
SPG: Sandwiched Policy Gradient for
Mask Diffusion Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion large language models (dLLMs) are emerging as an efficient alternative1

to autoregressive models due to their ability to decode multiple tokens in parallel.2

However, aligning dLLMs with human preferences or task-specific rewards via3

reinforcement learning (RL) is challenging because their intractable log-likelihood4

precludes the direct application of standard policy gradient methods. While prior5

work uses surrogates like the evidence lower bound (ELBO), these one-sided6

approximations can introduce significant policy gradient bias. To address this, we7

propose the Sandwiched Policy Gradient (SPG) that leverages both an upper and a8

lower bound of the true log-likelihood. Experiments show that SPG significantly9

outperforms baselines based on ELBO or one-step estimation. Specifically, SPG10

improves the accuracy over state-of-the-art RL methods for dLLMs by 3.6% in11

GSM8K, 2.6% in MATH500, 18.4% in Countdown and 27.0% in Sudoku.12

75

80

85

Ac
cu

ra
cy

 (%
)

77.2

80.580.681.5
82.5

86.1+3.6%

GSM8K

30.0

32.5

35.0

37.5

40.0

42.5

32.432.2

36.0
37.437.4

40.0
+2.6%

MATH500

20

40

60

16.8
21.1

30.9

52.3
43.0

70.7
+18.4%

Countdown

0

20

40

60

80

100

27.726.932.532.1

67.0

94.0
+27.0%

Sudoku

LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 UniGRPO SPG (ours)

Figure 1: Test accuracy of SPG and baseline methods on four reasoning benchmarks. All methods
are evaluated with a generation length of 256 in 128 denoising steps. Full results are in Table 1.

1 Introduction13

Diffusion models have recently emerged as a powerful and efficient paradigm for text generation [3,14

5, 38, 23, 30, 36]. These models operate in discrete spaces but share architectural similarities with15

their continuous counterparts [27]. They employ a noising process that progressively corrupts text16

data, while a neural network is trained to learn the reverse process. For instance, Masked Diffusion17

Language Model (MDLM) [30] uses random masking forward process and optimizes an Evidence18

Lower Bound (ELBO) of the log-likelihood, which has also been widely adopted by subsequent19

large-scale diffusion language models (dLLMs), including LLaDA [25] and DREAM [13]. A key20

advantage of dLLMs over autoregressive (AR) models is their ability to decode multiple tokens in21

parallel, which significantly reduces inference latency and improves scalability [43, 17].22

Aligning large language models with human preferences [26] or task-specific rewards (e.g., inducing23

reasoning behavior) [35, 14] typically requires a post-training stage of reinforcement learning (RL).24

However, applying RL to dLLMs remains underexplored. A principal challenge is the computationally25

intractable log-likelihood of dLLMs, which is essential for accurate policy gradient estimation. Recent26

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 2: The training process of SPG for MDLM. Left: From a prompt c, we generate responses
{xj}gj=1. We then maximize a lower bound on the likelihood πθ(x

j | c) for high-reward responses
while minimizing an upper bound for low-reward ones. Right: The upper/lower bound of likelihood
is estimated via Monte Carlo using a block-wise masking strategy. The example shows a sequence of
length 9 with a block size of 3, where the current generation block is highlighted in yellow.

works [46, 45, 49, 39] adapt standard RL and preference optimization algorithms, such as GRPO [35]27

and DPO [28], by using the ELBO or a one-step estimation as a surrogate for the true likelihood,28

leading to misaligned policy gradients and potential suboptimal performance.29

To address these limitations, we propose Sandwiched Policy Gradient (SPG), a novel RL algorithm30

for dLLMs that computes more robust and less biased policy gradients. As illustrated in Figure 2, our31

core idea is to “sandwich” the intractable log-likelihood of generated sequences: we maximize the32

tractable lower bounds for positive-reward sequences while minimizing the upper bounds for negative-33

reward ones. We also propose a block-wise masking strategy that better aligns data distributions34

during policy rollout. SPG achieves state-of-the-art performance on four mathematical and logical35

reasoning benchmarks, improving accuracy by up to 3.6% on GSM8K, 2.6% on MATH500, 18.4%36

on Countdown, and 27.0% on Sudoku compared to the other RL algorithms for dLLMs.37

2 Sandwiched Policy Gradient with Evidence Bounds38

We introduce SPG, a new policy gradient algorithm for masked diffusion language models that39

optimizes tractable evidence bounds (Algorithm 1). We build on the MDLM [30] framework with40

complete background overview and notations in Appendix B and Appendix C.41

2.1 A Lower Bound Objective for Policy Optimization42

Our approach is based on group relative policy optimization [35, 21]. For a given prompt c, we43

generate a group of g responses {xj}gj=1 from the policy πθ. We then compute the advantage44

Aj(c,xj) := R(c,xj) − 1
g

∑g
ȷ=1 R(c,xȷ). Moreover, we transform the conventional policy45

optimization objective as an advantage-weighted log-likelihood objective:46

J group(θ) = Ec,{xj}∼πsg[θ]

[
1

g

g∑
j=1

Aj(xj , c) log πθ(x
j | c)

]
, (1)

where sg[θ] indicates stop gradients for the policy rollout. This objective encourages generations47

with positive advantages (Aj > 0) and discourages those with negative advantages (Aj < 0).48

For dLLMs, the log-likelihood log πθ is intractable. A common surrogate is the evidence lower bound49

(ELBO). While maximizing the ELBO is a valid way to increase the true log-likelihood, minimizing50

the ELBO for negatively-rewarded samples does not guarantee a reduction in the true log-likelihood.51

To address this, we propose a sandwiched objective. For samples with positive advantages, we52

maximize the ELBO. For samples with negative advantages, we instead minimize a tractable evidence53

upper bound (EUBO), LEUBO. This creates a true lower bound for the original objective:54

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjLEUBO(x
j | c;θ)

)]
, (2)

where the expectation is take with respect to c, {xj} ∼ πsg[θ]. Since LELBO ≤ log πθ ≤ LEUBO, it55

follows that JSPG(θ) ≤ J group(θ). Maximizing this tractable bound therefore serves as a valid proxy56

for optimizing the true objective.57

2

2.2 A Tractable Evidence Upper Bound58

To effectively penalize negatively-rewarded samples by minimizing their log-likelihood, we require a59

tractable EUBO, which we derive in the following theorem based on the Rényi variational bound.60

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process61

has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence x1:n, we have:62

LEUBO(x1:n;θ) =
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
·1(zt+1,i = m) ·πβ

θ (xi | zt+1)

]
+C(T), (3)

where C(T) := 1
β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.63

Here, β ≥ 1 is a hyperparameter that controls the tightness of the bound, with values closer to 164

yielding a tighter bound. The expectation is taken over the timestep t ∼ U [0, 1] and the noised latent65

zt ∼ qt|0(· | x).66

Corollary 1. Taking the limit of T →∞, we have:67

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T)

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(4)

68 In practice, we estimate L̃EUBO using Monte Carlo sampling and plug it in Equation 2 in place of69

LEUBO. The proof and theoretical analysis are provided in Appendix D.70

2.3 Practical Considerations71

Block-Wise Masking Strategy for Monte Carlo Estimation. In practice, we approximate LELBO72

and L̃EUBO in Equation (2) via Monte Carlo sampling: for each xj , we randomly sample m timesteps73

{tτ}mτ=1 and generate the corresponding partially masked samples {zj
tτ }

m
τ=1 ∼ q(· | xj). One74

straightforward approach as used in Yang et al. [45] is applying random masking to clean sequences.75

However, recent dLLMs like LLaDA [25] employ a block-wise semi-autoregressive unmasking76

inference strategy and achieve sota performance. Thus, the policy rollout process actually encounters77

a narrower and more structured set of partially masked sequences than with fully random masking.78

To better match data distributions during policy rollout and optimization, we use block-wise masking,79

where a random block is selected for masking, with earlier blocks kept clean and later blocks fully80

masked. Tokens within the chosen block are masked randomly. We also apply light random masking81

(pmask = 0.15) to prompts and clean blocks, following D1 [46], to improve stability and generalization.82

Mixture of Upper and Lower Bound for Negative Advantage Traces. Monte Carlo estimation of83

Equation (3) leads to a biased estimation to L̃EUBO and potentially requires a substantial number of84

samples to get reliable approximations, resulting in high computational costs and instability during85

training. To address these challenges, we use a mixture of L̃EUBO and LELBO as a more practical86

log-likelihood approximation for negative advantage traces:87

L̃Mix(x | c;θ) := ω · L̃EUBO(x | c;θ) + (1− ω) · LELBO(x | c;θ) (5)

where 0 ≤ ω ≤ 1 is a blend coefficient. Intuitively, the upper bound L̃EUBO serves as a strong88

correction for negative advantage traces, while the lower bound LELBO is easier to estimate but89

introduces more bias and is less effective for penalization. Combining both leverages their strengths for90

better log-likelihood estimation. See Appendix E.1 and Appendix E.2 for discussions and empirical91

evidence on the reduced gradient variance when using the mixture, and Appendix E.3 for a toy92

example illustrating the distinct behaviors of the lower and upper bounds.93

3 Experiments94

Experimental Setup. We conduct RL with SPG following the setup from D1 [46], employing95

LLaDA-8B-Instruct as the base model and evaluating on four benchmarks: GSM8K, MATH500,96

Countdown, and Sudoku. We compare SPG to recent RL algorithms for dLLMs, including D1, WD1,97

UniGRPO, LLaDA-1.5, and the base model LLaDA-8B-Instruct. For SPG, we report results using98

3

Table 1: Model performance on four reasoning benchmarks. The best results are bolded and the
second best are underlined. SPG consistently outperforms all other methods. We denote the absolute
gain of test accuracy to the previous state-of-the-art in green.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Inst. 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
WD1 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ Mixture 78.5+3.6 86.1+3.6 84.5+1.5 33.4+1.0 40.0+2.6 41.8+2.4 68.8+20 70.7+18 70.3+13 82.9+24 94.0+27 93.1+30

0 2000 4000 6000
Steps

0.5

1.0

1.5

2.0

2.5

3.0

Re
wa

rd

GSM8K

0 1000 2000 3000 4000
Steps

1.0

1.2

1.4

1.6

1.8
MATH500

0 2000 4000 6000
Steps

0.2

0.4

0.6

0.8

Countdown

0 500 1000 1500 2000 2500
Steps

0.2

0.4

0.6

0.8

1.0

Sudoku

D1 WD1 UniGRPO SPG (ours)

Figure 3: Reward dynamics during RL training. SPG w/ Mixture leads to faster convergence and
higher reward. We report mean and standard deviation over a rolling window of 50 steps.

both L̃EUBO (i.e., SPG w/ EUBO) and L̃Mix (i.e., SPG w/ Mixture) for negative advantage traces, with99

β selected from {1.0, 1.5, 2.0} for best average accuracy across generation lengths and ω fixed at100

0.5. For both RL rollouts and evaluation, we use the semi-autoregressive confidence-based decoding101

strategy. We evaluate every 100 steps, reporting the best checkpoint across generation lengths 128,102

256, and 512. Further experimental details are in Appendix F.1 and Appendix F.2.103

Results. As shown in Table 1, both SPG w/ EUBO and SPG w/ Mixture outperform all baselines104

across benchmarks and generation lengths, with Mixture achieving the best results. In particular, at105

generation length 256, SPG w/ Mixture outperforms the previous state-of-the-art by 3.6% on GSM8K,106

2.6% on MATH500, 18% on Countdown, and 27% on Sudoku, showcasing the effectiveness of SPG.107

Reward dynamics in Figure 3 further highlight SPG’s rapid and stable training progress. We provide108

additional results and comparisons to the baselines in Appendix G.1.109

Ablations on Inference Strategies. We evaluate the base and RL fine-tuned models under various infer-110

ence strategies (see Figure 4), beyond our standard confidence-based, block-wise semi-autoregressive111

setup with block size 32. Despite being trained with semi-AR decoding, SPG consistently outperforms112

all baselines across inference methods, demonstrating strong robustness and generalization. Full113

results for each benchmark are in Table 13.114

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

37.537.8
43.8

52.6
57.3

68.7
73.5

+16.2%

Semi-AR, Block=16,
Confidence

38.540.2
45.9

58.158.2

70.773.2
+15.0%

Semi-AR, Block=32,
Confidence

42.943.3
49.2

53.5

64.0
70.072.7

+8.7%

Semi-AR, Block=64,
Confidence

28.8
32.6

36.4
43.1

51.0
55.2

65.6+14.6%

Semi-AR, Block=32,
Random

27.5
32.4

38.140.2
44.5

57.5
61.2

+16.7%

Full Sequence,
Confidence

27.728.8
34.0

37.9

46.3
52.955.7

+9.4%

Full Sequence,
Random

LLaDA-8B-Instruct LLaDA-1.5 D1 WD1 UniGRPO SPG w/ EUBO SPG w/ Mixture

Figure 4: Ablations on inference strategies, i.e., varying decoding orders (semi-AR with different
block sizes, full-sequence) and unmasking methods (confidence-based, random), with a generation
length of 256. SPG consistently achieves the highest average accuracy across all benchmarks.

4 Conclusion115

We introduce SPG, a new RL algorithm for dLLMs that tackles intractable log-likelihoods by116

optimizing tractable upper and lower bounds on rollout sequences, yielding a more robust and less117

biased policy gradient. Extensive experiments on four benchmarks show that SPG significantly118

outperforms baselines and achieves state-of-the-art results.119

4

References120

[1] Arel. Arel’s sudoku generator. https://www.ocf.berkeley.edu/ arel/sudoku/main.html, 2025.121

[2] Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han,122

Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between123

autoregressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.124

[3] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.125

Structured denoising diffusion models in discrete state-spaces. Advances in neural information126

processing systems, 34:17981–17993, 2021.127

[4] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion128

models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.129

[5] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,130

and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in131

Neural Information Processing Systems, 35:28266–28279, 2022.132

[6] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative133

flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.134

arXiv preprint arXiv:2402.04997, 2024.135

[7] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep136

reinforcement learning from human preferences. Advances in neural information processing137

systems, 30, 2017.138

[8] Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion139

models on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.140

[9] Taco Cohen, David W Zhang, Kunhao Zheng, Yunhao Tang, Remi Munos, and Gabriel141

Synnaeve. Soft policy optimization: Online off-policy rl for sequence models. arXiv preprint142

arXiv:2503.05453, 2025.143

[10] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv144

preprint arXiv:2307.08691, 2023.145

[11] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,146

Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for147

fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,148

36:79858–79885, 2023.149

[12] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence150

to sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.151

[13] Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,152

Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from153

autoregressive models. arXiv preprint arXiv:2410.17891, 2024.154

[14] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,155

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in156

llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.157

[15] Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-158

based diffusion language model for text generation and modular control. arXiv preprint159

arXiv:2210.17432, 2022.160

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances161

in neural information processing systems, 33:6840–6851, 2020.162

[17] Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang,163

Sawyer Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast164

language models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.165

5

[18] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.166

Diffusion-lm improves controllable text generation. Advances in neural information processing167

systems, 35:4328–4343, 2022.168

[19] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,169

Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The170

Twelfth International Conference on Learning Representations, 2023.171

[20] Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang,172

and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive173

caching. github, 2025.174

[21] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,175

and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint176

arXiv:2503.20783, 2025.177

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint178

arXiv:1711.05101, 2017.179

[23] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the180

ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.181

[24] Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion182

language models. arXiv preprint arXiv:2505.15781, 2025.183

[25] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai184

Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint185

arXiv:2502.09992, 2025.186

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,187

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to188

follow instructions with human feedback. Advances in neural information processing systems,189

35:27730–27744, 2022.190

[27] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings191

of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.192

[28] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and193

Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.194

Advances in neural information processing systems, 36:53728–53741, 2023.195

[29] Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley196

symposium on mathematical statistics and probability, volume 1: contributions to the theory of197

statistics, volume 4, pages 547–562. University of California Press, 1961.198

[30] Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,199

Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language200

models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.201

[31] Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and202

Volodymyr Kuleshov. The diffusion duality. arXiv preprint arXiv:2506.10892, 2025.203

[32] Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun204

Cheng, Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language205

models. arXiv preprint arXiv:2506.01928, 2025.206

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region207

policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,208

2015.209

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal210

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.211

6

[35] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,212

Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical213

reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.214

[36] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and215

generalized masked diffusion for discrete data. Advances in neural information processing216

systems, 37:103131–103167, 2024.217

[37] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and218

Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv219

preprint arXiv:2011.13456, 2020.220

[38] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time221

discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.222

[39] Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy223

optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838,224

2025.225

[40] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,226

Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement227

learning with llms. arXiv preprint arXiv:2501.12599, 2025.228

[41] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE229

Transactions on Information Theory, 60(7):3797–3820, 2014.230

[42] Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,231

Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion232

models via reward optimization with applications to dna and protein design. arXiv preprint233

arXiv:2410.13643, 2024.234

[43] Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms235

can do faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192,236

2025.237

[44] Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo,238

Song Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv239

cache and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.240

[45] Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang.241

Mmada: Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.242

[46] Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in243

diffusion large language models via reinforcement learning. arXiv preprint arXiv:2504.12216,244

2025.245

[47] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,246

Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint247

arXiv:2507.18071, 2025.248

[48] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion249

model for text generation. arXiv preprint arXiv:2302.05737, 2023.250

[49] Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei251

Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for252

large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.253

7

A Related Work254

Diffusion Language Models. Building on the remarkable success of diffusion models for image255

generation in continuous domains [37, 16], researchers have explored their extension to discrete data256

such as text. Initial attempts focused on training continuous diffusion models in the text embedding257

space [18, 12, 15, 31], while they face challenges in optimization and generalization due to the discrete258

nature of text data. Masked diffusion models [23, 48, 6, 30, 36] address this by defining the diffusion259

process directly in the discrete token space, using random masking as the forward process, and have260

achieved strong empirical results. Block Diffusion [2] further advances this direction by combining261

the strengths of autoregressive models, such as the capability to generate variable-length outputs and262

using KV cache to accelerate inference, with the benefits of diffusion language models like parallel263

decoding and flexible, any-order generation within blocks. Recently, large-scale diffusion language264

models trained with masked diffusion objectives have demonstrated performance competitive with265

similarly sized autoregressive models [25, 13]. More recent works [44, 24, 20, 31, 32] have introduced266

caching and parallel decoding algorithms that greatly enhance the inference efficiency of dLLMs.267

Reinforcement Learning for LLMs and Reasoning. The seminal works apply reinforcement268

learning to large language models (LLMs) to align them with human preferences via reinforcement269

learning from human feedback (RLHF) [7, 26]. More recently, reinforcement learning has proven270

highly effective at enhancing the reasoning abilities of LLMs during the post-training stage, where271

rewards can be provided by a process reward model [19] or verifiable reward signals. Algorithms272

such as Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) constrain273

policy updates to a trust region, reducing variance and promoting stable learning by preventing274

excessive shifts from the reference policy [33, 34]. Group Relative Policy Optimization (GRPO) [35]275

introduces group-relative rewards, enabling efficient training without the need for an additional276

value (critic) model. GRPO and its variants have demonstrated strong empirical performance in277

state-of-the-art models such as DeepSeek-R1 [14], particularly on mathematical reasoning tasks,278

where incorporating long reasoning traces with self-reflection and verification steps yields significant279

improvements. Recent works [21, 47, 40, 9] further improve RL algorithms for LLMs by reducing280

the bias introduced by the GRPO objective, enhancing sample efficiency, and introducing additional281

regularization.282

Reinforcement Learning for Diffusion Language Models. Numerous studies have explored283

RL-based fine-tuning algorithms for diffusion models with continuous objectives [11, 4, 8]. While RL284

algorithms have achieved notable success to LLMs and continuous diffusion models, their applications285

to diffusion language models in the discrete space remain underexplored. DRAKES [42] leverages286

reward backpropagation along the denoising trajectory, but is computationally intensive for large287

scale models as the gradients are propagated through each denoising step. Alternatively, methods like288

D1 [46] and UniGRPO [45] utilize the GRPO framework, approximating the log-likelihood through289

either a one-step unmasking (as in D1) or Monte Carlo estimation using the ELBO (as in UniGRPO).290

VRPO [49] adapts DPO [28] to fine-tune dLLMs by applying MC estimation of the ELBO. WD1 [39]291

starts from the GRPO formulation and the same log-likelihood estimation as in D1, while avoiding292

direct estimation of the old and reference policy log-likelihoods by integrating them into a weighted293

policy optimization objective. Despite these advances, a principled analysis of RL algorithms for294

dLLMs, especially the challenging log-likelihood estimation, is missing. This results in substantial295

bias in the optimization objective and suboptimal performance.296

B Background297

In this section, we provide a brief overview of the masked diffusion language model (MDLM) and298

reinforcement learning for text diffusion models.299

Notation. We denote scalars by lowercase letters (x), vectors by bold lowercase (x), and sequences300

by x1:n. A superscript (e.g., xj) denotes an item’s index within a group. We define the set of the first301

k integers as [k] := {1, . . . , k} and the k-dimensional probability simplex as ∆k−1. Distributions302

include the categorical Cat(· | p) and the uniform U [a, b]. Throughout the paper, we use the following303

primary indices: i ∈ [n] for position, j ∈ [g] for a sequence in a group, and t ∈ [0, 1] for the304

continuous diffusion timestep.305

8

B.1 Masked Diffusion Language Models306

Diffusion models for language learn to generate text by reversing a gradual noising process. Specifically,307

Masked Diffusion Language Models (MDLMs) [30] start with clean text x1:n and corrupt it into308

zt ≡ zt,1:n over a continuous timestep t ∈ [0, 1] by progressively replacing tokens with a special309

[mask] token. At t = 0, the data is original (z0 = x), while at t = 1, the sequence is fully masked310

(z1 is all [mask] tokens). Each token is corrupted independently according to the forward transition311

kernel:312

qt|0(zt,i | xi) = Cat
(
zt,i | αtxi + (1− αt)m

)
, (6)

where m is the one-hot representation of the [mask] token. The noise schedule, αt ∈ [0, 1], is a313

strictly decreasing function, such as the linear schedule αt = 1− t, with α0 = 1 and α1 = 0.314

In the reverse process, a neural network, which we denote as the policy πθ , is then trained to perform315

the reverse process: predicting the original tokens x from a corrupted version zt. The transition from316

zt to zs (s < t) is parameterized with πθ as follows:317

pθ(zs | zt) = q (zs | zt,x = πθ(· | zt)) =

{
Cat(zs; zt), zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)πθ(·|zt)
1−αt

)
, zt = m.

The policy is achieved by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood of318

each clean sequence x ∼ pdata, which simplifies to the following objective:319

LELBO(x;θ) = Et,zt

[n∑
i=1

w(t) · 1(zt,i = m) · log πθ(xi | zt)
]
, (7)

where w(t) = α′
t/(αt − 1) is a time-dependent loss weight, and the expectation is over a random320

timestep t ∼ U [0, 1] and the corrupted sequence zt ∼ qt|0(· | x). In essence, this objective trains321

the model to “fill in the blanks” by predicting the original tokens at masked positions. For a more322

comprehensive overview of MDLM, please refer to Appendix C and Sahoo et al. [30].323

B.2 Reinforcement Learning for Diffusion Language Models324

Reinforcement Learning (RL) aligns a language model with desired objectives by treating it as325

a policy πθ that generates a response x to a prompt c. A reward function R(c,x) provides a326

scalar score for the response, and the training goal is to update θ to maximize the expected reward:327

J (θ) := Ex∼πθ(·|c)[R(c,x)]. This objective is commonly optimized using policy gradient methods,328

which rely on the following gradient estimator.329

∇θJ (θ) = Ex∼πθ(·|c)

[
R(c,x)∇θ log πθ(x | c)

]
. (8)

The Intractability Challenge. A central challenge in applying RL to diffusion models is that the330

policy’s log-likelihood, log πθ(x | c), is intractable and cannot be computed directly. To overcome331

this, prior work [49, 45] approximates this term using its ELBO, effectively replacing log πθ(x | c)332

with a score derived from the pre-training objective in Equation (7).333

However, this popular workaround introduces a critical flaw. The ELBO is only a lower bound on the334

true log-likelihood (ELBO ≤ log πθ). Consequently, the RL objective is only a valid lower bound on335

the true expected reward if all rewards R(c,x) are non-negative. This constraint prevents the model336

from effectively learning from negative feedback (i.e., penalizing bad outputs) and is incompatible337

with advanced RL algorithms that use relative or negative rewards [35], biasing the final policy. Our338

work aims to resolve this limitation.339

C Basics of dLLMs340

In this section, we provide a more self-contained overview of masked dLLMs. Please also refer to341

Sahoo et al. [30] for more details.342

9

We start from a discrete time version of the diffusion models with finite t ∈ [T]. Assume a one-hot
categorical variable x ∈ {e1, . . . , ek} ⊂ ∆k−1. Further assume we gradually corrupt x into an
absorbing state m (i.e., e[mask]) with transition matrix Qt at time t. Then:

q(zt | x) = Cat(zt | Qtx) = Cat(zt |
t∏

τ=1

Qτx).

Here, zt is also a one-hot categorical random variable in ∆k−1. In practice, one could choose Qt

such that:
q(zt | x) = Cat(zt | αtx+ (1− αt)m).

Here, α1 = 1, αT = 0, α′
t < 0.343

Normally, the goal is to construct the lower bound of the evidence (ELBO) and maximize it. For this344

particular case, consider the discretized Markov chain with T latent variables z1, z2, . . . ,zT , where345

zT = m and z1 = x. We use the shorthand z = z1:T and write346

LELBO(x;θ) = Ez∼q(·|x)

[
log

pθ(x, z)

q(z | x)

]
=Ez∼q(·|x)

[
log pθ(x, z1)︸ ︷︷ ︸

=0

+

T−1∑
t=1

log
pθ(zt | zt+1)

q(zt | zt+1,x)
+ log

pθ(zT)

q(zT | x)︸ ︷︷ ︸
=0

]

=

T−1∑
t=1

Ezt,zt+1∼q

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)Ezt∼q(·|zt+1,x)

[
log

pθ(zt | zt+1)

q(zt | zt+1,x)

]
.

(9)

Here, log pθ(x, z1) = 0 because we assume z1 = x, and pθ(zT) = q(zT | x) because we assume
zT = m. A common method to parameterize pθ is via predicting x with model πθ in q:

pθ(zt | zt+1) = q (zt | zt+1,x = πθ(· | zt+1)) .

Now, given that zt+1 is either m or x (assuming m ̸= x). Then the KL term in equation 9347

decomposes into the following.348

log
pθ(zt | zt+1)

q(zt | zt+1,x)
=


0 zt = zt+1 = x,

0 zt = m, zt+1 = x, (Impossible)
log πθ(x | zt+1) zt = x, zt+1 = m,

0 zt = zt+1 = m.

(10)

Moreover, q(zt = x | zt+1 = m,x) = αt−αt+1

1−αt+1
, and note that πθ(x | zt) = 1 when zt = x, so we349

have:350

LELBO(x;θ) =

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)1(zt+1 = m)

]

=

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
log πθ(x | zt+1)

]
. (If zt+1 = x, then log πθ(x | zt+1) = 0)

(11)

Taking the above limit as T →∞, we have:351

LELBO(x;θ) =

∫ 1

t=0

Ezt∼q(·|x)

[
α′
t

αt − 1
log πθ(x | zt)

]
. (12)

10

Generalization to Sequence The above is for a single categorical variable x. In practice as in352

language modeling, it becomes a sequence of categorical variables x1:n. Then we write353

LELBO(x1:n;θ) = Ez1:n∼q(·|x1:n)

[
log

pθ(x1:n, z1:n)

q(z1:n | x1:n)

]
= E{zi∼q(·|xi)}n

i=1

[n∑
i=1

log
pθ(xi, z1:n)

q(zi | xi)

]
(Independence of q(· | xi))

=

n∑
i=1

E{zi′∼q(·|xi′)}n
i′=1

[
log

pθ(xi, z1:n)

q(zi | xi)

]

=

n∑
i=1

LELBO(xi;θ).

(13)

The key distinction from the single-token formulation (mentioned beforehand) is that the reverse354

process pθ is conditioned on all z1:n instead of a single token’s zi.355

D Evidence Upper Bound for dLLMs356

In this section, we provide the derivation of the evidence upper bound. Following the above section,357

we start from the discrete time version of the diffusion models.358

Lemma 1 (Rényi Variational Bound; Rényi [29], Van Erven and Harremos [41]). Fix an observation359

x. Let q(· | x) be any distribution on Z such that p(· | x) ≪ q(· | x), denoting that p(· | x) is360

absolutely continuous with respect to q(· | z). Then, the following holds for any β ≥ 1:361

Ez∼q(·|x)

[
log

p(x, z)

q(z | x)

]
≤ log p(x) ≤ 1

β
logEz∼q(·|x)

[(
p(x, z)

q(z | x)

)β
]
. (14)

362

In view of the above lemma, we derive an evidence upper bound for masked diffusion models in the363

following theorem.364

Theorem 1 (Evidence Upper Bound for Masked Diffusion). Assume the forward denoising process365

has T steps with a monotonic schedule αt. For any β ≥ 1 and a sequence of categorical variables366

x1:n, we have:367

log πθ(x1:n) ≤ LEUBO(x1:n;θ), (15)

where368

LEUBO(x1:n;θ) :=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]
+ C(T),

(16)
and C(T) := 1

β logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
is a constant independent of θ.369

Proof. We first consider the case with a single categorical variable x. On the account of Lemma 1370

and following a similar argument as in equation 9, for any β ≥ 1, we can write371

log πθ(x) ≤
1

β
logEz∼q(·|x)

[(
pθ(x, z)

q(z | x)

)β
]

=
1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]
(17)

Note that the sequence z1:T has a form {x, . . . ,x,m, . . . ,m}. Define the transition event:372

At := {zt = x, zt+1 = m} (18)

11

Then, by the law of total expectations, equation 17 can be expressed as:373

1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt | zt+1)

q(zt | zt+1,x)

)β]

=
1

β
log

T−1∑
t=1

P(At)Ez∼q(·|x)

[
T−1∏
s=1

(
pθ(zs | zs+1)

q(zs | zs+1,x)

)β
∣∣∣∣∣At

]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)q(zt = x | zt+1 = m,x)

(
pθ(zt = x | zt+1 = m)

q(zt = x | zt+1 = m,x)

)β]

=
1

β
log

T−1∑
t=1

Ezt+1∼q(·|x)

[
1(zt+1 = m)

αt − αt+1

1− αt+1
πβ
θ (x | zt+1)

]
(19)

The penultimate line is due to the fact that conditioned on the event At, the ratio pθ(zs|zs+1)
q(zs|zs+1,x)

is equal374

to one for any s ̸= t. The last line uses the formula for q. The indicator 1(zt = m) appears in the375

final expression because the terms in the bound are only non-trivial when the model must make a376

prediction from a corrupted state.377

Now we generalize the above to a sequence of categorical variablesx = x1:n. Similar as Equation (17),378

we have379

log πθ(x1:n) ≤
1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
The upper bound in the RHS can be further derived as380

1

β
logEz1:T∼q(·|x)

[T−1∏
t=1

n∏
i=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)1(yi

1:T = z1:T)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

≤ 1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

n∏
i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β]

=
1

β
log

(
Ez1:T∼q(·|x)

[
q(z1:T | x)−n

]
·
(n∏

i=1

∑
yi
1:T

q(yi
1:T | x)

T−1∏
t=1

(
pθ(y

i
t,i | yi

t+1

q(yi
t,i | yi

t+1,x)

)β))

=
1

β
log

n∏
i=1

Ez1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+

1

β
logEz1:T∼q(·|x)

[
q(z1:T | x)−n

]
=
1

β

n∑
i=1

logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]
+ C(T) (20)

Here, yi
1:T are copies of z1:T enforced to agree with z1:T using the indicator 1(yi

1:T = z1:T). C(T)381

is a constant independent of θ, and the first term in Equation (20) can be derived similar to the single382

variable case in Equation (19):383

1

β

n∑
i=1

logEz1:T∼q(·|x)

[T−1∏
t=1

(
pθ(zt,i | zt+1)

q(zt,i | zt+1,x)

)β]

=
1

β

n∑
i=1

log

T−1∑
t=1

Ezt+1∼q(·|x)

[
αt − αt+1

1− αt+1
· 1(zt+1,i = m) · πβ

θ (xi | zt+1)

]

384

12

Furthermore, we can derive the continuous time version by omitting the constant term that does not385

affect the gradient with respect to θ, and taking the limit of T → ∞ similar as the derivations for386

LELBO, as shown in Corollary 1:387

Corollary 1. Taking the limit of T →∞, we have:388

∇θLEUBO(x1:n;θ) = ∇θ

(
L̃EUBO(x1:n;θ) + C(T)

)
= ∇θL̃EUBO(x1:n;θ), where

L̃EUBO(x1:n;θ) =
1

β

n∑
i=1

logEt,zt

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)
]
.

(21)

Remark. A key structural difference from LELBO is that the logarithm in LEUBO (Equation (3))389

appears outside the expectation. Therefore, in practice, due to Jensen’s inequality, applying the390

concave logarithm to a Monte Carlo estimate of the expectation’s argument yields a biased estimate391

of the true EUBO. One could certainly further loosen the bound using the inequality log x ≤ x− 1:392

LEUBO(x) ≤
1

β

n∑
i=1

Et∼U [0,1],zt∼q

[
w(t) · 1(zt,i = m) · πβ

θ (xi | zt)

]
− n

β
(22)

we found this approach empirically worse by widening the gap to the true log-likelihood, as shown in393

Table 10. We therefore retain the tighter, albeit slightly biased, formulation.394

E Additional Analysis on Upper and Lower Bounds395

E.1 Advantages of Using the Mixture396

In the following proposition, we formalize the advantages of using the mixture by deriving the gradient397

of the mixture loss and analyzing the variance of the gradient.398

Proposition 1 (Optimal Mixture Strictly Reduces Variance). Fix a coordinate k and let

ρβ := w(t, zt)π
β
θ (xi | zt, c)/E

[
w(t, zt)π

β
θ (xi | zt, c)

]
,

where w(t, zt) := w(t)1(zt = m). Then, the gradient of mixture objective (5) is given by399

gω,k = ((1− ω)w(t, zt) + ωρβ) ∂θk
log πθ(x | zt, c). (23)

If Var((ρβ − w(t, zt))∂θk
log πθ(x | zt, c)) > 0, then Var[gω,k] is a strictly convex quadratic in ω400

and thus admits a unique minimizer ω⋆
k. Moreover,401

Var[gω⋆
k,k

] < min
{
Var[g0,k], Var[g1,k]

}
,

402

Proof. We first derive the formulas for the gradient of each objective. Consider a specific example xi.403

The gradient of the LELBO and L̃ELBO are given by:404

∇θLELBO = E [w(t, zt)∇ log πθ(xi | zt, c)] (24)

∇θL̃EUBO =
E
[
w(t, zt)π

β
θ (xi | zt, c)∇ log πθ(xi | zt, c)

]
E
[
w(t, zt)π

β
θ (xi | zt, c)

] (25)

Then the gradient of the mixture objective L̃Mix is given by:405

∇θL̃Mix = E
[(

(1− ω)w(t, zt) + ωρβ

)
∇θ log πθ(xi | zt, c)

]
(26)

We further compute the per-parameter (per-dimension) variance of the gradient of L̃Mix and consider406

the optimal mixture coefficient ω to minimize the variance. For simplicity, we use the following407

short-hand notation:408

sk := ∂θk
log πθ(xi | zt, c)

13

We denote the k-th coordinate of the gradient∇θL̃Mix by gω,k. Then, the coordinate-wise variance of409

the gradient is given by410

Var
[
gω,k

]
= E
[(
(1− ω)w + ω ρβ

)2
s2k

]
−
(
E
[(
(1− ω)w + ω ρβ

)
sk
])2

= Var(wsk) + 2ωCov(wsk, (ρβ − w)sk) + ω2 Var((ρβ − w)sk)

where we used the shorthand w ≡ w(t, zt). The above expression is quadratic in ω and we find the411

optimal ω by setting the derivative of variance to zero:412

∂

∂ω
Var
[
gω,k

]
= 2 Cov

(
w sk, (ρβ − w) sk

)
+ 2ω Var

(
(ρβ − w) sk

)
= 0

⇒ ω⋆
k = −

Cov
(
w sk, (ρβ − w) sk

)
Var
(
(ρβ − w) sk

) .

The above yields a per-coordinate optimal ω⋆
k. Equivalently, we can write ω⋆

k as follows:413

ω⋆
k =

Var
(
w sk

)
− Cov

(
w sk, ρβ sk

)
Var
(
w sk

)
+Var

(
ρβ sk

)
− 2 Cov

(
w sk, ρβ sk

)
Furthermore, ω⋆

k is a minimizer of coordinate-wise variance in the non-degenerative case with414

Var
(
(ρβ − w) sk

)
> 0, as the variance is strongly convex in ω.415

The coordinate-wise variance of gradients in LELBO (ω = 0) and L̃ELBO (ω = 1), and the optimal416

mixture coefficient ω⋆ are then given by417

LELBO : Var
[
g0,k

]
= Var

[
w sk

]
,

L̃ELBO : Var
[
g1,k

]
= Var

[
w sk

]
+ 2 Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

)
,

Optimal: Var
[
gω⋆

k,k

]
= Var

[
w sk

]
−

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ,

The difference between the variance of LELBO and L̃ELBO with the optimal mixture coefficient can418

then be derived as follows:419

Var
[
w sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

Var
[
ρβ sk

]
−Var

[
gω⋆

k,k

]
=

(
Cov

(
w sk, (ρβ − w) sk

)
+Var

(
(ρβ − w) sk

))2
Var
(
(ρβ − w) sk

) ≥ 0

420

A few remarks are in order:421

• Confidence-aware weighting: The mixture gradient in Equation (23) realizes a confidence-aware422

weighting: uncertain tokens with small πβ
θ (xi | zt, c), indicating a low recovery chance, have a423

smaller weight, while confident tokens with large πβ
θ (xi | zt, c) are upweighted. The sharpness424

is controlled by parameter β and the blend by ω. Furthermore, the convex interpolation of the425

confidence-aware coefficient of the upper bound with the lower bound ensures clipping tiny gradients426

to a minimum value and thus prevents vanishing gradients.427

• Lower variance and more stable training: According to Proposition 1, the gradient of the optimal428

mixture, i.e., gω⋆
k,k

, has strictly smaller coordinate-wise variance than the gradient of either the lower429

bound (g0,k) or the upper bound (g1,k)1. In our experiments, we fix β and ω as hyperparameters for430

simplicity. These values can also be adaptively adjusted during training to better match the evolving431

training dynamics and data distribution.432

Thus, the mixture approach offers theoretical advantages over using either the upper or lower bound433

alone, as supported by our experimental results in Section 3, Appendix G.1, and Appendix G.3.434

1Proposition 1 extends directly to a single, coordinate-independent optimizer ω⋆ obtained by minimizing the
sum of coordinate-wise variances.

14

0 1000 2000 3000
Steps

0

1

2

3

Gr
ad

 N
or

m

GSM8K

0 1000 2000 3000
Steps

0.0

0.5

1.0

1.5

Math500

0 2000 4000 6000
Steps

0

1

2

3

Countdown

0 1000 2000
Steps

0.0

0.5

1.0

1.5

2.0

Sudoku

SPG w/ ELBO SPG w/ EUBO SPG w/ Mixture

Figure 5: Dynamics of the gradient norm of models trained with different log-likelihood estimation
methods. SPG w/ Mixture achieves lower gradient norm and more stable optimization. We report
mean and standard deviation over a rolling window of 50 steps.

E.2 Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds435

Comparing Mixture with the Lower Bound. Consider the ratio of the coefficient of score436

function ∇θ log πθ(xi | zt, c) in the gradient in the case of the mixture objective (i.e., ∇θL̃Mix in437

Equation (26)) over using only the lower bound (i.e., ∇θLELBO in Equation (24)):438

wMix

wELBO
=

(1− ω)w(t, zt) + ωρβ
w(t, zt)

= (1− ω) + ω
πβ
θ (xi | zt, c)

E
[
w(t, zt)π

β
θ (xi | zt, c)

]
Treating the expectation over all samplesE

[
w(t, zt)π

β
θ (xi | zt, c)

]
as a constant (since it is averaged),439

the second term in the above ratio is strictly increasing in πβ
θ (xi | zt, c). This realizes a confidence-440

aware weighting: uncertain tokens with small πβ
θ (xi | zt, c), i.e., those with a low recovery chance,441

have a smaller weight, while confident tokens with large πβ
θ (xi | zt, c) are upweighted, with sharpness442

being controlled by parameter β and the blend by ω.443

Comparing Mixture with the Upper Bound. We compute the ratio of coefficient of score function444

in the gradient of upper bound (i.e., ∇θL̃EUBO in Equation (25)) over the mixture gradient:445

wEUBO

wMix
=

ωρβ
(1− ω)w(t, zt) + ωρβ

Considering the above ratio, when πβ
θ (xi | zt, c) is very small, the coefficient of score function in446

∇θL̃EUBO, wEUBO, becomes very small, preventing updates to the parameters. However, the mixing447

approach maintains per-sample weights by preventing that from collapsing to (near) zero. In other448

words, for each sample, the mixture coefficient computes a convex interpolation that simultaneously449

floors very small EUBO weights to a minimum value and applies an uncertainty-aware capping to450

large EUBO weights.451

Empirical Evidence of Reduced Gradient Variance. As a practical indicator of gradient variance,452

we plot the gradient norm of each model trained with different log-likelihood estimation methods for453

negative advantage traces in Figure 5. When using the mixture objective, the model has consistently454

smaller and more stable gradient norm throughout training, aligning well with our theoretical analysis.455

456

E.3 Toy Example for Upper and Lower Bounds.457

In this section, we provide a toy example highlighting the contrasting behaviors and landscapes of458

the upper and lower bounds, further demonstrating the necessity to select the appropriate bound for459

optimization based on the optimization direction.460

15

Consider a simple case where the sequence length is 2 and the vocabulary size is 2, i.e., x = [x1,x2]461

and V = {A,B}. Then, We can calculate LELBO and L̃EUBO in closed form:462

LELBO(x = AA) =
1

2

[
log πθ(x1 = A | MA) + log πθ(x1 = A | MM) (27)

+ log πθ(x2 = A | AM) + log πθ(x2 = A | MM)
]

(28)

L̃EUBO(x = AA) =
1

β
log
(πβ

θ (x1 = A | MA) + πβ
θ (x1 = A | MM)

2

)
(29)

+
1

β
log
(πβ

θ (x2 = A | AM) + πβ
θ (x2 = A | MM)

2

)
(30)

For simplicity, denote a := πθ(x1 = A | MA) and b := πθ(x1 = A | MM), and consider the of the463

likelihood of the first token x1. We have464

LELBO(x1) =
1

2
(log a+ log b) (31)

L̃EUBO(x1) =
1

β
log
(aβ + bβ

2

)
(32)

Take the partial gradient with respect to a and b respectively,465

∂LELBO(x1)

∂a
=

1

2a
;
∂LELBO(x1)

∂b
=

1

2b
(33)

∂L̃EUBO(x1)

∂a
=

aβ−1

aβ + bβ
;
∂L̃EUBO(x1)

∂b
=

bβ−1

aβ + bβ
(34)

Therefore, for L̃EUBO, the gradient direction is dominated by the larger one between a and b, while466

for LELBO, the gradient direction is dominated by the smaller one. Such property is illustrated in the467

landscapes of −LELBO and −L̃EUBO for a, b ∈ (0, 1) in Figure 6.

Figure 6: Landscapes of −LELBO and −L̃EUBO for 0 < a, b < 1. −L̃EUBO is flatter among low
value regions while sharper among high value regions, making it more suitable for log-likelihood
minimization; vice versa for −LELBO.

468

When x = AA has negative advantage, the corresponding LELBO and L̃EUBO are minimized. For469

LELBO, the model benefits more from further decreasing the smaller one between probabilities a470

and b. In the extreme case, LELBO = −∞ when either a or b equals to zero, leaving the other term471

not sufficiently decreased. Instead, when using L̃EUBO for negative advantage traces, the larger one472

16

between a and b is preferentially minimized, leading to a more balanced optimization that stably473

decreases the log-likelihood.474

Similarly, when x = AA has positive advantage, the corresponding LELBO and L̃EUBO are maximized.475

Using LELBO enables effectively increasing the smaller likelihood, while L̃EUBO focuses on the larger476

one, leading to a less efficient optimization.477

F Additional Experimental Details478

F.1 Datasets and Reward Functions479

We follow the setting in D1 [46] and WD1 [39], using the same reward functions and train-test480

splitting, except for Sudoku. The rewards are designed to encourage both correctness and proper481

formatting, with varying levels of granularity tailored for each task. For completeness, we provide482

details as follows.483

GSM8K. We utilize the train split of the GSM8K dataset2 for RL training, and evaluate model484

performance on the test split. We follow the Unsloth reward setup3, utilizing five equally-weighted485

additive components:486

• XML Structure Reward: +0.125 per correct formatting tag; small penalties for extra contents487

after the closing tag.488

• Soft Format Reward: +0.5 for outputs matching the pattern:489

<reasoning>...</reasoning><answer>...</answer>490

• Strict Format Reward: +0.5 for exact formatting with correct line breaks.491

• Integer Answer Reward: +0.5 if the answer is a valid integer.492

• Correctness Reward: +2.0 of the answer matches the ground truth.493

MATH500. We utilize the train split of the MATH dataset4 for RL training, and evaluate model494

performance on the test split. We use a format reward and a correctness reward:495

• Format Reward: We award 1.00 if <answer></answer> tags are present with \boxed inside496

them; 0.75 if answer tags are present without \boxed; 0.50 if answer tags are not present but497

\boxed is present; 0.25 if neither the answer tags nor \boxed is present.498

• Correctness Reward: We award 2.00 if the answer in \boxed{} matches the ground truth.499

Countdown. We utilize the train split of the Countdown dataset5 for RL training, restricting to500

instances that use only three numbers. We evaluate on the same set of 256 synthetically generated501

countdown questions with 3 numbers as in D1 [46]. The reward covers three cases: +1.0 if the502

expression reaches the target using the exact numbers; +0.1 if the numbers are correct but does not503

reach the target; +0.0 otherwise.504

Sudoku. We experiment on the 4×4 Sudoku dataset6 generated by [1]. The original training split505

contains 1M unique Sudoku puzzles covering all 288 4×4 Soduku solutions. To avoid train-test506

leakage and potential cheating by memorizing all the solutions, we randomly select 200 solutions and507

include all puzzles corresponding to these solutions into the new training set, resulting in 694,006508

training puzzles. We then randomly select 2 or 3 puzzles corresponding to the left 88 solutions to509

construct the test set, which has 256 Soduku puzzles in total.510

We observe that the zero-shot setting is too difficult for the base LLaDA-8B-Instruct model, which511

has test accuracy below 7% with a generation length of 256 and struggles to correctly interpret the512

questions, leading to very few meaningful RL rollouts. Therefore, we instead use 3-shot for all the513

2https://huggingface.co/datasets/openai/gsm8k
3https://unsloth.ai/blog/r1-reasoning
4https://huggingface.co/datasets/ankner/math-500
5https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
6https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

17

https://huggingface.co/datasets/openai/gsm8k
https://unsloth.ai/blog/r1-reasoning
https://huggingface.co/datasets/ankner/math-500
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://github.com/Black-Phoenix/4x4-Sudoku-Dataset

Algorithm 1 SPG: Sandwiched Policy Gradient for Masked dLLMs
Require: prompt distribution D, number of completions per prompt g, number of inner updates µ,

forward process q, number of Monte Carlo samples m, initial policy π0, learning rate ϵ.
1: Initialize πθ ← π0

2: while not converged do
3: Sample a prompt c ∼ D, then g completions {xj ∼ πθ(· | c)}gj=1

4: ∀j ∈ [g], compute reward R(c,xj) and advantage Aj(xj , c)
5: for gradient update iterations {1, . . . , µ} do
6: ∀j ∈ [g], generate m perturbed samples {zj

tτ }
m
τ=1 ∼ q(· | xj)

7: Compute the sandwiched policy gradient ∇JSPG(θ) where:

JSPG(θ) = E
[
1

g

g∑
j=1

(
1Aj≥0 ·AjLELBO(x

j | c;θ) + 1Aj<0 ·AjL̃EUBO(x
j | c;θ)

)]
,

8: and LELBO, L̃EUBO are estimated from {zj
tτ }

m
τ=1, using Equation 7 and 4.

9: Perform gradient update: θ ← θ + ϵ∇JSPG(θ)

10: return πθ

Sudoku experiments. We ensure that the solutions presented in the 3-shot samples do not appear514

in test set solutions, and the puzzles do not appear in both train and test set. The detailed few-shot515

samples are provided in Appendix F.6.516

F.2 Hyperparameter Settings and Implementation Details517

We follow the same train-test splitting, reward functions, and evaluation protocol as D1 and WD1,518

except for Sudoku as mentioned above. All experiments are conducted in the zero-shot setting, except519

for Sudoku, where 3-shot generation is used for both training and evaluation. We follow D1 [46] for520

most hyperparameter settings. We employ Low-Rank Adaptation (LoRA) with a rank of r = 128 and521

scaling factor α = 64. The training was conducted on 8 NVIDIA A100-80G or NVIDIA H100-80G522

GPU, with the following hyperparameters: batch size of 6 per GPU, and gradient accumulation523

steps of 2. We set the number of inner gradient update µ as 4 for all models. We use the AdamW524

optimizer [22], with β1 = 0.9, β2 = 0.99, weight decay of 0.1, learning rate of 3×10−6, and gradient525

clipping at 0.2. We utilize Flash Attention 2 [10]and 4-bit quantization.526

For RL rollout, we use sequence length of 256 tokens, and 128 diffusion steps. We employ confidence-527

based semi-autoregressive generation with block size 32, and set the temperature as 0.9 (except for528

Sudoku where temperature is set as 0.3 following D1). We set number of completions per prompt g529

as 6, and number of Monte Carlo estimation samples m as 2 due to computational constraint. Since530

the rollout stage dominates the training time, the average time per gradient update step for SPG is531

similar to that of the other baselines.532

We train 6000 steps (i.e., number of gradient updates) for GSM8K and Countdown, 4000 steps for533

MATH500, and 2500 steps for Sudoku. For all RL models, we run evaluation every 100 steps with534

generation sequence length 128, 256, 512, and report the result of the checkpoint with the highest535

average accuracy over the three generation lengths, except for the ablations on inference strategies in536

Table 13, where we only evaluate on generation length 256.537

F.3 Baselines538

We compare our method with several recent RL algorithms for dLLMs, including D1 [46], WD1 [39],539

and UniGRPO [45]. For D1 and WD1, we reproduce results using the official codebases and540

instructions, and for fair comparison, we omit the additional SFT stage in D1 across all models. For541

UniGRPO, since the code is not publicly available and the original work focuses on vision-language542

multimodal models, we reimplement the algorithm within our setup. For consistency, we set the543

number of inner gradient updates µ to 4 for all models, following GRPO [35]. We also evaluate544

LLaDA-1.5 [49] under our settings, which fine-tune LLaDA-8B-Instruct using VRPO, a preference545

optimization approach on 350K preference pairs.546

18

F.4 Generation and Evaluation Setup547

For both RL rollouts and evaluation, we use the semi-autoregressive confidence-based decoding548

strategy, following LLaDA, D1 and WD1. We apply the same generation setup as D1, with the549

denoising timestep set to half the total sequence length. The sequence is divided into blocks of 32550

tokens, and in diffusion step, we unmask the 2 tokens with the highest confidence (measured by551

the probability of the sampled token) within the current incomplete block. During RL rollout, to552

encourage diverse outputs, we use a generation length of 256 and a sampling temperature of 0.9 across553

all benchmarks, except for sudoku, where the temperature is set to 0.3 as in D1. During evaluation,554

the sampling temperature is set to 0.0. We evaluate the models every 100 steps, reporting results from555

the checkpoint that achieves the highest average test accuracy across generation lengths of 128, 256,556

and 512.557

F.5 Algorithm Details558

We provide the complete pseudocode of SPG in Algorithm 1.559

F.6 Few-Shot Samples for Sudoku560

Sample 1:561

Question:
Solve the following Sudoku puzzle: 3014002020004130
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 3 0 1 4
R2: 0 0 2 0
R3: 2 0 0 0
R4: 4 1 3 0

Fill easy singles:
R1 missing 2 → R1C2=2.
R4 missing 2 → R4C4=2.
Box D (R3-4,C3-4) then needs 1,4; column4 can only accept 1 → R3C4=1, R3C3=4.
R3 now missing 3 → R3C2=3.
Column1 missing 1 → R2C1=1.
Column2 missing 4 → R2C2=4.
Last cell R2C4=3.

Final grid:
R1: 3 2 1 4
R2: 1 4 2 3
R3: 2 3 4 1
R4: 4 1 3 2
</reasoning>
<answer>
3214142323414132
</answer>562

Sample 2:563

Question:
Solve the following Sudoku puzzle: 0000100420013142
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 0 0 0 0
R2: 1 0 0 4564

19

R3: 2 0 0 1
R4: 3 1 4 2

Fill easy singles:
Col1 missing 4 → R1C1=4.
Col4 missing 3 → R1C4=3.
Box A (R1-2,C1-2) missing 2,3 and R1 now needs 1,2 → R1C2=2, R2C2=3.
R1C3=1.
R2 now missing 2 → R2C3=2.
Col2 missing 4 → R3C2=4, then R3C3=3.

Final grid:
R1: 4 2 1 3
R2: 1 3 2 4
R3: 2 4 3 1
R4: 3 1 4 2
</reasoning>
<answer>
4213132424313142
</answer>565

Sample 3:566

Question:
Solve the following Sudoku puzzle: 2001403002001420
Answer:
<reasoning>
Interpret puzzle as 4 rows of 4:
R1: 2 0 0 1
R2: 4 0 3 0
R3: 0 2 0 0
R4: 1 4 2 0

Fill easy singles:
R1 missing 3,4; Col2 can’t be 1 so R1C2=3 → R1C3=4.
R4 missing 3 → R4C4=3.
Col4 missing 2,4; R2 must take 2 → R2C4=2 → R2C2=1.
Col1 missing 3 → R3C1=3.
Col3 missing 1 → R3C3=1 → R3C4=4.

Final grid:
R1: 2 3 4 1
R2: 4 1 3 2
R3: 3 2 1 4
R4: 1 4 2 3
</reasoning>
<answer>
2341413232141423
</answer>567

G Additional Results568

G.1 Additional Evaluations to the Main Results569

Complete evaluation results. We provide the complete evaluation results, along with those reported570

in D1 [46] and WD1 [39], in Table 2. Our reproduced numbers closely match the reported results.571

d1-LLaDA [46] denotes the model that conducts first SFT and then RL (using D1). All other models572

are trained solely with RL. In D1 and d1-LLaDA, the best result for each generation length is reported573

separately, whereas we select a single checkpoint with the highest average accuracy across all three574

20

generation lengths, leading to slightly worse results than the reported numbers. The reported results575

in WD1 are based on evaluations on fewer checkpoints, so they are generally a bit lower than our576

reproduced values.577

Table 2: Complete model performance on four reasoning benchmarks compared with baselines. We
provide both the reported and the reproduced results for D1 and WD1. The best results are bolded
and the second best are underlined. SPG consistently outperforms all other models.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 69.5 77.2 79.8 28.2 32.4 34.6 18.8 16.8 16.8 5.7 27.7 26.2
LLaDA-1.5 70.4 80.5 81.9 26.8 32.2 35.8 21.9 21.1 21.5 7.4 26.9 29.0
D1 (reported) 72.6 79.8 81.9 33.2 37.2 39.2 33.2 31.3 37.1 - - -
D1 (reproduced) 72.2 80.6 81.3 31.4 36.0 39.4 30.9 30.9 34.4 7.2 32.5 29.3
d1-LLaDA (reported) 73.2 81.1 82.1 33.8 38.6 40.2 34.8 32.0 42.2 - - -
WD1 (reported) - 80.8 82.3 - 34.4 39.0 - 51.2 46.1 - - -
WD1 (reproduced) 74.6 81.5 83.0 31.0 37.4 39.0 48.8 52.3 50.8 33.1 32.1 22.5
UniGRPO 74.9 82.5 82.7 32.4 37.4 39.4 44.5 43.0 57.0 59.0 67.0 62.9
SPG w/ EUBO (ours) 77.1 83.8 83.9 33.2 37.6 39.4 68.4 71.5 68.0 81.2 87.1 89.9
SPG w/ mixture (ours) 78.5 86.1 84.5 33.4 40.0 41.8 68.8 70.7 70.3 82.9 94.0 93.1

Dynamics of Completion Length. We provide the dynamics of the effective sequence length of578

SPG during RL training in Figure 7. We also report the effective length of the best checkpoint in579

Table 3. SPG leads to effective usage of the total given length and good adaptation to task difficulties.580

0 2000 4000 6000
Steps

160

180

200

220

240

260

Ef
fe

ct
iv

e
Le

ng
th

GSM8K

0 1000 2000 3000 4000
Steps

220

230

240

250

MATH500

0 2000 4000 6000
Steps

0

50

100

150

200

250

Countdown

0 500 1000 1500 2000 2500
Steps

252

253

254

255

256

Sudoku

D1 WD1 UniGRPO SPG (ours)

Figure 7: Dynamics of the effective generation length of SPG during RL training, compared with D1,
WD1, and UniGRPO. SPG leads to concise solutions with better token efficiency. We report mean
and standard deviation over a rolling window of 50 steps.

Table 3: Effective sequence length of each model at the best checkpoint corresponding to Table 1 on
four reasoning benchmarks.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 114 212 257 123 235 402 111 213 407 111 232 448
LLaDA-1.5 115 214 265 123 237 407 114 215 411 112 232 419
D1 115 209 261 123 234 399 107 211 397 111 231 449
WD1 115 225 312 123 231 378 83 84 90 105 227 473
UniGRPO 114 211 257 123 235 400 100 207 374 113 230 472
SPG w/ EUBO 110 196 227 120 228 382 68 70 78 89 137 249
SPG w/ mixture 108 176 195 121 229 384 75 78 79 115 239 491

G.2 Ablations and Further Analysis581

We conduct a series of ablation studies to gain deeper insights from the following aspects:582

• The contribution of each individual component, including log-likelihood estimation methods for583

negative advantage traces (Table 4) and the masking strategy in Monte Carlo estimation (Table 5).584

• The effect of key hyperparameters, including β that controls the tightness of the upper bound and585

the mixture coefficient ω (Figure 9).586

21

Table 4: Ablations on log-likelihood estimation meth-
ods for negative advantage traces. The best results are
bolded and the second best underlined. We denote
the absolute gain of test accuracy to SPG w/ ELBO
in green. SPG w/ Mixture consistently outperforms
other likelihood estimation methods.

Model GSM8K MATH500 Countdown Sudoku
SPG wo/ neg 77.4 32.7 45.5 68.8
SPG w/ ELBO 80.9 37.4 67.1 82.4
SPG w/ EUBO 81.6 36.7 69.3 86.1
SPG w/ Mixture 83.1+2.2 38.4+1.0 69.9+2.8 90.0+7.6

Table 5: Ablations on the masking strategies
in Monte Carlo estimation. We denote the
absolute gain of test accuracy to random mask-
ing for each model in green. Our block-wise
masking strategy leads to consistent improve-
ment to random masking on both benchmarks.

Model Masking MATH500 Countdown
SPG w/ EUBO random 36.7 45.4

block-wise 36.7+0.0 69.3+23.9

SPG w/ Mixture random 36.9 62.8
block-wise 38.4+1.5 69.9+7.1

• The robustness of our approach under various inference strategies (Figure 4, Table 13).587

Due to computational constraints, some ablation experiments are conducted on a representative588

mathematical reasoning benchmark (MATH500) and a logical reasoning benchmark (Countdown).589

Unless otherwise noted, we report average test accuracy across generation lengths 128, 256, and 512590

for the ablation studies, with detailed results for each generation length provided in Appendix G.3. In591

Appendix G.3, we also investigate alternative log-likelihood estimation methods for positive advantage592

traces in place of ELBO, as detailed in Table 11, and study the diversity of model generations by593

evaluating the pass@K performance of each model in Table 12.594

0 500 1000 1500 2000 2500
Steps

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

SPG w/ ELBO
SPG w/ EUBO
SPG w/ Mixture

Figure 8: Reward dynamics of
different log-likelihood estimation
methods for negative advantage
traces on Sudoku. SPG w/ Mix-
ture leads to both fast convergence
and high rewards.

Ablations on Algorithm Components. We first study the595

impact of different log-likelihood estimation methods for neg-596

ative advantage traces in Table 4. Specifically, we compare our597

approach using L̃EUBO or L̃Mix with those using LELBO (SPG w/598

ELBO) or omitting the negative advantage loss entirely (SPG599

wo/ neg). Removing the negative advantage loss results in a600

substantial performance drop, highlighting the importance of601

negative advantage penalties to RL. Additionally, both Mixture602

and EUBO methods outperform ELBO (except for EUBO in603

MATH500), showcasing the benefits of evidence upper bound604

regularization for negative rewards. We provide complete605

results for each generation length in Table 6.606

The effect of log-likelihood estimation methods is further il-607

lustrated by the reward dynamics of each model in Figure 8,608

taking Sudoku as an example. SPG w/ ELBO converges rapidly609

during training but plateaus early, as minimizing the lower610

bound does not necessarily minimize the true log-likelihood for611

negative advantage traces. In contrast, SPG w/ EUBO achieves612

higher final rewards but converges more slowly and less stably.613

Combining both, SPG w/ Mixture attains fast, stable convergence and high rewards, leading to an614

effective balance. This aligns with our discussions in Section 2.3.615

We also conduct ablations on the masking strategies in Monte Carlo estimation of LELBO, L̃EUBO,616

and L̃Mix. As shown in Table 5, the block-wise masking strategy outperforms random masking,617

demonstrating the importance of aligning input distributions between policy rollout and optimization.618

We provide complete results for each generation length in Table 7.619

Ablations on Key Hyperparameters β and ω. We first examine the effect of β, a crucial620

hyperparameter in evidence upper bound estimation, in panels (a)-(d) of Figure 9. In general, a621

relatively small value of β (i.e., close to 1.0) leads to a tighter bound and thus better performance.622

Nevertheless, SPG consistently performs well across a range of β values on most tasks, indicating its623

robustness. For our main results in Table 1, we fix ω = 0.5 and select the optimal β ≥ 1, resulting in624

β = 1.0 for Sudoku and β = 1.5 for the other three benchmarks, except for Countdown with SPG w/625

EUBO where β = 2.0. Besides, since the ELBO corresponds to the case of β = 0 theoretically and626

EUBO corresponds to β ≥ 1, we also investigate intermediate values 0 < β < 1, which may serve as627

22

0.5 1.0 1.5 2.0
81.0

81.5

82.0

82.5

83.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

81.6

83.1
(a) GSM8K

0.5 1.0 1.5 2.0

36

37

38

36.7

38.4
(b) MATH500

0.5 1.0 1.5 2.0
66

68

70

72

69.3

69.9

(c) Countdown

0.5 1.0 1.5 2.0

40

60

80 86.1

90.0
(d) Sudoku

0.0 0.5 1.0
36.5

37.0

37.5

38.0

38.5 38.4
(e) MATH500

0.0 0.5 1.0

68

70

70.9
(f) Countdown

SPG w/ EUBO SPG w/ Mixture

Figure 9: (a)-(d): ablations on the effect of β in the upper bound; (e)-(f): ablations on the mixture
coefficient ω. The best performed β ≥ 1 and ω ∈ [0, 1] are marked by triangle in each setting.

an implicit mixture of lower and upper bounds. However, it is unstable in Sudoku and underperform628

SPG w/ Mixture on most benchmarks.629

We also experiment on the effect of the mixture coefficient ω, keeping β fixed at its optimal value630

determined for ω = 0.5 as mentioned before. As illustrated in panels (e)-(f) of Figure 9, combining631

lower and upper bounds with ω ∈ (0, 1) leads to better performance than leveraging either bound632

solely, resulting in an inverted U-shaped curve. This observation is consistent with our analysis in633

Proposition 1 and Section 2.3. We provide complete ablation results of β and ω for each generation634

length in Table 8 and Table 9.635

G.3 Additional Ablation Results636

Ablations on Algorithm Components. We provide the complete results for ablations on log-637

likelihood estimation methods in Table 6 and for ablations on masking strategies in Table 7.638

Table 6: Ablations on log-likelihood estimation methods for negative advantage traces. The best
results are bolded and the second best are underlined. SPG w/ Mixture consistently outperforms other
likelihood estimation methods.

GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)
Model 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.
SPG wo/ neg 72.0 79.0 81.3 77.4 28.2 32.2 37.8 32.7 43.8 48.1 44.5 45.5 55.0 82.9 68.4 68.8
SPG w/ ELBO 75.6 82.8 84.4 80.9 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1 73.8 89.4 84.1 82.4
SPG w/ EUBO 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3 81.2 87.1 89.9 86.1
SPG w/ Mixture 78.5 86.1 84.5 83.0 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 82.9 94.0 93.1 90.0

Table 7: Ablations on the masking strategies in Monte Carlo estimation. Our block-wise masking
strategy leads to consistent improvement to random masking on both benchmarks.

MATH500 (0-shot) Countdown (0-shot)
Model Masking 128 256 512 Avg. 128 256 512 Avg.
SPG w/ EUBO random 33.4 35.4 41.4 36.7 42.6 41.0 52.7 45.4

block-wise 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3
SPG w/ Mixture random 33.8 38.2 38.8 36.9 52.3 64.5 71.5 62.8

block-wise 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

Ablations on Key Hyperparameters β and ω. We provide the complete results for ablations on β639

in Table 8 and for ablations on ω in Table 9.640

Ablations on Inference Strategies. We provide complete results for ablations on different inference641

strategies in Table 13. Note that the reported numbers of each method for “Semi-AR, Block=32,642

Confidence” is in general slightly higher than the results in Table 1 under the same inference setting.643

This is because in Table 13, we select best checkpoint specifically for generation length 256 to644

maintain consistency with other inference settings, while in Table 1, we choose the checkpoint with645

the highest average accuracy across generation lengths 128, 256, and 512.646

Ablations on the Looser Upper Bound. As mentioned in Section 2.2 and Appendix D, a looser647

but unbiased bound can be derived using inequalities like log(x) ≤ x− 1, i.e., L̃Loose (Equation (22)).648

23

Table 8: Ablations on the value of β in the upper bound.
GSM8K (0-shot) MATH500 (0-shot) Countdown (0-shot) Sudoku (3-shot)

Model β 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg. 128 256 512 Avg.
0.50 77.7 83.2 84.5 81.8 32.8 36.4 41.2 36.8 71.1 68.8 74.6 71.5 64.7 53.4 57.4 58.5
0.75 77.2 83.9 84.5 81.9 31.0 36.6 40.0 35.9 70.7 70.7 70.7 70.7 63.4 65.7 45.4 58.2

SPG w/ EUBO 1.00 76.5 83.9 83.6 81.3 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4 81.2 87.1 89.9 86.1
1.50 77.1 83.8 83.9 81.6 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8 32.7 40.5 39.9 37.7
2.00 76.5 83.9 83.2 81.2 32.4 36.8 38.2 35.8 68.4 71.5 68.0 69.3 28.1 31.9 28.0 29.3
1.00 78.8 85.6 84.9 83.1 34.0 40.2 39.2 37.8 69.9 69.5 70.3 69.9 82.9 94.0 93.1 90.0

SPG w/ Mixture 1.50 78.5 86.1 84.5 83.1 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9 83.2 86.0 84.6 84.6
2.00 78.8 85.7 84.7 83.1 32.4 38.8 39.8 37.0 70.3 69.1 69.5 69.6 44.3 60.5 60.7 55.2

Table 9: Ablations on the mixture coefficient ω on MATH500 and Countdown.
SPG w/ Mixture MATH500 (0-shot) Countdown (0-shot)
ω 128 256 512 Avg. 128 256 512 Avg.
0.00 35.8 37.6 38.8 37.4 66.8 66.0 68.4 67.1
0.25 34.6 37.6 42.2 38.1 71.5 68.0 67.2 68.9
0.50 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9
0.75 34.2 38.6 41.2 38.0 69.5 69.1 74.2 70.9
1.00 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

However, as shown in Table 10, this looser bound performs worse empirically than the tighter upper649

bound L̃EUBO we used, possibly due to a larger discrepancy from the true log-likelihood.650

Table 10: Ablations on the looser upper bound. The loose bound performs worse than the tighter
upper bound we used, indicating inferior performance due to a larger discrepancy from the true
log-likelihood.

SPG w/ EUBO MATH500 (0-shot) Countdown (0-shot)
β Upper Bound 128 256 512 Avg. 128 256 512 Avg.

1.0 L̃Loose 29.4 35.4 39.4 34.7 43.8 65.2 64.8 57.9
L̃EUBO 31.0 37.4 38.8 35.7 66.0 66.8 66.4 66.4

1.5 L̃Loose 29.8 31.8 38.8 33.5 46.9 54.7 57.0 52.9
L̃EUBO 33.2 37.6 39.4 36.7 69.5 64.5 66.4 66.8

Ablations on Log-Likelihood Estimations for Positive Advantage Traces. Instead of always651

using LELBO for positive advantage traces, we experiment on MATH500 and Countdown benchmarks652

using both L̃EUBO and L̃Mix for positive advantage traces. Correspondingly, we use ω = 0.5 and the653

best performed β as previously discussed for negative advantage traces. For the positive advantage654

traces, we always use the tightest β = 1.0 for both L̃EUBO and L̃Mix. The results are shown in Table 11,655

indicating that using the upper bound for likelihood estimation of positive advantage traces performs656

worse than using LELBO. This aligns well with our theoretical insights that the lower bound is a better657

objective for log-likelihood maximization.658

Ablations on Pass@K Performance. In all previous experiments, we apply greedy sampling659

by setting temperature as 0.0 following D1 and LLaDA. However, beyond accuracy, it is essential660

for models to generate a diverse set of outputs that can cover the correct solution and allow for661

explorations. In this section, we investigate the models’ ability to generate diverse outputs using a662

higher temperature, and evaluate their Pass@K performance on MATH500 and Countdown, as shown663

in Table 12. Specifically, we set temperature to 0.9 and generation length to 256, conduct evaluations664

every 100 steps, and report results from the checkpoint with the highest accuracy. For comparison,665

we also include results from greedy sampling, denoted as Pass@1Greedy. As expected, increasing the666

temperature leads to a decrease in Pass@1 performance across all models, aligning with observations667

from previous work. For K>1, the Pass@K scores improve for all models as K increases from 1 to 4.668

SPG achieves the best performance across all settings, with SPG w/ Mixture reaching 55.6% Pass@4669

accuracy on MATH500 and 76.6% on Countdown, demonstrating the ability of SPG to generate670

diverse outputs that can recover the correct solution.671

24

Table 11: Ablations on log-likelihood estimation for positive advantage traces. Using the upper bound
for log-likelihood estimation of positive advantage traces perform worse than using the lower bound.

Positive traces MATH500 (0-shot) Countdown (0-shot)
Model likelihood estimation 128 256 512 Avg. 128 256 512 Avg.

SPG w/ EUBO L̃EUBO (β = 1.0) 34.4 36.2 39.2 36.6 48.1 46.7 50.8 48.5
LELBO 33.2 37.6 39.4 36.7 68.4 71.5 68.0 69.3

SPG w/ Mixture L̃Mix (β = 1.0, ω = 0.5) 35.4 38.4 39.0 37.6 69.1 68.4 70.3 69.3
LELBO 33.4 40.0 41.8 38.4 68.8 70.7 70.3 69.9

Table 12: Pass@K performance of each model on MATH500 and Countdown. We set temperature
as 0.9 and report results of the best checkpoint of each case at a generation length of 256. For
comparison, we also include the greedy sampling performance, i.e., Pass@1Greedy. The best results
are bolded and the second best are underlined.

MATH500 (0-shot) Countdown (0-shot)
Model Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4 Pass@1Greedy Pass@1 Pass@2 Pass@3 Pass@4
LLaDA-8B-Instruct 32.4 31.5 40.9 45.7 48.8 16.8 15.8 28.1 37.7 45.3
LLaDA-1.5 32.2 32.6 42.2 47.4 50.4 21.1 18.2 32.1 42.5 50.0
D1 37.8 34.3 43.1 48.0 52.0 32.4 24.5 40.4 51.4 60.6
WD1 38.6 36.0 44.9 49.9 53.6 54.7 44.3 60.6 68.0 73.1
UniGRPO 38.4 34.7 43.9 49.5 53.2 44.9 36.8 55.2 65.0 72.3
SPG w/ EUBO 38.0 34.4 44.3 49.9 54.0 71.5 68.2 71.9 73.9 76.6
SPG w/ mixture 40.0 36.5 46.0 51.2 55.6 71.1 67.5 72.5 75.1 76.6

Table 13: Ablations on the inference strategy. SPG leads to consistently superior performance to
baselines with different inference strategies. The best results are bolded and the second best are
underlined for each setting. We report results for generation length 256.

Inference Strategy Model GSM8K MATH500 Countdown Sudoku Avg.
LLaDA-8B-Instruct 78.7 31.4 13.7 26.2 37.5
LLaDA-1.5 78.8 33.4 16.0 23.0 37.8
D1 79.7 37.2 27.0 31.4 43.8

Semi-AR, Block=16, Confidence WD1 82.3 37.4 53.9 36.8 52.6
UniGRPO 82.5 36.8 46.5 63.4 57.3
SPG w/ EUBO 84.7 37.4 70.3 82.2 68.7
SPG w/ Mixture 86.4 40.8 70.7 96.2 73.5
LLaDA-8B-Instruct 77.2 32.4 16.8 27.7 38.5
LLaDA-1.5 80.5 32.2 21.1 26.9 40.2
D1 80.6 37.8 32.4 32.8 45.9

Semi-AR, Block=32, Confidence WD1 81.7 38.6 54.7 35.7 58.1
UniGRPO 82.6 38.4 44.9 67.0 58.2
SPG w/ EUBO 84.8 38.0 71.5 88.5 70.7
SPG w/ Mixture 86.2 40.0 71.1 95.6 73.2
LLaDA-8B-Instruct 78.6 33.2 27.3 32.6 42.9
LLaDA-1.5 81.0 35.4 20.3 36.4 43.3
D1 80.9 37.6 38.3 39.8 49.2

Semi-AR, Block=64, Confidence WD1 82.5 37.4 52.3 41.8 53.5
UniGRPO 82.3 37.4 53.5 82.9 64.0
SPG w/ EUBO 84.3 37.4 69.5 88.8 70.0
SPG w/ Mixture 85.5 41.4 69.9 93.8 72.7
LLaDA-8B-Instruct 63.5 21.0 6.3 24.4 28.8
LLaDA-1.5 67.1 24.8 10.9 27.5 32.6
D1 69.7 27.4 18.4 29.9 36.4

Semi-AR, Block=32, Random WD1 74.1 30.8 37.5 29.9 43.1
UniGRPO 72.8 29.8 41.4 60.1 51.0
SPG w/ EUBO 74.1 31.4 42.6 72.6 55.2
SPG w/ Mixture 78.4 31.0 66.0 86.9 65.6
LLaDA-8B-Instruct 23.9 17.8 0.0 68.3 27.5
LLaDA-1.5 41.4 20.4 0.0 67.9 32.4
D1 57.5 22.6 0.0 72.3 38.1

Full Sequence, Confidence WD1 56.7 25.0 10.2 68.9 40.2
UniGRPO 50.0 24.2 8.2 95.6 44.5
SPG w/ EUBO 54.3 23.4 63.3 88.9 57.5
SPG w/ Mixture 58.8 24.0 65.6 96.5 61.2
LLaDA-8B-Instruct 52.7 17.8 13.3 27.1 27.7
LLaDA-1.5 53.5 19.8 13.7 28.0 28.8
D1 53.0 22.6 28.5 31.8 34.0

Full Sequence, Random WD1 54.6 23.4 43.4 30.0 37.9
UniGRPO 57.6 22.6 47.7 57.3 46.3
SPG w/ EUBO 58.5 25.2 56.6 71.3 52.9
SPG w/ Mixture 61.2 25.2 64.1 72.2 55.7

25

G.4 Qualitative Examples on GSM8K672

We present qualitative examples for all models on GSM8K, using a generation length of 256 and 128673

diffusion steps. Incorrect reasoning steps or answers are highlighted in red and the correct answers are674

highlighted in green. SPG leads to more concise and accurate reasoning compared to other models.675

Note that the models may sometimes achieve the correct answer through flawed reasoning, while such676

artifacts are expected to diminish with a stronger base model.677

Model: LLaDA-8B-Instruct678

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: LLaDA-8B-Instruct
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 0.6× 5 = 3 dollars.
We can break down the cost as follows:

• The first glass costs $5.
• The second glass costs $3.
• The third glass costs $5.
• The fourth glass costs $3.
• And so on...

We can see that the cost alternates between $5 and $3. Since Kylar wants to buy 16 glasses, we need
pair them up.
The first of each pair costs $5, and the second of each pair costs $3. Therefore, the cost of each pair
is 5 + 3 = 8 dollars.
Since there are 8 pairs of glasses (16 glasses divided into pairs), the total cost is 8× 8 = 64 dollars.
</reasoning>
<answer>
64

</answer>679

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: LLaDA-8B-Instruct
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, 2 × 4 = 8. She also has three makeup sets with six colors each,
3× 6 = 18. So, the total number of eyeshadow colors Amy initially has is: 8 + 18 = 26. Next, her
sister steals one of the palettes, which she loses completely. Therefore, the number of colors left
from the remaining palettes is: 8− 4 = 4. Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: 6

2 = 3. Thus, the number of colors left from the
one makeup set is: 6− 3 = 3. Adding, the total number of eyes left is: 4 + 3 = 11.
</reasoning>
<answer>
11

</answer>680

Model: D1681

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: D1682

26

Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost pattern of
the glass. The first glass costs $5, and every second glass costs 60% of the price. Therefore, the cost
of every second glass is 5× 0.6 = 3 dollars. We can break down the cost into two parts:

1. The cost of the first 8 glasses, each costing $5.
2. The cost of the next 8 glasses, each costing $3.

First, let’s calculate the cost of the first 8 glasses: 8× 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses: 8× 3 = 24 dollars.
Now, we add these two amounts together: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay $64 for them.
</reasoning>
<answer>
64

</answer>683

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: D1
Answer:
Amy initially has two eyeshadow palettes with four colors each, so she has 2× 4 = 8 colors from
the palettes. She also has three makeup sets with six colors each, so she has 3× 6 = 18 colors from
the makeup sets. Her’s sister steals one of the palettes, so she now has 8− 1 = 7 colors from the
palettes. Amy uses up half of the colors from one makeup set, so she uses 6

2 = 3 colors from that
set. Therefore, she has 18− 3 = 15 colors left from the makeup sets. Adding these to the remaining
palettes palettes, she has a total of 7 + 15 = 22 eyeshadow colors left.
</reasoning>
<answer>
22

</answer>684

Model: WD1685

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: WD1
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
full price and the discounted price glasses.
First, let’s calculate the cost of the first 8 glasses, which are sold at the full price of $5 each:
8× 5 = 40 dollars.
Next, let’s calculate the cost of the next 8 glasses, which are sold at 60% of the full price.
Since 60% of $5 is: 0.6× 5 = 3 dollars. So, the cost for the next 8 glasses is: 8× 3 = 24 dollars.
Now, we add the cost of the first 8 glasses and the cost of the next 8 glasses: 40 + 24 = 64 dollars.
Therefore, Kylar needs to pay 64 .
</reasoning>
<answer>
64

</answer>686

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: WD1
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each: 2× 4 = 8. Additionally, she has three makeup sets with six colors

687

27

each: 3× 6 = 18. So, together, she has: 8 + 18 = 26. Next, her sister steals one of the palettes,
which she loses 4 colors: 26− 4 = 22. Then, Amy uses up half of the colors from one makeup set.
Each makeup set has six colors, so half of that is: 6

2 = 3. Thus, she uses 3 colors from one makeup
set, leaving: 6− 3 = 3 colors in that makeup set.
Finally, we add the remaining colors from the makeup set to the remaining colors: 22 + 3 = 25.
</reasoning>
<answer>
25

</answer>688

Model: UniGRPO689

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: UniGRPO
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost of both the
regular glasses and the discounted glasses. A regular glass costs $5, and every second glass costs
60% of that price, which is 5× 0.6 = 3.
Since Kylar will buy 16 glasses, he will have 8 regular glasses and 8 discounted glasses. The cost of
8 regular glasses is 8× 5 = 40 dollars. The cost of 8 discounted glasses is 8× 3 = 24 dollars.
Therefore, the total cost for 16 glasses is 40 + 24 = 64 dollars.
</reasoning>
<answer>
64

</answer>690

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: UniGRPO
Answer:
First, let’s determine the total number of eyeshadow colors Amy initially has. She has two eyeshadow
palettes with four colors each, so she has 2 × 4 = 8 colors from the palettes. She also has three
makeup sets with six colors each, so she has 3× 6 = 18 colors from the makeup sets. Adding these
together gives her initially 8 + 18 = 26 eyeshadow colors. Next, her sister steals one of the palettes,
so she now has 8− 4 = 14 colors from the palettes. She then uses up half of the colors from one
makeup set. Since she used one makeup set, containing six colors, she used 6

2 = 3 colors from that
set. Therefore, she has 18− 3 = 15 colors left from the makeup sets.
Finally, adding the remaining colors from the palettes and the makeup sets, Amy has 14 + 15 = 29
eyeshadow colors left.
</reasoning>
<answer>
29

</answer>691

Model: SPG w/ EUBO692

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: SPG w/ EUBO
Answer:
To determine how much Kylar needs to pay for 16 glasses, we need to consider the cost structure of
the glasses. The first glass costs $5, and every second glass costs 60% of the price of the first glass.
Therefore, the cost of each second glass is 5.0× 0.6 = 3.0 dollars.
Kylar wants to buy 16 glasses, which means he will have 8 pairs of glasses. Each pair consists of one
first glass and one second glass. The cost of one pair is: 5.0 + 3.0 = 8.0 dollars. Since there are 8

693

28

pairs, the total cost is: 8× 8.0 = 64.0 dollars. Thus, Kylar needs to pay 64 dollars for 16 glasses.
</reasoning>
<answer>
64

</answer>694

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ EUBO
Answer:
First, let’s calculate the total number of eyeshadow colors Amy initially has:

• She has two eyeshadow palettes with four colors each: 2× 4 = 8 colors.
• She has three makeup sets with six colors each: 3× 6 = 18 colors.
• Adding these together gives: 8 + 18 = 2

Next, we account for the changes:
• Her sister steals one palette, so she loses 4 colors: 26− 4 = 22

• Amy uses up half of the colors from one makeup set, which is 6
2 = 3 colors: 22− 3 = 19

Therefore, Amy has 19 eyeshadow colors left.
</reasoning>
<answer>
19

</answer>695

Model: SPG w/ Mixture696

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but
every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?
Model: SPG w/ Mixture
Answer:

1. The first glass costs $5.
2. Every second glass costs 60% of $5, which is 0.6× 5 = 3 dollars.
3. Kylar wants to buy 16 glasses, so he will have 8 full-priced glasses and 8 discounted

glasses.
4. The cost for 8 full-priced glasses is 8× 5 = 40 dollars.
5. The cost for 8 discounted glasses is 8× 3 = 24 dollars.
6. Adding these the total cost is 40 + 24 = 64 dollars.

</reasoning>
<answer>
64

</answer>697

Question: Amy had two eyeshadow palettes with four colors each and three makeup sets that came
with six eyeshadow colors each. Her sister steals one of the palettes. Amy uses up half of the colors
from one makeup set. How many eyeshadow colors does she have left?
Model: SPG w/ Mixture
Answer:

1. Amy initially has two eyeshadow palettes with four colors each: 2× 4 = 8 colors
2. She also has three makeup sets with six colors each: 3× 6 = 18 colors
3. Adding these together gives gives: 8 + 18 = 26 colors
4. Her sister steals one palette, so she loses: 4 colors

698

29

5. Amy uses up half of the colors from one makeup set: 6
2 = 3 colors

6. Subtracting these lost and used colors: 26− 4− 3 = 19 colors
</reasoning>
<answer>
19

</answer>699

30

	Introduction
	Sandwiched Policy Gradient with Evidence Bounds
	A Lower Bound Objective for Policy Optimization
	A Tractable Evidence Upper Bound
	Practical Considerations

	Experiments
	Conclusion
	Related Work
	Background
	Masked Diffusion Language Models
	Reinforcement Learning for Diffusion Language Models

	Basics of dLLMs
	Evidence Upper Bound for dLLMs
	Additional Analysis on Upper and Lower Bounds
	Advantages of Using the Mixture
	Additional Comparison Between the Mixture Loss and the Lower and Upper Bounds
	Toy Example for Upper and Lower Bounds.

	Additional Experimental Details
	Datasets and Reward Functions
	Hyperparameter Settings and Implementation Details
	Baselines
	Generation and Evaluation Setup
	Algorithm Details
	Few-Shot Samples for Sudoku

	Additional Results
	Additional Evaluations to the Main Results
	Ablations and Further Analysis
	Additional Ablation Results
	Qualitative Examples on GSM8K

