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ABSTRACT

Genome-scale perturbation cell atlases are an exciting new resource to understand
the transcriptomic and phenotypic impact of single-gene activation or knockdown.
However, in terms of differentially expressed genes identified, the signal detected
in these data atlases is low, leading to the exclusion of most data from downstream
analyses. Recent advances in single-cell foundation models have shown promise
in capturing complex biological insights. However, their application to pertur-
bation analysis, especially in predicting perturbed single-cell transcriptomes, re-
mains limited. In this paper, we focus on learning representations of single-cell
transcriptomes that capture subtle, yet important, transcriptome-wide changes,
and we propose a novel fine-tuning strategy using contrastive learning to leverage
single-cell foundation models for this task. We pre-train a single-cell foundation
model and fine-tune on a genome-scale perturbation dataset using a contrastive
loss, which minimises the distance between cell embeddings from unperturbed
cells while maximising the distance between perturbed and unperturbed cells. We
validate and test the model on unseen perturbations, demonstrating its ability to
identify global biologically meaningful transcriptional changes not captured by
traditional differential expression methods. Our approach provides a novel frame-
work for analysing single-cell perturbation data and offers a more effective means
of identifying perturbations that drive systemic gene expression changes.

1 INTRODUCTION

Understanding the transcriptomic and phenotypic outcomes of perturbed gene expression (e.g.
knockdown or activation) at the single-cell level has the potential to improve our understanding
of development, disease mechanisms, and cell-state engineering, with applications in target iden-
tification for drug discovery. High-throughput methods based on CRISPRi perturbations have re-
cently been applied to this end at genome scale: Replogle et al. (2022) perturbed just under 10k
expressed genes, resulting in a dataset of close to 2M single-cell transcriptomes and new preprints
signpost genome-scale perturbation cell atlases as a new frontier of single-cell data (Nourreddine
et al., 2024). Simultaneously, advanced deep-learning techniques have been applied in the predic-
tion of perturbed single-cell transcriptome data (Roohani et al., 2023; Hao et al., 2024). Recent
developments in training so-called ‘single-cell foundation models’ on large-scale single-cell tran-
scriptomic data (Theodoris et al., 2023; Yang et al., 2022; Cui et al., 2023; Hao et al., 2024), have
renewed excitement about learning fundamental representations of biology and their application
to understanding co-regulatory effects. However, on the task of predicting gene expression un-
der perturbation, these models have been outperformed by simple baselines (Bendidi et al., 2024;
Ahlmann-Eltze et al., 2024a; Gaudelet et al., 2024).

The main objective of perturbation studies is to identify genes that drive meaningful transcriptional
changes. Usually, a transcriptomic perturbation signature is defined by identifying genes exhibiting
the most significant changes in expression upon perturbation of the target gene. However, differen-
tial expression analyses often treat each gene in isolation, failing to account for the intricate interde-
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pendencies between genes that are crucial to understanding perturbation effects at the cellular level.
This approach also has unique challenges when applied to single-cell perturbation data, due to high
sparsity (e.g. zero-inflated gene expression distributions), as well as varying perturbation efficiency
of single-guide RNAs (sgRNAs), which is difficult to distinguish from biological signal or techni-
cal noise. Together with a limited number of cells per perturbation, this results in difficulties in
identifying differentially expressed genes in 70- 89% of the genome-wide perturbations performed
(Replogle et al., 2022; Nourreddine et al., 2024). It is unclear how many of these perturbations give
rise to a meaningful transcriptomic signal, and they are commonly excluded from any downstream
analyses. To fully utilise genome-scale perturbation data atlases, approaches need to identify pertur-
bations that elicit a change in the overall transcriptomic state of the cell instead of focusing only on
differentially expressed genes.

In this paper, we introduce a method for learning representations of single-cell transcriptomes that
encode information about the perturbation state (perturbed/unperturbed) based on a cell’s whole
transcriptome. To this end, we present a novel fine-tuning strategy for single-cell foundation models
using contrastive learning. By fine-tuning these models on single-cell perturbation data, we aim to
improve their ability to capture and predict perturbation-driven transcriptomic changes even when
no differentially expressed genes can be detected. We show that our approach captures more signals
in the data than previous methods, allowing for a more comprehensive use of perturbation analysis
in single-cell biology.

2 RELATED WORK

2.1 PERTURBATION ANALYSIS

There is no standard analysis for identifying perturbations that induce transcriptomic changes in
single-cell RNA sequencing (scRNA-seq) data. Most approaches rely on differential gene expres-
sion analysis (Replogle et al., 2022; Nourreddine et al., 2024), using statistical tests like the Mann-
Whitney U test or regression models fitted to expression values with a negative binomial distri-
bution (Alessandrı̀ et al., 2019; Chen et al., 2025). A drawback of these methods is the focus on
large individual gene-level changes to determine the impact of perturbations, which may miss larger
global shifts created by small combinatorial changes. Approaches that aim to determine distribution
shifts throughout the transcriptome use dimensionality reduction with Principal Component Analy-
sis (PCA), followed by computing distance metrics such as the energy distance (Peidli et al., 2024).
Other approaches that are commonly used to project high-dimensional scRNA-seq data into lower-
dimensional embeddings include Variational Autoencoders (VAEs), exemplified by models such as
scVI (Lopez et al., 2018), which have recently been compared in benchmarks of perturbation anal-
yses (Bendidi et al., 2024). Recently published single-cell foundation models, such as Geneformer
(Theodoris et al., 2023) and scGPT (Cui et al., 2023), are transformer-based models that are pre-
trained on large-scale single-cell atlases and then fine-tuned on a range of downstream tasks, where
they often outperform existing methods. For perturbation analyses, however, these models are still
outperformed by simple methods like PCA (Bendidi et al., 2024; Ahlmann-Eltze et al., 2024b).

2.2 CONTRASTIVE LEARNING

Contrastive learning is an approach that helps to extract meaningful representations by contrasting
similar and dissimilar pairs of data points; it leverages the assumption that similar examples should
be closer in a learned embedding space, while dissimilar examples should be farther apart. This type
of training is commonly used in image-caption pre-training and fine-tuning (Radford et al., 2021;
Jia et al., 2021; Zhai et al., 2022; 2023), where aligning image and text representations in a shared
embedding space enables good performance on zero-shot transfer tasks, such as classification and
retrieval. Recently, there has also been a surge in the use of contrastive learning to fine-tune encoder-
only language models for improved sentence representation learning (Gao et al., 2021; Zhang et al.,
2022; Chuang et al., 2022). In particular, contrastive learning can alleviate the problem of anisotropy,
where sentence embeddings occupy only a narrow cone in the embedding space, leading to poor
sentence representation and low performance in downstream tasks (Xu et al., 2023).
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3 METHODS

3.1 PRE-TRAINING ON LARGE SCALE SINGLE-CELL RNA-SEQ DATA

We downloaded scRNA-seq data from ∼ 33M unique cells across 265 datasets in the census dataset
(version 2023-07-25) from the CellXGene data portal (CZI Single-Cell Biology Program et al.,
2023). Data processing followed Theodoris et al. (2023), representing each single-cell transcrip-
tome as a sequence of gene names of maximum length 2, 048 ordered by their median-normalised
expression. We excluded cancer cells and cells with < 500 expressed genes. Our single-cell foun-
dation model is based on a bidirectional transformer encoder-only architecture (BERT) similar to
Geneformer (Theodoris et al., 2023), receiving a single-cell transcriptome as an ordered sequence of
gene names of maximum length 2, 048. The model was pre-trained with a masked language mod-
elling task (masking 15% of input tokens) for three epochs. For more implementation details see
Appendix A.1, and a schematic of the model is shown in Figure 1A. We compared our model and
Geneformer on a dataset that was recently published and, therefore, did not form part of the train-
ing data for either model (Heimlich et al., 2024). The two models performed comparably, with our
model slightly outperforming Geneformer in reproducing the overall ranking of highly expressed
genes (Appendix A.2 and Supplementary Figure A.1).

3.2 CONTRASTIVE FINE-TUNING ON PERTURB-SEQ

We leveraged the largest genome-scale perturbation dataset to date of 9,866 perturbations (knock-
downs) in 1.98 million K562 lymphoblast cells (Replogle et al., 2022). For each cell, we recorded
the perturbed gene or noted it as “unperturbed” if a non-targeting sgRNA was used. There are
75, 000 unperturbed cells, and the median number of cells per perturbation is ∼ 200 (Figure A.2).
For each perturbation, we identified differentially expressed genes (DEGs) between perturbed and
unperturbed cells using a Mann-Whitney U test (Supplementary Figure A.3). Using the E-distance
between perturbed and unperturbed PCA embeddings as described in Section 3.4, we observed a
Pearson correlation of 0.54 between E-distance and DEG counts. We selected 1, 541 perturbations
with ≥ 20 DEGs for fine-tuning, as these are more likely to exhibit larger overall transcriptional
changes, resulting in a stronger training signal. In our evaluation, however, we assessed the model’s
generalisation to putative perturbations for which no DEGs were detected; that is, perturbations that
induce subtle yet widespread transcriptional changes, even when the expression of individual genes
do not show large shifts. Perturb-seq data was normalised with gene medians from the pre-training
dataset before ranking genes by their expression into an ordered sequence of gene names, as de-
scribed above. We grouped perturbed cells based on their perturbed target gene, and split cells by
target gene into train, validation and test sets by a 80/10/10 rule. We split the unperturbed cells us-
ing the same 80/10/10 rule, and randomly sampled size-matched sets from the training set for each
training perturbation to provide examples of control/dissimilar cells during training.

We used the final checkpoint of our pre-trained model for fine-tuning. A single training sample
consisted of a pair of single-cell transcriptomes that are either “similar” or “dissimilar”: a perturbed
and unperturbed cell constituted a dissimilar pair, whereas two unperturbed cells formed a similar
pair. The cell embeddings for both transcriptomes in the pair were obtained from the model as
described in Section 3.3. The following contrastive loss was calculated for embedding pairs in each
batch and back-propagated through all layers of the model:

L =
1

N

N∑
i=1

[
yi · d2i + (1− yi) ·max(0,m− di)

2
]
, (1)

where N is the batch size, m is the margin hyperparameter, and di = ∥oi
1 − oi

2∥2 is the Euclidean
distance between the two embedding vectors oi

1 and oi
2 of the single-cell transcriptomes belonging

to the ith pair in the batch, and yi ∈ {0, 1} is the corresponding binary label, where 1 indicates that
the pair is similar, and 0 dissimilar. The term max(0,m − di) ensures that the dissimilar loss is
non-negative and only contributes when di is less than the margin. A schematic of the contrastive
fine-tuned model is shown in Figure 1.

We ensured that cells with the same perturbed gene were in the same batch when training on dissim-
ilar pairs, alternating between training on batches of similar and dissimilar pairs. Note that we did
not explicitly train the model to learn separations between perturbations. We fine-tuned the models
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Figure 1: A: Schematic of the pre-trained foundation model. The model is trained with a masked
language modelling task where input tokens are randomly masked and the model is trained to predict
the right gene name. B: Schematic of the model fine-tuning task. The input to the model is a pair of
transcriptomes: a perturbed and unperturbed cell form a dissimilar pair, or two unperturbed cells are
a similar pair. The gene embeddings of the penultimate layer of the pre-trained model are aggregated
into a cell embedding and the contrastive loss shown in Equation 1 is calculated for embedding pairs
in each batch and back-propagated through all layers of the model.

using a margin of 20, a learning rate of 1e− 5, using the AdamW optimiser with a weight decay of
1e− 2. Fine-tuning of 10 epochs took 7 days on a single NVIDIA T4 15G GPU.

3.3 CELL EMBEDDINGS

To obtain cell embeddings from the pre-trained or fine-tuned model, we performed a forward pass
on an input transcriptome and extracted the contextualised embedding for each input gene from
the penultimate layer. To compute the cell embedding, we took the mean of all of the cell’s gene
embeddings to form a single embedding vector of dimension 256, similar to Theodoris et al. (2023).

3.4 DISTANCE METRICS

Our objective is to learn embeddings of single-cell transcriptomes that capture transcriptomic dif-
ferences between perturbed and unperturbed cells. To evaluate our model, we used a set of metrics
designed to measure how well the embeddings separated perturbed from unperturbed cells, as well
as different pairs of perturbations. Although the model was not directly trained to do the latter, this
evaluation tests whether the model captures more general differences in transcriptomic states. To
measure the quality of the embeddings in this regard, we used the following metrics:

• Energy distance (E-distance): This metric measures the statistical dispersion between two
groups, making it particularly useful for quantifying the separation between distributions.
Here, it captures the difference in expression profiles between perturbed and unperturbed
cells, taking into account the variation within the two groups (Peidli et al., 2024). Higher
values indicate greater separation, suggesting that a model is better at distinguishing tran-
scriptional changes caused by perturbations. The distance between the distributions P and
Q is defined as

D(P,Q) = 2E[d(X − Y )]− E[d(X −X ′)]− E[d(Y − Y ′)], (2)

where, X,X ′ ∼ P and Y, Y ′ ∼ Q are samples drawn from P and Q, respectively, and d
is the Euclidean distance. When calculating D for pairs of perturbations, X and Y are the
whole sets of the cell embeddings for each perturbation target, whereas when computing D
for perturbed and unperturbed cells, Y is replaced by embeddings of random samples from
the unperturbed cell population (size-matching X).

• Cosine E-distance: Similar to E-distance, but d in Equation 2 is taken to be the cosine
distance instead of the Euclidean distance. This change makes the distance invariant to the
magnitudes of the embedding vectors that are compared.
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• High-dimensional Wasserstein distance: This metric quantifies the minimal effort re-
quired to transform one distribution into another. While the E-distance emphasizes group
separation, this metric provides a more nuanced measure of difference in distributions.

To compare the separation quality of different model embeddings, we L2-normalised each embed-
ding to account for variations in embedding dimensions. We then applied a z-score normalisation
to each metric using a control distribution, which was derived from pairs of embedding groups ran-
domly sampled from the unperturbed cell population, to account for different variability and scales
in the embeddings of the unperturbed distribution. The normalisation of metric D is given by

Dnorm =
D(P,Q)− µcontrol

σcontrol
,

where µcontrol and σcontrol denote the mean and standard deviation of the control distribution, and
Dnorm is the normalised distance.

4 RESULTS

4.1 CONTRASTIVE FINE-TUNING ALLOWS THE ENCODING OF DISTINCT TRANSCRIPTOMIC
STATES IN CELL EMBEDDINGS

For a visual assessment of the impact of contrastive fine-tuning, Figure 2 shows UMAP projec-
tions of embeddings of perturbed and unperturbed cells in the test set from the pre-trained and the
fine-tuned model. Before fine-tuning, there is significant mixing between the embeddings of the
perturbed and unperturbed cells, indicating that the pre-trained model is unable to distinguish be-
tween them. There is also a separate cluster that contains a mixture of perturbed and unperturbed
cells, likely capturing batch effects. After contrastive fine-tuning, however, the model’s embed-
dings separate better between perturbed and unperturbed cells: embeddings of the unperturbed cells
now cluster together, and no strong batch effects are apparent. While there is some overlap of un-
perturbed and perturbed cell embeddings, there is a more pronounced distinction between them,
suggesting that the fine-tuning process has improved the model’s ability to detect transcriptomic
changes.

Figure 2: UMAP visualisation of cell embeddings in the test set from the pre-trained model before
(left) and after contrastive fine-tuning (right). Perturbed cells (N = 47, 349) of 232 perturbations
are shown in blue, and unperturbed cells (N = 7, 470) in red.

Figure 3 shows examples of cell embeddings for two perturbations, TAF10 and DHDDS, and their
separation from a size-matched random sample of unperturbed cells from the test set. These pertur-
bations rank among the top five in the test set with the largest E-distance in the pre-trained model. In
both cases, cell embeddings of perturbed cells separate from embeddings of unperturbed cells after
contrastive fine-tuning, indicating the model’s increased ability to distinguish cells with different
transcriptomic states.

While the model was not explicitly trained to distinguish transcriptomes from different perturbation
targets, we hypothesised that if the model uses transcriptomic states to distinguish unperturbed and
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Figure 3: UMAP visualisation of embeddings of perturbed (blue) and unperturbed (red) cells from
the test set for the perturbation targets TAF10 (top) and DHDDS (bottom), before (left) and after
contrastive fine-tuning (right).

Figure 4: UMAP visualisation of embeddings of perturbed cells from the test set with perturbation
targets LARP7 vs MRPS33 (top) and PCBP2 vs POLRMT (bottom), before (left) and after con-
trastive fine-tuning (right).

perturbed cells, then it should capture these changes also for different perturbation targets. Figure
4 shows UMAP visualisations of cell embeddings before and after contrastive fine-tuning for the
perturbation targets LARP7 vs MRPS33 and PCBP2 vs POLRMT. In both cases, the fine-tuned
model is able to distinguish between transcriptomes arising from the different unseen perturbations,
further showcasing the model’s ability to capture more nuanced perturbation effects after contrastive
fine-tuning.
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4.2 CONTRASTIVE FINE-TUNING OUTPERFORMS STRONG BASELINE MODELS

To assess the ability of our fine-tuned model to capture transcriptomic states upon perturbation,
we quantified the model’s performance with three distance metrics described in Section 3.4. We
compared our model against five other approaches, some of which have been shown to outperform
deep learning models in perturbation analysis (Bendidi et al., 2024):

1. Pre-trained: the single-cell foundation model before fine-tuning.

2. Highly variable genes (HV): using the expression of the top 300 highly variable genes
across the whole dataset (including both perturbed and unperturbed cells).

3. PCA: applying PCA on the whole dataset (log normalised) and selecting the top 200 prin-
cipal components.

4. scVI Linear: a variational autoencoder with a single encoder and decoder layer trained on
raw expression counts of all cells in the training set of the contrastive model (Lopez et al.,
2018). See A.3 for training and implementation details.

5. scVI 5L: scVI where both the encoder and decoder contain 5 layers trained on raw expres-
sion counts of all cells in the training set of the contrastive model (Lopez et al., 2018). See
A.3 for training and implementation details.

As an initial visual assessment of the methods, we compared the UMAPs of PCA and scVI Linear on
the same perturbations used in Figures 3 and 4. The UMAPs of both models are shown in Figure A.4
and A.5; both models displayed mixing of the perturbed and unperturbed cells, but better separation
than the pre-trained model.

Next, we compared the models on the metrics described in Section 3.4. To ensure fair compari-
son across methods, we normalised embeddings and distance metrics as described in Section 3.4.
The control distributions for various distance measures across different models (Supplementary Fig-
ure A.6) highlight the necessity of normalisation for a fair comparison. The contrastive model has
the highest median across all 3 distance metrics in the case of separating perturbed from unper-
turbed transcriptomes (Figure 5, Table 1). PCA proved a competitive baseline on the E-distances,
although performing worse than the contrastive model (E-distance medians: PCA= 49.4 vs fine-
tuned= 84.14). In contrast, the pre-trained model without fine-tuning and the highly variable genes
showed relatively low performance across all metrics, suggesting limited ability to separate cells
based on perturbation-induced transcriptomic changes. The scVI Linear model was the only model
to outperform the contrastive model on any of the metrics: while the contrastive model was superior
on the Wasserstein distances, scVI Linear had a higher E-distance and Cosine E-distance between
perturbation pairs (E-distance medians: scVI Linear = 137.9 vs fine-tuned= 102.0). For all met-
rics the contrastive model exhibits the largest positive skew, suggesting that it can separate certain
perturbations extremely well.

These results demonstrate that the contrastive model effectively captures the differences in distribu-
tions between perturbed and unperturbed cell profiles, as well as variations within different pertur-
bations. However, scVI Linear exhibited greater separation between perturbation pairs, as indicated
by the larger median E-distances, likely due to its ability to leverage latent representations. The
high variation of E-distances and Cosine E-distances in the contrastive model suggests that while it
effectively distinguishes certain perturbations, others are not optimally separated.

4.3 QUALITATIVE ASSESSMENT OF PREDICTED LARGE TRANSCRIPTOMIC CHANGES FOR
CELLS WITHOUT DIFFERENTIALLY EXPRESSED GENES

The model was fine-tuned only on perturbations for which at least 20 DEGs were identified, as
we could assume enough signal in this data for the model to learn distinguishing patterns between
perturbed and unperturbed cells. Of real interest, however, is whether the model can also be used
to identify perturbations that elicited a global transcriptomic change even though no DEGs could
be called. To this end, we set out to assess the quality of the contrastive model’s embeddings for
perturbed transcriptomes that (i) were excluded from fine-tuning due to having 0 DEGs and (ii)
exhibited a high distance metric compared to unperturbed cells in the embedding space of the con-
trastive model.
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Figure 5: Distance distributions for perturbations in the test set across models. Shown are distances
between embeddings of perturbed and unperturbed cells (light colour, N = 232 perturbations) and
between perturbed cells (dark colour, N = 2322 perturbation pairs).

In the absence of ground truth, we cannot be certain whether the model detected a global transcrip-
tomic shift for these perturbations or whether the large distances were an artefact of the model. To
validate perturbed transcriptomes where the model detected substantial transcriptomic shifts, we
examined whether perturbation targets were enriched for gene sets that are particularly prone to in-
ducing significant transcriptional changes when targeted for down-regulation. We focused on genes
with critical roles in cellular function. For example, cell cycle genes regulate important processes
such as cell growth, DNA replication, and division, ensuring proper cell proliferation and genomic
integrity. Similarly, essential genes are indispensable for cell survival and fundamental biological
functions, with their disruption typically leading to cell death or failure of vital processes.

To this end, we obtained a list of 663 cell cycle genes (The Gene Ontology Consortium et al.,
2023; Ashburner et al., 2000) and 2, 058 essential genes (Replogle et al., 2022). We extracted the
cell embeddings of 6, 248 perturbations with 0 DEGs (which were excluded during fine-tuning),
obtained embeddings of the same transcriptomes from PCA and scVI Linear for comparison, and
ranked the perturbations by their normalised distances from unperturbed cells (from the test set).
Regardless of the distance metric used, the contrastive model placed perturbations targeting cell
cycle and essential genes more often into the top n most distant embeddings than PCA or scVI
Linear for different values of n (Supplementary Figure A.7). To evaluate the significance of the
enrichment, we conducted a permutation test (with 10, 000 permutations) for the top n perturbations
(according to their E-distances), comparing them to randomly sampled perturbations for different
values of n (Figure 6). There was a significant enrichment (p-value < 0.001, Bonferroni correction
for multiple tests) for cell cycle genes for all n ≤ 2, 500 and for essential genes for all n ≤ 2, 000 .
Results were similar when using the two other distance metrics (Supplementary Figure A.8).

In summary, our contrastive model was able to identify biologically relevant perturbations, even
when the number of DEGs failed to capture their effects.
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Figure 6: Enrichment analysis of cell cycle (left) and essential genes (right) for perturbations with 0
DEG ranked by normalised E-distance based on the embeddings from the contrastive model. Shown
is the log-transformed enrichment p-value for different numbers of top n perturbations.

5 DISCUSSION

We introduced a novel fine-tuning strategy for single-cell foundation models on Perturb-seq data that
leverages contrastive learning to capture transcriptome-level changes in the cell embeddings. We
demonstrated the performance of our approach for perturbation analysis by benchmarking our fine-
tuned model against existing approaches using three distance metrics. We focused our comparisons
on distance metrics instead of additional clustering as it allows a direct comparison of the separation
of the embeddings and ranking of perturbations, independent of the clustering techniques used.
We showed that our model identified perturbations that would have been overlooked by traditional
differential expression analysis, showing significant enrichment in biologically relevant pathways
and functions, including cell cycle regulation and gene essentiality.

In future work, we will explore other contrastive loss functions (Oord et al., 2019) and hybrid meth-
ods that integrate contrastive and cross-entropy losses on perturbation targets (Gunel et al., 2021).
While our current model was trained on high-DEG perturbations, we will experiment with expand-
ing training to cells with low-DEG perturbations, and evaluate the impact on predictive performance.
To mitigate signal dilution, we will explore self-supervised learning approaches that do not rely on
predefined similarity labels to learn transcriptome representations (Kim et al., 2021). Further, we
will explore explainability techniques developed for BERT-based models to identify genes driving
the most significant transcriptomic shifts (Aken et al., 2020; Talebi et al., 2024).

In summary, our method allows for a more comprehensive analysis of perturbation data, thus aiding
the identification of perturbations that induce significant transcriptomic changes, and, ultimately, the
understanding of disease mechanism.
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A APPENDIX

A.1 IMPLEMENTATION

Hyperparameters were chosen to allow for distributed learning: max learning rate, 1× 10−3 scaled
by the number of GPUs; a learning scheduler, linear with warm-up (10k steps) and linear decay;
Adam optimizer with weight decay parameter 0.001. The training was distributed over 4 GPUs in
one node with a minibatch size 11 and 2 gradient accumulation steps.

To speed up pre-training we used dynamic padding combined with a length-grouped sampler to
minimise computation on padding. This sampler takes a randomly sampled megabatch and then
orders minibatches by their length in descending order. Mini-batches are then dynamically padded,
minimising the computation wasted on padding as sequences of similar lengths are grouped. The
authors of Geneformer extended an existing version of this sampler from Huggingface transformers
for the distributed case (Theodoris et al., 2023; Wolf et al., 2020). However, neither of these samplers
shuffle the mini-batches within the megabatch before passing them to the model, which resulted in
a 60x-performance-drop of the trained model in our tests (in terms of training and test perplexity on
smaller sample datasets) compared to model runs not employing the grouped-length batching. We
implemented a shuffling of the mini batches which slightly diminishes the speed up during training.

For efficient data parallelisation across the GPUS, we used Deepspeed (Rasley et al., 2020). Overall,
pre-training was achieved in just over 7 days distributed across one node with four Nvidia A10G
24GB GPUs.

A.2 PRE-TRAINING EVALUATION

To compare our pre-trained model to Geneformer (Theodoris et al., 2023), we evaluated both models
on a dataset of ∼ 66k peripheral blood mononuclear cells (PBMCs) that was published after both
models were trained (Heimlich et al., 2024).

We computed macro-averaged hits@k metrics on masked tokens at different thresholds in the 2000
highest expressed genes in 10k randomly sampled PBMCs (Figure A.1 A). Macro averaging gives
equal weight to each gene when computing the accuracy, giving a sense of the model’s performance
overall. Here, an instance is one prediction instance, e.g. one of the masked genes in the input we
ask the model to fill in. If one gene occurs much more often among the first 2000 genes of the input
sequence and is, therefore, more often masked, a model could “cheat” overall metrics by always
predicting that one gene. Macro-averaging per gene combats this bias. Both models performed
similarly on this task.

To assess further the performance of the models, we followed Kedzierska et al. (2023) and inves-
tigated how well the models can reproduce the correct gene rankings per cell given the masked
input. To do this, we compare the ground truth order with the predicted order of genes and com-
pute the Spearman correlation coefficients for different cut-offs in all ∼ 66k PBMCs. Similar to
Kedzierska et al. (2023), we find that both models struggle to correctly predict the positioning for
lower-expressed genes, with our model performing better on reproducing the input rankings of the
higher-expressed genes (Figure A.1 B).

A.3 IMPLEMENTATION AND TRAINING OF SCVI

We used the implementation of scVI from scvi-tools (Gayoso et al., 2022) and trained a linear
VAE with a single encoder and decoder layer (denoted in the text by “scVI Linear”) and a model
where both encoder and decoder consisted of 5 hidden layers (denoted in the text by “scVI 5L”).
The training data contained all unperturbed and perturbed cells from the training dataset of the
contrastive model. The raw scRNA-seq counts of the cells without any further filtering or pre-
processing formed the input to the models. We used a random 90/10 split for training and test
sets to monitor model convergence. We used a Zero-Inflated Negative Binomial as the likelihood
function, and hyperparameters for both models were set at n latent = 300, dropout rate = 0.1,
and max epochs = 500 with early stopping.
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A.4 SUPPLEMENTARY FIGURES

Figure A.1: A: Macro-averaged hits@k metrics for k = 1, 10 and 100 measuring the performance
of correct masked token prediction of the models in 15% masked genes in 10k randomly sampled
PBMCs. B: Mean Spearman correlations at different thresholds between ground-truth and predicted
gene rankings for the top 100, 500 and 2000 expressed genes per cell in 66k PBMCs. 15% of the
input genes were masked at random and the model was asked to generate full ranking outputs for all
positions.

Figure A.2: Histogram of the number of cells per perturbation.
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Figure A.3: Histogram of the number of DEGs per perturbation. Perturbations with more than 100
DEGs are captured in the last bin.

Figure A.4: UMAP visualisation of embeddings of perturbed (blue) and unperturbed (red) cells from
the test set for the perturbation targets TAF10 (top) and DHDDS (bottom), from PCA (left) and scVI
Linear (right).
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Figure A.5: UMAP visualisation of embeddings of perturbed cells from the test set with perturbation
targets LARP7 vs MRPS33 (top) and PCBP2 vs POLRMT (bottom), from PCA (left) and scVI Linear
(right).

Figure A.6: E-distance (top left), Cosine E-distance (top right) and Wasserstein distance (bottom)
control distributions of various models. Each data point represents the distance between the em-
beddings of two groups of randomly sampled unperturbed cells. In total, 10,000 random pairs of
groups, each containing 300 cells, were sampled. The difference in control distributions of the mod-
els highlights the need to perform z-normalisation to provide fair comparisons across models.
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Figure A.7: Barchart showing the number of top n perturbations ranked by normalised E-distance
(blue), normalised cosine E-distance (red) and Wasserstein distance (green) that are targeting either
cell cycle genes (top) or essential genes (bottom). Comparing results from scVI Linear (lighter
colours), PCA (median colours) and the contrastively fine-tuned model (darker colours).

Model Perturbed vs Unperturbed Perturbation Pairs

E-Dist Cosine E-Dist Wass Dist E-Dist Cosine E-Dist Wass Dist

Fine-tuned 84.14 74.10 29.18 102.04 103.10 37.79

scVI Linear 76.09 68.73 11.76 137.85 124.67 15.58

scVI 5L 42.57 38.40 19.02 76.09 66.47 25.24

PCA 49.41 45.98 9.00 83.36 75.00 9.80

HV 48.27 43.13 5.77 76.02 71.31 10.41

Pre-Trained 10.73 8.54 9.70 17.30 14.24 14.73

Table 1: The medians (over all perturbations in the test set) of different normalized distances in the
distributions of perturbed vs unperturbed and perturbation pairs across various models.
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Figure A.8: Enrichment analysis of cell cycle (left) and essential genes (right) amongst perturbations
with 0 DEGs ranked by normalised Cosine E-distance (top) and normalised Wasserstein distance
(bottom) based on embeddings of the contrastive model. The minimum p-value is capped at 1e− 6
for the purpose of plotting.
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