly to a single, coordinate-independent optimizer w* obtained by minimizing the
sum of coordinate-wise variances.

14
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Figure 5: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

E.2 Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score
function Vg log mg(; | z¢, ¢) in the gradient in the case of the mixture objective (i.e., Vg Lymix in
Equation (26)) over using only the lower bound (i.e., Vg Lg1go in Equation (24)):
7Tg (x; | z¢,¢)

E [w(t,zt)wg(mi | zt,c)]

wvix (1 —w)w(t, z) +wps

WELBO w(t, z¢)

(1-w)+w

Treating the expectation over all samples E [u)(t, zt)wg (z; | zt, c)} as a constant (since it is averaged),

the second term in the above ratio is strictly increasing in 7rg (z; | z¢, c). This realizes a confidence-
aware weighting: uncertain tokens with small 775 (z; | z¢,¢), i.e., those with a low recovery chance,

have a smaller weight, while confident tokens with large wg (x; | z¢, c) are upweighted, with sharpness
being controlled by parameter S and the blend by w.

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function
in the gradient of upper bound (i.e., Vg Lgugo in Equation ) over the mixture gradient:

WEUBO wpp

Whix (1 —w)w(t, z) +wpg

Considering the above ratio, when 7Tg (z; | 24, c) is very small, the coefficient of score function in

Vo LeuBo, WeUBO, becomes very small, preventing updates to the parameters. However, the mixing
approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other
words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously
floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to
large EUBO weights.

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,
we plot the gradient norm of each model trained with different log-likelihood estimation methods for
negative advantage traces in Figure[5] When using the mixture objective, the model has consistently
smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.

E.3 Toy Example for Upper and Lower Bounds.
In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of

the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for
optimization based on the optimization direction.

15



461
462

463
464

465

466
467

468

469
470
471
472

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., x = [21, T3]
and V = {A, B}. Then, We can calculate Lg o and Lgypo in closed form:

1
Leio(@ = AA) = [mg mo(x1 = A | MA) + log mo(zy = A | MM) 27)
+log (x> = A | AM) + log mg (s = A | MM)] (28)
. 1 (e =A|MA) +78(x; = A | MM
Leupo(z = AA) = —log( o A Tl | )) (29)
3 2
B _ B8 _
+élog(’frg(a}Q—A|AM)"2‘ﬂ-g(w2—AMM)) (30)

For simplicity, denote a := mg(x1 = A | MA) and b := mg(x1 = A | MM), and consider the of the
likelihood of the first token x;. We have

1
Leipo(x1) = i(loga + logb) 31)
~ 1 B + bf}
Levno(1) = 5 log (“5—) (32)

Take the partial gradient with respect to a and b respectively,

OLpipo(w1) 1 OLppo(z1) 1

da  2d’ b 2 53
OLgupo(T1) a’~! _ OLgupo(®1) bt (34)
da ~af + b8’ b af b

Therefore, for EEUBO, the gradient direction is dominated by the larger one between a and b, while
for Lg; go, the gradient direction is dominated by the smaller one. Such property is illustrated in the

landscapes of —Lg go and — Lrugo for a,be (0,1)in Figure@

—LEBO —LeuBo

Figure 6: Landscapes of —Lgpo and —EEUBO for0 < a,b < 1. —EEUBO is flatter among low
value regions while sharper among high value regions, making it more suitable for log-likelihood
minimization; vice versa for —Lgi po.

When & = AA has negative advantage, the corresponding Lg; o and Lgypo are minimized. For
LE1 B0, the model benefits more from further decreasing the smaller one between probabilities a
and b. In the extreme case, Lg go = —oo when either a or b equals to zero, leaving the other term
not sufficiently decreased. Instead, when using Leuso for negative advantage traces, the larger one

16



473
474

475

476
477

478

479

480
481
482
483

484

486

487
488

489
490

491

492

493

494
495

496
497
498

499

500
501
502
503

505
506
507
508
509
510

511
512
513

between a and b is preferentially minimized, leading to a more balanced optimization that stably
decreases the log-likelihood.

Similarly, when & = AA has positive advantage, the corresponding Lg; go and fEUBo are maximized.

Using Lg1 o enables effectively increasing the smaller likelihood, while Lgypo focuses on the larger
one, leading to a less efficient optimization.

F Additional Experimental Details

F.1 Datasets and Reward Functions

We follow the setting in D1 [46] and WD1 [39], using the same reward functions and train-test
splitting, except for Sudoku. The rewards are designed to encourage both correctness and proper
formatting, with varying levels of granularity tailored for each task. For completeness, we provide
details as follows.

GSMBSK. We utilize the train split of the GSM8K dataseﬂ for RL training, and evaluate model
performance on the test split. We follow the Unsloth reward seturﬂ, utilizing five equally-weighted
additive components:

* XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents
after the closing tag.

* Soft Format Reward: +0.5 for outputs matching the pattern:
<reasoning>...</reasoning><answer>...</answer>

e Strict Format Reward: +0.5 for exact formatting with correct line breaks.
* Integer Answer Reward: +0.5 if the answer is a valid integer.

* Correctness Reward: +2.0 of the answer matches the ground truth.

MATHS00. We utilize the train split of the MATH dataseﬂ for RL training, and evaluate model
performance on the test split. We use a format reward and a correctness reward:

» Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside
them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but
\boxed is present; 0.25 if neither the answer tags nor \boxed is present.

* Correctness Reward: We award 2.00 if the answer in \boxed{} matches the ground truth.

Countdown. We utilize the train split of the Countdown datasetE] for RL training, restricting to
instances that use only three numbers. We evaluate on the same set of 256 synthetically generated
countdown questions with 3 numbers as in D1 [46]]. The reward covers three cases: +1.0 if the
expression reaches the target using the exact numbers; +0.1 if the numbers are correct but does not
reach the target; +0.0 otherwise.

Sudoku. We experiment on the 4 x4 Sudoku dataselE] generated by [1]]. The original training split
contains 1M unique Sudoku puzzles covering all 288 4 x4 Soduku solutions. To avoid train-test
leakage and potential cheating by memorizing all the solutions, we randomly select 200 solutions and
include all puzzles corresponding to these solutions into the new training set, resulting in 694,006
training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88 solutions to
construct the test set, which has 256 Soduku puzzles in total.

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which
has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the
questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the

“https://huggingface.co/datasets/openai/gsm8k
*https://unsloth.ai/blog/rl-reasoning

4https ://huggingface.co/datasets/ankner/math-500

5https ://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
6https ://github.com/Black-Phoenix/4x4-Sudoku-Dataset
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Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs

Require: prompt distribution D, number of completions per prompt g, number of inner updates y,
forward process ¢, number of Monte Carlo samples m, initial policy g, learning rate e.

1: Initialize 7y < 7

2: while not converged do 4

3 Sample a prompt ¢ ~ D, then g completions {x? ~ my(- | ¢)
4: Vj € [g], compute reward R(c, z’) and advantage A7 (7, ¢)
5
6
7

g
j=1
for gradient update iterations {1, ..., u} do
Vj € [g]. generate m perturbed samples {z] }7-, ~ q(- | 7)
Compute the sandwiched policy gradient V Jspg(0) where:

1 , . . A
Jspc(0) = E[g > (ﬂAa‘Zo - A Lripo (2 | €;0) + Lai<o - A Leuso(2 | ¢ 9)) }7

j=1
8: and Lg1po, Leuso are estimated from {z{T }m ., using Equation and
o: Perform gradient update: 6 < 0 + ¢V Jspc(0)

10: return 7y

Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear
in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot
samples are provided in Appendix [F.6]

F.2 Hyperparameter Settings and Implementation Details

We follow the same train-test splitting, reward functions, and evaluation protocol as D1 and WD,
except for Sudoku as mentioned above. All experiments are conducted in the zero-shot setting, except
for Sudoku, where 3-shot generation is used for both training and evaluation. We follow D1 [46]] for
most hyperparameter settings. We employ Low-Rank Adaptation (LoRA) with a rank of = 128 and
scaling factor o« = 64. The training was conducted on 8 NVIDIA A100-80G or NVIDIA H100-80G
GPU, with the following hyperparameters: batch size of 6 per GPU, and gradient accumulation
steps of 2. We set the number of inner gradient update p as 4 for all models. We use the AdamW
optimizer [22]], with 5; = 0.9, B2 = 0.99, weight decay of 0.1, learning rate of 3 x 106, and gradient
clipping at 0.2. We utilize Flash Attention 2 [10]and 4-bit quantization.

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-
based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for
Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g
as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since
the rollout stage dominates the training time, the average time per gradient update step for SPG is
similar to that of the other baselines.

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for
MATHS500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with
generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest
average accuracy over the three generation lengths, except for the ablations on inference strategies in
Table[T3] where we only evaluate on generation length 256.

F.3 Baselines

We compare our method with several recent RL algorithms for dLLMs, including D1 [46], WD1 [39]],
and UniGRPO [45]]. For D1 and WDI1, we reproduce results using the official codebases and
instructions, and for fair comparison, we omit the additional SFT stage in D1 across all models. For
UniGRPO, since the code is not publicly available and the original work focuses on vision-language
multimodal models, we reimplement the algorithm within our setup. For consistency, we set the
number of inner gradient updates y to 4 for all models, following GRPO [35]]. We also evaluate
LLaDA-1.5 [49] under our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference
optimization approach on 350K preference pairs.
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547 F.4 Generation and Evaluation Setup

s4¢  For both RL rollouts and evaluation, we use the semi-autoregressive confidence-based decoding
549 strategy, following LLaDA, D1 and WD1. We apply the same generation setup as D1, with the
s50 denoising timestep set to half the total sequence length. The sequence is divided into blocks of 32
s51  tokens, and in diffusion step, we unmask the 2 tokens with the highest confidence (measured by
ss2  the probability of the sampled token) within the current incomplete block. During RL rollout, to
553 encourage diverse outputs, we use a generation length of 256 and a sampling temperature of 0.9 across
ss4  all benchmarks, except for sudoku, where the temperature is set to 0.3 as in D1. During evaluation,
555 the sampling temperature is set to 0.0. We evaluate the models every 100 steps, reporting results from
ss6  the checkpoint that achieves the highest average test accuracy across generation lengths of 128, 256,
s57  and 512.

s58  F.5 Algorithm Details

559 We provide the complete pseudocode of SPG in Algorithm T]
s60 F.6 Few-Shot Samples for Sudoku

s61  Sample 1:

Question:

Solve the following Sudoku puzzle: 3014002020004130
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 3014

R2: 0020

R3:2000

R4:4130

Fill easy singles:

R1 missing 2 — R1C2=2.

R4 missing 2 — R4C4=2.

Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 — R3C4=1, R3C3=4.
R3 now missing 3 — R3C2=3.

Columnl missing 1 — R2C1=1.

Column2 missing 4 — R2C2=4.

Last cell R2C4=3.

Final grid:
R1:3214

R2: 1423

R3: 2341
R4:4132
</reasoning>
<answer>
3214142323414132
sep  </answer>

563 Sample 2:

Question:

Solve the following Sudoku puzzle: 0000100420013142
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 0000

R2: 1004

564
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R3:2001
R4:3142

Fill easy singles:

Coll missing 4 — R1C1=4.

Col4 missing 3 — R1C4=3.

Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 — R1C2=2, R2C2=3.
R1C3=1.

R2 now missing 2 — R2C3=2.

Col2 missing 4 — R3C2=4, then R3C3=3.

Final grid:

R1: 4213

R2: 1324

R3: 2431
R4:3142
</reasoning>
<answer>
4213132424313142
se5  </answer>

s66 Sample 3:

Question:

Solve the following Sudoku puzzle: 2001403002001420
Answer:

<reasoning>

Interpret puzzle as 4 rows of 4:

R1: 2001

R2: 4030

R3: 0200

R4: 1420

Fill easy singles:

R1 missing 3,4; Col2 can’t be 1 so R1C2=3 — R1C3=4.
R4 missing 3 — R4C4=3.

Col4 missing 2,4; R2 must take 2 — R2C4=2 — R2C2=1.
Coll missing 3 — R3C1=3.

Col3 missing 1 — R3C3=1 — R3C4=4.

Final grid:

R1: 2341
R2:4132
R3:3214

R4: 1423
</reasoning>
<answer>
2341413232141423

567 </answer>

sss G Additional Results

s69  G.1 Additional Evaluations to the Main Results

570 Complete evaluation results. We provide the complete evaluation results, along with those reported
s71 in D1 [46]] and WD1 [39]], in Table E} Our reproduced numbers closely match the reported results.
s72  d1-LLaDA [46] denotes the model that conducts first SFT and then RL (using D1). All other models
573 are trained solely with RL. In D1 and d1-LLaDA, the best result for each generation length is reported
574 separately, whereas we select a single checkpoint with the highest average accuracy across all three

N
N
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generation lengths, leading to slightly worse results than the reported numbers. The reported results
in WD are based on evaluations on fewer checkpoints, so they are generally a bit lower than our
reproduced values.

Table 2: Complete model performance on four reasoning benchmarks compared with baselines. We
provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 772 79.8 282 324 346 188 168 1638 57 277 262
LLaDA-1.5 704 80.5 819 268 322 358 219 21.1 215 74 269 29.0
D1 (reported) 72.6 79.8 819 332 372 392 332 313 371 - - -
D1 (reproduced) 722 80.6 81.3 314 360 394 309 309 344 72 325 293
dl-LLaDA (reported) 732 81.1 82.1 33.8 38.6 402 348 320 422 - - -
WD (reported) - 80.8 823 - 344 390 - 512 46.1 - - -
WDI1 (reproduced) 746 815 830 310 374 390 488 523 50.8 33.1 321 225
UniGRPO 749 825 827 324 374 394 445 430 570 590 67.0 629

SPG w/ EUBO (ours)  77.1 83.8 839 332 376 394 684 715 680 812 87.1 89.9
SPG w/ mixture (ours) 78.5 86.1 84.5 334 400 418 688 707 703 829 94.0 93.1

Dynamics of Completion Length. We provide the dynamics of the effective sequence length of
SPG during RL training in Figure[7] We also report the effective length of the best checkpoint in
Table[3] SPG leads to effective usage of the total given length and good adaptation to task difficulties.

GSM8K MATH500 Countdown Sudoku
260
250
s 250 256
5240
c A 200 255
9 220 240
) 150
.2 200 254
s 230 100
@ 180 253
= 50
* 160 220
0 252
0 2000 4000 6000 0 1000 2000 3000 4000 0 2000 4000 6000 0 500 1000 1500 2000 2500
Steps Steps Steps Steps
D1 WD1 —— UniGRPO  —— SPG (ours)

Figure 7: Dynamics of the effective generation length of SPG during RL training, compared with D1,
WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report mean
and standard deviation over a rolling window of 50 steps.

Table 3: Effective sequence length of each model at the best checkpoint corresponding to Table(1|on
four reasoning benchmarks.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model /Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448

LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 &4 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249
SPG w/ mixture 108 176 195 121 229 384 75 78 79 115 239 491

G.2 Ablations and Further Analysis
We conduct a series of ablation studies to gain deeper insights from the following aspects:

* The contribution of each individual component, including log-likelihood estimation methods for
negative advantage traces (Table[d) and the masking strategy in Monte Carlo estimation (Table [3).

* The effect of key hyperparameters, including 3 that controls the tightness of the upper bound and
the mixture coefficient w (Figure[9).
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Table 4: Ablations on log-likelihood estimation meth- Table 5: Ablations on the masking strategies
ods for negative advantage traces. The best results are in Monte Carlo estimation. We denote the
bolded and the second best underlined. We denote absolute gain of test accuracy to random mask-
the absolute gain of test accuracy to SPG w/ ELBO ing for each model in green. Our block-wise
in green. SPG w/ Mixture consistently outperforms masking strategy leads to consistent improve-

other likelihood estimation methods. ment to random masking on both benchmarks.
Model GSMS8K MATHS500 Countdown Sudoku Model Masking MATHS500 Countdown
SPG wo/ neg 77.4 32.7 45.5 68.8 SPG w/EUBO  random 36.7 454
SPG w/ ELBO 80.9 37.4 67.1 82.4 block-wise  36.7+0.0 69.3:239
SPG w/ EUBO 81.6 36.7 69.3 86.1 SPG w/ Mixture random 36.9 62.8
SPG w/ Mixture  83.1+22 38.4+1.0 69.9:2.8 90.0-+7.6 block-wise 384415 69.947.1

* The robustness of our approach under various inference strategies (Figure ] Table[I3).

Due to computational constraints, some ablation experiments are conducted on a representative
mathematical reasoning benchmark (MATHS500) and a logical reasoning benchmark (Countdown).
Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512
for the ablation studies, with detailed results for each generation length provided in Appendix In
Appendix [G.3] we also investigate alternative log-likelihood estimation methods for positive advantage
traces in place of ELBO, as detailed in Table and study the diversity of model generations by
evaluating the pass@K performance of each model in Table [12]

Ablations on Algorithm Components. We first study the
impact of different log-likelihood estimation methods for neg-
ative advantage traces in Table[d] Specifically, we compare our
approach using Lgypo or Lyiix With those using Lg; go (SPG w/ 0.8
ELBO) or omitting the negative advantage loss entirely (SPG  ©
wo/ neg). Removing the negative advantage loss results in a % 0.6
substantial performance drop, highlighting the importance of =«
negative advantage penalties to RL. Additionally, both Mixture
and EUBO methods outperform ELBO (except for EUBO in 02 oGy Mixture
MATHS500), showcasing the benefits of evidence upper bound 530 1900 1500 2000 2500
regularization for negative rewards. We provide complete Steps

results for each generation length in Table[6]

SPG w/ ELBO
—— SPG w/ EUBO

N .. . .. Figure 8: Reward dynamics of
The effect of log-likelihood estimation methods is further il-  jiferent log-likelihood estimation

lustrated by the reward dynamics of each model in Figure 8} | .oihods for negative advantage
taking Sudoku as an example. SPG w/ ELBO converges rapidly  (.aces on Sudoku. SPG w/ Mix-
during training but plateaus early, as minimizing the lower
bound does not necessarily minimize the true log-likelihood for
negative advantage traces. In contrast, SPG w/ EUBO achieves
higher final rewards but converges more slowly and less stably.
Combining both, SPG w/ Mixture attains fast, stable convergence and high rewards, leading to an
effective balance. This aligns with our discussions in Section[2.3]

ture leads to both fast convergence
and high rewards.

We also conduct ablations on the masking strategies in Monte Carlo estimation of Lgf go, £~EUBO,
and Lyiy. As shown in Table [5| the block-wise masking strategy outperforms random masking,
demonstrating the importance of aligning input distributions between policy rollout and optimization.
We provide complete results for each generation length in Table[7}

Ablations on Key Hyperparameters 5 and w. We first examine the effect of 3, a crucial
hyperparameter in evidence upper bound estimation, in panels (a)-(d) of Figure 0] In general, a
relatively small value of /3 (i.e., close to 1.0) leads to a tighter bound and thus better performance.
Nevertheless, SPG consistently performs well across a range of 3 values on most tasks, indicating its
robustness. For our main results in Table[l} we fix w = 0.5 and select the optimal 5 > 1, resulting in
B = 1.0 for Sudoku and 5 = 1.5 for the other three benchmarks, except for Countdown with SPG w/
EUBO where 8 = 2.0. Besides, since the ELBO corresponds to the case of S = 0 theoretically and
EUBO corresponds to 3 > 1, we also investigate intermediate values 0 < 8 < 1, which may serve as
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Figure 9: (a)-(d): ablations on the effect of 5 in the upper bound; (¢)-(f): ablations on the mixture
coefficient w. The best performed 8 > 1 and w € [0, 1] are marked by triangle in each setting.

an implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform
SPG w/ Mixture on most benchmarks.

We also experiment on the effect of the mixture coefficient w, keeping 3 fixed at its optimal value
determined for w = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure[9] combining
lower and upper bounds with w € (0, 1) leads to better performance than leveraging either bound
solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in
Proposition[T]and Section[2.3] We provide complete ablation results of 5 and w for each generation
length in Table[§]and Table[9]

G.3 Additional Ablation Results

Ablations on Algorithm Components. We provide the complete results for ablations on log-
likelihood estimation methods in Table[6]and for ablations on masking strategies in Table 7}

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined. SPG w/ Mixture consistently outperforms other
likelihood estimation methods.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Awg

SPG wol neg 720 790 813 774 282 322 37.8 327 438 48.1 445 455 550 829 684 68.8
SPGw/ELBO 756 828 844 809 358 37.6 388 374 668 660 684 67.1 738 89.4 841 82.4
SPGw/EUBO  77.1 838 839 816 332 37.6 394 367 684 715 680 693 812 871 899 86.1
SPG w/Mixture 78.5 86.1 845 83.0 334 400 41.8 384 688 707 703 69.9 829 940 93.1 90.0

Table 7: Ablations on the masking strategies in Monte Carlo estimation. Our block-wise masking
strategy leads to consistent improvement to random masking on both benchmarks.
MATHS500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO  random 334 354 414 367 426 410 527 454
block-wise 33.2 37.6 394 367 684 715 68.0 69.3

SPG w/ Mixture random 338 382 388 369 523 645 715 628
block-wise 33.4 40.0 41.8 384 688 70.7 703 69.9

Ablations on Key Hyperparameters /5 and w. We provide the complete results for ablations on 3
in Table 8] and for ablations on w in Table [0l

Ablations on Inference Strategies. We provide complete results for ablations on different inference
strategies in Table [I3] Note that the reported numbers of each method for “Semi-AR, Block=32,
Confidence” is in general slightly higher than the results in Table[Tjunder the same inference setting.
This is because in Table we select best checkpoint specifically for generation length 256 to
maintain consistency with other inference settings, while in Table[T] we choose the checkpoint with
the highest average accuracy across generation lengths 128, 256, and 512.

Ablations on the Looser Upper Bound. As mentioned in Section[2.2]and Appendix D] a looser
but unbiased bound can be derived using inequalities like log(x) < x — 1, i.e., L1o0se (Equation ).
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Table 8: Ablations on the value of 3 in the upper bound.
GSMSK (0-shot) MATHS500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model B 128 256 512 Avg 128 256 512 Avg. 128 256 512 Awg. 128 256 512 Aug

050 777 832 845 818 328 364 412 368 71.1 688 746 715 647 534 574 585
075 772 839 845 819 31.0 366 400 359 707 707 707 70.7 634 657 454 582

SPGw/EUBO  1.00 765 839 83.6 813 31.0 374 388 357 660 668 664 664 812 871 899 86.1
1.50 77.1 838 839 816 332 376 394 367 695 645 664 668 327 405 399 377
200 765 839 832 812 324 368 382 358 684 715 680 693 281 319 280 293

1.00 78.8 856 849 831 340 402 392 378 699 695 703 699 829 940 931 90.0
SPG w/ Mixture 1.50 78.5 86.1 845 83.1 334 400 418 384 688 70.7 703 699 832 860 84.6 846
200 788 857 847 831 324 388 398 370 703 69.1 695 69.6 443 605 60.7 552

Table 9: Ablations on the mixture coeflicient w on MATH500 and Countdown.

SPG w/ Mixture MATHS00 (0-shot) Countdown (0-shot)

w 128 256 512 Avg. 128 256 512 Avg.
0.00 358 37.6 388 374 668 660 684 67.1
0.25 346 376 422 381 715 68.0 672 689
0.50 334 40.0 41.8 384 688 70.7 703 699
0.75 342 386 412 380 695 69.1 742 709
1.00 332 37.6 394 367 695 645 664 66.8

However, as shown in Table [I0} this looser bound performs worse empirically than the tighter upper
bound Lrupo we used, possibly due to a larger discrepancy from the true log-likelihood.

Table 10: Ablations on the looser upper bound. The loose bound performs worse than the tighter
upper bound we used, indicating inferior performance due to a larger discrepancy from the true
log-likelihood.

SPG w/ EUBO MATHS500 (0-shot) Countdown (0-shot)

8 Upper Bound 128 256 512 Avg. 128 256 512 Awg.

1.0 éLOose 294 354 394 347 438 652 648 579
LEuBo 31.0 374 388 357 660 668 664 664

1.5 E:LMC 29.8 31.8 38.8 335 469 547 570 529
LruBo 332 37.6 394 367 695 645 664 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always
using Lgp go for positive advantage traces, we experiment on MATHS500 and Countdown benchmarks
using both Lgypo and Ly for positive advantage traces. Correspondingly, we use w = 0.5 and the
best performed [ as previously discussed for negative advantage traces. For the positive advantage
traces, we always use the tightest 5 = 1.0 for both ZEUBO and EMix. The results are shown in Table
indicating that using the upper bound for likelihood estimation of positive advantage traces performs
worse than using Lg; go. This aligns well with our theoretical insights that the lower bound is a better
objective for log-likelihood maximization.

Ablations on Pass@K Performance. In all previous experiments, we apply greedy sampling
by setting temperature as 0.0 following D1 and LLaDA. However, beyond accuracy, it is essential
for models to generate a diverse set of outputs that can cover the correct solution and allow for
explorations. In this section, we investigate the models’ ability to generate diverse outputs using a
higher temperature, and evaluate their Pass@K performance on MATHS500 and Countdown, as shown
in Table[I2] Specifically, we set temperature to 0.9 and generation length to 256, conduct evaluations
every 100 steps, and report results from the checkpoint with the highest accuracy. For comparison,
we also include results from greedy sampling, denoted as Pass @ 1Greedy. As expected, increasing the
temperature leads to a decrease in Pass@1 performance across all models, aligning with observations
from previous work. For K>1, the Pass@K scores improve for all models as K increases from 1 to 4.
SPG achieves the best performance across all settings, with SPG w/ Mixture reaching 55.6% Pass@4
accuracy on MATHS500 and 76.6% on Countdown, demonstrating the ability of SPG to generate
diverse outputs that can recover the correct solution.
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Table 11: Ablations on log-likelihood estimation for positive advantage traces. Using the upper bound
for log-likelihood estimation of positive advantage traces perform worse than using the lower bound.

Positive traces MATHS500 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.
SPG w/EUBO  Lgugo (8 = 1.0) 344 362 392 36.6 48.1 467 50.8 485

LELBO 332 376 394 367 684 715 680 693
SPG w/ Mixture  Lyix (8 =1.0,w =0.5) 354 384 390 37.6 69.1 684 703 693

LELBO 334 40.0 418 384 688 70.7 703 69.9

Table 12: Pass@K performance of each model on MATHS500 and Countdown. We set temperature
as 0.9 and report results of the best checkpoint of each case at a generation length of 256. For
comparison, we also include the greedy sampling performance, i.e., Pass @ 1Greedy. The best results
are bolded and the second best are underlined.

MATHS00 (0-shot) Countdown (0-shot)
Model Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4 Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4
LLaDA-8B-Instruct 324 315 40.9 45.7 48.8 16.8 15.8 28.1 377 453
LLaDA-1.5 322 32.6 422 47.4 50.4 21.1 18.2 32.1 42.5 50.0
D1 37.8 34.3 43.1 48.0 52.0 324 24.5 40.4 51.4 60.6
WDI 38.6 36.0 449 49.9 53.6 54.7 443 60.6 68.0 73.1
UniGRPO 38.4 34.7 439 49.5 53.2 449 36.8 55.2 65.0 72.3
SPG w/ EUBO 38.0 34.4 443 49.9 54.0 71.5 68.2 71.9 73.9 76.6
SPG w/ mixture 40.0 36.5 46.0 51.2 55.6 71.1 67.5 72.5 75.1 76.6

Table 13: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSMSK MATHS00 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 314 13.7 26.2 37.5
LLaDA-1.5 78.8 334 16.0 23.0 37.8
D1 79.7 37.2 27.0 31.4 43.8
Semi-AR, Block=16, Confidence @~ WDI1 82.3 374 539 36.8 52.6
UniGRPO 82.5 36.8 46.5 63.4 573
SPG w/ EUBO 84.7 374 70.3 822  68.7
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 324 16.8 27.7 38.5
LLaDA-1.5 80.5 322 21.1 26.9 40.2
D1 80.6 37.8 324 32.8 459
Semi-AR, Block=32, Confidence ~WDI1 81.7 38.6 54.7 35.7 58.1
UniGRPO 82.6 38.4 449 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 332 27.3 32.6 429
LLaDA-1.5 81.0 354 20.3 36.4 433
D1 80.9 37.6 38.3 39.8 49.2
Semi-AR, Block=64, Confidence ~WD1 82.5 37.4 523 41.8 53.5
UniGRPO 82.3 37.4 53.5 82.9 64.0
SPG w/ EUBO 84.3 37.4 69.5 88.8 70.0
SPG w/ Mixture 85.5 414 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 244 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
Dl 69.7 27.4 18.4 29.9 36.4
Semi-AR, Block=32, Random WDI 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 414 60.1 51.0
SPG w/ EUBO 74.1 314 42.6 72.6 55.2
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 239 17.8 0.0 68.3 27.5
LLaDA-1.5 414 20.4 0.0 67.9 324
D1 57.5 22.6 0.0 72.3 38.1
Full Sequence, Confidence WDI1 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 24.2 8.2 95.6 44.5
SPG w/ EUBO 54.3 23.4 63.3 88.9 57.5
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2
LLaDA-8B-Instruct 52.7 17.8 13.3 27.1 27.7
LLaDA-1.5 53.5 19.8 13.7 28.0 28.8
Dl 53.0 22.6 28.5 31.8 34.0
Full Sequence, Random WDI 54.6 23.4 434 30.0 37.9
UniGRPO 57.6 22.6 47.7 57.3 46.3
SPG w/ EUBO 58.5 252 56.6 71.3 529
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7
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G.4 Qualitative Examples on GSM8K

We present qualitative examples for all models on GSMS8K, using a generation length of 256 and 128
diffusion steps. Incorrect reasoning steps or answers are highlighted in red and the correct answers are
highlighted in green. SPG leads to more concise and accurate reasoning compared to other models.
Note that the models may sometimes achieve the correct answer through flawed reasoning, while such
artifacts are expected to diminish with a stronger base model.

Model: LLaDA-8B-Instruct

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: LLaDA-8B-Instruct

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 0.6 X 5 = 3 dollars.

We can break down the cost as follows:

* The first glass costs $5.

* The second glass costs $3.
* The third glass costs $5.

* The fourth glass costs $3.
* And so on...

We can see that the cost alternates between $5 and $3. Since Kylar wants to buy 16 glasses, we need
pair them up.

The first of each pair costs $5, and the second of each pair costs $3. Therefore, the cost of each pair
is 5 + 3 = 8 dollars.

Since there are 8 pairs of glasses (16 glasses divided into pairs), the total cost is 8 x 8 = 64 dollars.
</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: LLaDA-8B-Instruct

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, 2 x 4 = 8. She also has three makeup sets with six colors each,
3 x 6 = 18. So, the total number of eyeshadow colors Amy initially has is: 8 4+ 18 = 26. Next, her
sister steals one of the palettes, which she loses completely. Therefore, the number of colors left
from the remaining palettes is: 8 — 4 = 4. Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: g = 3. Thus, the number of colors left from the
one makeup set is: 6 — 3 = 3. Adding, the total number of eyes leftis: 4 + 3 = 11.

</reasoning>

<answer>

</answer>

Model: D1

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: D1
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Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 5 x 0.6 = 3 dollars. We can break down the cost into two parts:

1. The cost of the first 8 glasses, each costing $5.
2. The cost of the next 8 glasses, each costing $3.

First, let’s calculate the cost of the first 8 glasses: 8 x 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses: 8 x 3 = 24 dollars.
Now, we add these two amounts together: 40 4+ 24 = 64 dollars.
Therefore, Kylar needs to pay $64 for them.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: D1

Answer:

Amy initially has two eyeshadow palettes with four colors each, so she has 2 x 4 = § colors from
the palettes. She also has three makeup sets with six colors each, so she has 3 x 6 = 18 colors from
the makeup sets. Her’s sister steals one of the palettes, so she now has 8 — 1 = 7 colors from the
palettes. Amy uses up half of the colors from one makeup set, so she uses g = 3 colors from that
set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets. Adding these to the remaining
palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.

</reasoning>

<answer>

</answer>

Model: WD1

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: WD1

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
full price and the discounted price glasses.

First, let’s calculate the cost of the first 8 glasses, which are sold at the full price of $5 each:
8 x b = 40 dollars.

Next, let’s calculate the cost of the next 8 glasses, which are sold at 60% of the full price.

Since 60% of $5 is: 0.6 x 5 = 3 dollars. So, the cost for the next 8 glasses is: 8 x 3 = 24 dollars.
Now, we add the cost of the first 8 glasses and the cost of the next 8 glasses: 40 + 24 = 64 dollars.

Therefore, Kylar needs to pay .
</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: WD1

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each: 2 x 4 = 8. Additionally, she has three makeup sets with six colors
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each: 3 x 6 = 18. So, together, she has: 8 + 18 = 26. Next, her sister steals one of the palettes,
which she loses 4 colors: 26 — 4 = 22. Then, Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: g = 3. Thus, she uses 3 colors from one makeup
set, leaving: 6 — 3 = 3 colors in that makeup set.

Finally, we add the remaining colors from the makeup set to the remaining colors: 22 + 3 = 25.
</reasoning>

<answer>

</answer>

Model: UniGRPO

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: UniGRPO

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
regular glasses and the discounted glasses. A regular glass costs $5, and every second glass costs
60% of that price, whichis 5 x 0.6 = 3.

Since Kylar will buy 16 glasses, he will have 8 regular glasses and 8 discounted glasses. The cost of
8 regular glasses is 8 x 5 = 40 dollars. The cost of 8 discounted glasses is 8 x 3 = 24 dollars.
Therefore, the total cost for 16 glasses is 40 + 24 = 64 dollars.

</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: UniGRPO

Answer:

First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 x 4 = 8 colors from the palettes. She also has three
makeup sets with six colors each, so she has 3 x 6 = 18 colors from the makeup sets. Adding these
together gives her initially 8 4+ 18 = 26 eyeshadow colors. Next, her sister steals one of the palettes,
so she now has 8 — 4 = 14 colors from the palettes. She then uses up half of the colors from one
makeup set. Since she used one makeup set, containing six colors, she used g = 3 colors from that
set. Therefore, she has 18 — 3 = 15 colors left from the makeup sets.

Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14 + 15 = 29
eyeshadow colors left.

</reasoning>

<answer>

</answer>

Model: SPG w/ EUBO

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: SPG w/ EUBO

Answer:

To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost structure of
the glasses. The first glass costs $35, and every second glass costs 60% of the price of the first glass.
Therefore, the cost of each second glass is 5.0 x 0.6 = 3.0 dollars.

Kylar wants to buy 16 glasses, which means he will have 8 pairs of glasses. Each pair consists of one
first glass and one second glass. The cost of one pair is: 5.0 + 3.0 = 8.0 dollars. Since there are 8
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pairs, the total cost is: 8 x 8.0 = 64.0 dollars. Thus, Kylar needs to pay dollars for 16 glasses.
</reasoning>

<answer>

</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ EUBO

Answer:

First, let’s calculate the total number of eyeshadow colors Amy initially has:

» She has two eyeshadow palettes with four colors each: 2 x 4 = 8 colors.
 She has three makeup sets with six colors each: 3 X 6 = 18 colors.
* Adding these together gives: 8 + 18 = 2
Next, we account for the changes:
* Her sister steals one palette, so she loses 4 colors: 26 — 4 = 22
* Amy uses up half of the colors from one makeup set, which is g = Jcolors: 22 -3 =19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>
<answer>

</answer>

Model: SPG w/ Mixture

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

Model: SPG w/ Mixture

Answer:

1. The first glass costs $5.
2. Every second glass costs 60% of $5, which is 0.6 x 5 = 3 dollars.

3. Kylar wants to buy 16 glasses, so he will have 8 full-priced glasses and 8 discounted
glasses.

4. The cost for 8 full-priced glasses is 8 x 5 = 40 dollars.
5. The cost for 8 discounted glasses is 8 x 3 = 24 dollars.
6. Adding these the total cost is 40 + 24 = 64 dollars.

</reasoning>
<answer>
</answer>

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?

Model: SPG w/ Mixture

Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2 x 4 = 8 colors
2. She also has three makeup sets with six colors each: 3 x 6 = 18 colors

3. Adding these together gives gives: 8 + 18 = 26 colors

4. Her sister steals one palette, so she loses: 4 colors
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5. Amy uses up half of the colors from one makeup set: g = 3 colors
6. Subtracting these lost and used colors: 26 — 4 — 3 = 19 colors

</reasoning>
<answer>

699 </answer>
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