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Abstract

We introduce PRIMERA, a pre-trained model001
for multi-document representation with a fo-002
cus on summarization that reduces the need003
for dataset-specific architectures and large004
amounts of fine-tuning labeled data. PRIMERA005
uses our newly proposed pre-training objective006
designed to teach the model to connect and ag-007
gregate information across documents. It also008
uses efficient encoder-decoder transformers to009
simplify the processing of concatenated input010
documents. With extensive experiments on 6011
multi-document summarization datasets from012
3 different domains on zero-shot, few-shot013
and full-supervised settings, PRIMERA outper-014
forms current state-of-the-art dataset-specific015
and pre-trained models on most of these set-016
tings with large margins.1017

1 Introduction018

Multi-Document Summarization is the task of019

generating a summary from a cluster of re-020

lated documents. State-of-the-art approaches to021

multi-document summarization are primarily ei-022

ther graph-based (Liao et al., 2018; Li et al., 2020;023

Pasunuru et al., 2021), leveraging graph neural net-024

works to connect information between the docu-025

ments, or hierarchical (Liu and Lapata, 2019a;026

Fabbri et al., 2019; Jin et al., 2020), building inter-027

mediate representations of individual documents028

and then aggregating information across. While ef-029

fective, these models either require domain-specific030

additional information e.g. Abstract Meaning031

Representation (Liao et al., 2018), or discourse032

graphs (Christensen et al., 2013; Li et al., 2020), or033

use dataset-specific, customized architectures, mak-034

ing it difficult to leverage pre-trained language mod-035

els. Simultaneously, recent pre-trained language036

models (typically encoder-decoder transformers)037

have shown the advantages of pre-training and038

1The code and pre-trained models will be released.
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Figure 1: PRIMERA vs existing pre-trained models.

transfer learning for generation and summariza- 039

tion (Raffel et al., 2020; Lewis et al., 2020; Beltagy 040

et al., 2020; Zaheer et al., 2020). Yet, existing 041

pre-trained models either use single-document pre- 042

training objectives or use encoder-only models that 043

do not work for generation tasks like summariza- 044

tion (e.g., CDLM, Caciularu et al., 2021). 045

Therefore, we argue that these pre-trained mod- 046

els are not necessarily the best fit for multi- 047

document summarization. Alternatively, we pro- 048

pose a simple pre-training approach for multi- 049

document summarization, reducing the need for 050

dataset-specific architectures and large fine-tuning 051

labeled data (See Figure 1 to compare with other 052

pre-trained models). Our method is designed to 053

teach the model to identify and aggregate salient 054

information across a “cluster” of related docu- 055

ments during pre-training. Specifically, our ap- 056

proach uses the Gap Sentence Generation objective 057

(GSG) (Zhang et al., 2020), i.e. masking out sev- 058

eral sentences from the input document, and recov- 059

ering them in order in the decoder. We propose a 060

novel strategy for GSG sentence masking which we 061

call, Entity Pyramid, inspired by the Pyramid Eval- 062

uation method (Nenkova and Passonneau, 2004). 063

With Entity Pyramid, we mask salient sentences in 064

the entire cluster then train the model to generate 065

them, encouraging it to find important information 066

across documents and aggregate it in one summary. 067

We conduct extensive experiments on 6 multi- 068

document summarization datasets from 3 differ- 069
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Figure 2: Model Structure of PRIMERA. Each document ends with a document separator token (<doc-sep>)
with global attention on it, and all the other tokens (except <s>) have local attention only. The selected sentences
are replaced with [sent mask], and the model is trained to recover the masked sentences in the output.

ent domains. We show that despite its simplic-070

ity, PRIMERA achieves superior performance com-071

pared with prior state-of-the-art pre-trained models,072

as well as dataset-specific models in both few-shot073

and full fine-tuning settings. PRIMERA performs074

particularly strong in zero- and few-shot settings,075

significantly outperforming prior state-of-the-art076

up to 5 Rouge-1 points with as few as 10 examples.077

Our contributions are summarized below:078

1. We release PRIMERA, the first pre-trained gener-079

ation model for multi-document inputs with focus080

on summarization.081

2. We propose Entity Pyramid, a novel pre-training082

strategy that trains the model to select and aggre-083

gate salient information from documents.084

3. We extensively evaluate PRIMERA on 6 datasets085

from 3 different domains for zero-shot, few-shot086

and fully-supervised settings. We show that087

PRIMERA outperforms current state-of-the-art on088

most of these evaluations with large margins.089

2 Model090

In this section, we discuss our proposed model091

PRIMERA, a new pre-trained general model for092

multi-document summarization. Unlike prior work,093

PRIMERA minimizes dataset-specific modeling by094

simply concatenating a set of documents and pro-095

cessing them with a general efficient encoder-096

decoder transformer model (§2.1). The underlying097

transformer model is pre-trained on an unlabeled098

multi-document dataset, with a new entity-based099

sentence masking objective to capture the salient in-100

formation within a set of related documents (§2.2).101

2.1 Model Architecture and Input Structure102

Our goal is to minimize dataset-specific modeling103

to leverage general pre-trained transformer models104

for the multi-document task and make it easy to105

use in practice. Therefore, to summarize a set of 106

related documents, we simply concatenate all the 107

documents in a single long sequence, and process 108

them with an encoder-decoder transformer model. 109

Since the concatenated sequence is long, instead of 110

more standard encoder-decoder transformers like 111

BART (Lewis et al., 2020) and T5 (Raffel et al., 112

2020), we use the Longformer-Encoder-Decoder 113

(LED) Model (Beltagy et al., 2020), an efficient 114

transformer model with linear complexity with 115

respect to the input length.2 LED uses a sparse 116

local+global attention mechanism in the encoder 117

self-attention side while using the full attention on 118

decoder and cross-attention. 119

When concatenating, we add special document 120

separator tokens (<doc-sep>) between the doc- 121

uments to make the model aware of the document 122

boundaries (Figure 2). We also assign global at- 123

tention to these tokens which the model can use 124

to share information across documents (Caciularu 125

et al., 2021) (see §4 for ablations of the effective- 126

ness of this input structure and global attention). 127

2.2 Pre-training objective 128

In summarization, task-inspired pre-training ob- 129

jectives have been shown to provide gains 130

over general-purpose pre-trained transformers 131

(PEGASUS; Zhang et al., 2020). In particular, PE- 132

GASUS introduces Gap Sentence Generation (GSG) 133

as a pre-training objective where some sentences 134

are masked in the input and the model is tasked to 135

2We use LED and not other efficient transformers like
Bigbird-PEGASUS (Zaheer et al., 2020) for two reasons, the
first is that BigBird’s global attention can’t be assigned to indi-
vidual tokens in the middle of the sequence, which is important
for the representation of long documents as shown in Caciu-
laru et al. (2021). Second, because pre-trained checkpoints
are available for LED, while BigBird-PEGASUS released the
already fine-tuned checkpoints.
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generate them. Following PEGASUS, we use the136

GSG objective, but introduce a new masking strat-137

egy designed for multi-document summarization.138

As in GSG, we select and mask out m summary-139

like sentences from the input documents we want140

to summarize, i.e. every selected sentence is re-141

placed by a single token [sent-mask] in the142

input, and train the model to generate the concate-143

nation of those sentences as a “pseudo-summary”144

(Figure 2). This is close to abstractive summariza-145

tion because the model needs to reconstruct the146

masked sentences using the information in the rest147

of the documents.148

The key idea is how to select sentences that149

best summarize or represent a set of related in-150

put documents (which we also call a “cluster”),151

not just a single document as in standard GSG.152

Zhang et al. (2020) use three strategies - Random,153

Lead (first m sentences), and “Principle”. The154

“Principle” method computes sentence salience155

score based on ROUGE score of each sentence,156

si, w.r.t the rest of the document (D/{si}), i.e.157

Score(si) = ROUGE(si, D/{si}). Intuitively, this158

assigns a high score to the sentences that have a159

high overlap with the other sentences.160

However, we argue that a naive extension of161

such strategy to multi-document summarization162

would be sub-optimal since multi-document inputs163

typically include redundant information, and such164

strategy would prefer an exact match between sen-165

tences, resulting in a selection of less representative166

information (see Appx. G for an example of sen-167

tences selected by the Principle strategy.).168

To address this limitation, we propose a new169

masking strategy inspired by the Pyramid Evalua-170

tion framework (Nenkova and Passonneau, 2004)171

which was originally developed for evaluating sum-172

maries with multiple human written references.173

Our strategy aims to select sentences that best rep-174

resent the entire cluster of input documents.175

2.2.1 Entity Pyramid Masking176

Pyramid Evaluation The Pyramid Evaluation177

method (Nenkova and Passonneau, 2004) is based178

on the intuition that relevance of a unit of informa-179

tion can be determined by the number of references180

(i.e. gold standard) summaries that include it. The181

unit of information is called Summary Content Unit182

(SCU); words or phrases that represent single facts.183

These SCUs are first identified by human annota-184

tors in each reference summary, and they receive a185

score proportional to the number of reference sum-186

Algorithm 1 Entity Pyramid Sentence Selection
Input: Document cluster
Input: List of entities w/ frequency > 1. N length of the list
Input: m number of sentences to select
Output: List of sentences to mask
1: E ← sort entities by frequency, descending
2: selected = []
3: for i← 1 to |E| do
4: current_sent = ∅
5: max = 0
6: for doc in cluster do
7: for sent in doc do
8: if Ei in sent then
9: if Score(sent) > max then
10: current_sent = sent
11: end if
12: end if
13: end for
14: end for
15: selected.append(current_sent)
16: if |selected| == m then
17: Break
18: end if
19: end for
20: Return selected

maries that contain them. A Pyramid Score for a 187

candidate summary is then the normalized mean 188

of the scores of the SCUs that it contains. One 189

advantage of the Pyramid method is that it directly 190

assesses the content quality. 191

Entity Pyramid Masking Inspired by how con- 192

tent saliency is measured in the Pyramid Evalua- 193

tion, we hypothesize that a similar idea could be 194

applied for the multi-document summarization to 195

identify salient sentences for masking. Specifi- 196

cally, for a cluster with multiple related documents, 197

the more documents an SCU appears in, the more 198

salient that information should be to the cluster. 199

Therefore, it should be considered for inclusion in 200

the pseudo-summary in our masked sentence gener- 201

ation objective. SCUs in the original Pyramid Eval- 202

uation are human-annotated, which is not feasible 203

for large scale pre-training. As a proxy, we explore 204

leveraging information expressed as named entities, 205

since they are key building blocks in extracting in- 206

formation from text about events/objects and the 207

relationships between their participants/parts (Ju- 208

rafsky and Martin, 2009). Following the Pyramid 209

framework, we use the entity frequency in the clus- 210

ter as a proxy for saliency. Concretely, as shown in 211

Fig. 3, we have the following three steps to select 212

salient sentences in our masking strategy: 213

1. Entity Extraction. We extract named entities 214

using SpaCy (Honnibal et al., 2020).3 215

2. Entity Pyramid Estimation. We then build an 216

3Note that entity information is only used at pre-training
time. This is unlike some prior work that utilize additional
information (like named entities, coref, discourse, or AMR) at
fine-tuning and inference time.
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Figure 3: The Entity Pyramid Strategy to select salient sentences for masking. Pyramid entity is based on the
frequency of entities in the documents. The most representative sentence are chosen based on Cluster ROUGE for
each entity with frequency > 1, e.g. Sentence 10 in Document 2 for Entity 1.

Entity Pyramid for estimating the salience of en-217

tities based on their document frequency, i.e. the218

number of documents each entity appears in.219

3. Sentence Selection. Similar to the Pyramid eval-220

uation framework, we identify salient sentences221

with respect to the cluster of related documents. Al-222

gorithm 1 shows the sentence selection procedure.223

As we aim to select the entities better representing224

the whole cluster instead of a single document, we225

first remove all entities from the Pyramid that ap-226

pear only in one document. Next, we iteratively se-227

lect entities from top of the pyramid to bottom (i.e.,228

highest to lowest frequency), and then select sen-229

tences in the document that include the entity as the230

initial candidate set. Finally, within this candidate231

set, we find the most representative sentences to the232

cluster by measuring the content overlap of the sen-233

tence w.r.t documents other than the one it appears234

in. This final step supports the goal of our pre-235

training objective, namely to reconstruct sentences236

that can be recovered using information from other237

documents in the cluster, which encourages the238

model to better connect and aggregate information239

across multiple documents. Following Zhang et al.240

(2020) we use ROUGE scores (Lin, 2004) as a241

proxy for content overlap. For each sentence si,242

we specifically define a Cluster ROUGE score as243

Score(si) =
∑

{docj∈C,si 6∈ docj} ROUGE(si, docj)244

Where C is the cluster of related documents.245

Note that different from the importance heuristic246

defined in PEGASUS (Zhang et al., 2020), Entity247

Pyramid strategy favors sentences that are repre-248

sentative of more documents in the cluster than the249

exact matching between fewer documents (Appx.250

§G shows a qualitative example.).251

3 Experiments252

3.1 Experimental Setup253

Implementation Details We use the254

Longformer-Encoder-Decoder (LED) (Belt-255

Dataset #Examples #Doc/C Lensrc Lensumm

Newshead (2020) 360K 3.5 1734 -
Multi-News (2019) 56K 2.8 1793 217
Multi-Xscience (2020) 40K 4.4 700 105
Wikisum* (2018) 1.5M 40 2238 113
WCEP-10 (2020) 10K 9.1 3866 28
DUC2004 (2005) 50 10 5882 115
arXiv (2018) 214K 5.5 6021 272

Table 1: The statistics of all the datasets we explore in
this paper. *We use subsets of Wikisum (10/100, 3200)
for few-shot training and testing only.

agy et al., 2020) large as our model initialization, 256

The length limits of input and output are 4096 and 257

1024, respectively, with sliding window size as 258

w = 512 for local attention in the input. (More 259

implementation details of pre-training process can 260

be found in Appx §A) 261

Pre-training corpus For pre-training, we use the 262

Newshead dataset (Gu et al., 2020), a relatively 263

large resource, where each instance includes a set 264

of related documents about a specific news event. 265

Note that this dataset does not have any ground- 266

truth summaries. 267

Evaluation Datasets We evaluate our approach 268

on wide variety of multi-document summarization 269

datasets plus one single document dataset from 270

various domains (News, Wikipedia, and Scientific 271

literature). See Table 1 for dataset statistics and 272

Appx. §B for details of each dataset. 273

Evaluation metrics Following previous 274

works (Zhang et al., 2020), we use ROUGE 275

scores (R-1, -2, and -L), which are the standard 276

evaluation metrics, to evaluate the downstream 277

task of multi-document summarization.4 For better 278

readability, we use AVG ROUGE scores (R-1, -2, 279

and -L) for evaluation in the few-shot setting. 280

4We use https://github.com/google-research/google-
research/tree/master/rouge with default stemmer settings.
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Models Multi-News(256) Multi-XSci(128) WCEP(50) WikiSum(128) arXiv(300) DUC2004 (128)

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGASUS?(Zhang et al., 2020) 36.5 10.5 18.7 - - - - - - - - - 28.1 6.6 17.7 - - -
PEGASUS (our run) 32.0 10.1 16.7 27.6 4.6 15.3 33.2 12.7 23.8 24.6 5.5 15.0 29.5 7.9 17.1 32.7 7.4 17.6
BART (our run) 27.3 6.2 15.1 18.9 2.6 12.3 20.2 5.7 15.3 21.6 5.5 15.0 29.2 7.5 16.9 24.1 4.0 15.3

LED (our run) 17.3 3.7 10.4 14.6 1.9 9.9 18.8 5.4 14.7 10.5 2.4 8.6 15.0 3.1 10.8 16.6 3.0 12.0
PRIMERA (our model) 42.0 13.6 20.8 29.1 4.6 15.7 28.0 10.3 20.9 28.0 8.0 18.0 34.6 9.4 18.3 35.1 7.2 17.9

Table 2: Zero-shot results. The models in the first block use the full-length attention (O(n2)) and are pre-trained on
the single document datasets. The numbers in the parenthesis following each dataset indicate the output length limit
set for inference. PEGASUS? means results taken exactly from PEGASUS (Zhang et al., 2020), where available.

3.2 Zero- and Few-shot Evaluation281

Many existing works in adapting pre-trained mod-282

els for summarization require large amounts of fine-283

tuning data, which is often impractical for new do-284

mains. In contrast, since our pre-training strategy285

is mainly designed for multi-document summariza-286

tion, we expect that our approach can quickly adapt287

to new datasets without the need for significant288

fine-tuning data. To test this hypothesis, we first289

provide evaluation results in zero and few-shot set-290

tings where the model is provided with no, or only291

a few (10 and 100) training examples. Obtaining292

such a small number of examples should be viable293

in practice for new datasets.294

Comparison To better show the utility of our295

pre-trained models, we compare with three296

state-of-the-art pre-trained generation models ,297

i.e. BART (Lewis et al., 2020)5, PEGA-298

SUS (Zhang et al., 2020) and Longformer-Encoder-299

Decoder(LED) (Beltagy et al., 2020). These pre-300

trained models have been shown to outperform301

dataset-specific models in summarization (Lewis302

et al., 2020; Zhang et al., 2020), and because of303

pre-training, they are expected to also work well304

in the few-shot settings. As there is no prior work305

doing few-shot and zero-shot evaluations on all the306

datasets we consider, and also the results in the few-307

shot setting might be influenced by sampling vari-308

ability (especially with only 10 examples) (Bragg309

et al., 2021), we run the same experiments for the310

compared models five times with different random311

seeds (shared with all the models), with the pub-312

licly available checkpoints .6313

Similar to Pasunuru et al. (2021), the inputs of314

all the models are the concatenations of the docu-315

5Pilot experiments comparing BART and T5 showed
BART to outperform T5 on the few-shot evaluation of Multi-
News (with AVG ROUGE of 23.5/26.4 (T5) v.s. 25.2/26.7
(BART) for 10/100 training examples, respectively). Thus, we
are using BART as one of the baselines.

6Checkpoints from https://huggingface.co/models

ments within the clusters (in the same order), each 316

document is truncated based on the input length 317

limit divided by the total number of documents so 318

that all documents are represented in the input. 7 319

To preserve the same format as the corresponding 320

pre-trained models we set the inference length limit 321

of input and output for BART and PEGASUS ex- 322

actly as their pre-trained settings (i.e. 512/256 and 323

1024/1024 respectively) on all of the datasets (Ex- 324

cept for the zero-shot experiments, the details can 325

be found in Sec.3.3).8 We use the same length limit 326

as our model for the LED model, i.e. 4096/1024 for 327

input and output respectively, for all the datasets. 328

3.3 Zero-Shot Results 329

For zero-shot9 abstractive summarization experi- 330

ments, since the models have not been trained on 331

the downstream datasets, the lengths of generated 332

summaries mostly depend on the pre-trained set- 333

tings. Thus to better control the length of generated 334

summaries and for a fair comparison between all 335

models, following Zhu et al. (2019), we set the 336

length limit of the output at inference time to the 337

average length of gold summaries.10 Exploring 338

other approaches to controlling length at inference 339

time (e.g., Wu et al., 2021) is an orthogonal direc- 340

tion which we leave for future work. 341

Table 2 shows the performance comparison 342

among all the models. Results indicate that our 343

model achieves substantial improvements com- 344

pared with all the three baselines on most of the 345

datasets. As our model is pre-trained on clusters of 346

7pilot experiments show simple truncation results in infe-
rior performance, which is in line with Pasunuru et al. (2021).

8Regarding length limit of inputs for PEGASUS and BART,
we tune the baselines by experimenting with 512, 1024, 4096
on Multi-News dataset, and the model with length limit
512(PEGASUS)/1024(BART) achieves the best performance,
thus we use the setting for all the datasets.

9For clarity, by zero-shot we mean using the pre-trained
model directly without any additional supervision

10In practice, it is reasonable to assume knowing the approx-
imate length of the expected summary for a given task/domain.
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Figure 4: The AVG ROUGE scores (R-1, R-2 and R-L) of the pre-trained models with 0, 10 and 100 training data
with variance. All the results of few-shot experiments (10 and 100) are obtained by the average of 5 random runs
(with the same set of seeds shared by all the models).

documents with longer input and output, the benefit347

is stronger on the dataset with longer summaries,348

e.g. Multi-News and arXiv. Comparing PEGASUS349

and BART models, as the objective of PEGASUS350

is designed mainly for summarization tasks, not351

surprisingly it has relatively better performances352

across different datasets. Interestingly, LED un-353

derperforms other models, plausibly since part of354

the position embeddings (1k to 4k) are not pre-355

trained. Encouragingly, our model performs the356

best, demonstrating the benefits of our pre-training357

strategy for multi-document summarization358

3.4 Few Shot Evaluation359

Compared with the strict zero-shot scenario, few-360

shot experiments are closer to the practical scenar-361

ios, as it is arguably affordable to label dozens of362

examples for almost any application.363

We fine-tune all of the four models on different364

subsets with 10 and 100 examples, and the results365

are shown in Figure 4. (hyperparameter settings366

in Appx. §D.1) Since R-1, -2, and -L show the367

same trend, we simply show the average of the368

three metrics in the figure for brevity (full ROUGE369

scores can be found in Appx. Table 7) To show the370

generality, all the results of few-shot experiments371

are the average over 5 runs.372

The result of each run is obtained by the ‘best’373

model chosen based on the ROUGE scores on a374

randomly sampled few-shot validation set with the375

same number of examples as the training set, which376

is similar with Zhang et al. (2020). Note that their377

reported best models have been selected based on378

the whole validation set which may give PEGASUS379

some advantage over ours. Nevertheless, we argue380

that sampling few-shot validation sets as we do381

here is closer to real few-shot scenarios (Bragg382

et al., 2021).383

Our model outperforms all baselines on all of384

the datasets with 10 and 100 examples demonstrat-385

Datasets Previous SOTA PRIMERA

R-1 R-2 R-L R-1 R-2 R-L

Multi-News 49.2 19.6 24.5 49.9 21.1 25.9
Multi-XScience 33.9 6.8 18.2 31.9 7.4 18.0
WCEP 35.4 15.1 25.6 46.1 25.2 37.9
arXiv 46.6 19.6 41.8 47.6 20.8 42.6

Table 3: Fully supervised results. Previous SOTA are
from Pasunuru et al. (2021) for Multi-News, Lu et al.
(2020) for Multi-XScience12, Hokamp et al. (2020) for
WCEP, and Beltagy et al. (2020) for arXiv.

ing the benefits of our pre-training strategy and 386

input structure. Comparing the performances of 387

our model with the different number of training 388

data fed in, our model converges faster than other 389

models with as few as 10 data examples. 390

3.5 Fully Supervised Evaluation 391

To show the advantage of our pre-trained model 392

when there is abundant training data, we also train 393

the model with the full training set (hyperparame- 394

ter settings can be found in Appx. §D.2). Table 3 395

shows the performance comparison with previous 396

state-of-the-art11, along with the results of previous 397

SOTA. We observe that PRIMERA achieves state- 398

of-the-art results on Multi-News, WCEP, and arXiv, 399

while slightly underperforming the prior work on 400

Multi-XScience (R-1). On Multi-XScience clusters 401

have less overlapping information which is slightly 402

different than the pre-training setting of PRIMERA. 403

The source documents in this dataset are the ab- 404

stracts of all the publications cited in the related 405

work paragraphs, which might be less similar to 406

each other and the target related work. PRIMERA 407

outperforms the LED model (State-of-the-art) on 408

the arXiv dataset while using a sequence length 4x 409

10We re-evaluate the generated summaries of the models
from Lu et al. (2020) for Multi-XScience, as we use a different
version of ROUGE.

11Due to the lack of computational resources, we do not
train the model on Wikisum.
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Figure 5: Ablation study with the few-shot setting on
the Multi-News dataset regarding to (a) input Structure
(<doc-sep> tokens between documents and global
attention on them) and pre-training, (b) different pre-
training strategy (with LED-base model).

shorter (4K in PRIMERA v.s. 16K in LED), further410

showing that the pre-training and input structure411

of our model not only works for multi-document412

summarization but can be also effective for summa-413

rizing single documents having multiple sections.414

4 Ablation Study415

We conduct ablation studies on the Multi-News416

dataset in the few-shot setting, to validate the con-417

tribution of each component in our pre-trained418

models. In Figure 5 (a) we observe the effec-419

tiveness of both pre-training and the input struc-420

ture (<doc-sep> tokens between documents and421

global attention on them) To isolate the effect of422

our proposed pre-training approach, we compare423

with an exact model architecture when pre-trained424

on the same amount of data using the PEGASUS425

(Zhang et al., 2020) masking strategy instead of426

ours. We keep all the other settings the same (e.g.,427

data, length limit of input and output, pre-training428

dataset, input structure, as well as the separators)429

and only modify the pre-training masking strategy.430

We run the same experiments under zero-/few-shot431

scenarios on the Multi-News dataset as in §3.2, and432

the results are shown in Figure 5 (b). The model433

pre-trained with our Entity Pyramid strategy shows434

a clear improvement under few-shot scenarios.435

5 Human Evaluation436

We also conduct human evaluations to validate437

the effectiveness of PRIMERA on DUC2007 and438

TAC2008 (Dang and Owczarzak, 2008) datasets439

in the few-shot setting (10/10/20 examples for440

train/valid/test). Both datasets consist of clusters of441

news articles, and DUC2007 contains longer inputs442

(25 v.s. 10 documents/cluster) and summaries (250443

v.s. 100 words). Since the goal of our method is to444

enable the model to better aggregate information445

Model DUC2007(20) TAC2008(20)
Sr R P F Sr R P F

PEGASUS 6.0 2.5 2.4 2.4 8.7 9.1 9.4 9.1
LED 9.6 3.9 4.0 3.8 6.9 7.1 10.8 8.4
PRIMERA 12.5 5.1 5.0 5.0 8.5 8.9 10.0 9.3

Table 4: Pyramid Evaluation results: Raw scores Sr,
(R)ecall, (P)recision and (F)-1 score. For readability,
Recall, Precision and F-1 scores are multiplied by 100.

across documents, we evaluate the content quality 446

of the generated summaries following the original 447

Pyramid human evaluation framework (Nenkova 448

and Passonneau, 2004). In addition, we also evalu- 449

ate the fluency of generated summaries following 450

the DUC guidelines.13 Detailed settings can be 451

found in Appx. H. 452

Compared Models We compare our model with 453

LED and PEGASUS in human evaluations. Be- 454

cause PEGASUS is a task-specific model for ab- 455

stractive summarization, and LED has the same 456

architecture and length limits as our model with the 457

parameters inherited from BART, which is more 458

comparable with our model than vanilla BART. 459

Pyramid Evaluation Both TAC and DUC 460

datasets include SCU (Summary Content Unit) an- 461

notations and weights identified by experienced 462

annotators. We then ask 3 annotators to make a 463

binary decision whether each SCU is covered in a 464

candidate summary. Following Nenkova and Pas- 465

sonneau (2004), the raw score of each summary is 466

then computed by the sum of weights of the cov- 467

ered SCUs, i.e. Sr =
∑

SCU wiI(SCUi), where 468

I(SCUi) is an indicator function on whether SCUi 469

is covered by the current summary, and wi is the 470

weight of SCUi. In the original pyramid evalua- 471

tion, the final score is computed by the ratio of Sr 472

to the maximum possible weights with the same 473

number of SCUs as in the generated summaries. 474

However, the total number of SCUs of generated 475

summaries is not available in the simplified anno- 476

tations in our design. To take consideration of the 477

length of generated summaries and make a fair com- 478

parison, instead, we compute Recall, Precision and 479

F-1 score regarding lengths of both gold references 480

and system generated summaries as 481

R=
Sr

len(gold)
; P=

Sr

len(sys)
; F1=

2 ·R · P
(R+ P )

482

13https://www-nlpir.nist.gov/projects/
duc/duc2007/quality-questions.txt
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Model DUC2007(20) TAC2008(20)
Gram. Ref. Str.&Coh. Gram. Ref. Str.&Coh.

PEGASUS 4.45 4.35 1.95 4.40 4.20 3.20
LED 4.35 4.50 3.20 3.10 3.80 2.55
PRIMERA 4.70 4.65 3.70 4.40 4.45 4.10

Table 5: The results of Fluency Evaluation on two
datasets, in terms of the Grammaticality , Referential
clarity and Structure & Coherence.

The raw scores, as well as Recall, Precision and483

F-1 scores can be found in Table 4. As shown in484

the table, PRIMERA achieves the best F-1 score.485

Fluency Evaluation Fluency results can be486

found in Table 5, and PRIMERA has the best per-487

formance on both datasets in terms of all aspects.488

6 Related Work489

Neural Multi-Document Summarization490

These models can be categorized into two classes,491

graph-based models (Yasunaga et al., 2017; Liao492

et al., 2018; Li et al., 2020; Pasunuru et al., 2021)493

and hierarchical models (Liu and Lapata, 2019a;494

Fabbri et al., 2019; Jin et al., 2020). Graph-based495

models often require auxiliary information (e.g.,496

AMR, discourse structure) to build an input graph,497

making them reliant on auxiliary models and less498

general. Hierarchical models are another class499

of models for multi-document summarization,500

examples of which include multi-head pooling501

and inter-paragraph attention (Liu and Lapata,502

2019a), MMR-based attention (Fabbri et al.,503

2019; Mao et al., 2020), and attention across504

representations of different granularity (words,505

sentences, and documents) (Jin et al., 2020). Prior506

work has also shown the advantages of customized507

optimization in multi-document summarization508

(e.g., RL; Su et al., 2021). Such models are often509

dataset-specific and difficult to develop and adapt510

to other datasets or tasks.511

Pre-trained Models for Summarization Pre-512

trained language models have been successfully513

applied to summarization, e.g., BERTSUM (Liu514

and Lapata, 2019b), BART (Lewis et al., 2020),515

T5 (Raffel et al., 2020). Instead of regular lan-516

guage modeling objectives, PEGASUS (Zhang et al.,517

2020) introduced a pre-training objective with518

a focus on summarization, using Gap Sentence519

Generation, where the model is tasked to gener-520

ate summary-worthy sentences. Contemporane-521

ous work by Rothe et al. (2021) argued that task-522

specific pre-training does not always help for sum-523

marization, however, their experiments are lim- 524

ited to single-document summarization datasets. 525

Pre-training on the titles of HTMLs has been re- 526

cently shown to be useful for few-shot short-length 527

single-document summarization as well (Agha- 528

janyan et al., 2021). Goodwin et al. (2020) eval- 529

uate three state-of-the-art models (BART, PEGA- 530

SUS, T5) on several multi-document summariza- 531

tion datasets with low-resource settings, showing 532

that abstractive multi-document summarization re- 533

mains challenging. Efficient pre-trained transform- 534

ers (e.g., Longformer (Beltagy et al., 2020) and 535

BigBird (Zaheer et al., 2020)) that can process long 536

sequences have been also proven successful in sum- 537

marization, typically by the ability to process long 538

inputs, connecting information across the entire se- 539

quence. CDLM (Caciularu et al., 2021) is a follow- 540

up work for pre-training the Longformer model in 541

a cross-document setting using global attention on 542

masked tokens during pre-training. However, this 543

model only addresses encoder-only tasks and it is 544

not suitable for generation. In this work, we show 545

how efficient transformers can be pre-trained us- 546

ing a task-inspired pre-training objective for multi- 547

document summarization. Our proposed method 548

is also related to the PMI-based token masking 549

Levine et al. (2020) which improves over random 550

token masking outside summarization. 551

7 Conclusion and Future Work 552

We present PRIMERA a pre-trained model for 553

multi-document summarization. Unlike prior work, 554

PRIMERA minimizes dataset-specific modeling by 555

using a Longformer model pre-trained with a novel 556

entity-based sentence masking objective. The pre- 557

training objective is designed to help the model 558

connect and aggregate information across input 559

documents. PRIMERA outperforms prior state-of- 560

the-art pre-trained and dataset-specific models on 561

6 datasets from 3 different domains, on zero, few- 562

shot, and full fine-tuning setting. PRIMERA’s top 563

performance is also revealed by human evaluation. 564

In zero-shot setting, we can control the output 565

length of generated summaries at inference time by 566

specifying a length limit during decoding. Explor- 567

ing a controllable generator in which the desired 568

length can be injected as part of the input is a nat- 569

ural future direction. Besides the summarization 570

task, we would like to explore using PRIMERA for 571

other generation tasks with multiple documents as 572

input, like multi-hop question answering. 573
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A Implementation details of pre-training790

As the multi-document summarization task791

has a higher compression ratio, defined as792

len(Summary)/len(Input), (e.g. 12% for793

Multi-News dataset and 15% for Multi-Xscience794

dataset), we use 15% as the ratio of masked sen-795

tences for generation. In addition to this 15%796

masked sentences, following PEGASUS (Zhang797

et al., 2020), we also copy an additional 15% of798

the input sentences to the output without masking799

them in the input. This allows the model to also800

learn to copy information from the source directly801

and found to be useful by Zhang et al. (2020).802

We pre-train the model for 100K steps, with803

early stopping, batch size of 16, Adam optimizer804

with a learning rate of 3e−5 following Beltagy et al.805

(2020), with 10K warmup steps and linear decay.806

B Detailed Description on the Evaluation807

Datasets808

The details of evaluation datasets can be found809

below.810

Multi-News (Fabbri et al., 2019): A multi-811

document dataset with summaries written by pro-812

fessional editors from the newser.com.813

Wikisum (Liu* et al., 2018) Each summary is a814

Wikipedia article, and the source documents are815

either citations in the reference section or the Web816

Search results of section titles.14 In our experi-817

ments, we use the data crawled by Liu and Lapata818

(2019a).819

WCEP (Gholipour Ghalandari et al., 2020) is820

built based on news events from Wikipedia Current821

Events Portal and the references are obtained simi-822

lar to Wikisum. There are at most 100 documents823

within each cluster in the original dataset, thus we824

remove all the duplicates and only keep up to 10825

documents for each cluster based on the relevance826

score in the original dataset, which is similar to the827

WCEP-10 variant in the original paper.828

Multi-X-Science (Lu et al., 2020) a multi-829

document summarization dataset created from sci-830

entific articles, the summaries are paragraphs of831

related work section, while source documents in-832

clude the abstracts of the query and referred papers.833

DUC benchmarks (Dang, 2005) include multi-834

document summarization datasets in the news835

14Due to the large size of the dataset, we evaluate all the
models on the first 3200 data in the test set. And in the few-
shot experiments, we randomly choose few examples (10 or
100) from the training set and validation set.

domain, with 10-30 documents and 3-4 human- 836

written summaries per cluster. Since these datasets 837

are small, we use them primarily for a few-shot 838

evaluation. We use DUC2003 for training (only 839

one of the reference summaries for each document 840

is used for training) and DUC2004 as test. 841

ArXiv (Cohan et al., 2018) is a single document 842

summarization dataset in the scientific paper do- 843

main. Each document is a scientific paper, and the 844

summary is the corresponding abstract. As each 845

scientific paper consists of multiple sections, we 846

treat each section as a separate document within 847

a cluster in our experiments. This is to evaluate 848

our model’s effectiveness on summarizing single 849

documents having multiple sections. 850

C Details on Compared models 851

The details of compared models in the zero-/few- 852

shot setting can be found below. 853

BART (Lewis et al., 2020) an encoder-decoder 854

transformer model pre-trained on the objective of 855

reconstructing the corrupted documents in multiple 856

ways, e.g. Token Deletion, Text Infilling, Sentence 857

Rotation and etc. 858

PEGASUS (Zhang et al., 2020) a pre-trained 859

model designed for abstractive summarization as 860

the downstream task, especially for the single doc- 861

ument input. It is trained on the objective of Gap 862

Sentence Generation on C4 (Raffel et al., 2020) and 863

Hugenews datasets (Note that the pre-training data 864

size in PEGASUS is magnitudes larger than ours). 865

As it is only evaluated on one multi-document 866

summarization dataset (Multi-news), we rerun the 867

model on all the datasets. To verify the quality 868

of our reproduction, the average ROUGE scores 869

of our re-run model vs. (the ones reported on the 870

paper) with 10 examples and 100 examples fed 871

are 23.81± 0.79 vs. (24.13) and 25.86± 0.41 vs. 872

(25.48), with minor differences plausibly resulting 873

from different samplings. 874

Longformer Encoder-Decoder (LED) (Beltagy 875

et al., 2020) is the initial state of our model before 876

pre-training. The parameters of LED are inherited 877

from the BART model, and to enable the model 878

to deal with longer input, the position embeddings 879

are repeatedly copied from BART’s 1K position 880

embeddings. It is different from our model with re- 881

spect to both pre-training and input structure (docu- 882

ment separators and global attentions), with global 883

attention on the (<s>) token only and no document 884

separators. 885
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D Hyperparameters in Few-shot and886

Full Supervised Experiments887

D.1 Few-shot Experiments888

We use Adam as the optimizer with linear sched-889

uled learning rate 3e− 5 for BART, LED and our890

model, and use the default optimization settings of891

the few-shot experiments from Zhang et al. (2020),892

i.e. AdaFactor optimizer with scheduled learning893

rate 5e− 4. For all the experiments with 10 exam-894

ples, the batch size is 10, the models are trained895

for 200 steps, with warm-up as 20 steps. For the896

experiments with 100 examples, we use the same897

batch size, with the total step and warm-up step set898

to be 1000 and 100, respectively.899

D.2 Fully Supervised Experiments900

We use Adam as the optimizer with linear sched-901

uled learning rate 3e− 5, and batch size as 16 for902

all the datasets in the full supervised experiments.903

The number of steps and warm-up steps are set904

based on the size of the datasets. The details can905

be found in Table 6906

Dataset Total Steps Warmup Steps

Multi-News 25k 2.5k
Multi-XScience 20k 2k
WCEP 5k .5k
arXiv 40k 4k

Table 6: Details of total steps and warm-up steps used
in the Full Supervised experiments.

E Detailed Results in Few-shot Setting907

The exact ROUGE scores in Figure 4 are shown in908

Table 7.909

F Detailed Analysis on Fully Supervised910

Experiments911

To show the advantage of our pre-trained model912

when there is sufficient data, we also train the913

model with the full training set, and the results914

can be found in Table 8-1115, along with the re-915

sults from previous works. Differently from the916

zero-/few-shot experiments, here we report the917

state-of-the-art results on different datasets, as they918

were presented in the corresponding original pa-919

pers. Since we use the same train/valid/test set as920

15Due to the lack of computational resources, we do not
train the model on Wikisum.

Model 0 Examples 10 Examples 100 Examples
Multi-News

PEGASUS 31.97/10.06/16.74 39.02/12.10/20.32 42.99/13.50/21.10
BART 26.10/8.98/13.06 42.30/13.74/19.71 44.23/14.77/21.02
LED 16.60/4.78/9.05 38.86/12.48/18.82 44.45/14.85/21.16
Ours 39.09/13.91/19.19 44.02/15.54/22.03 46.01/16.76/22.91

Multi-Science
PEGASUS 27.33/4.77/15.04 28.14/4.68/15.49 28.01/4.09/15.89
BART 15.21/3.49/8.61 27.80/4.74/14.90 31.17/5.32/16.45
LED 11.79/2.47/6.86 26.57/4.05/15.36 29.46/4.85/16.32
Ours 26.90/4.98/14.09 28.36/4.73/15.29 31.25/5.43/16.84

Wikisum
PEGASUS 23.67/5.37/14.17 23.44/6.44/16.21 28.50/9.83/21.33
BART 15.80/4.60/9.13 28.95/9.88/20.80 32.97/13.81/25.01
LED 8.70/2.34/5.78 26.53/9.30/19.95 34.15/16.03/26.75
Ours 17.79/5.02/10.90 31.10/13.26/23.39 36.05/17.85/27.81

WCEP
PEGASUS 27.69/10.85/20.03 35.60/14.84/26.84 42.09/19.93/33.04
BART 7.11/3.41/5.32 37.46/15.82/28.70 41.34/19.19/32.58
LED 5.69/2.19/4.32 36.29/15.04/27.80 41.83/19.46/32.92
Ours 13.50/5.30/10.11 38.97/17.55/30.64 42.96/20.53/33.87

arXiv
PEGASUS 29.76/7.94/17.27 33.10/8.52/19.40 36.38/9.55/20.83
BART 23.26/7.57/12.01 32.53/8.70/17.98 37.62/10.78/20.99
LED 13.94/3.76/8.35 36.51/11.16/20.68 41.00/13.74/22.34
Ours 29.14/8.64/15.82 41.13/13.81/23.02 43.42/15.85/24.07

Table 7: Detailed ROUGE scores (R-1/R-2/R-L) on all
the datasets in the few-shot setting (corresponds to Fig-
ure 4)

in those prior works, we can perform a fair com- 921

parison , without re-running all those extremely 922

time-consuming experiments . 923

Overall, our model achieves state-of-the-art on 924

Multi-News (see Table 8 , WCEP dataset (see Ta- 925

ble 10) and arXiv dataset (see Table 11). 926

Models ROUGE-1 ROUGE-2 ROUGE-L
PEGASUS (Zhang et al., 2020) 47.52 18.72 24.91
BART-Long-Graph (Pasunuru et al., 2021) 49.03 19.04 24.04
BART-Long-Graph(1000) (Pasunuru et al., 2021) 49.24 18.99 23.97
BART-Long(1000) (Pasunuru et al., 2021) 49.15 19.50 24.47
Ours 49.94 21.05 25.85

Table 8: ROUGE scores of the previous models and our
fully supervised model on the Multi-News dataset. The
results of PEGASUS is from Zhang et al. (2020), and
the other results are from Pasunuru et al. (2021)

Multi-News The experiment results on Multi- 927

News dataset can be found in Table 8. Specifically, 928

the PEGASUS model (Zhang et al., 2020) is pre- 929

trained on a large-scale single-document dataset 930

with the Gap Sentence Generation objective, which 931

is the same as ours, but with a different mask- 932

ing strategy, BART-Long (Pasunuru et al., 2021) 933

uses the same model structure as ours , and BART- 934

Long-Graph (Pasunuru et al., 2021) additionally 935

has discourse graph injected. Comparing the re- 936

sults with the BART-Long model, our model is 937

around 1 ROUGE point higher, which may result 938

from either better model structure or pre-training. 939
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Interestingly, in one of the ablation studies in Pa-940

sunuru et al. (2021), they find that the BART-Long941

model achieves its best performance with the length942

limit of 1000, and no further improvement is found943

when the length limit is greater than that. Thus we944

may conclude the gap between the performances is945

mainly from our design on the model, i.e. the doc-946

ument separators, proper global attention as well947

as the pre-training on a multi-document dataset.948

Models R1 R2 RL*

LEAD 27.46 4.57 -
BERTABS 31.56 5.02 -
BART 32.83 6.36 -
SCIBERTABS 32.12 5.59 -
SOTA(Pointer Generator) 34.11 6.76 18.2
LEAD(ours) 26.49 4.26 14.70
Ours 31.93 7.37 18.02

Table 9: ROUGE scores of the previous models and our
fully supervised model on the Multi-Xscience dataset.
All the results are from Lu et al. (2020). * The ROUGE-
L is not comparable as we have different settings on the
settings of evaluation, see the gap between LEAD and
LEAD(ours).

Models R1 R2 RL

BERTREG (Gholipour Ghalandari et al., 2020) 35.0 13.5 25.5
SUBMODULAR+ABS(Gholipour Ghalandari et al., 2020) 30.6 10.1 21.4
DynE (Hokamp et al., 2020) 35.4 15.1 25.6
Ours 46.08 25.21 37.86

Table 10: ROUGE scores of the previous models and
our fully supervised model on the WCEP dataset.

WCEP As for the WCEP dataset, BERTREG949

(Gholipour Ghalandari et al., 2020) is a Regression-950

based sentence ranking system with BERT em-951

bedding, which is used as extractive summariza-952

tion method, while Submodular+Abs is a simple953

two-step abstractive summarization model with a954

submodular-based extractive summarizer followed955

by a bottom-up abstractive summarizer (Gehrmann956

et al., 2018). DynE is a BART-based abstractive957

approach, which is to ensemble multiple input, al-958

lowing single document summarization models to959

be directly leveraged on the multi-document sum-960

marization task. Our model outperforms all the961

models by a large margin, including the SOTA962

model DynE, and it may indicate that the plain963

structure is more effective than purely ensembling964

the output of single documents.965

Models R1 R2 RL

PEGASUS (1K) 44.21 16.95 38.83
Bigbird-PEGASUS (3k) 46.63 19.02 41.77
LED(4K) 44.40 17.94 39.76
LED(16K) 46.63 19.62 41.83
Ours(4k) 47.58 20.75 42.57

Table 11: ROUGE scores of the previous models and
our fully supervised model on the arXiv dataset. The re-
sult of PEGASUS and BigBird-PEGASUS are from (Za-
heer et al., 2020), and the results of LED are from (Belt-
agy et al., 2020). The number in the parenthesis indi-
cates the length limit of the input.

arXiv In addition to the experiments on multi- 966

document summarization datasets, we also com- 967

pare our fully supervised model with previous 968

works on the arXiv dataset, with each section 969

treated as a single document. All the models to 970

be compared with are based on pre-trained mod- 971

els, and Bigbird-PEGASUS and LED utilize the 972

pre-training of PEGASUS (Zaheer et al., 2020) and 973

BART (Lewis et al., 2020), respectively. However, 974

both Bigbird and LED apply more efficient atten- 975

tions, which make the models able to take longer 976

input (3k for BigBird, 4K and 16k for LED). Our 977

model has a better performance than all the models, 978

including LED(16K), which allows for the input 979

4 times longer than ours. It is worth mentioning 980

that LED(4K) has the same structure as our model, 981

with the same length limit of the input, and with 982

the pre-training on multi-document datasets, our 983

model is more than 3 ROUGE point better than it, 984

which shows that the strategy not only works for 985

multi-document summarization but can also effec- 986

tively improve single-document summarization for 987

long documents. 988

G Sentence Selection Example 989

Figure 6 shows an example of sentences picked by 990

the Principle strategy (Zhang et al., 2020) vs our En- 991

tity Pyramid approach. The figure shows a cluster 992

containing three news articles discussing a wildfire 993

happened in Corolado, and the pseudo-summary of 994

this cluster should be related to the location, time 995

and consequence of the wildfire, but with the Prin- 996

ciple strategy, the non-salient sentences quoting 997

the words from an officer are assigned the highest 998

score, as the exact same sentence appeared in two 999

out of the three articles. In comparison, instead 1000

of the quoted words, our strategy selects the most 1001
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Document #1 Wildfires have burned across tens of thousands of acres of
parched terrain in Colorado, spurring thousands of evacuations ...(0.107)..., res-
idents have sought shelter in middle schools, and local officials fear tourists
usually drawn to the region for the summer may not come.
Document #2 ... In Colorado’s southwest, authorities have shuttered the San
Juan National Forest in southwestern Colorado and residents of more than
2,000 homes were forced to evacuate.(0.187) No homes had been destroyed
... “Under current conditions, one abandoned campfire or spark could cause a
catastrophic wildfire, ..., with human life and property,” said San Juan National
Forest Fire Staff Officer Richard Bustamante...
Document #3 The Buffalo Fire west of Denver is ... Several wildfires in Col-
orado have prompted thousands of home evacuations ...(0.172)... Nearly 1,400
homes have been evacuated in Summit County, Colorado, ...(0.179)... “Under
current conditions, one abandoned campfire or spark could cause a catastrophic
wildfire, ... , with human life and property,” said Richard Bustamante, SJNF
forest fire staff officer ...
Entities with High Frequency
Colorado, 416, Tuesday, Wildfires, San Juan National Forest,...

Figure 6: An example on sentence selection by Princi-
ple vs our Entity Pyramid strategy. Italic text in red is
the sentence with the highest Principle ROUGE scores,
which is thereby chosen by the Principle Strategy. Most
frequent entity ’Colorado’ is shown with blue, followed
by the Pyramid ROUGE scores in parenthesis. The fi-
nal selected sentence by Entity Pyramid strategy is in
italic. which is a better pseudo-summary than the ones
selected by the Principle strategy.

representative sentences in the cluster with high1002

frequency entities.1003

H Details on Human Evaluation1004

In this section, we explain the details of human1005

evaluation.1006

Settings We use 10 data examples for training,1007

10 data examples for validation and 20 data exam-1008

ples for testing for both datasets. Three annotators1009

are hired to do both Pyramid Evaluation and Flu-1010

ency evaluation, they harmonize the standards on1011

one of the examples. Specifically, for each data1012

example, we provide three anonymized system gen-1013

erated summaries, along with a list of SCUs. The1014

annotators are asked to find all the covered SCUs1015

for each summary, and score the fluency in terms of1016

Grammaticality, Referential clarity and Structure1017

& Coherence, according to DUC human evaluation1018

guidelines, with a scale 1-5 (worst to best). They1019

are also suggested to make comparison between1020

three generated summaries into consideration when1021

scoring the fluency. To control for the ordering ef-1022

fect of the given summaries, we re-order the three1023

summaries for each data example, and ensure the1024

chance of their appearance in different order is the1025

same (e.g. BART appears as summary A for 71026

times, B for 7 times and C for 6 times for both1027

datasets).1028

I Examples of Generated Summaries 1029

We show an example (from Multi-News) of gener- 1030

ated summaries by PRIMERA and compared mod- 1031

els trained with different number of examples in 1032

Table 12. And we show an example from DUC2007 1033

(which is one of the examples used for human eval- 1034

uation) with generated summaries by PRIMERA 1035

and two compared models in Table 13, with all 1036

the models trained on 10 data examples from 1037

DUC2007. 1038
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Model Summaries

PRIMERA-0 BALTIMORE (AP) — The U.S. Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding
to nearly 30 of his fake distress calls.. The Coast Guard also said such false distress alerts detract from their ability to respond to
actual alerts.Anyone with information about the caller is asked to contact the Coast Guard’s regional command center at 410-576-
2525 or email investigators at CGIS-Baltimore@uscg.mil..

PRIMERA-10 The U.S. Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding to nearly 30 of his
fake distress calls. In a press release published Friday, the Coast Guard says the 28 calls have originated from around the area of
Annapolis, Maryland. Each call involved the same male voice and used an emergency radio channel. The two most recent calls
were made on the night of July 21 and the early morning of July 22. The Coast Guard also says hoax calls distract rescuers from
real emergencies, putting both the public and the responding crews at risk. "Calls like these not only put our crews at risk, but they
put the lives of the public at risk," said Lt. Cmdr. Sara Wallace, who heads the response sector in Maryland. "Calls like these not
only put our crews at risk, but they put the lives of the public at risk." Anyone with information about the caller is asked to contact
the Coast Guard’s regional command center at 410-576-2525 or email investigators at CGIS-Baltimore@uscg.mil.

PRIMERA-100 The US Coast Guard is looking for a man who has cost the service about $500,000 after making 28 false distress calls from
Maryland. The 28 calls have involved the same male voice and used an emergency radio channel, the AP reports. The Coast Guard
says it has responded to nearly 30 of the fake calls and that the estimated cost of the responses is $500,000. The caller has been
making the calls since July 2014. He could be facing a six-year prison sentence, a $10,000 civil fine, and a $250,000 criminal
fine, the AP reports. "A hoax call is a deadly and serious offense," says Lt. Cmdr. Sara Wallace, head of the response sector in
Maryland. "Calls like these not only put our crews at risk, but they put the lives of the public at risk."

PEGASUS-100 The US Coast Guard has responded to 28 false distress calls in two years—and it’s a man who’s been making the calls, not the
waves. The unidentified caller has made the calls in Annapolis, Maryland, since July 2014, the Coast Guard reports. Each call
involved the same male voice and used an emergency radio channel. The two most recent calls were made on the night of July
21 and early morning of July 22. The Coast Guard says the calls were made in the hope that the public would get into the water.
Rather than responding to actual alerts, the calls were made to divert the attention of rescue crews from real emergencies, the AP
reports. The Coast Guard says the cost of the responses to these false alarms is about $500,000. The caller made 28 false distress
alerts from Annapolis, Maryland, beginning in July 2014, according to the Coast Guard. The estimated cost of the responses to
these false alarms is $500,000. The Coast Guard says the calls were made in the hope that the public would get into the water.
Rather than responding to actual alerts, the calls were made to divert the attention of rescue crews from real emergencies, the AP
reports.

Fully Supervised The US Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding to nearly 30 of his fake
distress calls, the AP reports. In a press release published Friday, the Coast Guard says the 28 calls have originated from around the
area of Annapolis, Maryland. Each call involved the same male voice and used an emergency radio channel. The two most recent
calls were made on the night of July 21 and the early morning of July 22. The Coast Guard also says hoax calls distract rescuers
from real emergencies, putting both the public and the responding crews at risk. "A hoax call is a deadly and serious offense," says
Lt. Cmdr. Sara Wallace, who heads the response sector in Maryland. "Calls like these not only put our crews at risk, but they put
the lives of the public at risk." Making false distress calls is a felony, punishable by a maximum of six years in prison, a $10,000
civil fine, $250,000 criminal fine, and a reimbursement to the Coast Guard for their efforts, the Coast Guard says.

Ground Truth The US Coast Guard says it’s looking for a man who has cost the service about $500,000 after responding to nearly 30 of his fake
distress calls, reports the AP. In a press release published Friday, the Coast Guard says the 28 calls have originated from around
the area of Annapolis, Maryland. Each call involved the same male voice and used an emergency radio channel. He’s been making
the calls since July 2014. The two most recent calls were made on the night of July 21 and the early morning of July 22. “A hoax
call is a deadly and serious offense,” a Coast Guard rep tells NBC4, which notes that such calls are a felony that carry six years in
prison, $10,000 civil fine, $250,000 criminal fine, and reimbursement to the Coast Guard. "Calls like these not only put our crews
at risk, but they put the lives of the public at risk.”

Table 12: Generated summaries from PRIMERA and best baseline model (according ROUGE score on this example)
trained with different number of training examples. The data used here is the #10 in the test set of Multi-News
dataset on Huggingface.
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Model Summaries

PEGASUS In 1996, Congress passed the Line-Item Veto Act, which gave the president the power to cut individual projects from tax and
spending bills without vetoing the entire legislation. The act was followed by the President’s line-item veto, which he used to
trim 144 million dollars from a 248 billion dollars defense spending bill. He also used the veto power to block a congressional
rejection of his line-item veto on 38 military construction projects. The bill was passed by the House and the President signed
it into law. The veto was challenged by members of both parties who said it was unconstitutional because it gave the president
unchecked power to rewrite legislation. The Supreme Court agreed on Friday to hear argument and decide the constitutionality of
the president line-item veto. In 1998 the President used his line-item veto to cut $38 million from a military construction bill. In
1999 the President used his line-item veto to cut $54 million from a military spending bill. In 2000 the President used his line-item
veto to cut $54 million from a defense spending bill. In January the President vetoed a tax and spending bill, which gave him
the power to cut individual projects from tax and spending bills without vetoing the entire legislation. In February the President
vetoed a spending bill, which gave him the power to cut individual projects from tax and spending bills without vetoing the entire
legislation. In September the President used his line-item veto to cut $54 million from a defense spending bill. The bill was rejected
by the House and the President vetoed it. In November the President used his line-item veto to trim 144 million dollars from a
defense spending bill.

LED In 1996, the Republican-led Congress passed the Line Item Veto Act, giving the president the power to delete individual items
of spending and tax bills. Clinton used the power to cut individual projects from tax and spending bills. In February 1999, the
President Clinton vetoed a congressional rejection of his line-item veto on 38 military construction projects. In May 1999, the
President Clinton used the line-item veto to cut individual items of spending and tax breaks. In 2000, the President Clinton used
the line-item veto to cancel individual items of spending and tax breaks. In May 2000, the President Clinton threatened to use the
line-item veto to cancel all military spending and tax breaks. In June 2000, the President Clinton used the line-item veto to cut
individual items of spending and tax breaks. In August 2000, the President Clinton used the line-item veto to cut individual items
of spending and tax breaks. In September 2000, the President Clinton used the line-item veto to cut individual items of spending
and tax breaks. In 2000, the President Clinton used the line-item veto to cut individual items of spending and tax breaks. In 2001,
the President Clinton used the line-item veto to cut individual items of spending and tax breaks. In June 2000, the President Clinton
used the line-item veto to cut individual items of spending and tax breaks. In August 2000, the President Clinton used the line-item
veto to cut individual items of spending and tax breaks. In September 2000, the President Clinton used the line-item veto to cut
individual items of spending and tax breaks. In 2000, the President Clinton used the line-item veto to cancel individual items of
spending and tax breaks. In 2001, the President Clinton used the line-item veto to cut individual items of spending and tax breaks.
In June 2000, the President Clinton used the line-item veto to cut individual items of spending and tax breaks.

PRIMERA In 1996, Congress gave the President the power to veto specific items of tax and spending bills. Before the law’s enactment in
1996, the president could veto an entire spending measure but not individual items. The court ruled that such a specialized veto
can be authorized only through a constitutional amendment. In January 1997, the line-item veto law was passed. It was passed
under the Republican Party’s "Contract with Congress". It was passed after President Clinton vetoed thirteen relatively obscure
research and spending programs, almost all of the military spending increases approved by Congress. In October 1998, Clinton
used his line-item veto authority to have trimmed 144 million U.S. dollars from a 248 billion defense spending bill. In November
1998, Clinton vetoed 38 military construction projects, worth 287 million U.S. dollars. In February 1999, the Justice Department
appealed the line-item veto law to the Supreme Court, which agreed to hear argument and decide the constitutionality of the law.
Earlier this month, a federal judge struck down the line-item veto law as unconstitutional. The highest court’s review will yield
a momentous balance of powers ruling. The case is scheduled to be argued before the justices on April 27. The line item veto,
strongly supported by President Bill Clinton and a number of his predecessors, was passed in 1996 under the Republican Party’s
"Contract with Congress". It was passed in January 1997. Before the law’s enactment, the only way presidents could reject
spending laws was to veto whole budget bills. In 1996, Congress gave the president the power to cancel individual items in tax
and spending bills. In January 1997, the line-item veto law was passed. It was passed under the Republican Party’s "Contract with
Congress". It was passed in January 1997. In 1998, President Clinton threatened to veto some items of the military construction
bill because of the increased funding. In November 1998, Clinton used his line-item veto power to delete 38 projects in 24 states
worth 287 million U.S. dollars. In February 1999, the Justice Department appealed the line-item veto law to the Supreme Court,
which agreed to hear a case about its constitutionality.

Ground Truth In 1996 a Republican congress overwhelmingly passed a Line Item Veto Act allowing presidents (including the incumbent Demo-
cratic president), to strike individual tax or spending items within 5 days after signing a bill into law. Congress could restore those
items in a new bill passed by majority vote. If the president vetoed that bill, Congress could override that veto with a two-thirds
majority. Proponents argued that the law preserved the integrity of federal spending, saved billions of dollars, and that it did not
repeal any portion of a law, but was simply a delegated spending authorization from Congress. In January 1997, the first year of
the law, the president vetoed 163 line-items in six bills, and in 1998 82 line-items in 11 bills. In October 1997 Congress overrode
the president’s line-item veto against 36 of 38 military construction projects. Initial 1997 efforts by congressmen to challenge the
law in the Supreme Court were rejected due to lack of standing. On June 25, 1998 after lower courts rejected the Line Item Veto
Act as unconstitutional, on appeal by the White House the Supreme Court ruled 6-3 that Congress unconstitutionally violated the
principle of separation of powers, because that procedure allows the president to create a law that was not voted on by either house
of Congress in violation of the Constitution’s Article I "presentment" clause. A constitutional amendment would be required to
institute line item vetoes. Justices Breyer and Scalia argued similar dissenting opinions that separation of powers was not violated.

Table 13: Generated summaries from PRIMERA, PEGASUS and LED trained with 10 training examples, along with
one (out of four) ground-truth summary. The data used here is D0730 in DUC2007.
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