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Abstract

Variational autoencoders trained to minimize the reconstruction error are sensitive
to the posterior collapse problem, that is the proposal posterior distribution is
always equal to the prior. We propose a novel regularization method based on
fraternal dropout to prevent posterior collapse. We evaluate our approach using
several metrics and observe improvements in all the tested configurations.

1 Introduction

Deep generative models like Variational Autoencoders (VAE) [12] and Generative Adversarial
networks (GAN) [8], among others, enjoy great popularity in many applications of machine learning,
including natural language processing (NLP). Unlike GANs, VAEs can manipulate discrete observed
variables which makes them suitable for applications in text generation. In these models, a sentence
is generated according to the following process:

z ∼ p(z), x1 ∼ pθ(x1|z), x2 ∼ pθ(x2|z, x1) x3 ∼ pθ(x3|z, x1, x2), . . .

where z ∈ Rk is a latent sentence representation (or sentence embedding) and x1, x2, · · · ∈ X are
observed words (or the generated sentence), with X the vocabulary. The generation stops when a
special end of the sentence word is generated. Without loss of generality, we assume that the prior
distribution p(z) is fixed. The subscript θ indicates the parameters of the conditional distribution and,
in our case, θ corresponds to the parameters of a neural network. It is important to note that we do
not make any independence assumption in the conditional distribution p(xt|z,x<t).
Training aims to search for parameters θ that maximize the likelihood of observed data, also called
the evidence:

max
θ

Ep̃(x) [log pθ(x)] = max
θ

Ep̃(x)
[∫

log pθ(x|z)p(z)dz
]
= max

θ
Ep̃(x) [L(x, θ)] (1)

where p̃ is the empirical training data distribution. In general, the objective function L is intractable
because of the marginalization over latent variables z. Variational methods propose to introduce a
proposal distribution qφ(z|x) to create a surrogate objective called the evidence lower bound (ELBO)
defined as follows:

E(x, θ, φ) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−KL[qφ(·|x)|p(·)]︸ ︷︷ ︸
divergence with prior

(2)
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where the E defines a family of lower bounds on L parameterized by φ, i..e ∀φ : E(x, θ, φ) ≤ L(x, θ).
During training, it is important to search for proposal parameters φ that gives the best bounds (i.e.
maximizes the bounds), hence the name variational. The new training problem is then:

max
θ,φ

Ex∼p̃(x) [E(x, θ, φ)] (3)

The Expectation-Maximization (EM) algorithm [4] solves this problem via block coordinate ascent,
i.e. maximizing successively with respect to φ (E step) and θ (M step). Unlike EM, the VAE approach
consists in optimizing this problem by joint stochastic gradient ascent over φ and θ. Moreover,
unlike in the standard applications of EM, neither the distribution nor the family of the posterior
pθ(z|x) are known. As a result, an independence assumption is made over the coordinates of z in the
distribution qφ (also called mean field distribution). Finally, the distribution qφ is amortized over the
data and parameterized by a neural network. It is worth noting that during training, the reconstruction
term in equation 2 is estimated via Monte-Carlo method using a single sample. It is usual to call
the distribution qφ(z|x) that generates a latent representation from a sentence the encoder and the
distribution pθ(x|z) that reconstructs the original sentence the decoder.

Unfortunately in practice, VAEs for automatic text generation are sensitive to posterior collapse [2].
Informally, this means that the proposal distribution is not optimized correctly and remains close to
the prior distribution for all data points: ∀x : qφ(z|x) ' p(z). This leads to a poor approximation
of the objective 1 by the ELBO. In the end, the decoder ignore that latent variable and no sentence
representation z is learned.

Previous work on the posterior collapse problem can be classified in two categories:

1. On the one hand, modifications to the objective function were suggested. Bowman et al.
[2] reweight the divergence with the prior term to temper its importance during training.
Kingma et al. [13] and Pelsmaeker and Aziz [19] proposed to introduce constraints to force
the divergence term to be greater than a hyperparameter. Finally, alternative surrogate
objectives to train VAEs in the context of text generation have been proposed [16, 9].

2. On the other hand, several authors proposed to modify the architecture of the decoder so that
they are forced to rely on latent variable information. Yang et al. [22] replace the recurrent
neural network in the decoder by a convolutional neural network. Dieng et al. [5] proposed
to use skip connections between the latent representation and the various hidden layers of
the decoder.

In this work, we propose a different approach to prevent the posterior collapse problem based on
parameter regularization, that is without changing the generative model objective function or the
architecture of the decoder. Our contributions can be summarized as follows:

• We propose to regularize the decoder parameters to prevent the posterior collapse. In
particular, we use fraternal dropout [23] to force the decoder to use the latent representation.

• We experiment our approach in various settings and report improved results with respect to
several evaluation metrics.

We hope to encourage future research to explore this direction to improve VAEs for text generation.

2 Decoder regularization: fraternal dropout

We first give an intuitive motivation for our approach. LSTMs have been widely used as neural
language models and achieve competitive results [17].1 Language models are trained via the same
reconstruction term as the one used in VAEs, showing that these neural architectures can efficiently
maximize this term in the absence of latent variables, i.e. it can be maximized while ignoring the
latent variables values. To bypass this issue, we propose to introduce a regularization term in the
objective that forces the hidden representations computed by the LSTM to be similar even if different
words in the input are masked. The decoder is then forced to rely on latent variable information. To
this end, we propose to rely on fraternal dropout [23].

1Our method is agnostic of the decoder architecture. As such, the same methodology can be directly applied
to self-attentive networks/transformers [21].
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The reconstruction term of the ELBO maximizes the log-likelihood using the usual teacher forcing
technique for language models: during training, the auto-regressive model is trained to predict the
next word based on gold previous words. Let x ∈ Xn a sentence of length n. Each word xi is
represented by a vector taken from an embedding table. We denote all of these vectors by a matrix
E ∈ Rw×n where w is the word embedding dimension. A contextual representation is computed for
each position in the sentence using a LSTM:

H = LSTM(E, z; θ)

where H ∈ Rd×n is a matrix containing hidden representations of dimension d for each sentence
position. The latent variable z is projected and then given as an initialization for both the memory
and the hidden state and also concatenated to each input. We refer the reader to [15] for more details
on the architecture and the various parameters.

Word dropout [6] consists in randomly replacing embeddings by a vector of zeros during training to
prevent overfitting:

d ∼ B(b), E′ ∈ Rw×n t.q. E′i,j = Ei,jdj , H = LSTM(E′, z; θ)

where d ∈ {0, 1}n is a vector of booleans where each element is independently drawn from a
Bernoulli distribution of parameter b ∈ [0, 1]. The matrix E′ corresponds to the matrix E where a
number of columns are filled with zeros. Fraternal dropout consists in creating two matrices E′ and
E′′ as follows:

d ∼ B(b),
E′ ∈ Rd×n t.q. E′i,j = Ei,jdj , E′′ ∈ Rd×n t.q. E′′i,j = Ei,j(1− dj),
H ′ = LSTM(E′, z; θ), H ′′ = LSTM(E′′, z; θ).

Matrices E′ and E′′ are both used to compute the log-likelihood of the sentence and the mean log-
likelihood then replaces the original reconstruction term. Finally, a regularization term is introduced
in the objective function:

R(θ;α) = −α‖ LSTMθ(E
′, z; θ)− LSTMθ(E

′′, z; θ)‖22
where α > 0 is a hyperparameter. Note that the regularization term forces the hidden representations
computed by the LSTM to be similar with different masked inputs E′ and E′′ but similar latent
variables z. Hence, the regularization term forces the decode to rely on latent variables z to compute
the LSTM’s hidden representations.

3 Experiments

We evaluate our approach using the code distributed by by Li et al. [15]. We kept the same hyperpa-
rameters as the ones used by the authors to avoid skewing the results in our favor.

We experiment with two datasets: Yelp [20] and the Stanford Natural Language Inference (SNLI)
[1] data. These two datasets were subsampled to contain 100,000 training sentences and 10,000
evaluation and testing sentences. SNLI and Yelp have a respective vocabulary of 9,990 and 8,411
words and both have an average of 10 words per sentence.

3.1 Evaluation metrics

We use several metrics to evaluate the quality of the learned generative models.

(Log-likelihood and perplexity per word) The negative log-likelihood (NLL) −Eqφ(z|x)pθ(x|z)
indicates how well the model reconstructs the input sentence. The perplexity per word (PPL) is the
geometric mean of the reciprocal of the probability assigned to the correct word by the model. Since
we observe the opposite in the first case and the reciprocal in the second, we want to minimize both of
these metrics. They are approximated by sampling 100 times in the distribution q for each sentence.

(BLEU score) For each sentence in the test set, a latent representation is sampled in the distribution
q and a sentence is generated without using teacher forcing from the representation. The BLEU score
[18] will represent the proportion of n-grams (for n going from 1 to 4) in the generated sentence that
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Table 1: Impact of the fraternal dropout hyperparameter α over the Yelp dataset. We want to
maximize the metrics with a ↑ and minimize those with a ↓.

α NLL ↓ PPL ↓ AU ↑ MI ↑ BLEU ↑
0.01 28.91 18.44 4 6.34 5.20
0.1 29.50 19.12 5 7.03 6.40
0.5 30.69 21.53 6 7.47 6.81
1.0 32.30 25.28 4 6.87 6.03
2.0 33.41 28.27 4 7.29 6.09

Table 2: Results of the various metrics over Yelp and SNLI for four different VAEs without and with
fraternal dropout. We want to maximize the metrics with a ↑ and minimize those with a ↓.

Yelp SNLI
Configuration NLL ↓ PPL ↓ UA ↑ IM ↑ BLEU ↑ NLL ↓ PPL ↓ UA ↑ IM ↑ BLEU ↑
Standard 33.40 28.25 2 1.14 1.43 32.57 20.64 3 0.52 2.32
+ fraternal dropout 29.50 19.12 5 7.03 6.40 30.01 16.28 2 4.75 5.73
Free bits 29.54 19.20 32 5.69 4.02 28.88 14.66 32 4.63 4.77
+ fraternal dropout 25.46 12.76 32 8.65 11.23 27.92 13.40 32 7.11 8.44
Pre-train. 33.74 29.21 2 0.71 0.83 31.76 19.14 3 1.14 2.76
+ fraternal dropout 26.18 13.71 22 8.24 9.69 24.69 9.92 22 8.32 13.43
Free bits + Pre-train. 25.93 13.37 32 8.14 7.54 23.33 8.75 32 8.49 13.9
+ fraternal dropout 23.63 10.62 32 8.81 13.54 21.00 7.04 32 9.07 21.35

can be found in the original one. If the generated sentence is shorter than the original, a penalty is
applied since it is easier to avoid mistakes when less words are produced.

(Active units) The number of active units (AU) represent the number of dimensions of the latent
variable that co-vary with the observations. According to Burda et al. [3], a greater number of active
units is usually representative of a richer latent variable. We follow their article and use a threshold
value of 0.01. The dimension of the latent variable is 32, therefore we will have at most 32 active
units.

(Mutual Information) We also report the mutual information between the latent variable and the
output probability distribution. A higher mutual information indicates that the latent variable is better
used by the model. We follow the methodology of He et al. [10].

3.2 Baseline

We compare our approach to previous work including a "standard" VAE, the free bits technique [13]
and the pre-training approach [15]:

• (Free bits) The free bits technique consists in introducing a constraint on the divergence
term with the prior distribution so that it doesn’t fall below a pre-determined threshold λ.
We follow previous work and fix λ = 8 in all of our experiments.

• (Pre-training) This baseline consists in training the model as a classic autoencoder first.
Then the decoder is reset and the model is trained as a VAE.

All of our experiments reweight the divergence term during the training of the model. This technique,
proposed by Bowman et al. [2], consists in steadily increasing the reweighting factor from 0 to 1
during the first epochs of training. The idea is to force the model to ignore the divergence with prior
term in the beginning of training.

3.3 Results and analysis

We first evaluate the impact of the fraternal dropout hyperparameter α on the Yelp dataset. Results
are reported in Table 1. We can observe that a compromise needs to be found between all the metrics,
i.e. we need to find a point of equilibrium between minimizing the NLL and the PPL and maximizing
AU, MI and the BLEU score. In the following experiments, we fixed α = 0.1.

We report results in different configurations in Table 2. Our approach yields improvements for all
the metrics in all configurations for both datasets. The posterior collapse problem is significant in
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Table 3: Examples of interpolations between two representations sampled from the prior for the
configuration with a pre-training and the free bits over the SNLI dataset. The second example also
includes fraternal dropout.

Free bits + Pre-train Free bits + Pre-train + fraternal dropout

a boy is in front of a group of people. the young boy is in a picture.
a man in a blue shirt is standing in front of a crowd of people. the young child is in front of a mother.
a child in blue is holding a camera. the small child is in front of a mother.
a child in blue pants holding a camera while another man watches. a small child in pink holds a picture of her mother.
a child in blue pants holding a camera while another man in a black shirt looks on. a small child in pink sits in a picture with her mother.

configurations not using free bits or fraternal dropout, the mutual information being around 1 and the
number of active units being 2. Adding fraternal dropout results in a gain between 4 and 7 points for
the mutual information in the two configurations. In configurations where the model is pre-trained,
we observe that this pre-training alone does not prevent the posterior collapse since there are only 2
and 3 active units respectively while the same model with fraternal dropout retains 22 active units.
Interestingly, our approach has a bigger impact than free bits on Yelp and a similar one on SNLI
while using less active units in both cases. This is an indication that the free bits technique forces the
latent variables to be decorrelated artificially, i.e. the decoder still ignores their values.

As explained previously, the BLEU score is computed over sentences generated without teacher
forcing and therefore can also be used to estimate the quality of the latent representations. Once
again, fraternal dropout improves results on this metric.

Interpolation We show some examples of sentences generated via interpolation between two latent
representations sampled from the prior in Table 3. We see that our method seems to produce coherent
sentences with a gradual change in length and meaning between the successive sentences.

4 Conclusion

In this work, we propose to rely on parameter regularization to prevent the posterior collapse problem
in VAEs. This approach is different from previous work in the literature. We observe that our
approach has two benefits: it improves the quality of generated text and increases the use of the latent
variable. Future works could explore other methods for parameter regularization [11, 14, 7].
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