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Abstract
Many scientific models are composed of multiple
discrete components, and scientists often make
heuristic decisions about which components to
include. Bayesian inference provides a mathemat-
ical framework for systematically selecting model
components, but defining prior distributions over
model components and developing associated in-
ference schemes has been challenging. We ap-
proach this problem in a simulation-based infer-
ence framework: We define model priors over
candidate components and, from model simula-
tions, train neural networks to infer joint probabil-
ity distributions over both model components and
associated parameters. Our method, simulation-
based model inference (SBMI), represents distri-
butions over model components as a conditional
mixture of multivariate binary distributions in the
Grassmann formalism. SBMI can be applied to
any compositional stochastic simulator without re-
quiring likelihood evaluations. We evaluate SBMI
on a simple time series model and on two scien-
tific models from neuroscience, and show that it
can discover multiple data-consistent model con-
figurations, and that it reveals non-identifiable
model components and parameters. SBMI pro-
vides a powerful tool for data-driven scientific
inquiry which will allow scientists to identify es-
sential model components and make uncertainty-
informed modelling decisions.

1. Introduction
Computational models are a powerful tool to condense scien-
tific knowledge into mathematical equations. These models
can be used for interpreting and explaining empirically ob-
served phenomena and predicting future observations. Sci-
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entific progress has always been driven by competing mod-
els, dating back to disputes about the heliocentric system
(Copernicus, 1543). However, newly developed models are
rarely that disruptive; instead, they are often created by com-
bining existing components into larger models. For exam-
ple, the original SIR model (Kermack & McKendrick, 1927)
describes the dynamics of infectious diseases by three pop-
ulation classes (susceptible, infective, recovered), but was
later expanded to include further epidemiological classes
(e.g., temporary immune groups, Hethcote, 2000). Similar
modularity can be found, for example, in computational
neuroscience models: The original Hodgkin-Huxley model
(Hodgkin & Huxley, 1952) for the dynamics of action poten-
tials consisted of only two voltage-gated ion channels (K+,
Na+), but more recent models (McCormick & Huguenard,
1992; Pospischil et al., 2008) are based on compositions
of a myriad of different channels (Podlaski et al., 2017).
Similarly, there exist many variants of drift-diffusion mod-
els (DDM) (Ratcliff, 1978) in cognitive neuroscience: All
of them follow the basic concept of modeling the decision
process by a particle following a stochastic differential equa-
tion and eventually hitting a decision-boundary. There are
many possible choices of noise models, drift dependencies,
and boundary conditions. This rich model class and many
of the different components have been extensively studied
on a wide range of experimental measurements (Ratcliff &
McKoon, 2008; Latimer et al., 2015; Turner et al., 2015).

How can one automatically infer such models from data,
including both the compositions of components and the as-
sociated parameters? One challenge is posed by the fact
that, for many such models, evaluating the likelihood func-
tion is not tractable, rendering standard likelihood-based ap-
proaches inapplicable. Approximate Bayesian computation
(ABC) (Sisson et al., 2018), offers a framework to deal with
this challenge in a systematic way, and in the last years, the
development of new methods has been fueled by advances
in neural network-based density estimation (Papamakarios
et al., 2021) leading to new simulation-based inference (SBI)
methods (Papamakarios & Murray, 2016; Lueckmann et al.,
2017; Cranmer et al., 2020a). SBI has been successfully
applied to various fields like astronomy (Dax et al., 2022),
robotics (Marlier et al., 2021), neuroscience (Gonçalves
et al., 2020; Deistler et al., 2022; Groschner et al., 2022) and
cognitive science (Radev et al., 2020; Boelts et al., 2022).

However, in addition to inferring parameters, we also need
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Figure 1. Simulation-based model inference (SBMI) scheme. (a) The model prior p(M) is given implicitly by a graph. A random walk
from the start to the end node corresponds to a draw from this prior. (b) We first sample from the model prior and the corresponding
parameter priors p(θi) to compile a forward model. Following this sampling procedure, we generate training data with which we can
learn a approximation of the joint posterior p(M, θ|x) by factorizing the posterior into p(M |x)p(θ|M,x). Finally we can evaluate this
posterior for some observed data xo.

to be able to compare and select models comprised of differ-
ent components to select between competing theories. Stan-
dard methods for Bayesian model comparison (or selection)
rely on the Bayes factor (Kass & Raftery, 1995), i.e., the ra-
tio of model evidence for two different models M1 and M2:
B12 := p(xo|M1)/p(xo|M2). Multiple approaches have
been developed for estimating Bayes factors, most of which
are based on (rejection) sampling (Trotta, 2008) and are
computationally expensive. Alternative approaches include
approximating the model evidence by applying harmonic
mean estimators to likelihood emulators (Mancini et al.,
2022), or by directly targeting the model posteriors in an
amortized manner (Boelts et al., 2019; Radev et al., 2021).
While these methods infer the model evidence separately for
each model or assume a fixed set of models to compare, our
approach allows for a comparison of flexible combinations
of model components in a fully amortized manner.

Symbolic regression approaches aim to learn interpretable
mathematical equations from observations— while this
might seem like a conceptually very different problem, it
is methodologically related, as one can also interpret math-
ematical equations as being composed of different model
components. Inferring symbolic equations from data can
be tackled by genetic programming (Schmidt & Lipson,
2009; Dubčáková, 2011), by performing sparse regression
over a large set of base expressions (Brunton et al., 2016;
Bakarji et al., 2022) or by using graph neural networks
(Cranmer et al., 2020b). Alternatively, symbolic regression
has been approached by designing neural networks with
specific activation functions (Martius & Lampert, 2016; Sa-
hoo et al., 2018), optimizing these networks with sparsity
priors (Werner et al., 2021) and using Laplace approxima-
tions to infer uncertainties over their weights (Werner et al.,
2022). Building on the success of transformers, Biggio et al.
(2021) introduced a transformer-based approach for sym-

bolic regression, which was recently extended to capture
differential equations (Becker et al., 2022).

Our work builds on these advances in both SBI and sym-
bolic regression. However, our goal is to infer joint posterior
distributions over a set of different model components, as
well as over their associated parameters. One can interpret
our approach as performing fully probabilistic symbolic re-
gression not on ‘atomic’ symbols, but rather on expression
‘molecules’ which are provided by domain experts and rep-
resent different mechanisms that might explain the observed
data. As we will show, accurate inference of joint posteriors
is crucial for obtaining interpretable results in the presence
of redundant model components: A common situation in
scientific applications is that different components are func-
tionally similar (e.g., ion channels with similar dynamics,
Podlaski et al., 2017), resulting in explaining-away effects
and strongly correlated posterior distributions. Hence, in-
ference methods need to be able to accurately handle such
settings to obtain scientifically interpretable results.

We address this challenge by providing a network archi-
tecture for joint inference, which includes a flexible repre-
sentation over model components using mixtures of mul-
tivariate binary distributions in the Grassmann formalism
(Arai, 2021). Second, for such a procedure to be able to
provide parsimonious results, the ability to flexibly specify
priors over models is crucially important. Our procedure
only requires the ability to generate samples from the prior
(like Biggio et al., 2021), without requiring access to eval-
uations of prior probabilities. Third, our approach is fully
amortized: Once the inference network has been trained,
approximate posteriors over both model components and
parameters can be inferred almost instantly, without any
computationally expensive MCMC sampling or post-hoc
optimizations at inference-time.
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Figure 2. SBMI network architecture. Data x is passed through
an embedding net (EN). The embedded data e is forwarded to
the model posterior network (MPN), which learns posteriors over
different model components, and the parameter posterior network
(PPN) which learns the posterior distributions over parameters
given specific models M . Gray boxes correspond to network
inputs / outputs.

In the following, we first describe our inference method
(Sec. 2) and showcase it on an additive model related to
symbolic regression (Sec. 3.1). We then apply it to DDMs
and experimental decision-making data (Sec. 3.2) as well as
to Hodgkin-Huxley models and voltage recordings from the
Allen Cell Types database (Allen Institute for Brain Science,
2016) (Sec. 3.3) and show that our method can successfully
retrieve interpretable posteriors over models.

2. Method
Our proposed method, simulation-based model-inference
(SBMI), performs inference over a model M consisting of
different model components Mi and their associated pa-
rameters θi. More specifically, we use a neural posterior
estimation (NPE) method to approximate a joint posterior
distribution p(M, θ|xo) = p(M |xo)p(θ|M,xo) given some
observed data xo end-to-end (Fig. 1). While we take a
related approach to previous NPE methods (Papamakar-
ios & Murray, 2016; Lueckmann et al., 2017; Greenberg
et al., 2019), we lift the assumption of a fixed simulator
and include the inference over model components into our
framework. We therefore assume that we have a ‘black-box’
model from which we can draw samples xj ∼ p(x|M, θ),
but don’t necessarily have access to the likelihood, any other
internal states, or gradients of the model. Approximate
Bayesian inference is performed by first generating simu-
lations which are then used to learn posterior distributions.
These can be evaluated in an amortized manner for new
observations xo to get the full joint posterior p(M, θ|xo).

2.1. Priors and Data Generation

To allow maximal flexibility in designing appropriate pri-
ors, SBMI only requires access to an implicit prior dis-
tribution from which we can sample models. We here
define the model prior by a directed graph with dynam-
ically changing weights, defined as a triplet (M, E ,R).
The set of vertices M = {Mi}i∈0,...,N+1 corresponds
to the model components and additional start/end node

M0 and MN+1 (Fig. 1a). The set of edges E = {eij =
(Mi,Mj , wij)|Mi,Mj ∈ M, wij ∈ R≥0} are directed,
with weights wij . To sample from the prior, we perform
a random walk on the graph with p(Mi|Mj) =

wij∑
l wil

and represent each sampled model M = (M1, ...,MN ) as
an ordered binary vector of length N . The set of rules
R = {Rk|Rk : (E , S) → E , S ⊂ M}k∈K , with index
set K, defines how the weights wij are updated during a
random walk. We assume the graph to be conditionally
acyclic: While the initial edges E can include cycles (e.g.
Fig. 3a), the updating rules R ensure that no cycle occurs
in prior samples. By changing the edge weights we can en-
code prior knowledge, for example, to favour simple models
over complex models, or to encourage (or discourage) the
co-occurrence of specific model components. Pseudocode
for the sampling procedure and example updating rules can
be found in Appendix A3. This graph representation gives
us the possibility to flexibly encode prior knowledge of the
model by carefully defining its structure and weights with
the help of domain expertise. Once we have sampled a
model M , we define the prior of the corresponding model
parameters as the product of the component-specific pri-
ors: p(θ|M) =

∏
i|Mi=1 p(θi), i.e. the parameter vector θ

is of variable size and matches a specific model M . The
component-specific priors p(θi) can correspond to any con-
tinuous, potentially multivariate, distribution.

To generate training data for learning an approximation
of p(M, θ|xo) we need a ‘compiler’ that turns the model
representation (M, θ) into a simulator which then gener-
ates synthetic data x. These compilers and simulators will
generally be specific to the model type and based on domain-
specific toolboxes. In our numerical experiments, we built a
flexible interface to symbolic calculations based on SymPy
(Meurer et al., 2017) for the additive model (Sec. 3.1), the
PyDDM toolbox (Shinn et al., 2020) for the drift-diffusion
model (Sec. 3.2) and implemented a modularised version of
the Hodgkin-Huxley model in JAX (Bradbury et al., 2018)
(Sec. 3.3).

2.2. Inference

We want to perform inference over the joint posterior
distribution p(M, θ|x) of the model and its parameters,
given some data x. We can factorize this distribution
p(M, θ|x) = p(M |x)p(θ|M,x) and approximate it by
jointly learning two coupled network modules (Fig. 2): The
first module learns an approximation to the model posterior
qψ(M |x) ≈ p(M |x) and the second one an approximation
to the parameter posterior qϕ(θ|M,x) ≈ p(θ|M,x) con-
ditioned on the data and the model. As the data x might
be high-dimensional (or, in principle, of variable length)
we use an additional embedding net to project it to a low-
dimensional representation before passing it to the posterior
networks. This network can be replaced by ‘summary statis-
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tics’ which capture the main features of the data (see Sec.
3.3).

Model Posterior Network To approximate the multivari-
ate binary model posterior p(M |x) we introduce a new fam-
ily of mixture distributions: mixture of multivariate binary
Grassmann distributions (MoGr). Multivariate binary Grass-
mann distributions were recently defined by Arai (2021),
and allow for analytical probability evaluations. A Grass-
mann distribution is defined by its probability mass function
on a n-dimensional binary space, for which closed-form
expressions for marginal and conditional distributions are
available. This in turn can be directly used for efficient
sampling. An n-dimensional binary Grassmann distribu-
tion G on Y = (Y1, ..., Yn) is parameterized by a n × n
matrix Σ which is analogous to the covariance of a normal
distribution, but not necessarily symmetric. The mean of
the marginal distribution is represented on the diagonal and
the covariance is the product of the off-diagonal elements:

E[Yi] = Σii, Cov[Yi, Yj ] = −ΣijΣji.

For a valid distribution (Σ−1 − I) must be a P0-matrix,
but has otherwise no further constraints (Arai, 2021).
We thus define a mixture of Grassmann distribution as
MoGr(Y ) =

∑
i αiGi(Y ) for a finite partition

∑
i αi = 1

and Grassmann distributions Gi. We denote the cor-
responding conditional distribution by MoGr(Y |e) =∑
i αiGi(Y |e), for some real-valued context vector e (which

will be the embedded data in our case). Further de-
tails (including some key properties, and implementation
details) in Appendix A2. We trained the model poste-
rior p(M |x) represented as conditional MoGr distribution
MoGr(M |x) ≈ qψ(M |x) by minimizing the negative log-
likelihood. The model loss LM is therefore defined by
LM (ψ) = − log qψ(M |x).

Parameter Posterior Network The parameter posterior
network qϕ(θ|M,x) needs the flexibility to deal with differ-
ent dimensionalities, as θ is only defined when the respective
model component (Mi = 1) that uses θi is included. While
recent SBI approaches typically used normalizing flows (Pa-
pamakarios et al., 2021) for parameter inference, we use a
mixture density network (MDN) of Gaussian distributions
on the full-dimensional parameter space (with dimension
n =

∑
i dim(θi)) and marginalize out the non-enclosed

model components. This allows the network to learn depen-
dencies across model components (which is critical, e.g., to
account for compensation effects between redundant com-
ponents). We construct this flexible MDN by defining for
every θ its complement θC as the parameter dimensions not
present in θ and θ̄ = (θ, θC). We further define p̄ as the n-
dimensional distribution acting on θ̄. We can now define the
parameter posterior network qϕ(θ|M,x) by marginalizing

out θC ,

qϕ(θ|M,x) =

∫
p̄(θ̄|M,x)dθC .

We use the standard NPE loss (Papamakarios & Murray,
2016) for the parameter posterior network Lθ : Lθ(ϕ) =
− log qϕ(θ|M,x). The final loss function for the train-
ing of the three different network modules (embedding
net, model, and parameter posterior network) is then de-
fined as the expected sum of the two posterior losses:
L(ψ, ϕ) = 1

L

∑
l LMl

(ψ) + Lθl(ϕ), for a batch of train-
ing samples {(θl,Ml, xl)}l of size L. In Proposition A6.1
we show that optimizing this loss functions minimizes the
expected Kullback-Leibler divergence between true joint
posterior p(M, θ|x) and the approximated posterior

Ep(x)
[
DKL(p(M, θ|x)||qϕ(M |x)qψ(θ|M,x)

]
,

and is therefore retrieving the object of interest. See Algo-
rithm 2 for pseudocode. Our implementation is based on
the sbi toolbox (Tejero-Cantero et al., 2020) (see Appendix
A4 for details).

Local and Global Uncertainties: SBMI allows us to
calculate two different uncertainties for the posterior pre-
dictives, depending on whether uncertainty about model-
choice is taken into account or not: Local uncertainties
(Werner et al., 2022) are defined as the uncertainty of pa-
rameter posteriors conditioned on a specific model Mi:
x ∼ p(x|Mi, θ) with θ ∼ p(θ|Mi, xo). In contrast, for
the global uncertainty, the joint posterior is taken into ac-
count: x ∼ p(x|M, θ) with M, θ ∼ p(M, θ|xo).

Simulation-based Calibration To validate the inferred
parameter posteriors we perform simulation-based calibra-
tion (SBC) on the marginal statistics (Talts et al., 2018).
In SBC each marginal of the true parameter θo is ranked
according to the marginals of samples from the parameter
posterior p(θ|xo) for a simulated data sample xo ∼ p(x|θo).
For a well calibrated posterior, the ranks follow a uniform
distribution, which we evaluated by a classifier-two-sample-
test (c2st, Friedman, 2003).

3. Experiments
We demonstrate SBMI on three model classes: An illustra-
tion on an additive model of a one-dimensional function
f(t), variants of the drift diffusion model (DDM) from cog-
nitive science and variants of the Hodgkin-Huxley model.

3.1. Additive Model

For the additive model, we used two linear, a quadratic, a si-
nusoidal, and two different noise terms (details in Table S1),
all evaluated on an equidistant grid on the interval [0, 10].
These could be seen as the ‘base functions’ in a symbolic
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Figure 3. Additive model. (a) Model prior represented as a graph, the width of the edges corresponds to their initial weights, which
change dynamically. A random walk from start (S) to end node (E) corresponds to one draw from the prior. Four prior samples are
shown. (b) Empirical prior distribution, reference and SBMI posterior distribution for one example observation, generated by the
model highlighted by the red dashed line. The model vectors are shown as binary image, black indicating the presence of the specific
model component. SBMI accurately recovers the posterior over model components. Marginal distributions in Fig. S2. (c) One- and
two-dimensional marginals of the parameter posterior inferred with SBMI, conditioned on the ‘true model’ (red dotted line in (b)). Note
the strongly negatively correlated (degenerate) posterior between the redundant model components l1 and l2. Parameter posteriors for
additional models in Fig. S2. (d) Predictive samples for an observation xo from fgt. Blue: Mean ± std. as local uncertainties of the
posterior predictives x ∼ p(x|θ,M) with θ ∼ p(θ|M,xo).

regression task. To investigate how SBMI fares in the pres-
ence of non-identifiability, we included two identical linear
components which only differ in their prior probability. We
defined the model prior as a dynamically changing graph
(Fig. 3a) which favors simpler models (Fig. 3b, Appendix
A7.1). We used a CNN followed by fully connected lay-
ers for the embedding net (Appendix A7). We generated a
dataset of 500k prior samples, of which 10% were used as
validation data.

In the presented model, we have access to the likeli-
hood function p(xo|M, θ), and can approximate the model
evidence via (importance) MC sampling. We approxi-
mate the model evidence p(M |xo) ≈ p̂reference(M |xo) ∼
p(xo|M)p(M) by sampling for each model M correspond-
ing parameters θji and evaluating the likelihood p(xo|M)
(Appendix A5). We call the resulting approximation refer-
ence posterior, and will use it to evaluate the accuracy of
the posterior inferred by SBMI. As the parameter space for
θ can be high-dimensional, and the corresponding posterior
distribution p(θ|M,xo) can be narrow, a reliable numerical
approximation needs an extensive amount of samples and
model evaluations for each of the model combination M . It
is therefore not feasible for larger model spaces.

Across 100 observations xo for which we computed ref-

erence posteriors, the Kullback–Leibler divergence (KL)
between the reference posterior and the SBMI poste-
rior KL(p̂reference(M |xo)||qψ(M |xo)) decreased substan-
tially with the number of training samples. When we re-
placed the MoGr distribution by a ‘flat’ categorical distribu-
tion, and left all other components unchanged, the inference
is much less data efficient (Fig. 4a). Additionally, we com-
pared the marginal distribution of the model posterior to the
ground truth model. The performance of the marginal model
posterior distributions inferred by SBMI is very similar to
that of the reference posteriors (Table S3) with a correlation
of 0.85 (Fig. S3). We note that, in initial experiments in
which we used masked autoregressive density estimators
(MADE) (Germain et al., 2015) (instead of the Grasmann
mixtures) exhibited worse performances in comparison (Fig.
S1), indicating the power and flexibility of MoGr distribu-
tions.

For the evaluation of the joint posterior p(M, θ|xo), we
focused on the evaluation in the predictive (data) space.
To this end, we sampled models Ml ∼ qψ(M |xo) and as-
sociated parameters θl ∼ qϕ(θ|Ml, xo) from the inferred
posteriors for 1k test observations xo and ran the forward
model xl ∼ p(x|Ml, θl). Based on these simulations, we
calculated the root-mean-squared-error (RMSE) of the sim-
ulations xl to the observed data xo. The average RMSE
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between posterior predictive samples follow the same trend
as the KL divergence and approach the RMSE between the
observations xo and samples with the same ground truth
parameters at around 200k training samples (Fig. 4b).

Next, we showcase SBMI for a specific example observa-
tion xo in which the ground truth model has two linear, a
sinusoidal, and a stationary noise component (Fig. 3b-d):
The SBMI model posterior matches nearly perfectly the
reference posterior and predicts the linear components as
expected, ordered by the prior probabilities (Fig. 3b). The
parameter posterior obtained with SBMI and conditioned
on the ground truth model accurately recovers the ground
truth parameters (Fig. 3c). Accessing the joint posterior
distribution enables us to first see the perfectly correlated
parameter distribution for the slope parameter of the linear
components. Second, we detect compensations mechanisms
for a model which contains only one linear component: In
this case, the predicted parameter for l1 is the sum of the
ground truth parameters of l1 and l2, resulting in the same
functional expression (Fig. 3d). For the posterior predictives
(Fig. 3d) we see that most of the observed data xo lies within
an uncertainty bound of one standard deviation around the
mean prediction. The local uncertainties overlap almost
perfectly in this case, as all models with non-negligible
posterior mass have the same expressional form. With the
inferred model posterior we can easily compute the Bayes
factors via p(M1|xo)

p(M2|xo)
p(M2)
p(M1)

to compare different models on
an observation xo, and an example for Fig. 3 is shown in
Appendix A7.2.

In two additional sets of experiments we increased the space
of model components to eleven and twenty (see Tab. S2 and
Tab. S4 for details). As calculating reference posteriors is
not computationally feasible any more, we focused on the
evaluation in the predective space and calculated in the first
set the RMSE for different numbers of training samples for
MoGr as well as for categorical model posterior distribu-
tions. While the MoGr did almost reach the lower bound
with 1M training samples, the categorical distribution had
a much worse performance and did not reach this lower
bound. When we increased the number of mixture compo-
nents for the MoGr as well as for the Gaussian MDN from
three up to twelve, the RMSE did not change substantially,
except that less mixture components were preferable in a
low data regime (Fig. S4a). In the second set of experiments
with twenty model components, the categorical distribution
would need to learn all 220 ≈ 1M possible combinations,
which is not feasible any more. However, the MoGr was
still able to learn the posterior distributions and the predic-
tive performance reached almost the lower bound with 1M
training sample (Fig. S4b).

When we applied SBC to the parameter posteriors of the
additive model, which were conditioned on the “ground

10
4

10
5

number of training samples

0.0

0.5

1.0

1.5

2.0

K
L

MoGr

categorical

10
4

10
5

number of training samples

7

8

9

10

11

R
M

S
E

MoGr

categorical

gt-samples

0.0 0.5 1.0

c2st rank

5

10

no
rm

al
iz

ed
 fr

eq
ue

nc
y

additive model

0.0 0.5 1.0

c2st rank

5

10

large additive model

all

100
most likely

a b

c d

Figure 4. SBMI performance for the additive model. (a) KL
divergence of the SBMI model posterior qψ(M |xo) to the refer-
ence posterior p̂ref(M |xo) for 100 observations xo. (b) Posterior
predictive performance in terms of RMSE between 1k observations
xo and posterior samples xl. Red line indicates RMSE between
xo and samples from the ground truth (gt) model as lower bound.
(a) and (b) show mean and std. for 5 training runs and different
numbers of training samples (from 5k to 500k). (c) Histogram of
the c2st ranks for the additive models with six components with a
c2st mode of 0.54 (0.48/0.61 as .05/.95 percentiles). A value of 0.5
indicates a well calibrated posterior for which the rank statistics
are indistinguishable from a uniform distribution. (d) Same as (c)
for the additive model with eleven components with a c2st mode
of 0.52 (0.43/0.62, ‘all’) and 0.53 (0.48/0.61, ‘100 most likely’).
See also Fig. S5 for individual SBC plots.

truth model”, we found well calibrated posterior distribu-
tions for all 30 possible models and parameters (Fig. 4c).
This still holds true for the large additive model, for which
we included all models with at least 50 samples in the test
dataset of 100k samples (Fig. 4d). When we only looked at
the 100 most likely models the c2st values were even more
tightly centered around one half. We found no systematic
bias for individual parameters in our inference method and
most posterior ranks fall into the 99% confidence interval
of a uniform distribution (Fig. S5). These results show that
the parameter posteriors are well calibrated for the addi-
tive model, even for models which are less likely under the
prior distribution and the posteriors reflect the underlying
uncertainty well.

3.2. Drift-Diffusion Model

After this illustrative example, we turn to DMMs, a scien-
tific model class that we will apply to experimental data.
DDMs can be described by a stochastic differential equa-
tion for a decision variable z: dz = d(z, t)dt + dW , with
initial condition z0, drift term d, and a Wiener noise process

6



SBMI: Simulation-Based Model Inference

S

E

dc dl

bc bexp

ndt

d : constant drift c
d :  leaky driftl

b : constant boundary c
b : exp.-collapsing b.exp

ndt: non-decision timetime

ev
id

en
ce

ndt

boundary decision

1

0

decision
time

drift

0 5

d : θl 1

-20 -10

d : θl 2

1 2

b : θexp 1

0.5 1 1.5

b : θexp 2

0.2 0.3

ndt: θ1

ground truth

SBMI posterior 0.0 0.5 1.0 1.5

decision time [sec]

0

1

2

de
ns

ity

decision

1

0

xo
kde(x )o

SBMI
post. pred.

a b

c d

Figure 5. SBMI on Drift-Diffusion Models. (a) A decision process is modelled by a one-dimensional stochastic process. A binary
decision is taken once the process hits the upper or lower boundary, resulting in a two-dimensional output (a continuous decision time and
a binary decision). (b) The model prior is a graph consisting of two drift (dc, dl) and two boundary (bc, bexp) components, as well as a
non-decision time (ndt). (c) Example parameter posterior inferred with SBMI for which both, the ground truth model and the predicted
model, have leaky drift and exponentially collapsing boundary conditions. (d) Posterior predictives with local uncertainties as mean ± std.
for the two most likely models (dark blue with qψ(M |xo) = 0.75 and light blue with qψ(M |xo) = 0.25).

W . A decision is taken when the decision variable hits a
boundary |d(z, t)| ≥ b(t) (Fig. 5a). An additional param-
eter delays the starting time of the process (‘non-decision
time’). We included two different drift terms (constant and
leaky), two boundary conditions (constant and exponentially
collapsing), and the non-decision time to our prior (Fig. 5b,
Appendix A7.3), resulting in a highly flexible model class.
Similar models have previously been applied to experimen-
tal data (Shinn et al., 2020).

Training data was generated with the pyDDM toolbox
(Shinn et al., 2020) and for each θ we sampled 400 iden-
tically distributed (iid) trials trial. These were embedded
by a permutation invariant embedding network (Chan et al.,
2018; Radev et al., 2020) (Appendix A7).

For the DDM, we don’t have efficient access to the likeli-
hood and therefore cannot compute reference posteriors. To
still evaluate the performance of SBMI, we focus on the
evaluation of model posteriors and predictive performances
for a test set of 1k data points. The average marginal per-
formance of the model posterior for the drift and boundary
components is 0.87±0.21 (std.) (see Table S7 for individual
performances). For about 40% of the test data we get highly
certain model posteriors with p(M |xo) > 0.99, indicating
that model identifiability is dependent on the observed data
xo. To measure the performance of the posterior predic-
tives, we compared the mean decision times, the standard
deviation of the decision times, and the number of correct
trials to the observed data xo. Additionally, we used the
mean-squared error (MSE) on the weighted density func-

Table 1. DDM posterior predictive performance. Comparison
of decision times (mean µ and std. σ) of the ground truth data (̂·)
to posterior predictive samples. The lower bound is based on
resampling 400 trials with the ground truth parameters. Mean and
standard deviation for 1k test points.

Measure Lower bound Posterior

decision time: |µ− µ̂| 0.03 (0.04) 0.08 (0.21)
decision time: |σ − σ̂| 0.21 (0.27) 0.26 (0.35)
deviation correct trials in % 1.10 (1.37) 1.56 (2.64)
MSE on densities (·10−2) 3.14 (5.83) 3.23 (6.57)

tions of the two different decisions, similar to (Shinn et al.,
2020). The different measures on the posterior predictives
for the test data are close to their lower bounds (Table 1),
calculated on trials resampled from a model with the ground
truth parameter. This suggests that, even for non-identifiable
models, the SBMI inferred posterior predictives are close to
data from the ground truth model.

For an example observation xo from a model with a leaky
drift component and exponential collapsing boundaries, the
‘true’ model has a posterior probability of 0.75 and a model
with a constant drift instead has a posterior probability of
0.25, resulting in a Bayes factor of B = 2.32, or a ‘barely
worth mentioning’ difference (Jeffreys, 1998). For the ‘true’
model the ground truth parameters lie in regions of high pa-
rameter posterior mass, with some uncertainty, especially in
the leak parameter θ2 of the drift component (Fig. 5c). The
posterior predictives match the data well if conditioned on
the ‘true’ model. For the model with the constant drift term,
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we see a slight skew to earlier decision times, compared to
the model with leaky drift (Fig. 5d). If we inspect the global
uncertainties (Fig. S6d) we see a good correspondence for
the global uncertainties, also reflected in the MSE losses
(scaled by 102): For trials resampled with the ground truth
parameters we find an MSE of 0.57±0.13 which matches the
MSE of the first model (0.58±0.14) and the second model
is only slightly worse (0.61±0.14). Further inspecting the
posterior distributions shows that the model with the con-
stant drift term exhibits shorter non-decision times, larger
initial boundaries and faster collapsing boundaries (Table
S9). Interpreting the inferred values model-independent as
behavioral variables can therefore be difficult, as different
models might lead to different inferred values.

DDM on Experimental Data To demonstrate SBMI on
empirical data, we used a published dataset of perceptual
decision-making data from monkeys (Roitman & Shadlen,
2002) performing a random dot motion discrimination task.
Moving dots with different coherence rates (0, 3.2, 6.4, and
12.8%) were visually presented and animals had to identify
the direction of movement (Appendix A7.3).
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Figure 6. SBMI on experimental data. Experimental data with
histograms (grey), mean posterior predictives ± 2std. and pyDDM
fits for different coherence rates.

When we used the trained posterior network to perform
amortized inference on the different experimental condi-
tions of the experimental data, the model posterior is certain
about the leaky drift and exponentially collapsing boundary
component with p(M |xo) ≈ 1 for all coherence rates. For
all measures on the posterior predictives we found similar
mean performances for the SBMI inferred models compared
to point estimates (Table S10). But, as expected, the MSE
had higher variances in the different experimental condi-
tions compared to the variance of multiple point estimates
(Table S11). This can also be seen in the decision time den-
sities of the posterior predictives for which the experimental
data lies within the uncertainty bounds (Fig. 6), whereas
the predictives of the point estimates from pyDDM are not

distinguishable. However, in the parameter space we see
that different point estimates are spread out for some of
the parameters, and all lie in regions of high SBMI param-
eter posterior mass. An example of the two-dimensional
marginals for the coherence of 6.4% is shown in Figure S7.

3.3. Hodgkin-Huxley Model

Finally, we apply SBMI to the Hodgkin-Huxley model, a
biophysical model for spike generation in neurons. We in-
clude a leakage current, four different voltage-gated ion
channel types (Na, K, Km, CaL) and a noise term (Ap-
pendix A7.4). We encode the domain knowledge that Na
andK channels are necessary for spike generation, resulting
in a simple prior (Fig. S8), which could be easily extended
to further channel types. We replace the embedding net
by commonly used summary statistics (Gonçalves et al.,
2020; Scala et al., 2021), but leave the inference networks
unchanged.

When we evaluated SBMI on 1k synthetic test traces, we
found a mean marginal performance of the model posterior
of 0.85±0.16 (std.) for the two essential model compo-
nents Km and CaL. This performance rises drastically to
0.96±0.03 if we only include voltage traces with spikes in
the test data (n = 439), indicating that the model compo-
nents are well identifiable if spikes are present. When in-
specting the parameter posteriors for the presented examples,
the ground truth parameters lie in regions of high posterior
mass (Fig. S11a). For the MSE on the posterior predictives’
normalized summary statistics we get 0.06±0.09 for the
example traces shown in Fig. 7 and S9a, indicating a good
performance in the predictive space.

40 mV

500 ms

a

b

Figure 7. Posterior predictives of the Hodgkin-Huxley model.
(a) Two synthetic samples (red) with two posterior predictive sam-
ples each (blue). (b) Two voltage recordings from the Allen Cell
database with two posterior predictive samples each. See Fig. S9
for more samples, Fig. S10c,d for example summary statistics and
Fig. S11 for SBMI posteriors.

To apply SBMI to experimental voltage recordings we
took ten voltage traces from the Allen Cell Types database
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(Allen Institute for Brain Science, 2016) previously used
in (Gonçalves et al., 2020). The model posterior identified
CaL channel in some (4 out of 10) of the recordings, which
were previously not used to fit these traces. The posterior
predictives look slightly worse than for the synthetic data,
but still capturing the main features (Fig. 7b), resulting in a
MSE of 0.24±0.11 (std.) on normalized summary statistics.

To showcase the influence of the model prior, we run the
same SBMI inference scheme with a fully connected model
prior, and therefore omitted any domain knowledge for the
model structure which we had included before. First of
all, for a training dataset of 100k samples this resulted in
only 31k spiking models (compared to 41k in the initial
experiment). After training, SBMI shows still reasonable
performance for most synthetic samples (MSE of 0.10±0.14
on the summary statistics). Additionally, for all observations
from the Allen dataset the model posterior still had the
same ion channel composition as in our initial experiments,
except for one trace. However, the posterior predictive
performance on the Allen dataset was substantially worse
(MSE of 0.48± 0.55 on the summary statistics, Fig. S10).

When we applied SBC to the Hodgkin-Huxley model we
found a c2st mode of 0.53 (with 0.49/0.64 as .05/.95 per-
centiles, Fig. S12a). While this indicates overall a good
calibration, we found parameter specific differences. For
example the posteriors for gL were slightly under confident
and for EL the true parameter was systematically overes-
timated (Fig. S12b). However, given the relatively small
training dataset of 100k prior samples, and the complexity
of the Hodgkin-Huxley model, the posteriors are relatively
well calibrated.

4. Discussion
We presented SBMI, a method for inferring posterior distri-
butions over both model components of scientific simulators
and their associated parameters end-to-end. For the model
inference network, we used a mixture of conditional multi-
variate binary Grassmann distributions to flexibly and effi-
ciently approximate posterior distributions over models. To
deal with the variable dimensionality of the parameter pos-
terior, we used a Gaussian Mixture Density Network which
allows efficient marginalization over absent model compo-
nents during training time. By inferring the joint posterior
distribution over models and parameters, SBMI allows us to
learn parameter dependencies between model components
and compensatory mechanisms, in a fully amortized way.

We first showcased SBMI on additive models and showed
that posteriors retrieved by SBMI are in very close agree-
ment with reference posteriors. Our application of DMMs
yielded posteriors with highly accurate posterior predictives,
and allowed identification of compensatory mechanisms

for some parameters. This demonstrates the importance
of a ‘model-aware’ interpretation of parameter posteriors,
enabled by SBMI. On experimental data, SBMI automati-
cally retrieved a model which was previously suggested by
domain-scientists (Shinn et al., 2020), and which outper-
formed simpler alternatives. Finally, we ran SBMI on the
Hodgkin-Huxley model, both on synthetic data and voltage
recordings from the Allen Celltype database. For most of
the traces we recover the same model structure as previously
used to fit these traces but for some traces additional CaL
channels might be advantageous. Further in-depth experi-
ments with more channel types could be run to identify the
cell mechanisms more exactly.

SBMI gives us not only access to full parameter posteriors,
but also infers the uncertainty related to the model choice
itself and potential interactions between the parameters of
different model components. For symbolic regression, a
similar perspective was presented (Werner et al., 2022) who
estimated local uncertainties by Laplace approximations,
and used a fixed number of equations for the global un-
certainty. While this gives some measure of uncertainty,
SBMI is able to recover the full posterior and its associated
uncertainty.

SBMI enables us to compare different model compositions
in a fully amortized manner, allowing scientists to test and
compare a large set of competing theories without the need
to exhaustively infer each possible combination individually
for separate comparisons based on Bayes-factors. Addition-
ally, the amortized nature of SBMI makes it easy to check
how robust posteriors over models are when observations
change. Similarly, amortization also makes it straightfor-
ward to perform additional coverage and calibration tests
(Zhao et al., 2021; Hermans et al., 2021).

For real-world applications the success of SBI relies on ap-
propriate prior choices (Oesterle et al., 2020; Deistler et al.,
2022) and a well chosen model prior for SBMI can not only
increase the data efficiency by simulating more “meaning-
ful” models, but can also enhance the model inference by
decreasing the space of possible combinations. Although
the presented framework already covers many scientific sce-
narios, the representation of model prior could be further
enhanced by lifting the restriction of an ordered model vec-
tor of fixed length. Using more flexible embedding networks
like transformers (Vaswani et al., 2017; Lee et al., 2019)
could be used to generalize SBMI to simulator outputs x of
varying size (Biggio et al., 2021).

In summary, SBMI provides a powerful tool for data-driven
scientific inquiry. It will allow scientists to systematically
identify essential model components which are consistent
with observed data. Incorporating the uncertainty into their
model choices will help to resolve competing models and
theories.
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Appendix
A1. Software and Computational Ressources
Code is available at https://github.com/mackelab/simulation_based_model_inference.

All networks were implemented in pytorch (Paszke et al., 2019). Additionally, we used the following software and toolboxes
in this work: sbi (Tejero-Cantero et al., 2020) for the implementation of SBMI, NetworkX (Hagberg et al., 2008) for the
construction of prior graphs, SymPy (Meurer et al., 2017) for symbolic calculations, pyDDM (Shinn et al., 2020) as the
backend for the DDM experiments. To manage the configuration settings we used Hydra (Yadan, 2019) and the Optuna
Sweeper (Akiba et al., 2019) plugin for a coarse hyperparameter search in the DDM setting.

All models were trained on an Nvidia RTX 2080ti GPU accessed via a slurm cluster.

A2. Mixture of Grassmann Distribution
Previously, Arai introduced the Grassmann formalism for multivariate binary distributions (Arai, 2021) by using anticommut-
ing numbers, called Grassmann numbers. A Grassmann distribution G is an n-dimensional binary distribution parameterized
by an n× n matrix Σ. The probability mass function of G with parameter Σ on Y = (Y1, ..., Yn) is defined as

G(y|Σ) = det

Σy111(1− Σ11)
1−y1 Σ12(−1)1−y2 · · ·

Σ21(−1)1−y1 Σy222(1− Σ22)
1−y2 · · ·

...
...

. . .

 .

For a valid distribution Σ−1 − I must be a P0 matrix, but has otherwise no further constraints (Arai, 2021).

This definition gives access to the analytical derivations of properties such as the mean, covariance, and marginal and
conditional distributions. Here, we only recapitulate the analytical formula for conditional distribution, which is used for
sampling. Their derivation and further details can be found in (Arai, 2021). In the following paragraph we follow the
notation of Arai (Arai, 2021).

For a conditional distribution on Y = (Y1, ..., Yn), we denote by C the indices of the observed variables yj ∈ {0, 1} and R
the remaining indices R = {1, ..., n} \ C. Without loss of generality, the parameter matrix can be written as

Σ =

(
ΣRR ΣRC
ΣCR ΣCC

)
.

The conditional distribution is then given by the Grassmann distribution

p(yR|yC) = G(yR|ΣR|yC )

with
ΣR|yC = ΣRR − ΣRC

(
ΣCC − diag(1− yC)

)−1
ΣCR,

where diag(1− yC) is the diagonal matrix with (1− yC) on its diagonal. An analogous formula can be derived by using the
notation Λ−1 = Σ (Arai, 2021).

Mixture of Grassmann Distribution We define a mixture of Grassmann distribution (MoGr) on {0, 1}n in the same
formalism as p(y) =

∑
i αiGi(y|Σi) for a finite partition

∑
i αi = 1 and Grassmann distributions Gi. Using the means

µi and covariances Ci for each component Gi we can calculate the mean and covariance for the mixture distribution by
introducing a discrete latent variable Z and reformulate the mixture distribution as

p(y|Z = i) = Gi(y|Σi),
p(Z = i) = αi.

Using the law of total expectation and variance we get analytical expressions for the mean and covariance of a MoGr:

E[Y ] = E[E[Y |Z = i]] =
∑
i

αiµi
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and

Cov(Y ) = E[Cov(Y |Z = i)] + Cov(E[Y |Z = i])

=
∑
i

αiCi +
∑
i

αi(µi − µ̄)(µi − µ̄)T ,

where µ̄ = E[Y ].

To sample from a MoGr we use the standard procedure of first sampling one component zi ∼ p(Z), and then using the
conditional expression of a Grassmann distribution to sample y ∼ Gzi .

Implementation Arai (Arai, 2021) proposed the following parametrization for Σ that ensures the P0 criterion for Σ:

Σ−1 = BC−1 + I,

where B and C are strictly row diagonal dominant matrices, namely

bii >
∑
j ̸=i

|bij |, and cii >
∑
j ̸=i

|cij |.

We make use of this parametrization by optimizing unconstrained matrices B̃ and C̃ and defining B by replacing the
diagonal elements of B̃ by

bii = exp(b̃ii) +
∑
j ̸=i

|b̃ij |,

and analogously for C. Instead of exp any other positive function could be chosen and even the non-negative ReLU function
showed good training behaviour in initial experiments.

We used a similar parameterization for a mixture of Grassmann distribution for each component and a softmax layer to learn
the partition

∑
i αi = 1.

A3. Model Prior
Sampling from the prior: A draw from the prior corresponds to a random walk on the graph (M, E,R), starting at node
M0 and walking through the graph in the following way (see Algorithm 1 for pseudocode): For each step, we first normalize
the outgoing edges for the current node Mc. We use these weights to sample the next node Mc+1 from a categorical
distribution on all connected nodes and append it to the set of sampled nodes S. Next, we update all weights following the
updating rulesR. We then start the next step by normalizing the outgoing edges of the updated current node and repeat this
procedure until the end node MN+1 is reached.

Algorithm 1: Sampling procedure for model prior
Inputs: Directed graph with dynamically changing weights: (M, E ,R),
with nodesM = {Mi}i∈0,...,N+1, edges E = {eij = (Mi,Mj , wij)|Mi,Mj ∈M, wij ∈ R≥0}, and updating rules
R = {Rk|Rk : (E , S)→ E , S ⊂M}k∈K

Outputs: Prior sample M̃ ∼ p(M).
S ← {M0} ; # initialize set of sampled nodes
Mc ←M0 ; # initialize current node
while MN+1 /∈ S do

w̃ci ← wci/
∑
i wci ; # normalize outgoing edges

qc ← Cat(w̃ci, {Mi|w̃ci > 0}) ; # define categorical distribution
Mc+1 ∼ qc ; # sample next node
S ← S ∪ {Mc+1} ;
for Rk ∈ R do
E ← Rk(E , S) ; # update weights

Mc ←Mc+1 ;
M̃ = [1 if Mi ∈ S else 0, for i ∈ 1, ..., N ] ; # convert to binary vector of dimension N

return M̃

14
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Example rulesR:

1. Example rule R1
x to ensure a conditionally acyclic graph: For a sampled Mx we set all ingoing edges of Mx to zero:

R1
x = {if Mx ∈ S : wix = 0 ∀ i = 0, ..., N + 1}

2. Example rules R2
xy and R2

yx to avoid the co-occurrence of specific components Mx and My: We set all ingoing edges
to My to zero if Mx was already sampled and the other way round:

R2
xy = {if Mx ∈ S : wiy = 0 ∀ i = 0, ..., N + 1}, and

R2
yx = {if My ∈ S : wix = 0 ∀ i = 0, ..., N + 1}.

3. Example rules R3
xy and R3

yx to decrease the co-occurrence of specific components Mx and My by decreasing the
weight of all ingoing edges to My by a constant factor c if Mx was already sampled and the other way round:

R3
xy = {if Mx ∈ S : wiy = cwiy ∀ i = 0, ..., N + 1 and 0 < c < 1}, and

R3
yx = {if My ∈ S : wix = cwix ∀ i = 0, ..., N + 1 and 0 < c < 1}.

4. Example rule R4
xend to favor simpler models. For a sampled Mx with no direct vertex to the end node, we increase the

weights vertices which are directly connected to the end node by a constant factor c:

R4
xend = {if Mx ∈ S and wxend = 0 : wiend = cwiend ∀ i = 0, ..., N + 1 and c > 1}.

A4. Inference

Algorithm 2: Simulation-base model inference: SBMI
Inputs: Model prior p(M), parameter priors p(θ|M), compiler C, number of simulations L, embedding net eζ(x),

model posterior network qψ(M |e), parameter posterior network qϕ(θ|M, e).
Outputs: Trained embedding network eζ(x), model posterior network qψ(M |x), parameter posterior network
qϕ(θ|M,x).

Generate dataset:
for l = 1, ..., L do
Ml ∼ p(M) ; # sample model
θl ∼ p(θ|Ml) ; # sample parameters
Sl ← C(Ml, θl) ; # compile simulator
xl ∼ Sl ; # simulate data

return {(Ml, θl, xl)}l=1,...,L

Training: ; # We omit the use of training batches here.
while not converged do
LM ← − 1

L

∑
l log qψ(Ml|eζ(xl)) ; # compute model loss

Lθ ← − 1
L

∑
l log qϕ(θl|Ml, eζ(xl)) ; # compute parameter loss

(ζ, ψ, ϕ)← (ζ, ψ, ϕ)− Adam(∇(ζ,ψ,ϕ)(LM + Lθ)) ; # take gradient step
return eζ(x), qψ(M |x), qϕ(θ|M,x)

A4.1. Model Posterior Network

We used a conditional MoGr distribution as model posterior network. The conditional parameters Σi|x are parameterized by
two matrices Bi and Ci (Section A2). We used a fully connected neural network with ReLU activation to parametrize the
unconstrained matrices B̃i, C̃i and a softmax layer for the partition α with

∑
i αi = 1. The input to the MoGr network is

the output e(x) of the embedding net and the used hyperparameters can be found in Table S5 and S8.

A4.2. Parameter Posterior Network

For the paremeter posterior network, we used a conditioned mixture of (Gaussian) density network, which allowed us to
marginalize analytically over the parameters of the absent model components during training time. For efficient training, we
divided each batch into sub-batches with the same number of parameters and processed each sub-batch in parallel.

15



SBMI: Simulation-Based Model Inference

The conditioning network was implemented as fully connected network with ReLU activation. The specifics for the different
settings can be found in Table S5, S6, S8, and S13.

A4.3. Computational Efficiency

The parameter posterior network shares the computational complexity with standard MDNs, as marginalization of the MDN
is performed analytically. The evaluation of the MoGr distribution involves computing a determinant of a n× n matrix,
which in general has the complexity of O(n3). However, n is the number of model components, which is relatively small in
the presented work (up to 20 for our experiments).

A4.4. Training

We used the standard training loop of the sbi toolbox (Tejero-Cantero et al., 2020): as validation set, we used 10% of the
training samples and as stopping criterion we defined 25 consecutive epochs of no improvement of the loss function on the
validation set.

For the additive model we used a batch size of 3000 samples, for the DDM a batchsize of 2000 samples, and for the
Hodgkin-Huxley model of 4000 samples.

A5. Performance Measures
A5.1. MAP Estimate

Once we trained the full network, we can easily get a maximum a posteriori estimate (MAP) by searching the discrete model
space:

max
M,θ

p(M, θ|xo) = max
M,θ

p(M |xo) · p(θ|M,xo)

= max
i∈I
{p(Mi|xo) ·max

θ
p(θ|Mi, xo)}.

While mathematically correct, this MAP is often dominated by the density function of the parameter posterior, which
can take arbitrarily large values for small variances and can be susceptible to noise in the training process. The discrete
distribution p(M |xo) is, however, bounded in [0, 1]. Therefore, we are often interested in the more stable MAP parameter
estimates of the most likely model:

θmap = argmax
θ

p(θ|Mmap, xo),

where Mmap = argmax
Mi,i∈I

p(Mi|xo).

This MAP of the most likely model is shown as fMAP in Figure 3d.

A5.2. Additive Model

For the additive model we can approximate the ground truth model posterior p(M |xo) by calculating the model evidence by

p(M |xo) =
p(xo|M)p(M)

p(xo)
∼ p(xo|M)p(M).

The prior p(M) is only given implicitly, but as the model space is low-dimensionial, we can approximate the prior by the
empirical sampling distribution p̂(M) (shown in Fig. 3). We therefore get the approximation

p(M |xo) ∼ p(M)

∫
p(xo|M, θ)p(θ|M)dθ

≈ p̂(M)
1

N

N∑
j=1

p(xo|M, θj),

where θj are samples from the parameter prior p(θ|M). Since we used a Gaussian noise model, we can calculate the
expression p(xo|M, θj) by evaluating N (fθj (t),Σθj (t)).
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In practice, we apply importance sampling to avoid regions with a low probability, such that we get

p(M |xo) ∼ p̂(M)
1

N

N∑
j=1

p(xo|M, θj)
p(θj |M)

qϕ(θj |M,xo)
,

where θj ∼ qϕ(θ|M,xo) are samples from the approximated parameter posterior.

Even with importance sampling, a lot of samples were necessary to get reliable estimates. We used 100k samples
θj ∼ qϕ(θ|M,xo) per observation and were therefore restricted to few observations xo (100 for the presented results in
Section 3.1).

A5.3. DDM

We used the mean-squared error (MSE) on the weighted density functions of the two different decisions, similar to (Shinn
et al., 2020). In the same work, they showed that the relative MSE is in good correspondence with other performance metrics
on the used experimental data. We therefore used the loss function implemented as LossSquaredError in the pyDDM
package (Shinn et al., 2020).

A6. SBMI Loss and Kullback-Leibler Divergence
Proposition A6.1. Optimizing the SBMI loss function L(ψ, ϕ) = − 1

L

∑
l LMl

(ψ) + Lθl(ϕ) minimizes the expected
Kullback-Leibler divergence between the true joint posterior p(M, θ|x) and the approximation qϕ(M |x)qψ(θ|M,x):

Ep(x)
[
DKL(p(M, θ|x)||qϕ(M |x)qψ(θ|M,x)

]
.

Proof.

Ep(x)[DKL (p(M, θ|x)||qϕ(M |x)qψ(θ|M,x))]

= Ep(x)
[
Ep(M,θ|x)

[
log

p(M, θ|x)
qϕ(M |x)qψ(θ|M,x)

]]
= Ep(x,M,θ) [− log qϕ(M |x)− qψ(θ|M,x)] + C

≈ 1

L

∑
l

(
− log qϕ(M |x)− qψ(θ|M,x)

)
+ C

= − 1

L

∑
l

LMl
(ψ) + Lθl(ϕ) + C

= L(ψ, ϕ) + C

where C is a constant independent of ϕ and ψ.

A7. Model Details
A7.1. Additive Model

Prior To show the flexibility of the presented prior over model components, we defined a dynamically changing graph
for the additive model. During a random walk, we increased the edge weights of the direct model paths to the end node
with every sampled component and additionally decreased the weight between the linear components if one component is
sampled by a factor of two. This favors simple models and disadvantages the co-occurrence of both linear components. This
corresponds to rules R3

xy, R3
yx and R4

xend in Appendix A3 with c = 0.5 and c = 2 respectively. The resulting empirical
prior distribution is shown in grey in Figure 3b.

The parameter priors for the model components are shown in Table S1.

Network Details We used a one-dimensional convolutional network followed by fully connected layers as an embedding
net for the additive model. The convolutional layers used a kernel size of five and stride one. The output of the last
convolutional layer was flattened before passing it on to the fully connected network. All further parameters can be found in
Table S5 and S6.
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Table S1. Details for the additive model with six components. The parameter θ1 in the noise terms n1 and n2 defines the standard
deviation of a normal distribution N , and U(a, b) defines a uniform distribution on the interval [a, b]. Overall the model has seven
parameters. For the performance we report the mean and standard deviation.

Model Component Token Parameter Prior
Performance

p̂reference(Mi|xo)
Performance
qψ(Mi|xo)

θ1 · t l1 θ1 ∼ U(−2, 2) 0.70 (0.27) 0.65 (0.24)
θ1 · t l2 θ1 ∼ U(−2, 2) 0.70 (0.26) 0.67 (0.24)
θ1 · t2 q θ1 ∼ U(−0.5, 0.5) 0.97 (0.09) 0.93 (0.15)

θ1 · sin(θ2t) sin
θ1 ∼ U(0, 5)
θ2 ∼ U(0.5, 5)

0.95 (0.15) 0.91 (0.18)

noise1: nti ∼ N (0, θ1) n1 θ1 ∼ U(0.1, 2) 1.00 (0.00) 1.00 (0.00)
noise2: nti ∼ (ti + 1)N (0, θ1) n2 θ1 ∼ U(0.5, 2) 1.00 (0.00) 1.00 (0.00)

Table S2. Details for the additive model with eleven components. The noise terms are the same as in Table S1. Overall the model
has 13 paramters. For the performance we report the mean and mean of the standard deviation on training with 1M datapoints across 5
optimization runs.

Model Component Token Parameter Prior
Performance
qψ(Mi|xo)

θ1 · t l1 θ1 ∼ U(−2, 2) 0.68 (0.24)
θ1 · t l2 θ1 ∼ U(−2, 2) 0.69 (0.24)
θ1 · t2 q1 θ1 ∼ U(−0.5, 0.5) 0.80 (0.24)
(θ1 + t)2 q2 θ1 ∼ U(−5, 0) 0.98 (0.10)
θ1 · t3 cub θ1 ∼ U(−0.1, 0.1) 0.88 (0.21)

θ1 · sin(θ2t) sin
θ1 ∼ U(0, 5)
θ2 ∼ U(0.5, 5)

0.86 (0.23)

θ1 · cos(θ2t) cos
θ1 ∼ U(0, 5)
θ2 ∼ U(0.5, 5)

0.89 (0.21)

θ1 const1 θ1 ∼ U(−5, 5) 0.72 (0.25)
θ1 const2 θ1 ∼ U(0, 10) 0.80 (0.25)
noise1: nti ∼ N (0, θ1) n1 θ1 ∼ U(0.1, 2) 1.00 (0.02)
noise2: nti ∼ (ti + 1)N (0, θ1) n2 θ1 ∼ U(0.5, 2) 1.00 (0.02)

A7.2. Bayes Factors for the shown Example

For the example shown in Fig. 3 we get Bayes factors of Bl1l2 = 1.02 for the comparison of the two models with a single
linear component (either l1 or l2), and Bl1l12 = 1.45, if we compare the model with component l1 with the one in which
both model components are present (l12). Following the scale by (Jeffreys, 1998) this would be ‘inconclusive’ about the
preference of the models.
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Table S3. SBMI performance for the additive model for 500k training samples. Comparison of SBMI and reference model posteriors
in terms of Kullback-Leibler divergence (KL) and marginal performances. We calculated reference posteriors for 100 observations xo
(see Table S1 for performances of individual components). For the RMSE we used 1k observations xo and ‘Reference’ corresponds to the
RMSE between the observations xo and samples x under the ground truth model and parameters. We report mean and standard deviation.

Measure Reference (Posterior) SBMI Posterior Prior

KL - 0.28 (0.71) 11.26 (1.88)
Marginal Performance 0.88 (0.15) 0.86 (0.09) 0.53 (0.12)
RMSE 6.87 (6.05) 7.05 (6.19) 15.24 (7.95)

Table S4. Details for the additive model with 20 components. The model prior is a fully connected graph for the additive components.
The noise components are mutually exclusive as in the smaller models. Overall the model has 28 parameters.

Model Component Token Parameter Prior

θ1 · t l1 θ1 ∼ U(−2, 2)
θ1 · t l2 θ1 ∼ U(−2, 2)
θ1 · t2 q1 θ1 ∼ U(−0.5, 0.5)
(θ1 + t)2 q2 θ1 ∼ U(−5, 0)
θ1 · t3 cub θ1 ∼ U(−0.1, 0.1)

θ1 · sin(θ2t) sin
θ1 ∼ U(0, 5)
θ2 ∼ U(0.5, 5)

θ1 · cos(θ2t) cos
θ1 ∼ U(0, 5)
θ2 ∼ U(0.5, 5)

θ1 const1 θ1 ∼ U(−5, 5)
θ1 const2 θ1 ∼ U(0, 10)

θ1 · tanh(t− θ2) tanh1
θ1 ∼ U(1, 10)
θ2 ∼ U(2, 8)

θ1 · tanh(θ2 − t) tanh2
θ1 ∼ U(1, 10)
θ2 ∼ U(2, 8)

θ1 · exp(−(t− θ2)2) g1
θ1 ∼ U(1, 10)
θ2 ∼ U(2, 8)

θ1 · exp(−(t− θ2)2/8 g2
θ1 ∼ U(1, 10)
θ2 ∼ U(2, 8)

θ1 · ReLU(t− θ2) relu1
θ1 ∼ U(1, 5)
θ2 ∼ U(2, 8)

θ1 · ReLU(θ2 − t) relu2
θ1 ∼ U(1, 5)
θ2 ∼ U(2, 8)

noise1: nti ∼ N (0, θ1) n1 θ1 ∼ U(0.1, 2)
noise2: nti ∼ (ti + 1)N (0, θ1) n2 θ1 ∼ U(0.5, 2)
noise3: nti ∼ (11− ti)N (0, θ1) n3 θ1 ∼ U(0.5, 2)
noise4: nti ∼ (t2i + 1)N (0, θ1) n4 θ1 ∼ U(0.2, 1)
noise5: nti ∼ (11− t2i )N (0, θ1) n5 θ1 ∼ U(0.2, 1)

Table S5. Network details for the additive model. Square brackets indicate the layer-wise parameters, otherwise the same parameters
were used for all layers.

Number of Layers
Dimensions /

#Channels Components

Convolutional layers 2 [10, 16] -
Fully connected layers 3 [200, 200, 50] -
MoGr net 3 80 3
MDN net 3 120 3
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Table S6. Network details for the large additive model. Square brackets indicate the layer-wise parameters, otherwise the same
parameters were used for all layers.

Number of Layers
Dimensions /

#Channels Components

Convolutional layers 2 [10, 16] -
Fully connected layers 3 [200, 200, 50] -
MoGr net 3 120 3
MDN net 3 200 3
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A7.3. DDM

Drift diffusion models can be described as a stochastic differential equation for a decision variable z:

dz = d(z, t)dt+ dW,

with initial condition z0, drift term d, and a Wiener noise process W . A decision is taken when the decision variable hits the
boundary |d(z, t)| ≥ b(t) (Figure 5a). An additional parameter delays the starting time of the process (‘non-decision time’).

We included two different drift terms d:

1. constant drift: d(z, t) = θ1, and

2. leaky drift: d(z, t) = θ1 + θ2 · z (with θ2 < 0),

and two boundary conditions b:

1. constant boundary: b(t) = θ1, and

2. exponentially collapsing boundary: b(t) = θ1 − exp(−t/θ2).

The initial condition z0 was fixed to be zero and the noise term had a constant standard deviation of one. The non-decision
time was a free parameter but was present in all models (see Figure 5b).

Table S7. Details for the DDM. We used independent uniform distributions U for all parameter priors. The performances were calculated
on 1k samples from the prior distribution, and we report mean and standard deviation.

Model Component Token Parameter Prior
Performance

Model Posterior
Performance
Model MAP

constant drift dc θ1 ∼ U(0, 5) 0.85 (0.23) 0.90 (0.31)

leaky drift dl
θ1 ∼ U(0, 5)
θ2 ∼ U(−20,−5)

0.85 (0.23) 0.90 (0.31)

constant boundary bc θ1 ∼ U(0.3, 2) 0.90 (0.20) 0.92 (0.27)

exp. collapsing boundary bexp
θ1 ∼ U(0.3, 2)
θ2 ∼ U(0.5, 1.5)

0.90 (0.20) 0.92 (0.27)

non-decision time ndt θ1 ∼ U(0.1, 0.3) 1.00 (0.00) 1.00 (0.00)

Training Data We used the pyDDM toolbox (Shinn et al., 2020) to solve the DDM numerically for every θ using the
Fokker-Planck equation. From the approximated decision time and choice distribution we then sampled 400 iid trials for
each θ. This results in a 400× 2 data matrix with the recorded continuous decision times and binary decisions.

As training data, we sampled 200k models from the prior, solved these DDMs and drew 400 trials. From this data, we
excluded datapoints with more than 300 undecided trials (defined as trials with a decision time larger than 10 seconds).
From the remaining ≈180k datapoints we hold back 1k test datapoints and divided the other part into 10% validation and
90% training data.

Prior Initial experiments showed that models with leaky drift and constant boundary conditions often resulted in unrealis-
tically long decision times (>10sec), and we therefore discouraged their co-occurrence by including a negative coupling
between these two terms in the model prior.

All edges of the model prior have initially the same weight in the shown prior graph (Figure 5b). If the leaky drift component
is visited in a random walk, the edge weight of the constant boundary condition is decreased by a factor of two (corresponding
to R2

xy).

The parameter priors for the different model components are shown in Table S7
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Network Details To account for the iid trial structure of the DDM data, we used a permutation invariant embedding net
(Chan et al., 2018; Radev et al., 2020). In this setup, the single-trial data is first processed by a fully connected network,
mean pooled, and then passed through additional fully connected layers.

Each trial (represented as a vector (decision time, decision)) is first processed by the ‘single trial net’, which we implemented
as a fully connected neural network. The output is then averaged (making it permutation invariant) and passed on to a second
fully connected network. The used hyperparameters (Table S8) were the best hyperparameters in a coarse hyperparameter
sweep over eight models, varying three hyperparameters. To this end, we used Optuna (Akiba et al., 2019) and varied the
embedding dimensions (last layer of the single trial net and the last layer of the fully connected embedding net) and the
dimension of the MoGr net.

Table S8. Network details for the DDM. Square brackets indicate the layer-wise parameters, otherwise the same parameters were used
for all layers.

Number of Layers Dimensions Components

Single trial net 3 [120, 120, 100] -
Fully connected embedding net 3 [120, 120, 30] -
MoGr net 3 80 3
MDN net 3 120 3

Dataset The used data (Roitman & Shadlen, 2002) was collected from two monkeys performing a random dot motion
discrimination task. Visual stimuli of moving dots with different coherence rates (0, 3.2, 6.4 and 12.8%) were presented and
the monkeys had to decide on the moving direction. We randomly subsampled 400 trials for each stimulus condition to
match the dimension of our training data and show the results for ‘monkey N’ throughout the manuscript. The dataset can
be found here: https://shadlenlab.columbia.edu/resources/RoitmanDataCode.html.

Table S9. DDM parameter comparison for example observation. Sample mean and standard deviation for 10k samples from
the SBMI parameter posterior for the example observation from Figure 5. The model posteriors are qψ(gt-model|xo) = 0.75 and
qψ(c.-drift-model|xo) = 0.25.

Model Component Parameter
Ground
Truth

SBMI posterior
| gt-model

SBMI posterior
| c.-drift-model

constant drift θ1 - - 1.37 (0.08)

leaky drift
θ1
θ2

2.00
-10.00

1.79 (0.17)
-9.71 (3.60)

-
-

constant boundary θ1 - - -

exp. collapsing boundary
θ1
θ2

0.70
0.70

0.75 (0.13)
0.76 (0.11)

1.73 (0.15)
1.07 (0.11)

non-decision time θ1 0.25 0.22 (0.03) 0.14 (0.02)

Table S10. DDM predictive performance for experimental data. Comparison of mean decision times µ and standard deviation of
decision times σ of the experimental data (̂·) to posterior predictive samples. We report the mean and standard deviation for the different
measures based on 10k SBMI posterior samples and for ten pyDDM fits with different random seeds. The statistics are pooled over the
different coherence rates.

Measure pyDDM SBMI

decision time: |µ− µ̂| 0.06 (0.06) 0.06 (0.06)
decision time: |σ − σ̂| 0.17 (0.15) 0.13 (0.15)
deviation correct trials in % 2.08 (1.75) 2.22 (1.83)
MSE on densities (·10−2) 9.66 (9.18) 9.66 (8.94)
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Table S11. DDM predictive performance for experimental data for individual coherence rates. We report the mean and standard
deviation for the MSE based on 10k SBMI posterior samples and for ten pyDDM fits with different random seeds. See Table S1 (main
paper) for the pooled statistics.

Measure Coherence % pyDDM SBMI

MSE on densities (·10−2) 0.0 23.80 (0.004) 23.79 (0.010)
3.2 10.66 (0.002) 10.67 (0.009)
6.4 3.64 (0.001) 3.64 (0.008)
12.8 0.55 (0.001) 0.56 (0.011)

A7.4. Hodgkin-Huxley model

We implemented a version of the Hodgkin-Huxley model based on (Pospischil et al., 2008) in JAX (Bradbury et al., 2018).

The differential equations are given by

dV

dt
=gL(EL − V ) + gNam

3h(ENa − V ) + gKn
4(EK − V ) + gMp(EK − V ) + gCaq

2r(ECa − V )

+ Iinj + ση(t),

and
ds

dt
=
s∞ (V )− s
τs (V )

; s ∈ {m,h, n, p, q, r},

where Iinj corresponds to the injected current to stimulate the cell. The parameters Vt for K and τ for Km define the steady
state s∞ and the time constant τs for the corresponding gating parameters. All details can be found in (Pospischil et al.,
2008).

For the noise term ση(t) we sampled for each time step independent noise and scaled it corresponding to the standard
deviation θ1 = σ. We used a step current Iinj of 2µA/cm2 for 1000ms and run the simulation for 1450ms. This stimulus
and recording protocol corresponds to the voltage recordings from the Allen Cell database.

Prior The graph for the model prior is shown in Fig. S8, and all edge weights were set to one, except the edge from K to
Na which was set to 1/3. The parameter priors for the different model components are shown in Table S12 and adapted
from (Gonçalves et al., 2020).

Training data We sampled and simulated 100k models. We excluded simulations with Nan and inf values, resulting in
a training dataset of 99,895 simulations. We used these simulations to calculate 24 summary statistics and imputed Nan
values either by the appropriate max, min or mean value. The used summary statistics were adapted from previously used
summary statistics in (Scala et al., 2021).

Network details The network details can be found in Table S13.
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Table S12. Details for the Hodgkin-Huxley model. The parameter θ1 in the noise terms defines the standard deviation of a normal
distribution N , and U(a, b) defines a uniform distribution on the interval [a, b]. For the performance we report the mean and standard
deviation over all test samples xo as well as over test samples which have at least one spike xso.

Model Component Token Parameter Prior
Performance (all)
qψ(Mi|xo)

Performance (spikes)
qψ(Mi|xso)

Leak current IL
gL ∼ U(10−6, 3 · 10−4)
EL ∼ U(−80,−60)

1.00 (0.00) 1.00 (0.00)

Potassium channel K
gK ∼ U(1.5 · 10−3, 1.5 · 10−2)
Vt ∼ U(−70,−50)

1.00 (0.00) 1.00 (0.00)

M-type potassium channel Km
gM ∼ U(10−5, 6 · 10−4)
τ ∼ U(200, 2000) 0.96 (0.12) 0.98 (0.01)

Sodium channel Na gNa ∼ U(8 · 10−3, 8 · 10−2) 1.00 (0.00) 1.00 (0.00)
Calcium channel Ca gCa ∼ U(5 · 10−5, 10−3) 0.74 (0.25) 0.94 (0.18)
Noise Noise θ1 ∼ U(10−4, 1.5 · 10−1) 1.00 (0.00) 1.00 (0.00)

Table S13. Network details for the Hodgkin-Huxley model. Note that we replaced the embedding net by summary statistics in this
case.

Number of Layers Dimensions Components

MoGr net 3 80 3
MDN net 3 150 3
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A8. Supplementary Figures
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Figure S1. SBMI on the Additive Model (using MADE instead of MoGr). (a) Table with marginal posterior performance for the different
model components of the additive model. Initial experiments showed a worse performance of the posterior implemented as MADE
compared to a MoGr (Table S1). (b) Model posterior implemented as MADE conditioned on xo shown in (d) (similar to Fig. 3b). (c)
Marginal model posterior implemented as MADE for the same observation. (d) Posterior predictives (and local uncertainties as mean ±
std.) of the three most likely models, covering 72% of the model posterior mass. Compared to Fig. 3d models without the sinusoidal get
non-negligible posterior mass.
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Figure S2. SBMI posterior for the additive model. (a) Smoothed one- and two-dimensional marginal distribution for the (binary) model
posterior. The ground truth model is indicated in red. (b) Marginal model posterior distribution for the observation xo shown in Figure
3. The ground truth model consists of the components l1, l2, sin, and n1. (c) One- and two-dimensional marginal distribution of the
SBMI parameter posterior given the MAP model. The ground truth parameters are indicated in red. The sum of the coefficients θ1 for the
two linear components l1 and l2 of the ground truth model is indicated as a dashed line in the most left plot. It matches the mean of the
posterior marginal for l1.
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Figure S3. Model posterior for the additive model. Mean marginal performance of the reference posterior vs the SBMI posterior
for 100 examples of the additive model with a correlation of 0.85. Note that uncertainty in the model posterior is reflected by lower
‘performance’ values which is not necessarily a bad sign as it might reflect the true underlying uncertainty. The high correlation indicates
that the uncertainty of both posteriors is similar for most examples, which validates our SBMI approach.
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Figure S4. SBMI performance is robust to the number of mixture components and scales to larger models. (a) Posterior predictive
performance for the large additive model with 11 components, and 211 = 2048 possible combinations of model components in terms of
RMSE. We compare different choices for the distribution-family of the model posterior (either a mixture of Grassmann distributions with
varying number of components (3, 6 and 12) (MoGr) or a categorical distribution). At the same time we increase also the number of
components for the mixture of Gaussian parametere posterior network. (b) Posterior predictive performance for an additive model with 20
components (specified in Table S4) and 220 ≈ 1M possible combinations of model components. A categorical distribution can not be
fitted anymore as we have very few to no samples for each combination of model components in a dataset of size 1M .
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Figure S5. Simulation-based calibration of the parameter posterior for the additive models. (a) Posterior calibration of the small
additive model, by individual model parameters for all possible model component combinations. Grey regions indicate the 99% confidence
intervals of a uniform distribution, given the provided number of samples. (b) Same as (a) for the large additive model and for all models
with at least 50 samples in the test dataset of 100k samples. For all plots we ranked the true parameter θo against 1k posterior samples.
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Figure S6. DDM posterior and posterior predictives. (a) Smoothed one- and two-dimensional marginal distribution for the (binary)
model posterior. The ground truth model is indicated in red. (b) Model prior and SBMI model posterior with the ground truth model
indicated as a red dotted line. (c) Posterior predictives for the example observation of Figure 5. The global uncertainty is shown as mean
± std. over predictions from different model posterior samples.
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Figure S7. Parameter posterior distribution for the DDM on experimental data. One- and two-dimensional marginals of the SBMI
parameter posterior for a coherence rate of 6.4%. Red markers indicate ten pyDDM fits for a fixed model with different random seeds, all
resulting in similar loss values.
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Figure S8. Model prior for the Hodgkin-Huxley model. Model prior graph. While potassium and sodium channels are always present in
this definition, the presence of m-type potassium and calcium channels is inferred from the observation. This reflects our prior knowledge
for spiking neurons in which sodium and potassium channels are essential for the spiking mechanism. The sampling distribution is shown
in Fig. S11.
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Figure S10. Leveraging domain knowledge enhances posterior performance for the Hodgkin-Huxley model. (a) Two synthetic
samples (red) with two posterior predictive samples each (blue) (same as Fig. 7 a) with additional two posterior predictives from a model
trained on a fully connected model prior (violet). (b) Two voltage recordings from the Allen Cell database (red) with two posterior
predictive samples each for the standard model (blue) (same as Fig. 7 b) with additional two posterior predictives from a model trained on
a fully connected model prior (violet). (c) Ten example summary statistics (out of 24) for the upper trace in (a) and summary statistics for
ten posterior predictive samples from the respective model (mean±std.). (d) Ten example summary statistics for the voltage recording
from the Allen dataset shown in (b), upper trace, and summary statistics for ten posterior predictive samples from the respective model
(mean±std.).
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Figure S11. Model and parameter posteriors for the Hodgkin-Huxley model. (a1) Normalised one and two dimensional marginal
distributions for the parameter posterior for the synthetic example shown in Fig. 7 a (upper trace). Red dots/lines are indicating the ground
truth parameter θo. (a2) The corresponding model posterior for the example in (a1). Red dotted line indicates the ground truth model.
(b1) Normalised one and two dimensional marginal distributions for the parameter posterior for the voltage recording from the Allen
database shown in Fig. 7 b (upper trace). (b2) The corresponding model posterior for the example in (b1).

32



SBMI: Simulation-Based Model Inference

0.0 0.5 1.0

c2st rank

0

5

10

no
rm

. f
re

qu
en

cy

0.0

0.5

1.0

em
pi

ric
al

 C
D

F

I : gl I : El l K : g

0.0

0.5

1.0

em
pi

ric
al

 C
D

F

K : Vt K : gm K : τm

0 10 20

posterior rank

0.0

0.5

1.0

em
pi

ric
al

 C
D

F

Na : g

0 10 20

posterior rank

Ca : gL

0 10 20

posterior rank

noise : σ

a b

Figure S12. Simulation-based calibration of the parameter posterior for the Hodgkin-Huxley model. (a) Histogram of the c2st
ranks. A value of 0.5 indicates a well calibrated posterior for which the rank statistics are indistinguishable from a uniform distribution.
(b) Posterior calibration by individual model parameters for all possible model component combinations. Grey regions indicate the 99%
confidence intervals of a uniform distribution, given the provided number of samples. For all plots we ranked the true parameter θo against
1k posterior samples.
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