
Learning Control Admissibility Models with Graph
Neural Networks for Multi-Agent Navigation

Chenning Yu
UCSD

chy010@ucsd.edu

Hongzhan Yu
UCSD

hoy021@ucsd.edu

Sicun Gao
UCSD

sicung@ucsd.edu

Abstract: Deep reinforcement learning in continuous domains focuses on learning
control policies that map states to distributions over actions that ideally concentrate
on the optimal choices in each step. In multi-agent navigation problems, the
optimal actions depend heavily on the agents’ density. Their interaction patterns
grow exponentially with respect to such density, making it hard for learning-based
methods to generalize. We propose to switch the learning objectives from predicting
the optimal actions to predicting sets of admissible actions, which we call control
admissibility models (CAMs), such that they can be easily composed and used
for online inference for an arbitrary number of agents. We design CAMs using
graph neural networks and develop training methods that optimize the CAMs
in the standard model-free setting, with the additional benefit of eliminating the
need for reward engineering typically required to balance collision avoidance
and goal-reaching requirements. We evaluate the proposed approach in multi-
agent navigation environments. We show that the CAM models can be trained in
environments with only a few agents and be easily composed for deployment in
dense environments with hundreds of agents, achieving better performance than
state-of-the-art methods.

1 Introduction

Multi-agent navigation is a longstanding problem with a wide range of practical applications such as
in manufacturing [1, 2], transportation [3], and surveillance [4]. The goal is to control many agents to
all achieve their goals while avoiding collisions and deadlocks. Such problems are multi-objective in
nature, and the control methods depend heavily on the density of the agents, with the computational
complexity growing exponentially in such density [5, 6, 7, 8].

Recently, reinforcement learning approaches have shown promising results on multi-agent navigation
problems [9, 10, 11, 12, 13], but there are still two well-known sources of the difficulty. First,
balancing safety and goal-reaching requirements often lead to ad hoc reward engineering that is
highly dependent on the environments and the density of the agents [14, 15]. Second, it is shown
that such neural control policies leaned on RL approaches are hard to generalize when the agent
density in the environment changes, which leads to distribution drifts. The core difficulty for
generalizability is that the RL approaches are designed to capture the optimal actions specific to the
training environments and rewards. Nevertheless, such optimal actions may change rapidly when the
density and interaction patterns change during deployment. The unnecessary optimization of control
policies in the training environments makes it fundamentally hard to transfer the learned results to
new environments and achieve compositionality in the deployment to varying numbers of agents.

We propose a new learning-based approach to multi-agent navigation that shifts the focus from
learning the optimal control policy to a set-theoretic representation of admissible control policies to
achieve compositional inference. By decoupling the multi-agent navigation tasks, we avoid the ad-hoc
reward engineering using a simple goal-reaching preference function and a learnable set-theoretic
component for collision avoidance. We use graph neural networks (GNNs) to represent the set of
admissible control actions at each state as Control Admissibility Models (CAM), which are trained
with a small number of agents during training with sparse rewards. In online inference, we compose
the CAMs and apply goal-reaching preference functions to infer the specific action to take for each
agent. We show that CAMs can be learned purely from the data collected online in the standard RL

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

<latexit sha1_base64="i6UkqOGO3LwX7RAciX7l8eZLex4=">AAAB8XicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9oHtUDLpnTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3kHtPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2E2gjYvWAkwT8iA2VCAVnaKXH3iBG2gsAWb9ccavuHHSVeDmpkByNfvnLhnkagUIumTFdz03Qz5hGwSVMS73UQML4mA2ha6liERg/m288pWdWGdAw1vYppHP1dyJjkTGTKLCTEcORWfZm4n9eN8Xw2s+ESlIExRcfhamkGNPZ+XQgNHCUE0sY18LuSvmIacbRllSyJXjLJ6+S1kXVu6zW7muV+k1eR5GckFNyTjxyRerkjjRIk3CiyDN5JW+OcV6cd+djMVpw8swx+QPn8wc3+ZCi</latexit>

�̇
<latexit sha1_base64="Mtw135z/lJek4NTigu5kzQlMr+c=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVl047KCfUAays100g6dTMLMjVBCP8ONC0Xc+jXu/BunbRbaemDgcM49zL0nTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuhmC4FIq3UKDk3VRziEPJO+H4buZ3nrg2IlGPOEl5EMNQiUgwQCv5vUGCtAcyHUG/WnPr7hx0lXgFqZECzX71y6ZZFnOFTIIxvuemGOSgUTDJp5VeZngKbAxD7luqIOYmyOcrT+mZVQY0SrR9Culc/Z3IITZmEod2MgYcmWVvJv7n+RlGN0EuVJohV2zxUZRJigmd3U8HQnOGcmIJMC3srpSNQAND21LFluAtn7xK2hd176p++XBZa9wWdZTJCTkl58Qj16RB7kmTtAgjCXkmr+TNQefFeXc+FqMlp8gckz9wPn8AAXGRFg==</latexit>

↵̇

<latexit sha1_base64="JkKTFfwisCbSEMGu5M6dyZLQvIs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqx6MVjBfuB7VKyabYNTbJLkhXL0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM3HrLy0xnCp71iya24M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/OLp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjlp0zGiaGSzBeFCUcmQtP3UZ8pSgwfW4KJYvZWRIZYYWJsSAUbgrf48jJpnle8i0r1rlqqXWdx5OEIjqEMHlxCDW6hDg0gIOEZXuHN0c6L8+58zFtzTjZzCH/gfP4AOJCP+g==</latexit>

�(x, a)

(a) UR5 (b) Car (c) Drone (d) Landscape of CAM

Figure 1: (a-c) Illustrations of the multi-agent environments. We show videos in the supplemental
materials. (d) An example landscape of the proposed CAM � in the Drone environment. The ↵̇-axis
and �̇-axis, are two dimensions in the action space, corresponding to the rotation rates in pitch and
roll. We project the landscape into a 2D plane at the bottom. The blue line on the plane denotes the
zero level set, which divides the action space into the admissible and inadmissible sets.

setting, with no expert or human guidance. We propose relabelling through backpropagation (Section
2.3) for the CAMs to learn rich information from the transitions even given sparse rewards. As shown
in Figure 1(d), the learned models of the admissible actions are typically complex and suitable for
GNN representations. Moreover, in online inference, we decompose the state graph of the agent into
much smaller subgraphs and aggregate the CAMs from them. Such compositionality allows us to
train CAMs with only a small number of agents, directly deploy them in much denser environments,
and achieve generalizable learning and inference.

We evaluate the proposed methods in various challenging multi-agent environments, including
robot arms, cars, and quadcopters. Experiments show that the CAM generalizes very well. While
the training environments only have at most 3 agents, the learned CAM models can be directly
deployed to hundreds of agents in comparable environments and achieve a very high success rate
and low collision rate. We analyze the benefits of the proposed methods compared to state-of-the-art
approaches. Furthermore, we show a zero-shot transfer to a multi-agent chasing game, demonstrating
that the trained CAM generalizes to other tasks that are not limited to navigation.

Related Work. Multi-Agent Navigation. Classical Multi-Agent Path Finding is one of the most
popular definitions of the multi-agent navigation task, where the state space lies in a pre-constructed
graph shared among agents [16]. Under this setting, heuristic-based methods have been used to
generate high-quality solutions, such as Priority-Based Search and Conflict-Based Search [17, 18].
Learning-based methods have also been proposed to accelerate the planning time, using CNN
and GNN [19, 20, 21]. In this work, we focus more on the continuous state space with reactive
planning. Traditional methods, including Optimal Reciprocal Collision Avoidance [22], Buffered
Voronoi Cells [23], and Artificial Potential Functions [24, 25, 26, 27], are designed manually to
address specific structural properties. On the other hand, learning-based multi-agent methods using
reinforcement learning and imitation learning [9, 10, 11, 12, 13, 28, 29], may or may not generalize
when there is covariant shift for test tasks. Recently, MACBF [30] incorporates multi-agent safe
certificates [31, 32, 33] into a learning-based framework, which shows the generalization capability
while preserving the safety properties. Nevertheless, in [30] the learning of the neural controller
requires a reference controller, which may constrain the potential of the neural controller, when the
actions dissimilar to the reference actions could yield better rewards and safer results. Though learned
in an online fashion, our work only assumes sparse reward and avoids the reward hacking problem.

Graph Neural Networks. Graph Neural Networks (GNN), including Graph Convolutional Net-
works [34], Message Passing Neural Networks [35], Interaction Networks [36], are deep neural net-
works that operate on graph-structured data [37]. Graph neural networks are permutation-equivariant
to the orders of nodes on graph [38, 39], which is important for homogeneous multi-agent problems
since the order among agents should not matter. In robotics, the effectiveness of GNN has been shown
on tasks such as path planning [19, 20], motion planning [40, 41], coverage and exploration [42, 43],
and SLAM [44]. In this work, we use GNN as an architecture to implement CAM due to the multi-
agent navigation problem can be modeled as a graph-based problem in nature. However, we believe
that the proposed CAM could generalize to other inputs that are not graphs.

2

c

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

<latexit sha1_base64="3FCk3rs8y/a/5ea4G/IEe5vJUDI=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJUkLIrRT0WPeixgv2A7lKyabYNzWZDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz321lZXVvf2CxsFbd3dvf2SweHLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD0e3Ubz9RpVkiHs1Y0iDGA8EiRrCxku/LIavc9bxzhM96pbJbdWdAy8TLSRlyNHqlL7+fkDSmwhCOte56rjRBhpVhhNNJ0U81lZiM8IB2LRU4pjrIZjdP0KlV+ihKlC1h0Ez9PZHhWOtxHNrOGJuhXvSm4n9eNzXRdZAxIVNDBZkvilKOTIKmAaA+U5QYPrYEE8XsrYgMscLE2JiKNgRv8eVl0rqoepfV2kOtXL/J4yjAMZxABTy4gjrcQwOaQEDCM7zCm5M6L8678zFvXXHymSP4A+fzBxh8kG0=</latexit>

�(G1, a)

<latexit sha1_base64="b9ntn/j5jSSs8B/3aN1C9m6/BTI=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahgpTdUtRj0YMeK9gP6C4lm2bb0Gw2JFmhlP4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL5ScaeO6305ubX1jcyu/XdjZ3ds/KB4etXSSKkKbJOGJ6oRYU84EbRpmOO1IRXEcctoOR7czv/1ElWaJeDRjSYMYDwSLGMHGSr4vh6x816teIHzeK5bcijsHWiVeRkqQodErfvn9hKQxFYZwrHXXc6UJJlgZRjidFvxUU4nJCA9o11KBY6qDyfzmKTqzSh9FibIlDJqrvycmONZ6HIe2M8ZmqJe9mfif101NdB1MmJCpoYIsFkUpRyZBswBQnylKDB9bgoli9lZEhlhhYmxMBRuCt/zyKmlVK95lpfZQK9VvsjjycAKnUAYPrqAO99CAJhCQ8Ayv8Oakzovz7nwsWnNONnMMf+B8/gAaBJBu</latexit>

�(G2, a)

<latexit sha1_base64="8SumZBq6l/ssO33NfYNq151VWJg=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahgpRdLeqx6EGPFewHdEvJptk2NJsNSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZF0jOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpOFKENEvNYtQOsKWeCNgwznLalojgKOG0Fo9up33qiSrNYPJqxpN0IDwQLGcHGSr4vh6x817s4Q/i0Vyy5FXcGtEy8jJQgQ71X/PL7MUkiKgzhWOuO50rTTbEyjHA6KfiJphKTER7QjqUCR1R309nNE3RilT4KY2VLGDRTf0+kONJ6HAW2M8JmqBe9qfif10lMeN1NmZCJoYLMF4UJRyZG0wBQnylKDB9bgoli9lZEhlhhYmxMBRuCt/jyMmmeV7zLSvWhWqrdZHHk4QiOoQweXEEN7qEODSAg4Rle4c1JnBfn3fmYt+acbOYQ/sD5/AEbjJBv</latexit>

�(G3, a)

<latexit sha1_base64="ExVCQzGTM+6YclQ16iHjsYnD1DQ=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJUkLIrRT0WPeixgv2A7lKyabYNzWZDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz321lZXVvf2CxsFbd3dvf2SweHLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD0e3Ubz9RpVkiHs1Y0iDGA8EiRrCxku/LIavc9WrnCJ/1SmW36s6AlomXkzLkaPRKX34/IWlMhSEca931XGmCDCvDCKeTop9qKjEZ4QHtWipwTHWQzW6eoFOr9FGUKFvCoJn6eyLDsdbjOLSdMTZDvehNxf+8bmqi6yBjQqaGCjJfFKUcmQRNA0B9pigxfGwJJorZWxEZYoWJsTEVbQje4svLpHVR9S6rtYdauX6Tx1GAYziBCnhwBXW4hwY0gYCEZ3iFNyd1Xpx352PeuuLkM0fwB87nDx0UkHA=</latexit>

�(G4, a)

<latexit sha1_base64="Y2AJOPFykYN+pCeNE2ldqiDByLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbn9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAd1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx/D6Y14</latexit>

G1

<latexit sha1_base64="bPY15z40Glgb00Unoi2aacY0l9k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DHvQY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rSeujYjVI44T7kd0oEQoGEUrPdz2Kr1iyS27c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzolZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGVPxEqSZErtlgUppJgTGZ/k77QnKEcW0KZFvZWwoZUU4Y2nYINwVt+eZU0K2Xvoly9r5Zq11kceTiBUzgHDy6hBndQhwYwGMAzvMKbI50X5935WLTmnGzmGP7A+fwBxW2NeQ==</latexit>

G2

<latexit sha1_base64="GV7z2Z2wA7Z2swUliD/GXdXn5K8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI9BD3qMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzThGP6QDyfucUWOlh9vuebdYcsvuDGSZeBkpQYZat/jV6UUsCVEaJqjWbc+NjZ9SZTgTOCl0Eo0xZSM6wLalkoao/XR26oScWKVH+pGyJQ2Zqb8nUhpqPQ4D2xlSM9SL3lT8z2snpn/lp1zGiUHJ5ov6iSAmItO/SY8rZEaMLaFMcXsrYUOqKDM2nYINwVt8eZk0zsreRblyXylVr7M48nAEx3AKHlxCFe6gBnVgMIBneIU3RzgvzrvzMW/NOdnMIfyB8/kDxvGNeg==</latexit>

G3

<latexit sha1_base64="Vw1baaV7//tYrHu2Cb0280aDajw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vj0oMeK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh9tetVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmmeV7yLSvW+Wq5d53EU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/IdY17</latexit>

G4

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

�

Admissible Actions

Graph Decomposition

Egocentric Graph

<latexit sha1_base64="hpnySaJh+/CAhHti5mNvHw101yA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1mvfHQqLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEWdo5I</latexit>

� : Control Admissibility Model

Preferences
Over Actions

<latexit sha1_base64="DG2xzlKYBSGANlkCmHyaiLAx90s=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5id9CZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNoUkVV7oTEQOcSWhaZjl0Eg1ERBza0fh25refQBum5IOdJBAKMpQsZpRYJ7V6SsCQ9MsVv+rPgVdJkJMKytHol796A0VTAdJSTozpBn5iw4xoyyiHaamXGkgIHZMhdB2VRIAJs/m1U3zmlAGOlXYlLZ6rvycyIoyZiMh1CmJHZtmbif953dTG12HGZJJakHSxKE45tgrPXscDpoFaPnGEUM3crZiOiCbUuoBKLoRg+eVV0rqoBpfV2n2tUr/J4yiiE3SKzlGArlAd3aEGaiKKHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPkx+PJA==</latexit>! : Pre-Defined Preference

Most Preferred
Admissible Action

<latexit sha1_base64="z3xt+o/mJJ53J/m4A5BhIaAxQJE=">AAACAHicbVBNS8NAEN34WetX1IMHL8EiVCglkaIeix70WKFf0IQy2W7apZtN2N0IJfTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/P8mFGpbPvbWFldW9/YLGwVt3d29/bNg8O2jBKBSQtHLBJdHyRhlJOWooqRbiwIhD4jHX98m/mdRyIkjXhTTWLihTDkNKAYlJb65rEbhWQI5buKG4IaYWBpc1qB875Zsqv2DNYycXJSQjkaffPLHUQ4CQlXmIGUPceOlZeCUBQzMi26iSQx4DEMSU9TDiGRXjp7YGqdaWVgBZHQxZU1U39PpBBKOQl93ZldKRe9TPzP6yUquPZSyuNEEY7ni4KEWSqysjSsARUEKzbRBLCg+lYLj0AAVjqzog7BWXx5mbQvqs5ltfZQK9Vv8jgK6ASdojJy0BWqo3vUQC2E0RQ9o1f0ZjwZL8a78TFvXTHymSP0B8bnD6tBldI=</latexit>

!(G, T , a)

<latexit sha1_base64="yP169jRF0ZDPdgvMMz7+cYkrzVU=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10r+redb3x2Kg174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4AkBuRcw==</latexit>

T : Goal State
<latexit sha1_base64="N0jhPBhJRHQvy6LMQgI1cAy5ujo=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEClISKeqy6EKXFewDmhAm00k7dGYSZiZCCQF/xY0LRdz6He78G6dtFlo9cOFwzr3ce0+YMKq043xZpaXlldW18nplY3Nre8fe3euoOJWYtHHMYtkLkSKMCtLWVDPSSyRBPGSkG46vp373gUhFY3GvJwnxORoKGlGMtJEC+8DjVAQZzTMvGdHaTUBP0Uke2FWn7swA/xK3IFVQoBXYn94gxiknQmOGlOq7TqL9DElNMSN5xUsVSRAeoyHpGyoQJ8rPZufn8NgoAxjF0pTQcKb+nMgQV2rCQ9PJkR6pRW8q/uf1Ux1d+hkVSaqJwPNFUcqgjuE0CzigkmDNJoYgLKm5FeIRkghrk1jFhOAuvvyXdM7q7nm9cdeoNq+KOMrgEByBGnDBBWiCW9ACbYBBBp7AC3i1Hq1n6816n7eWrGJmH/yC9fEN1laVaA==</latexit>

min
i

�(Gi, a)

<latexit sha1_base64="RxlfqMcR88pOZ+r9SQaMhyftxKg=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdVNy4r2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaTu9zvPlGlmRSPZprQIMYjwSJGsLGS34+xGRPMs5vZoFpz6+4caJV4BalBgdag+tUfSpLGVBjCsda+5yYmyLAyjHA6q/RTTRNMJnhEfUsFjqkOsnnkGTqzyhBFUtknDJqrvzcyHGs9jUM7mUfUy14u/uf5qYmug4yJJDVUkMVHUcqRkSi/Hw2ZosTwqSWYKGazIjLGChNjW6rYErzlk1dJ56LuXdYbD41a87aoowwncArn4MEVNOEeWtAGAhKe4RXeHOO8OO/Ox2K05BQ7x/AHzucPczyRYA==</latexit>

A

Figure 2: An overview of the proposed CAM approach. At each time step, the state of each agent is an
egocentric graph. The graph is further decomposed at inference time into a set of subgraphs to follow
the training data distribution. The CAM takes these subgraphs and outputs the admissibility scores
along with a set of sampled candidate actions. We filter out the inadmissible actions by checking
whether the minimum of the scores is below 0. Given a predefined preference over actions, the model
outputs the most preferred action in the admissible set for each agent.

2 Control Admissibility Models

We present Control Admissibility Models (CAMs), a general representation of the feasible control
set. CAM is task-compositional, robust to reward design, and can be trained with an online pipeline
similar to model-free RL. With graph decomposition, CAM can plan a high-quality solution for a
large number of robots, which could be significantly out of the distribution of the training tasks.

2.1 Control Admissibility Models (CAMs)

We define CAMs as a general representation of the feasible actions. In general, CAMs are function
approximators that behave as the characteristic functions of such sets. By evaluating the CAM values
we can efficiently determine whether an action is feasible. Formally,
Definition 1 (Control Admissibility Models and Admissible Set). Given CAM �, state x, action
space A, the admissible set is defined as �(�, x) : {a | a 2 A, �(x, a) � 0}.

Compositionality of CAMs. An important feature of CAMs is that they can be composed together.
Given two CAMs �1 and �2, we want to find the admissible actions that satisfy both these two CAMs:

{a | �1(x, a) � 0} \ {a | �2(x, a) � 0}

Proposition 1 (Composition). If �1 and �2 are CAMs, then �(�3, x) defines �(�1, x) \�(�2, x),
given �3 = min{�1, �2}.

2.2 Graph Neural Networks for CAMs

Though CAM can be applied to various single-agent problems (see Section 3.1 as an example), we
focus on multi-agent problems in this paper. At each timestep, the state for each agent is an egocentric
graph G = hV, Ei, where V are the vertices and E are the edges. Vertices V is composed of agent
vertices Va and static obstacle vertices Vo. Edges E are connecting all the neighbor vertices to the
current agent, i.e. E = {(vj

a, vi
a)|aj 2 E(ai) [{(vj

o, v
i
a)|oj 2 E(ai)}, where E denotes the neighbor

vertices. The one-hot vector is used as the features of V , denoting the types of vertices. For the
features of edges E, we use relative positions and the states of the two connected vertices, along with
a one-hot vector to indicate the edge types. Zero paddings are adopted if necessary [45]. We provide
more details on the representation of graphs in the Appendix.

The CAM � has two components: The first component is a GNN layer, which transforms the graph G
to a hidden state vector h for each agent. The second component is a fully-connected layer f , which

3

takes the hidden state h and an action a, and predicts the admissibility score �(G, a) = f(h, a). Such
a design enables fast computation of the admissibility scores for all the possible state-action pairs.
We can merge the computation of the hidden state for all state-action pairs which share the same
input graph into one forward passing in the GNN layer.

We describe the GNN layer with the following details. The vertices and the edges are first embedded
into latent space as m(0) = gm(v), n(0) = gn(e), given fully-connected layers gm, gn. Taking m, n,
the GNN aggregates the local information for each vertex from the neighbors through K GNN layers.
For the k-th layer, it performs the message passing with 2 fully-connected layers f (k)

m and f (k)
n :

m(k+1)
i = m(k)

i + max{f (k)
m (n(k)

l) | el : (vj , vi) 2 E}, 8vi 2 V

n(k+1)
l = n(k)

l + f (k)
n (m(k+1)

i , n(k)
l), 8el : (vj , vi) 2 E

(1)

We assign the hidden state h with the final node embedding m(K)
i , where i corresponds to the current

agent. We use max as the aggregation operator to gather the local geometric information due to
its empirical robustness to achieve the order invariance [30, 39]. We use the residual connection to
update the vertex embedding and edge embedding due to its simplicity and robust performance for
deep layers [46, 47]. Moreover, each agent’s hidden state h is only updated based on its egocentric
graph, which is entirely invariant to the other agents’ hidden states. This architecture decentralizes
the decision-making of the whole swarm.

2.3 Training CAMs in Reinforcement Learning

We train CAMs in the same online setting as model-free reinforcement learning procedures. At
each time step, the agent perceives the observation from the environment and takes action. The
state-action pairs for every transition are labeled as safe or unsafe and then appended to the replay
buffer. The CAM is updated every time a certain number of transitions are collected. The main
differences between our training approach and the standard RL methods are three-fold: (i) instead
of using an actor-network, the agent chooses the action among the sampled actions based on the
admissibility score generated by CAM. (ii) the label is binary for each state-action pair instead of
calculating the cumulative future rewards. (iii) the training objective is non-bootstrapped, which
avoids the overestimation issue and is more stable. We design these three improvements around the
underlying structure of the admissibility problem. We provide further explanations as follows.

Algorithm 1 CAM Algorithm for Training
1: Input: Preference function !, exploration noise N
2: Initialize CAM �
3: Initialize replay buffer R
4: for episode = 1, M do
5: for t = 1, T do
6: Sample candidate actions {a} ✓ A
7: {G}, {T } all agents’ current states and goal states
8: Select action for each agent according to �(G, a), !(G, T , a), and N
9: Execute the selected actions and observe the next states st+1

10: Label the transition (st, at, st+1) with yt by checking whether st+1 is in danger set
11: Store transition (st, at, yt, st+1) in R
12: Relabel R through backpropagation
13: Update � using Equation 2

Sparse Reward Setting. We model the problem as the standard Markov Decision Process (MDP)
M = (S, A, T, r, �) [48]. S is the state space represented as graphs G. The action space A is
continuous. The reward r is sparse: it only returns non-zero values when the agent enters the region
to avoid and the region to reach. These certain regions can also be dynamic, i.e., danger regions
centering around other agents.

Preference Function. Given current state G and goal state T , we assume a preference function over
actions, i.e., !(G, T , ·), is given. The preference function solely focuses on the goal-reaching. For
instance, it can simply be the L2 distance from the next state to the goal, since CAM will achieve
the obstacle avoidance. In the experiments, we try to choose the preference functions as simple as
possible. We refer readers to the Appendix for more details.

4

Action Selection via Sampling. At every timestep, the agent chooses an action among a batch of
actions sampled from the action space. Given a state x, the admissibility value every action a is
computed with �(x, a). If there exist one or multiple actions that satisfy {a | �(x, a) � 0}, given
the goal state T and a preference !(x, T , ·) over actions, we choose the action that has the highest
preference score in the admissible set. Namely, arg maxa{!(x, T , a)|�(x, a) � 0}. If there does
not exist any admissible action, in order to fulfill the admissibility property maximally, the agent
chooses the action that has the highest admissibility score, arg maxa{�(x, a)} + N , where N is an
exploration noise. We model the exploration noise under the uniform distribution in our experiment.

Training Loss of CAM. Given admissible transitions R0 ✓ S ⇥ A and inadmissible transitions
Rd ✓ S ⇥A, we train the CAM with the following objective:

LB =
1

|R0|
X

(x,a)2R0

ReLU(�1 � �(x, a)) +
1

|Rd|
X

(x,a)2Rd

ReLU(�2 + �(x, a))

+
1

|R0|
X

(x,a)2R0

ReLU(�3 � �̇(x, a)� ��(x, a)) (2)

where �1, �2, �3 � 0 are the coefficients to enlarge the margin of the learned boundary. Instead of
simply classifying the transitions with the first and the second loss terms, we encourage the forward
invariance property by adding the third term, similar to Control Lyapunov Functions and Control
Barrier Functions [31]. In practice, we approximate �̇(x, a) by �(x0, a0)� �(x, a), where (x0, a0) is
the next state-action pair on the trajectory. Intuitively, once all pairs of consecutive transitions satisfy
this condition, the transitions would form a forward invariant set, and any trajectory starting from
inside the invariant set will never cross the admissible boundary. The ��(x, a) term encourages the
trajectory to be asymptotically admissible, even if the agent enters the inadmissible region sometimes.

Relabeling Through Backpropagation. We first label the collected transitions as admissible and
inadmissible based on whether the next state is in the danger region. Once the whole trajectory
terminates, we relabel these transitions through backpropagation. Intuitively, suppose the agent
encounters the collision along the trajectory. In that case, it means that starting from some timestep,
it enters the inadmissible region and fails to get back to the admissible set (similar to Intermediate
Value Theorem [49]). Without relabeling, the labels of the transitions from this step to the collision
event will be admissible, which is incorrect. To solve this issue, we relabel these critical transitions.

A state-action pair (x, a) on the trajectory is relabelled as inadmissible, if (i) the next state-action pair
(x0, a0) is inadmissible, and (ii) no admissible action is found at state x0 - namely, maxa0 �(x0, a0) < 0.
Intuitively, the relabelling propagates the inadmissibility from where the agent enters the danger
region back to a state, where the agent can make a decision leading to admissible regions. The first
condition ensures the optimistic behavior of the CAM. We only relabel those transitions which stay
in the inadmissible region and encounter danger in the future. Such optimism is important when
no feasible trajectory exists at the early training stage. It encourages the agent to explore instead
of predicting almost every transition to be inadmissible. The second condition ensures that there
exist no admissible actions approximately by inspecting the admissibility score for all the actions.
Furthermore, for the transitions that have potential admissible actions, they will not be relabelled
as inadmissible easily at the early training stage since maxa0 �(x0, a0) < 0 is hard to meet for a
moderately initialized CAM.

2.4 Online Inference with Graph Decomposition

At inference time, the agent behaves in the same manner as the training stage, except that there is no
exploration noise during inference. When the CAM is applied directly to a large swarm of agents,
however, we find that the performance degrades significantly due to the distribution shift. Such
degradation occurs considerably when the inference task has a much higher density of agents. To
solve this issue, we leverage the compositional property of CAMs and propose graph decomposition.

Decomposition on Large Graphs. We can break down the whole graph G into subgraphs {Gk},
where these subgraphs satisfy the training distribution, e.g., the number of agent vertices does not
exceed a certain value. We construct the subgraphs repeatedly until all the edges in G appear at least
once in the subgraphs. For each subgraph Gk, and action a, we calculate the admissibility score as
�(Gk, a). Though each subgraph defines a less strict subtask for the agent to perform, the admissible
set for the original task should lie in the intersection of all these admissible sets of the subtasks. As

5

a result, these values on the subgraphs can be composed to represent the admissibility score on the
entire graph �(G, a), which could be totally out of distribution. To compose the admissibility values,
we follow Proposition 1 and use �(G, a) = minGk✓G{�(Gk, a)}.

Algorithm 2 CAM Algorithm for Inference
1: Input: CAM �, preference function !, distribution P of training data
2: for t = 1, T do
3: for each agent’s current state G, goal state T do
4: Sample candidate actions {a} ✓ A
5: Initialize �(G, a) as1 for all sampled candidates
6: repeat
7: Sample Gi ✓ G, where Gi ⇠ P
8: �(G, a) = min(�(G, a), �(Gi, a)) for all candidates a
9: until all edges on G are sampled at least once

10: Select action for the agent according to �(G, a) and !(G, T , a)
11: Execute the selected actions and observe the next states st+1

3 Experiments

3.1 Proof of Concept: CAM for Single Agent Environment

<latexit sha1_base64="NUCS05sOUTWz45Sa8q2hUPt8B5o=">AAACK3icbVDLSsNAFJ34tr6qLt0MFkFBSiKiLn1sXCrYBzSl3EwndnAyCTM30hLyP278FRe68IFb/8NJ7cJa7+pwzrncc0+QSGHQdd+dqemZ2bn5hcXS0vLK6lp5faNu4lQzXmOxjHUzAMOlULyGAiVvJppDFEjeCO4uCr1xz7URsbrBQcLbEdwqEQoGaKlO+dyPoN/JwBeKWog9BjI7y3M/6Ynd/j6FvX0feR+zMNYUpKR5n455m3mnXHGr7nDoJPBGoEJGc9UpP/vdmKURV8gkGNPy3ATbGWgUTPK85KeGJ8Du4Ja3LFQQcdPOhr/mdMcyXVqkCWOFdMj+3sggMmYQBdZZRDR/tYL8T2ulGJ60M6GSFLliP4fCVFKMaVEc7QrNGcqBBcC0sFkp64EGhrbeki3B+/vyJKgfVL2j6uH1YeX0fFTHAtki22SXeOSYnJJLckVqhJEH8kReyZvz6Lw4H87nj3XKGe1skrFxvr4BoGWn7Q==</latexit>

max
a2A

�(x, a), for all x 2 X
<latexit sha1_base64="98kPRfL456feZcNxF0oqyvtr3rM=">AAACK3icbVDLSsNAFJ34rPVVdelmsAgVSklE1KXWjcsKVgtNKTfTSTs4mYSZG2kJ+R83/ooLXfjArf9h0nah1bs6nHMu99zjRVIYtO13a25+YXFpubBSXF1b39gsbW3fmDDWjDdZKEPd8sBwKRRvokDJW5HmEHiS33p3F7l+e8+1EaG6xlHEOwH0lfAFA8yobqnuBkJ1E3CFom4AOGAgk/M0daOBqAyrFA6qLvIhJn6oKUhJ0yH95W2l3VLZrtnjoX+BMwVlMp1Gt/Ts9kIWB1whk2BM27Ej7CSgUTDJ06IbGx4Bu4M+b2dQQcBNJxn/mtL9jOnRPI0fKqRj9udGAoExo8DLnHlEM6vl5H9aO0b/tJMIFcXIFZsc8mNJMaR5cbQnNGcoRxkApkWWlbIBaGCY1VvMSnBmX/4Lbg5rznHt6OqofFaf1lEgu2SPVIhDTsgZuSQN0iSMPJAn8krerEfrxfqwPifWOWu6s0N+jfX1DZzpp+s=</latexit>

min
a2A

�(x, a), for all x 2 X
<latexit sha1_base64="u2xzDecrHYxLcIjjmNMKCrOdH3M=">AAACM3icbVBNSxtRFH2jtdqoNeqym0dDIYKEGRF16cemdJVCo4FMCHde7iQP37wZ37sjCcP8Jzf+ERdCcdFSuu1/6JsklFZ7V4dz7uGee6JMSUu+/9VbWn618np17U1tfWPz7VZ9e+fSprkR2BGpSk03AotKauyQJIXdzCAkkcKr6Pqi0q9u0ViZ6i80zbCfwEjLWAogRw3qn8JE6kEBodRhAjQWoIqzssyaYTaWzck+h71whDfc39sPCSdUxKnhoBQvJ9x5+B9TtxzUG37Lnw1/CYIFaLDFtAf1h3CYijxBTUKBtb3Az6hfgCEpFJa1MLeYgbiGEfYc1JCg7Rezn0v+wTFDXqWJU018xv7tKCCxdppEbrOKaJ9rFfk/rZdTfNIvpM5yQi3mh+JccUp5VSAfSoOC1NQBEEa6rFyMwYAgV3PNlRA8f/kluDxoBUetw8+HjdPzRR1r7B17z5osYMfslH1kbdZhgt2xR/aNfffuvSfvh/dzvrrkLTy77J/xfv0GaCCqxQ==</latexit>

min
a2A

p(�(x, a) � 0), for all x 2 X

Figure 3: A proof of concept for the proposed CAM in a single-agent environment. The agent
aims to reach the goal while avoiding obstacles. The black point denotes the starting state, and the
red star denotes the goal state. The shaded blue regions denote the obstacles. Given the learned
CAM �, action space A : {�0.1, 0.1}2, and an arbitrary state x 2 X : {�3, 3}2, we illustrate
maxa2A �(x, a), mina2A �(x, a), and p(�(x, a) � 0) respectively. We show that the learned CAM
never leaves the admissible set, i.e. {x 2 X : maxa2A �(x, a) � 0}, along the trajectory.

We begin by analyzing the CAM agent in a single-agent environment. We perform such analysis using
a 2D minimal example environment, where we place three danger regions to form narrow passages, as
shown in Figure 3. We illustrate maxa2A �(x, a), mina2A �(x, a), and p(�(x, a) � 0) respectively.
Intuitively, maxa2A �(x, a) indicates whether there exists any admissible actions that drive the agent
to the admissible set. mina2A �(x, a) indicates the possibility to enter the inadmissible sets if actions
are picked randomly. As what we show in the figure, the trajectory (blue dashed line) does not
intersect with the admissibility boundary, i.e. {x 2 X : maxa2A �(x, a) = 0}. This example stays
consistent with the forward-invariance objective for learning the CAM: if the agent executes an
admissible action a 2 A : �(x, a) � 0 at every time step, then it will never leave the admissible set.

3.2 Multi-agent Navigation Experiments

Experiment Setup. We evaluate our methods under 4 types of environments: UR5, Car, Dynamic
Dubins, and Drone. We briefly describe these 4 environments as follows: (i) The UR5 environment is
implemented with PyBullet [50] and contains 4 decentralized 5D robot arms with cubic obstacles. We
randomly select solely 2 robot arms from these four arms during training. We fix the configurations of
the static obstacles and the goal states of the arms. In order to make the test task solvable, the initial

6

Figure 4: We show the performances of CAM and prior methods in the UR5, Car, Dynamic Dubins,
and Drone environment, where each method is trained with 3 agents during training but tested up to
512 agents. CAM substantially outperforms prior approaches in all the environments.

states are randomized during training and fixed during testing. (ii) For the Car environment, each
agent follows the 2D Dubins’ car model [51], and controls a 1D action. The static obstacles are circles
with a fixed radius. (iii) The Dynamic Dubins agent controls a 2D action and follows a modified
Dubins’ Car dynamic which enables the control of acceleration. (iv) For the Drone environment, each
agent follows a 3D quadrotor model adopted from [52] and controls a 4D action. Each obstacle is a
cylinder with infinite height. For both Car and Drone environments, we only train on environments
with 3 agents, randomized initial states and goal states, and a set of random obstacles. The map size is
fixed as 3x3 during training while varying during testing. We provide full details of system dynamics
and environments in the Appendix.

To evaluate our CAM approach thoroughly, we design diverse scenarios for all four environments.
For the UR5 environment, we make the number of agents vary from 2 to 4. For scenarios with 2 or 3
arms, the arms are selected randomly from the four decentralized arms. For the other environments,
we fix the map size as 32x32 and vary the ratio of agents over obstacles from 1:1023 to 512:512. For
each setting, we average the performance over 100 randomly generated test cases.

Baselines. The baseline approaches we compare with include DDPG [53] and MACBF [30]. DDPG
is a standard RL approach to learning safe behavior through maximizing rewards. MACBF is a
state-of-the-art approach for multi-agent safe control problems, which learns a policy jointly with
neural safe certificates. We reimplement all the baselines with GNNs for a fair comparison. Note that
our GNN implementation for DDPG is a multi-agent algorithm, since each agent is aware of the other
agents by taking the egocentric graph as the input. We refer reader to Appendix for more details.

Evaluation Metrics. We evaluate our methods based on two metrics: the safe rate and the average
reward. The safe rate counts the number of collisions for each agent at every time step and averages
over all the agents through the whole trial [30]. At each time step, the reward is -1 if the agent collides
with another agent or the static obstacle. A +10 reward will be given at the end of the trajectory, if the
agent reaches its goal at any time step along the trajectory. A small negative constant of -0.1 is added
to the reward to encourage shorter paths for goal-reaching. The reward is accumulated throughout the
trial and averaged over all the agents.

Overall Performance. In Figure 4, we demonstrate the overall performances for the UR5, Car,
Dynamic Dubins, and Drone environments. Our method shows the generalization across different
environments and densities of agents and obstacles. Though trained with only 3 agents, the safety
rate of CAM remains nearly 100% for all the environments, up to 512 agents. Even if the density
of agents and obstacles deviates from the training environment, our CAM approach can avoid the
distribution shift, using decomposition on large graphs and the compositionality of CAMs.

On the other side, though our implementation for MACBF and DDPG can take an arbitrary number
of agents using GNNs, the performance degrades significantly when the distribution of input graphs
shifts in test environments. We also inspect that the averaged reward for all the methods decreases in
most cases when the number of agents increases. It is due to more agents failing to reach the goal
when the timeout happens since it takes more time for agents to avoid each other. We encourage the
reader to view the video demonstrations in the supplementary material for all 4 environments.

7

3.3 Zero-Shot Transfer to Chasing Game

Method CAM CAM w/o decomposition
Safety Rate (Car) 0.99±0.00 0.90±0.03

Reward (Car) 3.10±1.20 -19.98±7.08

Safety Rate (Drone) 0.989± 0.005 0.988±0.008

Reward (Drone) 6.84±1.12 6.54±2.15

Table 1: Left: A snapshot of a trajectory in the chasing game with 16 Drone agents from a bird’s-eye
view. The agents are the colorful points, and the obstacles are the blue circles of a larger size. Each
agent aims to chase another agent without collision. Right: Performances of CAMs with and without
graph decomposition on 64 agents, which shows the effectiveness of the graph decomposition.

In this section, we study the generalization of our CAM model for zero-shot transfer to other multi-
agent tasks, e.g., the chasing game. In the chasing game, each agent chases another agent to pursue.
The target agent is assigned randomly at the beginning of every episode. The agent’s goal is to
maintain the distance to the assigned agent, with no collision with agents and obstacles. We fix the
number of agents to 64 in the experiment. This new task is substantially different from the task for
training, where the assigned goal is fixed. We provide more details of the setting in the Appendix.

In Table 1, we show that our CAM method can adapt to the new task effectively due to its safety and
goal-reaching decoupling property, preserving a relatively high safety rate and reward. In addition,
we compare our method to the CAM without the graph decomposition. We observe that the graph
decomposition works effectively in both environments. The performance of the Car environment
benefits more from the graph decomposition. This advancement is because the density of Car agents
in 2D is higher than that of the Drone agent in 3D. The higher density makes the test task more unlike
the training task, which explains why the graph decomposition is more beneficial for Car.

4 Limitations and Failure Modes

While the framework is generalizable in terms of scalability, it has limitations. Since the proposed
GNN architecture is entirely decentralized, it disables the agents from communicating and coordi-
nating with each other in the swarm. As a result, it could be challenging for agents to identify and
avoid critical situations requiring interactions among agents, e.g., dead-locks and states with very
few feasible actions. As shown in Figure 4, there is a slight drop in the safety rate of the Drone
environment when the number of agents increases to 512. To understand such a failure mode, we
inspect these trajectories and find that the corresponding CAM values are all negative at several
consecutive preceding states right before the collision. Such behavior indicates a very low probability
of finding feasible actions in these states, which validates the necessity for inter-agent communication
or global coordination when the density of agents is very high in local regions. We believe that a
preference function considering the global coordination can be helpful for this issue.

5 Conclusion

We proposed new learning-based control methods for multi-agent navigation problems by shifting
the focus from training optimal control policies to training CAMs that implicitly represent a set of
feasible actions. We avoid the reward engineering by decoupling the multi-agent navigation tasks
using a simple goal-reaching preference function and a learnable CAM for collision avoidance. Our
methods use GNNs to represent the CAM which takes egocentric graphs as inputs and proposes
the relabelling with backtracing to learn from rich information even given sparse reward. In online
inference, we propose the graph decomposition to deal with the covariate shift, which achieves a
notably high success rate and low collision rate. While unconventional compared to the types of
models routinely used in multi-agent reinforcement learning, we demonstrate that CAM has several
useful properties and is particularly effective in multi-agent settings that require compositionality
and generalization for scaling at inference time. In future work, we will study how to incorporate
multi-agent communication and test its effectiveness in real-world scenarios.

8

Acknowledgments

We thank the anonymous reviewers for their helpful comments in revising the paper. This material is
based on work supported by the United States Air Force and DARPA under Contract No. FA8750-
18-C-0092, AFOSR YIP FA9550-19-1-0041, NSF Career CCF 2047034, and Amazon Research
Award.

References
[1] José Barbosa, Paulo Leitão, Emmanuel Adam, and Damien Trentesaux. Dynamic self-

organization in holonic multi-agent manufacturing systems: The adacor evolution. Computers
in industry, 66:99–111, 2015.

[2] Ray Y Zhong, Xun Xu, Eberhard Klotz, and Stephen T Newman. Intelligent manufacturing in
the context of industry 4.0: a review. Engineering, 3(5):616–630, 2017.

[3] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of au-
tonomous driving: Common practices and emerging technologies. IEEE access, 8:58443–58469,
2020.

[4] Jörg P Müller and Klaus Fischer. Application impact of multi-agent systems and technologies:
A survey. In Agent-oriented software engineering, pages 27–53. Springer, 2014.

[5] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[6] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics,
9(1):427–438, 2012.

[7] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

[8] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

[9] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

[10] Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and Vijay Kumar. Graph policy gradients
for large scale robot control. In Conference on robot learning, pages 823–834. PMLR, 2020.

[11] Iou-Jen Liu, Raymond A Yeh, and Alexander G Schwing. Pic: permutation invariant critic for
multi-agent deep reinforcement learning. In Conference on Robot Learning, pages 590–602.
PMLR, 2020.

[12] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 6379–6390, 2017.

[13] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 4295–4304.
PMLR, 2018.

[14] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

9

[15] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca D. Dragan.
Inverse reward design. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6765–6774, 2017.

[16] Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Twelfth Annual Symposium on Combinatorial Search,
2019.

[17] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven Koenig. Searching with
consistent prioritization for multi-agent path finding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 7643–7650, 2019.

[18] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

[19] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. Graph neural networks
for decentralized multi-robot path planning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 11785–11792, 2020.

[20] Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok. Message-aware graph attention
networks for large-scale multi-robot path planning. IEEE Robotics and Automation Letters,
6(3):5533–5540, 2021.

[21] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig,
and Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning.
IEEE Robotics and Automation Letters, 4(3):2378–2385, 2019.

[22] Jur van den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision
avoidance. In Robotics research, pages 3–19. Springer, 2011.

[23] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y Hadaegh. Probabilistic and dis-
tributed control of a large-scale swarm of autonomous agents. IEEE Transactions on Robotics,
33(5):1103–1123, 2017.

[24] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Au-
tonomous robot vehicles, pages 396–404. Springer, 1986.

[25] Jerome Barraquand, Bruno Langlois, and J-C Latombe. Numerical potential field techniques
for robot path planning. IEEE transactions on systems, man, and cybernetics, 22(2):224–241,
1992.

[26] Shuzhi Sam Ge and Yun J Cui. Dynamic motion planning for mobile robots using potential
field method. Autonomous robots, 13(3):207–222, 2002.

[27] Eduardo G Hernández-Martínez, Eduardo Aranda-Bricaire, and F Alkhateeb. Convergence and
collision avoidance in formation control: A survey of the artificial potential functions approach.
INTECH Open Access Publisher Rijeka, Croatia, 2011.

[28] Benjamin Riviere, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. Glas: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-to-end learning. IEEE
Robotics and Automation Letters, 5(3):4249–4256, 2020.

[29] Guanya Shi, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. Neural-swarm: Decentralized
close-proximity multirotor control using learned interactions. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 3241–3247. IEEE, 2020.

[30] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning Safe
Multi-Agent Control with Decentralized Neural Barrier Certificates. In Conference on Learning
Representations. Conference on Learning Representations, jan 2021.

[31] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
Control Conference (ECC), pages 3420–3431, Naples, Italy, June 2019.

10

[32] Dongkun Han, Lixing Huang, and Dimitra Panagou. Approximating the region of multi-task
coordination via the optimal lyapunov-like barrier function. In 2018 Annual American Control
Conference, ACC 2018, Milwaukee, WI, USA, June 27-29, 2018, pages 5070–5075. IEEE, 2018.

[33] Shuo Wan, Jiaxun Lu, and Pingyi Fan. Semi-centralized control for multi robot formation. In
2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), pages
31–36. IEEE, 2017.

[34] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[35] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[36] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
4502–4510, 2016.

[37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[38] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[39] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 77–85.
IEEE Computer Society, 2017.

[40] Arbaaz Khan, Alejandro Ribeiro, Vijay Kumar, and Anthony G. Francis. Graph neural networks
for motion planning. CoRR, abs/2006.06248, 2020.

[41] Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based motion planning
using graph neural networks. In Proceedings of the 35rd International Conference on Neural
Information Processing Systems, 2021.

[42] Lifeng Zhou, Vishnu D Sharma, Qingbiao Li, Amanda Prorok, Alejandro Ribeiro, and Vijay
Kumar. Graph neural networks for decentralized multi-robot submodular action selection. arXiv
preprint arXiv:2105.08601, 2021.

[43] Ekaterina Tolstaya, James Paulos, Vijay Kumar, and Alejandro Ribeiro. Multi-robot coverage
and exploration using spatial graph neural networks. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 8944–8950. IEEE, 2020.

[44] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue:
Learning feature matching with graph neural networks. In CVPR, 2020.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 1106–1114, 2012.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[47] Binxuan Huang and Kathleen M Carley. Residual or gate? towards deeper graph neural networks
for inductive graph representation learning. arXiv preprint arXiv:1904.08035, 2019.

11

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[49] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York,
1976.

[50] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

[51] Lester E Dubins. On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. American Journal of mathematics,
79(3):497–516, 1957.

[52] Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pages 1724–1735. PMLR,
2022.

[53] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

12

	Introduction
	Control Admissibility Models
	Control Admissibility Models (CAMs)
	Graph Neural Networks for CAMs
	Training CAMs in Reinforcement Learning
	Online Inference with Graph Decomposition

	Experiments
	Proof of Concept: CAM for Single Agent Environment
	Multi-agent Navigation Experiments
	Zero-Shot Transfer to Chasing Game

	Limitations and Failure Modes
	Conclusion
	Illustration for GNN Architecture
	Details for the UR5 Environment
	Details for the Car Environment
	Details for the Dynamic Dubins Environment
	Details for the Drone Environment
	Details for the Chasing Game
	Details for the Experiments
	Ablation Study: Varying Obstacle Density
	Inference Time
	Details for the Single Agent Example
	Forward-Invariance Property

	Additional Single Agent Environment: Dynamic Dubins
	Forward-Invariance Property
	Details for the Additional Single Agent Environment
	Performance Progress in the Additional Single Agent Environment

