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Abstract
The potential outcome framework and structural causal model are two main frameworks for causal
modeling, and there are efforts to combine the merits of each framework, such as the single world
intervention graph (SWIG) and its potential outcome calculus. In this paper, we propose the info
intervention inspired by understanding the causality as information transfer, and provide the corre-
sponding causal calculus. On one hand, we explain the connection between info calculus and do
calculus. On the other hand, we show that the info calculus is as convenient as the SWIG to check
the conditional independence, and most importantly, it owns an operator σ(·) for formalizing causal
queries.
Keywords: info intervention, do intervention, causal calculus

1. Introduction

Causality has been one of the basic topics of philosophy since the time of Aristotle. However during
the last two decades, interest in causality has become very intense in the philosophy of science
community, and a great variety of novel views on the subject have emerged and been developed.
Among those novel views, it has been claimed that an informational account of causality, formally
proposed and developed since Collier (1999) in philosophy, might be useful to the scientific problem
of how we think about, and ultimately trace, causal linking, and so to causal inference and reasoning.
An informational account of causality can be useful to help us reconstruct how science builds up
understanding of the causal structure of the world. An informational account of causality may give
us the prospect of saying what causality is, in a way that is not tailored to the description of reality
provided by a given discipline. Moreover it carries the advantage over other causal metaphysics
that it fares well with the applicability problem for other accounts of production (processes and
mechanism) (Illari and Russo, 2014). But from an application in science perspective, what benefits
we can gain from causal modeling? Or is it just a rhetorical flourish?

This paper explores the topic of applying information accounts of causality to the causal model-
ing theories, resulting in an info intervention framework that unifies ideas from potential outcomes
and the structural causal model frameworks. In Section 2, we present some preliminaries on the ma-
jor causal modeling framework. Then we propose an info intervention to articulate causal queries
in Section 3 inspired by understanding causality as information transfer. In Section 4, we find that
almost all the important results for causal DAG can be transferred to our info intervention frame-
work. Specifically, we develop a causal calculus for identifying causal queries formulated by the
σ operator, proofs are offered in the Appendix A. Conclusion remarks and discussions are given in
Section 5.
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2. Preliminaries

There are many somewhat different formulations of structural causal model (SCM) in the literature,
e.g., Schölkopf (2019); Pearl (2019a); Bongers et al. (2016b); Pearl et al. (2009); Forré and Mooij
(2020), among which the definition in Blom et al. (2020) is used in this paper.

Definition 1 (SCM) An SCM by definition consists of:

1. A set of nodes V + = V ∪̇U , where elements of V correspond to endogenous variables, ele-
ments of U correspond to exogenous (or latent) variables, and V ∪̇U is the disjoint union of
sets V and U .

2. An endogenous/exogenous space Xv for every v ∈ V +, and X :=
∏

v∈V + Xv.

3. A product probability measure P := PU = ⊗u∈UPu on the latent space
∏

u∈U Xu.

4. A directed graph structure G+ = (V +, E+), with a set of directed edges E+ and a system of
structural equations fV = (fv)v∈V :

fv :
∏

s∈pa(v)

Xs → Xv,

where all functions fV are measurable, and ch(v) and pa(v) stand for child and parent nodes
of v in G+, respectively.

Conventionally, an SCM can be summarized by the tuple M = (G+,X , P, f). Note that G+ is
referred as the augmented functional graph, while the functional graph which includes only en-
dogenous variables, is denoted as G.

According to its definition, the SCM deploys three parts, including graphical models, structural
equations, and counterfactual and interventional logic. Graphical models serve as a language for
representing what we know about the world, counterfactuals help us to articulate what we want to
know, while structural equations serve to tie the two together in solid semantics.

Let XA be a set of variables at the nodes A. For any I ⊆ V , the key implementation of Pearl’s
causal diagrams is to capture interventions by using an intervention operator called do(XI = x̃I),
which simulates physical interventions by deleting certain functions from the model, replacing them
with a constant vector XI = x̃I , while keeping the rest of the model unchanged. Formally, XI are
called intervention variables, and this do intervention operator on XI is defined as follows:

Definition 2 (do intervention) Given an SCM M = (G+,X , P, f) for XV and any I ⊆ V , the do
intervention do(XI = x̃I) (or, in short, do(x̃I)) maps M to the do-intervention model Mdo(x̃I) =
(G+,X , P, f̃) for XV , where

f̃v(Xpa(v)∩V , Xpa(v)∩U ) :=

{
x̃v, v ∈ I,

fv(Xpa(v)∩V , Xpa(v)∩U ), v ∈ V \ I .

There are theoretical and technical complications in dealing with the cyclic SCM (Bongers
et al., 2016a), and currently most of literature concentrates on the case with the acyclic SCMs
which associates with a causal directed acyclic graph (DAG).
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Generally speaking, the DAG can be viewed as the non-parametric analogue of an acyclic SCM.
Denote a DAG by G = (V,E), with a set of nodes V and a set of directed edges E. For ease of
notation, we write X := XV as the variables at V . To do causal inference in G, we need specify
a way to calculate the intervention distribution of X in the do-intervention DAG, and this leads
to the so-called causal DAG, under which the causal semantics could be well defined without any
complications.

Definition 3 (Causal DAG) Consider a DAG G = (V,E) and a random vector X with distribution
P . Then, G is called a causal DAG for X if P satisfies the following:

1. P factorizes, and thus is Markov, according to G, and

2. for any A ⊆ V , B = V/A, and any x̃A, xB in the domains of XA, XB ,

P (x|do(x̃A)) =
∏
k∈B

P (xk|xpa(k))
∏
j∈A

I(xj = x̃j). (1)

In view of (1), the difference between the observational distribution P (x) and the do-intervention
distribution P (x|do(x̃A)) is that all factors P (xj |xpa(j)), j ∈ A, are removed and replaced by de-
generate probabilities I(xj = x̃j), while all remaining factors P (xk|xpa(k)), k ∈ B, stay the same.

For a causal DAG G, its do-intervention DAG is defined as follows:

Definition 4 (do-intervention DAG) Consider a causal DAG G = (V,E) for a random vector X ,
and its do intervention do(x̃A). Then, the do-intervention DAG, denoted by Gdo(x̃A), is for X , which
has the do-intervention distribution P (x|do(x̃A)) in (1).

Comparing to the SCM framework which uses deterministic functions to denote causal mecha-
nisms, the potential outcome framework is an intuitive experimental causality approach. The start-
ing point is a population of units. There are then three components of the potential outcomes
approach. First, there is a treatment/cause that can take on different values for each unit. Each
unit in the population is characterized by a set of potential outcomes Y (x), one for each level of
the treatment. Second, the causal effects correspond to comparisons of the potential outcomes, of
which at most one can be observed, with all the others missing. Paul Holland refers to this as the
“fundamental problem of causal inference,” (Holland (1986), p. 59). The third key component is
the assignment mechanism that determines which units receive which treatments. Many efforts have
been made to combine these two frameworks, such as the single-world intervention graph (SWIG)
(Richardson and Robins, 2013) and the po-calculus (Malinsky et al., 2019). In the next section,
we start to introduce our info intervention framework inspired by information accounts of causality,
which can be considered as a connection between the two frameworks.

3. Info Intervention

The view of understanding as information transfer is first formally proposed by Collier (1999), and
more details on information accounts of causality can be found in Illari and Russo (2014). Unlike
the do intervention that is a modification of causal mechanisms, the info intervention proposed
below modifies the output information of a variable.
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Definition 5 (Info intervention) Given an SCM M = (G+,X , P, f) for XV and any I ⊆ V ,
the info intervention σ(XI = x̃I) (or, in short, σ(x̃I)) maps M to the info-intervention model
Mσ(x̃I) = (G+,X , P, f) for Xσ(x̃I)

V , where

Xσ(x̃I)
v = fv(X̃V ∩pa(v), XU∩pa(v))

with X̃j = x̃j if j ∈ I else X
σ(x̃I)
j .

Let desc(I) denote the descendant nodes of every node in I . Based on definition 5, we can show
that for any node i ̸∈ desc(A) with A ⊆ V , Xσ(x̃A)

i = Xi. Also, for two disjoint sets A,B ⊆ V ,
X

σ(x̃A,x̃B)
v :=

(
X

σ(x̃A)
v

)σ(x̃B) has the commutative property, that is, Xσ(x̃A,x̃B)
v = X

σ(x̃B ,x̃A)
v for

all v ∈ V . Moreover, based on Definition 5, we know that the info-intervention SCM Mσ(x̃I) does
not delete any structural equations fV from the model, but just sends out the information XI = x̃I
to desc(I). Since the information XI = x̃I has been received by desc(I), the edges from I to ch(I)
(i.e., the child nodes of I) are removed in Mσ(x̃I).

To further illustrate how the info intervention works and what the differences are between info
and do interventions , we consider the following example:

Example 1 Consider an SCM M with a treatment T , an outcome Y , a confounder Z, and two
latent variables ϵT , ϵZ , where its structural equations are specified as follows:

Z = fZ(ϵZ),

T = fT (Z, ϵT ),

Y = fY (T,Z).

Based on Definition 2, its do-intervention SCM Mdo(t̃) has the following structural equations:
Z = fZ(ϵZ),

T = t̃,

Y = fY (T,Z).

Based on Definition 5, its info-intervention SCM Mσ(t̃) has the following structural equations:
Z = fZ(ϵZ),

T = fT (Z, ϵT ),

Y σ(t̃) = fY (t̃, Z),

where we have used the fact that Zσ(t̃) = Z and T σ(t̃) = T . Note that the form of causal mecha-
nisms (i.e., fZ , fT and fY ) are unchanged only in Mσ(t̃).

There is only partial knowledge of the underlying SCM is available in most practical settings,
and then graphical causal models such as causal DAG are widely used for causal modeling. Anal-
ogous to the causal DAG, it is natural to study the causal relationship in X by introducing our
info-causal DAG below, under which the causal semantics could be well defined without any com-
plications in the framework of info intervention.
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Definition 6 (Info-causal DAG) Consider a DAG G = (V,E) and a random vector X with distri-
bution P . Then, G is called an info-causal DAG for X if P satisfies the following:

1. P factorizes, and thus is Markov, according to G,

2. for any A ⊆ V and any x̃A in the domains of XA,

P (x|σ(x̃A)) =
∏
k∈V

P (xk|x∗pa(k)), (2)

where x∗k = xk if k /∈ A else x̃k.

In view of (2), the difference between the observational distribution P (x) and the info-intervention
distribution P (x|σ(x̃A)) is that the factors P (xk|xpa(k)) satisfying pa(k) ∩ A ̸= ∅ in P (x), are re-
placed by P (xk|x∗pa(k)) in P (x|σ(x̃A)) with xj , j ∈ pa(k)∩A, replaced by x̃j , while all remaining
factors P (xk|xpa(k)) satisfying pa(k) ∩A = ∅ in P (x), are unchanged after info intervention.

For a causal DAG, its do-intervention DAG is closely related to graphical rules for identification
of causal queries. For our info-causal DAG G, its info-intervention DAG below can not only work
as the do-intervention DAG, but also provide a graphical way to check the conditional independence
between factual and counterfactual variables.

Definition 7 (Info-intervention DAG) Consider an info-causal DAG G = (V,E) for a random
vector X , and its info intervention σ(x̃A). The info-intervention DAG, denoted by Gσ(x̃A), is for
Xσ(x̃A), which has the info-intervention distribution P (x|σ(x̃A)) in (2), where Xσ(x̃A) is defined in
the same way as X , except that the variables at descendant nodes of A (say, Xdesc(A)) are replaced

by the counterfactual variables (say, Xσ(x̃A)
desc(A)).

Due to the distinct forms of intervention distribution, our info-intervention DAG Gσ(x̃A) has
some differences from Pearl’s causal graphs. To further illustrate these differences graphically, we
consider the following example:

Example 2 A DAG G with four disjoint sets of variables XA, XB , XC and XD is given in Fig.
1(a). Take XA as the intervention variables. Then, the do-intervention DAG Gdo(x̃A) (see Fig.
1(b)) removes the arrows from pa(A) to A, and forces the intervention variables XA to take the
hypothetical values x̃A. On the contrary, the info-intervention DAG Gσ(x̃A) (see Fig. 1(c)) removes
the arrows from A to ch(A), and forces each variable Xi to be X

σ(x̃A)
i , where the variable X

σ(x̃A)
i

is a counterfactual variable if i ∈ desc(A). In other words, Xσ(x̃A)
D = XD are not counterfactual

variables, Xσ(x̃A)
B and X

σ(x̃A)
C are always counterfactual variables, and the variable Xσ(x̃A)

i , i ∈ A,
is a counterfactual variable if i ∈ desc(A).

4. Causal Calculus for Info Intervention

The do calculus is one of the most important merits for the Pearl’s causal diagrams, and we develope
a corresponding causal calculus for info intervention in this section. Denote by ⊥⊥d the d-separation,
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Figure 1: A DAG and its two intervention DAGs.

anc(I) the ancestor nodes of every node in I , and GĪ the graph obtained by deleting from G all
arrows pointing to nodes in I . For ease of presentation, the following abbreviations are used below:

P (xB|σ(x̃A)) := P (X
σ(x̃A)
B = xB) in Gσ(x̃A),

P (xB|σ(x̃A), xC) :=
P (xB, xC |σ(x̃A))
P (xC |σ(x̃A))

.

Similar to Causal DAG, we have “Back-door/Front-door” criteria for info-causal DAG to iden-
tify causal queries formulated by info intervention.

Theorem 8 For an info-causal DAG G in Fig. 2,

P (xB|σ(x̃A)) =
∑
xC

P (xB|x̃A, xC)P (xC),

where all the back-door paths from A to B are blocked by C.

XA

XC

XB

Figure 2: An info-causal DAG satisfying the “back-door” criterion.

Theorem 9 For an info-causal DAG G in Fig. 3,

P (xB|σ(x̃A)) =
∑
xC

P (xC |x̃A)
∑
xA

P (xB|xC , xA)P (xA),

where 1) C intercepts all paths from A to B; 2) there is no unblocked back-door path from A to C;
and 3) all back-door paths from C to B are blocked by A.
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XA XC

XD

XB

Figure 3: An info-causal DAG satisfying the “front-door” criterion.

Pearl (1995) provided 3 rules for do intervention, which enable us to identify a causal query
and turn a causal question into a statistical estimation problem. Specifically, Pearl’s 3 rules describe
graphical criteria for

1. insertion/deletion of observations,
2. action/observation exchange,
3. insertion/deletion of actions.

By using those three rules, the expression of do intervention probability may be reduced step-wisely
to an equivalent expression involving only observational probabilities. Similar to Pearl’s 3 rules for
do intervention, we can present our three rules for info intervention.

Theorem 10 (Three rules for info intervention) For an info-causal DAG G, A,B,C and D are
its arbitrary disjoint node sets. Then,

Rule 1 (Insertion/deletion of observations)
P (xB|σ(x̃A), xC , xD) = P (xB|σ(x̃A), xD) if B ⊥⊥d C|D in Gσ(x̃A);

Rule 2 (Action/observation exchange)
P (xB|σ(x̃A), σ(x̃C), xD) = P (xB|σ(x̃A), x̃C , xD) if B ⊥⊥d C|D in Gσ(x̃A,x̃C);

Rule 3 (Insertion/deletion of actions)
P (xB|σ(x̃A), σ(x̃C), xD) = P (xB|σ(x̃A), xD) if B ⊥⊥d C|D in G

σ(x̃A)

C/anc(D)
,

where C/anc(D) is the set of C-nodes that are not ancestors of any D-node 1.

In some applications, we may use the following simpler version of three rules in Theorem 10.

Theorem 11 For an info-causal DAG G, A,B,C and D are its arbitrary disjoint node sets. Then,
Rule 1 (Insertion/deletion of observations)

P (xB|σ(x̃A), xC , xD) = P (xB|σ(x̃A), xD) if B ⊥⊥d C|D in Gσ(x̃A);
Rule 2 (Action/observation exchange)

P (xB|σ(x̃A), xC) = P (xB|x̃A, xC) if B ⊥⊥d A|C in Gσ(x̃A);
Rule 3 (Insertion/deletion of actions)

P (xB|σ(x̃A)) = P (xB) if there are no causal paths from A to B in G.

In view of Theorems 10 and 11, we can see that our formulas are similar to those in do cal-
culus. This is because the distributions of all non-intervention variables are the same in both info-
and do-intervention DAGs, and the random intervention variables in info-intervention DAG behave
similarly as the deterministic intervention variables in do-intervention DAG, due to the fact that the

1. The notation of GĀ is used to denote when arrows directed into the set A have been removed from the graph G.
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intervention variables in info-intervention DAG with only possible converging arrows do not cause
any other variables. Indeed, by (1) and (2), it is straightforward to see that for arbitrary disjoint node
sets A,B and C in V ,

P (xB|do(x̃A), xC) = P (xB|σ(x̃A), xC). (3)

The result (3) implies that our formulas on three Rules in Theorem 10 are also the same as Pearl’s
formulas on three Rules in Pearl (1995).

The result (3) also indicates that Pearl’s causal calculus and our causal calculus are exchange-
able, but this does not mean the same manipulating convenience in both frameworks. Theorem 12
below shows that our conditions for checking Rules 1–3 in Theorem 10 are equivalent to those for
checking Rules 1–3 in Pearl (1995), and they tend to be more convenient for use since the interven-
tion nodes A are not involved as part of conditioning set in info-intervention DAG.

Theorem 12 (Equivalence of checking conditions) For an info-causal DAG G, A,B,C and D
are its arbitrary disjoint node sets. Then,

(i) B ⊥⊥d C|D in Gσ(x̃A) ⇐⇒ B ⊥⊥d C|A,D in GA;
(ii) B ⊥⊥d C|D in Gσ(x̃A,x̃C) ⇐⇒ B ⊥⊥d C|A,D in G

σ(x̃C)

A
;

(iii) B ⊥⊥d C|D in G
σ(x̃A)

C/anc(D)
⇐⇒ B ⊥⊥d C|A,D in G

A,C/anc(D)
.

Denote XA ⊥⊥ XB|XC by the conditional independence of XA and XB , given XC . To end this
section, we re-visit an example in Richardson and Robins (2013).

Figure 4: A DAG G and its info-intervention DAG.

Example 3 Consider a DAG G in Fig. 4(a), where i ̸∈ desc(A1) for any i ∈ A1, and i ̸∈ desc(A2)
for any i ∈ A2. Fig. 4(b) plots the info-intervention DAG Gσ(x̃A1

,x̃A2
), where we have used the fact

X
σ(x̃A1

,x̃A2
)

A1
=

(
X

σ(x̃A1
)

A1

)σ(x̃A2
)
=

(
XA1

)σ(x̃A2
)
= XA1 ,

X
σ(x̃A1

,x̃A2
)

A2
=

(
X

σ(x̃A2
)

A2

)σ(x̃A1
)
= X

σ(x̃A1
)

A2
,

X
σ(x̃A1

,x̃A2
)

C =
(
X

σ(x̃A1
)

C

)σ(x̃A2
)
= X

σ(x̃A1
)

C , X
σ(x̃A1

,x̃A2
)

D = XD.

Then, X
σ(x̃A1

,x̃A2
)

B ⊥⊥ X
σ(x̃A1

)

A2
|XA1 , X

σ(x̃A1
)

C , since B ⊥⊥d A2|A1, C in Fig. 4(b). Note that this
conclusion was also proved in Richardson and Robins (2013) by constructing an SWIG.
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Besides the checking of independence between counterfactual variables, we can also calculate
P (xB|σ(x̃A1 , x̃A2), xC) (i.e., the conditional probability of counterfactual variables X

σ(x̃A1
,x̃A2

)

B

given X
σ(x̃A1

,x̃A2
)

C ) by

P (xB|σ(x̃A1 , x̃A2), xC)

= P (xB|σ(x̃A1), x̃A2 , xC) (by Rule 2 in Theorem 10)

= P (xB|x̃A2 , xC) (by Rule 3 in Theorem 10).

Finally, we shall mention that our info-causal DAG is closely related to the SWIG. The SWIG
is an approach to unifying graphs and counterfactuals via splitting every intervention node into a
random node and a fixed node, and its causal calculus can be implemented by using po-calculus
(Malinsky et al., 2019) as follows:

p(Y (x) | Z(x),W (x)) = p(Y (x) | W (x)), if (Y (x) ⊥⊥ Z(x) | W (x))G(x);

p(Y (x, z) | W (x, z)) = p(Y (x) | W (x), Z(x) = z), if (Y (x, z) ⊥⊥ Z(x, z) | W (x, z))G(x,z);

p(Y (x, z) | W (x, z)) = p(Y (x) | W (x)), if

{
(Y (x, z1),W (x, z1) ⊥⊥ z1)G(x,z1),

(Y (x, z1) ⊥⊥ Z2(x, z1) | W (x, z1))G(x,z1),

where Z1 is set of Z-nodes that are not ancestors of any W -node and Z2 = Z \ Z1, and G(x),
G(x, z), G(x, z1) are corresponding SWIGs. Obviously, the graphical criteria for po-calculus is dif-
ferent from our causal calculus for info or do intervention, since its Rule 3 relies on two d-separation
conditions on the SWIG G(x, z1) instead of one. Moreover, the main feature of our causal calculus
for info-causal DAG is the use of intervention idea via the novel operator σ(·), whereas the po-
calculus for SWIG does not have this feature. Finally, the potential outcomes framework reflects
the view of experimental causality, while info intervention framework intuitively describes an ac-
tion that intervenes the information transferred among variables which reflects the informational
accounts of causality.

5. Concluding Remarks and Discussions

There are many causal notations and tools across different disciplines. Though the SCM and po-
tential outcomes are currently the most popular frameworks used by causality researchers, still we
might benefit from other tools, such as various philosophical accounts of causality. Inspired by
ideas from the information accounts of causality, we propose an info intervention framework based
on structural causal model, and develop the corresponding graphical models with a causal calculus.
We not only explain the connection between info calculus and others, but also introduce an operator
σ(·) for formalizing causal queries. We feel that the informational accounts of causality could be
further explored to complement the current causal modeling theories.

Discussions of future research directions. The algorithmic information theory has already
been used in causal modeling (see e.g. Schölkopf (2019)), and there is exploration of causal emer-
gence with information-theoretic measures (Dewhurst, 2021). It is also worth mentioning that,
broadly speaking, the information accounts of causality can also facilitate interpretation of existing
widely used causal propositions. For example, regarding back-door/front-door criteria, the goal of
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which can be consistently considered as whether the observational information of a set of variables
is enough or not to answer causal-effect estimation question, instead of conventional understanding
in terms of controlling variables. Moreover, in general sense of information accounts, Pearl points
out that questions in one layer of the causal hierarchy can only be answered when corresponding
layer information is available (Pearl, 2019b; Bareinboim et al., 2020), and Scholköpf believes causal
science will enable AI systems to act and make decisions with information from Lorenzian imag-
ined space (Schölkopf, 2019). The recently proposed Mini-Turing test for AI — How can machines
represent causal knowledge in a way that would enable them to access the necessary information
swiftly, answer questions correctly, and do it with ease, as a human can? (Pearl and Mackenzie,
2018). In summary, to build true intelligent machines, climb the ladder of data, information, knowl-
edge and wisdom, we might need to incorporate the information accounts of causality2 into causal
tasks.
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Appendix A. Proofs

To facilitate our proofs, we give a technical lemma:

Lemma 13 For an info-causal DAG G, A,B and C are its arbitrary disjoint node sets. Then,
(i) P (x|σ(xA)) = P (x);
(ii) P (xA, xB|σ(xA)) = P (xA, xB);
(iii) P (xB|xA, σ(xA)) = P (xB|xA);
(iv) P (xA, xB|σ(xA), σ(xC)) = P (xA, xB|σ(xC));
(v) P (xB|xA, σ(xA), σ(xC)) = P (xB|xA, σ(xC)).

Proof of Lemma 13. The result (i) holds by taking x̃A = xA in (2). By (i) and the marginaliza-
tion over xA ∪ xB and xA, it follows that

P (xA, xB|σ(xA)) = P (xA, xB) and P (xA|σ(xA)) = P (xA),

which entail the results (ii)–(iii). By (i), we know that P (x|σ(xA), σ(xC)) = P (x|σ(xC)) = P (x),
which entails the result (iv) by the marginalization over xA ∪ xB . Finally, the result (v) holds by
(iv) and a similar argument as for (iii). This completes all of the proofs.

Proof of Theorem 8. By (2), we have

P (xB, xA, xC |σ(x̃A)) = P (xB|x̃A, xC)P (xA|xC)P (xC),
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which entails

P (xB|σ(x̃A)) =
∑
xC

∑
xA

P (xB, xA, xC |σ(x̃A))

=
∑
xC

∑
xA

P (xB|x̃A, xC)P (xA|xC)P (xC)

=
∑
xC

P (xB|x̃A, xC)P (xC)
∑
xA

P (xA|xC)

=
∑
xC

P (xB|x̃A, xC)P (xC).

This completes the proof.

Proof of Theorem 9. By (2), we have

P (xB, xC , xA, xD|σ(x̃A)) = P (xB|xD, xC)P (xC |x̃A)P (xA|xD)P (xD).

Moreover, it is easy to see that C ⊥⊥d D|A and A ⊥⊥d B|C,D in Fig. 3. In G, since the d-separation
implies the conditional independence, we know that XC and XD are independent given XA, and
XA and XB are independent given XC and XD. Hence,

P (xC |xD, xA) = P (xC |xA) and P (xB|xD, xC) = P (xB|xD, xC , xA), (4)

where the first equality further implies

P (xD|xC , xA) = P (xD|xA). (5)

Then, it follows that

P (xB|σ(x̃A))

=
∑
xC

∑
xA

∑
xD

P (xB, xC , xA, xD|σ(x̃A))

=
∑
xC

∑
xA

∑
xD

P (xB|xD, xC)P (xC |x̃A)P (xA|xD)P (xD)

=
∑
xC

P (xC |x̃A)
∑
xA

∑
xD

P (xB|xD, xC)P (xA|xD)P (xD)

=
∑
xC

P (xC |x̃A)
∑
xA

∑
xD

P (xB|xD, xC , xA)P (xD|xA)P (xA) by (4)

=
∑
xC

P (xC |x̃A)
∑
xA

P (xA)
∑
xD

P (xB|xD, xC , xA)P (xD|xA)

=
∑
xC

P (xC |x̃A)
∑
xA

P (xA)
∑
xD

P (xB|xD, xC , xA)P (xD|xC , xA) by (5)

=
∑
xC

P (xC |x̃A)
∑
xA

P (xA)P (xB|xC , xA).

This completes the proof.
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To prove Theorem 10, we first prove Theorem 11.

Proof of Theorem 11. In Gσ(x̃A), since P (xA, xB, xC , xD|σ(x̃A)) factorizes, the d-separation
implies the conditional independence (Geiger, Verma and Pearl, 1990).

For Rule 1, we know that XB and XC are independent given XD in Gσ(x̃A), and hence the
conclusion holds.

For Rule 2, since XB and XA are independent given XC in Gσ(x̃A), we have that P (xB|σ(x̃A), xC) =
P (xB|σ(x̃A), x̃A, xC). Then, the conclusion holds since

P (xB|σ(x̃A), x̃A, xC) =
P (xB, x̃A, xC |σ(x̃A))
P (x̃A, xC |σ(x̃A))

=
P (xB, x̃A, xC)

P (x̃A, xC)
,

where the second equality holds by Lemma 13(ii).
For Rule 3, let Anc(B) = anc(B) ∪B. Then, by (2), we have

P (x|σ(x̃A)) =
∏
k∈V

P (xk|x∗pa(k))

=
∏

k∈Anc(B)

P (xk|x∗pa(k)) ·
∏

k/∈Anc(B)

P (xk|x∗pa(k))

=
∏

k∈Anc(B)

P (xk|xpa(k)) ·
∏

k/∈Anc(B)

P (xk|x∗pa(k)),

where we have used the fact that x∗pa(k) = xpa(k) for any k ∈ Anc(B), since A ∩ Anc(B) = ∅.
Marginalizing over xAnc(B), we can obtain

P (xAnc(B)|σ(x̃A)) =
∏

k∈Anc(B)

P (xk|xpa(k)) = P (xAnc(B)).

Since B ∈ Anc(B), the conclusion follows directly. This completes all of the proofs.

For Theorem 10, its Rule 1 has been proved in Theorem 11, and its Rules 2 and 3 are proved
below.

Proof of Theorem 10 (Rule 2). Since XB and XC are independent given XD in Gσ(x̃A,x̃C), we
have that P (xB|σ(x̃A, x̃C), xD) = P (xB|σ(x̃A, x̃C), x̃C , xD). Then, the conclusion holds since

P (xB|σ(x̃A, x̃C), x̃C , xD) =
P (xB, xD|σ(x̃A, x̃C), x̃C)
P (xD|σ(x̃A, x̃C), x̃C)

=
P (xB, xD|σ(x̃A), x̃C)
P (xD|σ(x̃A), x̃C)

,

where the last equality holds by Lemma 13(v).

To prove Rule 3 in Theorem 10, we need an additional lemma.

Lemma 14 For an info-causal DAG G, B,C1, C2 and D are its arbitrary disjoint node sets. Then,
(i) P (xB|σ(x̃C1), σ(x̃C2), xD) = P (xB|σ(x̃C2), xD) if B ⊥⊥d C1|D in Gσ(x̃C2

);
(ii) P (xB|σ(x̃C2), xD) = P (xB|xD) if there are no causal paths from C2 to B ∪D in G.
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Proof of Lemma 14. First, since B ⊥⊥d C1|D in Gσ(x̃C2
), we know that B ⊥⊥d C1|D in

Gσ(x̃C1
,x̃C2

). Then, the result (i) follows by the fact that

P (xB|σ(x̃C1), σ(x̃C2), xD)

= P (xB|x̃C1 , σ(x̃C2), xD) (by Rule 2 in Theorem 10)

= P (xB|σ(x̃C2), xD) (by Rule 1 in Theorem 10).

Second, since there are no causal paths from C2 to B ∪D, by Rule 3 in Theorem 11 we have

P (xB, xD|σ(x̃C2)) = P (xB, xD) and P (xD|σ(x̃C2)) = P (xD),

which entail that the result (ii) holds. This completes all of the proofs.

Proof of Theorem 10 (Rule 3). Let C1 = C ∩ anc(D) and C2 = C/anc(D). It suffices to
show

P (xB|σ(x̃C1), σ(x̃C2), xD) = P (xB|wD), if B ⊥⊥d C|D in GC2
. (6)

First, we prove that if B ⊥⊥d C|D in GC2
, then

B ⊥⊥d C1|D in Gσ(x̃C2
), (7)

and hence by Lemma 14(i) we have

P (xB|σ(x̃C1), σ(x̃C2), xD) = P (xB|σ(x̃C2), xD). (8)

Suppose the result (7) does not hold. Then, there exists a D-connected path from B to C1 in
Gσ(x̃C2

). Note that this path can not contain any node in C2. This is because if this path includes
a node c∗ ∈ C2, then c∗ ̸∈ anc(D) must be a collider, in view of the fact that the nodes C2 in
Gσ(x̃C2

) have no output edges. It turns out that this path is blocked by D, leading to a contradiction.
Therefore, since this D-connected path does not contain any node in C2, it is also in GC2

, leading
to a contradiction with the condition that B ⊥⊥d C|D in GC2

Second, we prove that if B ⊥⊥d C|D in GC2
, then

there are no causal paths from C2 to B in G, (9)

and hence by Lemma 14(ii) and the fact that C2 ∩ anc(D) = ∅, we have

P (xB|σ(x̃C2), xD) = P (xB|xD). (10)

Suppose the result (9) does not hold. Then, there exists a shortest causal path from C2 to B in G,
and this shortest path contains only one node in C2. Hence, this shortest path is also in GC2

. Since
B ⊥⊥d C|D in GC2

, it implies that C2 ∩ anc(D) ̸= ∅, leading to a contradiction with the fact that
C2 ∩ anc(D) = ∅.

Finally, the conclusion follows by (8) and (10).

Proof of Theorem 12. We first prove that if B ⊥⊥d C|A,D in GA, then

B ⊥⊥d C|D in Gσ(x̃A). (11)
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To prove (11), it suffices to show that any path ℓ from B to C in Gσ(x̃A) is blocked by D. We
consider two different cases:

Case I: if the path ℓ contains a node a∗ ∈ A, then a∗ ̸∈ anc(D) must be a collider in Gσ(x̃A),
since the nodes A in Gσ(x̃A) have no output edges. Hence, the path ℓ is blocked by D in Case I.

Case II: if the path ℓ contains no nodes in A, then ℓ is also a path in GA, and hence it is blocked
by A and D in GA, due to the condition that B ⊥⊥d C|A,D in GA. In other words, there exists a
node κ, which blocks this path ℓ in GA. If κ is a collider, then κ ̸∈ anc(A ∪D) in GA, indicating
that there has no causal path from κ to D in GA. Then, it further implies that there has no causal
path from κ to D in Gσ(x̃A), meaning that the path ℓ is blocked by D in Gσ(x̃A).

If κ is not a collider, then κ ∈ A ∪D in GA. Since the path ℓ contains no nodes in A, it follows
that κ ∈ D in Gσ(x̃A), meaning that the path ℓ is blocked by D in Gσ(x̃A).

Overall, we have shown that no matter whether κ is a collider, the path ℓ is blocked by D in
Case II. Therefore, the result (11) holds. Similarly, we can show that if B ⊥⊥d C|D in Gσ(x̃A), then
B ⊥⊥d C|A,D in GA. Hence, the result (i) holds.

Note that the nodes C are chosen arbitrarily in the proof of (i). So, the results (ii)–(iii) follow
by the same argument as for the result (i). This completes all of the proofs.

Appendix B. Discussions on the Information Accounts of Causality

We might prefer not and think it’s unnecessary to add more discussions about the philosophical
accounts of causality in this paper. However, one of reviewers was expecting a description of the
informational account of causality, and this reminds us that we might have the alternative option to
present a short introduction and discussion about it.

The informational accounts of causality have been friendly introduced in detail by Chapter 13
of Illari and Russo (2014), and the core ideas are: 1) In causal inference, possible causes are ruled
in and ruled out using what we know about possible causal links. But what is a causal link? 2)
An informational account of causality holds that causal linking is informational linking. 3) Infor-
mational linking can be added to an account of linking by mechanisms, if mechanisms are seen
as information channels. 4) A very broad notion of information can be used to capture all cases
of causal linking, but further constraints could be added to the broad concept to characterize more
narrow groups of cases of causal linking, such as in a particular scientific field. Several frequently
asked questions are listed below:

Q1. John Collier was probably the first philosopher who tried to give an informational account
of causality, what is the main idea?

A1. Briefly for collier, we can say causal connection is informational connection. Collier’s idea
is that the informational structure exists at every point in the process, and claimed that a major virtue
of his theory is its generality.

Q2. Why information accounts for causal linking?
A2. Here we come to a place where philosophy explicitly borrows ideas from another field, in

this case, from maths. Philosophical accounts want to use ideas from information theory because
information theory is a very general language—and it is a language that was designed to allow us to
characterize something like linking. So we shall make a quick detour to explain some key notions
from information theory before returning to the philosophical theories.

Q3. How we understand mechanisms as causal links.
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A3. Broadly, we find mechanisms that help us grasp causal linking in a coarse-grained way.
Then we can think in terms of causal linking in a more fine-grained way by thinking informationally.

Distinctions and warnings. There are also some comparisons and warnings summarized in
the book, including 1) If we are to understand reasoning about causal linking in diverse disciplines,
we need a very generalized concept of a causal process or causal production. 2) Applicability: the
major attraction of the informational account is its wide applicability. 3) Absences: an informational
approach offers an entirely novel solution to the problem of absences, since it offers a genuinely
revolutionary conception of linking. 4) Vacuity: an informational account may appear vacuous,
but it is possible that the variety of informational concepts available will prove to be an advantage,
rather than a problem.

Inspired by this accounts of causality, we introduced an intervention that intervening informa-
tion transferred among variables, instead of intervening the variables themselves. Moreover, it is a
more fine-grained way to think causality informationally, we might assume different causal graphs
across individuals. If you want to learn more about philosophical accounts of causality, please read
the book Illari and Russo (2014) and related materials.

16


	Introduction
	Preliminaries
	Info Intervention
	Causal Calculus for Info Intervention
	Concluding Remarks and Discussions
	Proofs
	Discussions on the Information Accounts of Causality

