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Abstract
Large language models (LLMs) demonstrate remarkable capabilities across various tasks. However,
their deployment introduces significant risks related to intellectual property. In this context, we
focus on model stealing attacks, where adversaries replicate the behaviors of these models to steal
services. These attacks are highly relevant to proprietary LLMs and pose serious threats to revenue
and financial stability. To mitigate these risks, the watermarking solution embeds imperceptible
patterns in LLM outputs, enabling model traceability and intellectual property verification.

In this paper, we study the vulnerability of LLM service providers by introducing δ-STEAL, a
novel model stealing attack that bypasses the service provider’s watermark detectors while preserving
the adversary’s model utility. δ-STEAL injects noise into the token embeddings of the adversary’s
model during fine-tuning in a way that satisfies local differential privacy (LDP) guarantees. The
adversary queries the service provider’s model to collect outputs and form input-output training pairs.
By applying LDP-preserving noise to these pairs, δ-STEAL obfuscates watermark signals, making
it difficult for the service provider to determine whether its outputs were used, thereby preventing
claims of model theft. Our experiments show that δ-STEAL with lightweight modifications achieves
attack success rates of up to 96.95% without significantly compromising the adversary’s model
utility. The noise scale in LDP controls the trade-off between attack effectiveness and model utility.
This poses a significant risk, as even robust watermarks can be bypassed, allowing adversaries to
deceive watermark detectors and undermine current intellectual property protection methods.
Keywords: LLMs; Stealing Attacks; Watermarks; Local Differential Privacy

1. Introduction

Large language models (LLMs), such as ChatGPT (OpenAI, 2024) or Gemini (Google, 2024), have
demonstrated remarkable capabilities in diverse tasks such as text generation, machine translation,
and reasoning (L. et al., 2024). Despite their widespread adoption, training these models demands
significant computational resources and human effort, leading to their common deployment as
services through APIs (Azure, 2021). While API access restricts direct access to model weights,
it does not prevent adversaries from exploiting the model’s outputs, undermining the intellectual
property protection of proprietary models. This prevents a service provider from protecting ownership
over its generated content. Adversaries can exploit generated outputs to fine-tune their local models,
effectively replicating the LLM’s behavior in specific domains if collecting sufficient data (Carlini
et al., 2024; Jovanović et al., 2024). These deployment risks highlight significant concerns about the
intellectual property protection of the service provider’s proprietary LLMs.
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To mitigate risks, service providers have implemented various strategies, including watermarking,
encryption, and restricted API access (Kirchenbauer et al., 2023; Xue et al., 2022). Among them,
watermarking techniques (Christ et al., 2024; Kirchenbauer et al., 2023; Kuditipudi et al., 2023) are
especially effective, offering traceability and scalability. Typically, watermarks inject imperceptible
patterns into LLM’s outputs. Thanks to these unique patterns, once a watermark is applied, the
service provider can use watermark detectors to verify the existence of watermarks in generated text,
enabling traceability and detection of intellectual property violations through content tracking.

To bypass watermark detectors and replicate the behavior of LLMs, adversaries employ various
techniques, including watermark removal (Krishna et al., 2024; Pan et al., 2024; Zhang et al., 2024;
Kirchenbauer et al., 2023) and model stealing (Jovanović et al., 2024; Carlini et al., 2024; W. and
C., 2024; Birch et al., 2023). Watermark removal typically involves modifying outputs through
synonym substitution, paraphrasing, or sentence restructuring to erase traceable patterns. Model
stealing, on the other hand, attempts to extract watermark components from service providers via API
queries. However, these attacks face key challenges as they often degrade model utility by increasing
perplexity or distorting the semantic meaning of watermarked outputs (Ren et al., 2024; Zhang et al.,
2024), and they are typically limited to specific watermark types, recovering only small portions
of the original model. As a result, it becomes difficult for adversaries to replicate the behaviors of
LLMs without impacting their functionality or output quality.

Key contributions. To balance the trade-off between attack effectiveness and model utility, we
introduce a novel model stealing attack, called δ-STEAL, designed to bypass watermark detectors
while maintaining high model utility. The key idea is to leverage the concept of local differential
privacy (LDP) to obscure the differences between watermarked and non-watermarked LLM outputs.
By injecting LDP-preserving noise into the token embeddings of the adversary’s model during
fine-tuning, our attack makes watermarked outputs indistinguishable from non-watermarked ones,
hindering accurate detection. This prevents service providers from verifying model ownership and
protects the stolen model from being detected. Our key contributions are summarized as follows.

• δ-STEAL: We propose δ-STEAL LLM stealing attack, which incorporates LDP techniques to
ensure that the adversary’s model retains its effectiveness, functionality, and semantic quality
of its outputs, closely resembling that of the service provider’s model.

• Controlling the Trade-off between Attack Effectiveness and Model Utility: Adjusting the
noise scale δ, we can balance the trade-off between attack effectiveness and utility, offering a
promising solution for adversaries to steal model behaviors without sacrificing utility.

• Generality and Flexibility: δ-STEAL is model-agnostic and watermark-agnostic, allowing it
to function across different LLMs and watermarks. This versatility makes it highly adaptable
and practically applicable in a variety of real-world scenarios.

• Experimental Validation: Our experiments demonstrate that through lightweight modifi-
cations during the fine-tuning process of the adversary’s local LLM, δ-STEAL effectively
bypasses existing watermarks across different LLMs and attacks, achieving attack success
rates of up to 96.95% while being supported by theoretical guarantees.

Code and appendices are at: https://github.com/kirudang/LDP_Stealing_Attack

https://github.com/kirudang/LDP_Stealing_Attack
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Table 1: A summary of δ-STEAL and related work. WM stands for watermark.

Attack Objectives Scope Guarantee Modifications

Dipper
(Krishna et al., 2024)

Sentence-level
WM removal WM-agnostic ✗

Modify WM sentences
using its pre-trained model

Substitution
(Pan et al., 2024)

Token-level
WM removal WM-agnostic ✗

Modify WM text
with synonyms

WMRemoval
(Zhang et al., 2024)

Token-level
WM removal WM-agnostic ✗

Modify WM text
with quality check

CoRPG
(Lin et al., 2021)

Paragraph-level
WM removal WM-agnostic ✗

Modify WM text based on
sentence relationship

Spoofing
(Jovanović et al., 2024) Steal WM rules Green-red WM (KGW family

(Kirchenbauer et al., 2023)) ✗
Learn WM rules

from target LLM’s output
Color-Substitution
(W. and C., 2024)

Steal WM
vocabulary lists

Green-red WM (KGW family
(Kirchenbauer et al., 2023)) ✓

Observe LLM’s outputs
by repeating API queries

Part Stealing
(Carlini et al., 2024)

Steal LLM’s
last layer WM-agnostic ✗

Extract LLM’s
last layer via API

δ-STEAL (Ours) WSteal LLM’s
behaviors WM-agnostic ✓

Lightweight modifications
(No modifications on LLMs)

2. Related Work

There are two main types of attacks that threaten LLM intellectual property protection. First,
watermark removal attacks (Krishna et al., 2024; Pan et al., 2024; Zhang et al., 2024) modify outputs
to disrupt traceable watermark patterns using techniques like paraphrasing, synonym substitution,
and sentence restructuring. While effective at weakening watermark detection, these methods often
degrade text quality. Second, stealing attacks involve extracting watermark components, such as
watermarking rules, vocabulary lists, or parts of a production LLM via APIs (Jovanović et al., 2024;
Carlini et al., 2024; W. and C., 2024; Birch et al., 2023). The goal is to replicate the behaviors of the
service provider model and bypass watermark detectors, but existing methods are limited to specific
watermark types and can only extract small portions of an LLM.

Table 1 highlights key differences between δ-STEAL and related work. Our attack follows the
second direction but focuses on stealing LLM behaviors in a model-agnostic and watermark-agnostic
manner. It only introduces a lightweight modification by adding LDP noise into the token embeddings,
without changing the tokens, modifying LLM itself, or requiring model access. Furthermore, it can
be easily applied to any LLM or watermark, enhancing its generalizability and scalability.

3. Background

3.1. Model Stealing Attacks

Due to the high cost of training, LLMs are typically offered via APIs (Azure, 2021), but this does not
prevent model stealing attacks (C., 2025; Zhang et al., 2023). Such attacks can cause intellectual
property violations, service replication, fee evasion, and system exploitation, underscoring the need
for robust defenses. Model stealing attacks (Zhang et al., 2023; Jovanović et al., 2024; Carlini
et al., 2024) are also referred to as imitation attacks (Wallace et al., 2020; X. et al., 2022) or model
extraction attacks (Krishna et al., 2020; Birch et al., 2023). To steal a model θ, adversaries query the
API to collect N input-output pairs {xi, yi}Ni=1 and train or fine-tune a surrogate model θadv. The
goal is to replicate the behavior of θ while bypassing watermark detectors.
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Watermarks
in LLMs

Distortionary
watermarks

Mechanism: KGW (Kirchenbauer et al., 2023), SIR (Liu et al., 2024), NS (Takezawa et al., 2023),
Unbiased (Hu et al., 2024), UPV (Liu et al., 2023), Unigram (Zhao et al., 2024),
Stylometric (Niess and Kern, 2024), Hufu (Xu et al., 2024a), WLM (Gu et al., 2022),
PLMmark (Li et al., 2023), Distillation WM (Gu et al., 2024) , RLWM (Xu et al., 2024b),
Cross-Attention WM (Baldassini et al., 2024), Waterpool (Huang and Wan, 2024), ...
Strengths: More flexible watermark, Effectively track watermarked text.
Weaknesses: Possible impact on semantic meaning, Vulnerable to removal attacks.

Non-Distortionary
watermarks

Mechanism: Undetectable WM (Christ et al., 2024), EXP (Kuditipudi et al., 2023),
SynthID (Dathathri et al., 2024), SemStamp (Hou et al., 2024),
WaterMax (Giboulot and Teddy, 2024), ModelShield (Pang et al., 2024), ...
Strengths: Easy to incorporate, simple detection, non-intrusive, preserves LLM distribution.
Weaknesses: Vulnerable to basic text edits; randomness may degrade output quality.

Figure 1: Taxonomy of Watermarks in LLMs.

3.2. Watermarking Techniques
Recent work has shown that watermarks are effective in defending against model stealing attacks
(He et al., 2022b,a; Kuditipudi et al., 2023). Given a prompt x, the service provider uses its model θ
and a watermarking function W to generate a watermarked output ywm = θ(x,W). A detector D(·),
based on statistical tests or classifiers (Kirchenbauer et al., 2023; Kuditipudi et al., 2023), is then
used to verify the presence of the watermark. By analyzing detection rates, service providers can set
thresholds to identify whether a suspect model has stolen their model’s behavior.

Fig. 1 shows the taxonomy of watermarks in LLMs, along with their advantages and disadvan-
tages. Watermarks can be classified into distortionary and non-distortionary types. Distortionary
watermarks modify LLM weights or logits, affecting its functioning. Examples include logits-based
watermarks (Kirchenbauer et al., 2023; Liu et al., 2024; Zhao et al., 2024), which change token
generation logits, and training-based watermarks (Baldassini et al., 2024; Gu et al., 2024; Xu et al.,
2024b), which alter the training process. While effective for tracking, these watermarks may im-
pact semantic meaning and are vulnerable to removal attacks (Carlini et al., 2024; Krishna et al.,
2024; Zhang et al., 2024). Non-distortionary watermarks inject watermarks without altering output
distributions, weights, or logits. Examples include sampling-based watermarks (Hou et al., 2024;
Kuditipudi et al., 2023), which modify token or sentence sampling strategies, and prompt-based or
multiple-output watermarks (Giboulot and Teddy, 2024; Pang et al., 2024), which generate multiple
candidate outputs and select the one with the most identifiable watermark. These methods are harder
to detect but can be vulnerable to text modifications and may reduce reliability.

3.3. Local Differential Privacy (LDP)
LDP is a mathematically provable method for ensuring data privacy (E. et al., 2014), based on
randomized survey responses (Warner, 1965), where noise is added to data to protect confidentiality
and prevent accurate inference of individual data. The LDP definition is as follows:

Definition 1. A randomized algorithm A satisfies ϵ-LDP, if for any two inputs x and x′, and for
all possible outputs O ∈ Range(A), we have: Pr[A(x) = O] ≤ eϵPr[A(x′) = O], where ϵ is a
privacy budget and Range(A) denotes every possible output of A.

The privacy budget ϵ controls the difference between the distributions induced by inputs x and
x′. A smaller ϵ results in a larger gap between the outputs and vice versa.

In this work, we apply LDP to perturb the token embeddings of adversaries’ data, bounding
the differences between tokens and their associate outputs under LDP guarantees. We employ the
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Figure 2: System architecture of δ-STEAL.

Laplace mechanism (Dwork et al., 2014), a commonly used LDP approach, to add Laplace noise. For
all inputs x and x′ in the domain of A, where d is the input dimension, the Laplace noise Lap(0, δ)
has a zero mean and a noise scale δ calculated as follows:

δ =
max∀x,x′∈Rd ∥A(x)−A(x′)∥1

ϵ
(1)

4. δ-STEAL: LLM Stealing Attack with Local Differential Privacy

We introduce δ-STEAL, a novel model stealing attack that balances attack effectiveness and model
utility. To achieve this, we address three fundamental questions: 1) How can we optimize this trade-
off? 2) Where should LDP noise be added for the best balance? and 3) How can we bound output
differences to evade watermark detectors? Our approach involves: 1) Leveraging LDP concepts and
varying levels of LDP guarantees by adjusting the noise scale δ to better control the trade-off, 2)
Adding LDP noise to token embeddings without modifying the tokens themselves, preserving model
utility, and 3) Using LDP guarantees to bound the differences between the outputs generated by the
adversaries and by the service provider, bypassing watermark detectors to enhance attack success.

4.1. Setting
This work considers a service provider offering its LLM θ via an API, where users can query a prompt
x and receive the corresponding output y. To protect its intellectual property, the service provider
injects a watermark, producing ywm = θ(x,W) to users. Model stealing attacks then aim to replicate
the behavior of the target LLM θ given a prompt x in this black-box setting, where users have no
access to the model’s internal structure, parameters, or inference details (e.g., temperature, cached
memory). This setting reflects practical deployments widely adopted by commercial providers.

4.2. Threat Models
Adversary’s goals. The adversary aims to 1) replicate the service provider’s model without direct
access, 2) bypass watermark detectors, 3) obfuscate model ownership to hinder infringement claims,
and 4) preserve utility comparable to the original. Achieving these goals enables the adversary to
launch a competing service, causing potential revenue loss for the service provider’s model θ.

Adversary’s capabilities. We assume an attacker who can query the service provider’s LLM via
API like any user and also has no knowledge of LLM’s internal specifications. The LLM discloses
no details in its outputs, ensuring no information leakage through the output y.

4.3. System Operation of δ-STEAL

Fig. 2 and Algorithm 1 illustrate the system architecture and pseudo-code of our δ-STEAL.
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At the service provider, the model θ is trained on proprietary data (Line 5) and deployed via an
API or MLaaS platform. To protect intellectual property, outputs are watermarked with W (Line 6).
In addition, the service provider employs a watermark detector D to identify whether an arbitrary
output yadv from a suspect model θadv contains a watermark; detection indicates that θadv was trained
on watermarked data (Lines 8–11), enabling prompt detection of intellectual property violations.

At the adversary, the goal is to replicate the service provider’s model θ while preserving
high utility. To achieve this, the adversary queries the service provider’s model θ with N prompts
{xi}Ni=1 and collects watermarked responses ywm

i = W(θ(xi)) (Line 15). These prompt-output pairs
{xi, ywm

i }Ni=1 are then used to fine-tune the adversary’s model θadv. By leveraging these correlations,
the adversary can mimic the service provider model’s functionality and behavior during training.
Unlike conventional attacks (Zhang et al., 2024; Pan et al., 2024), which typically modify tokens
with synonyms but often compromise text coherence, δ-STEAL adds LDP noise to token embeddings
without modifying the tokens themselves, thus effectively maintaining utility (Line 16). It is worth
noting that the LDP noise is only added once before fine-tuning θadv. This prevents accumulation of
the privacy budget ϵ, ensuring tighter LDP guarantees on the output differences between θ and θadv.

4.4. Bounding Output Differences with Local Differential Privacy (LDP)

Theoretical Bound. Watermark detectors exploit distinctive statistical patterns between the provider’s
model θ and the adversary’s surrogate θadv. An effective attack must obscure these patterns while pre-
serving utility, a non-trivial trade-off. Appx. A shows that applying an ϵ-LDP to embeddings bounds
the change in output distributions by a factor of expϵ, thereby constraining watermark detectability.
This provides a theoretical link between ϵ, δ and the likelihood of successful evasion.

Noise Calibration. Our choice of δ ∈ {0.001, 0.01, 0.05, 0.1} is guided by the global sensitivity
of embedding vectors detailed in Appx. B, capturing the transition from negligible perturbation to
semantic distortion. Fig. 5b in Section 5.4.6 further connects this to empirical sensitivity differences
across LLMs, showing how embedding-level statistics (e.g., mean and variance) from different LLM
profiles could inform δ selection to balance watermark evasion with utility preservation.

Embedding-layer Noise. We inject noise at the embedding layer because it offers stronger protection
and better utility retention than other deeper layers. First, output-level or latent-level noise is more
vulnerable to query averaging and reconstruction attacks (Dwork et al., 2014), whereas adding noise
to the embedding, we can hide the noise in model parameter though training, which would enhance
the attack. Second, prior work shows that calibrating LDP on embeddings preserves semantics and
yields favorable utility (Meisenbacher et al., 2024; Feyisetan et al., 2020). In addition, training-time
noise at this layer also acts as a form of regularization (Bishop, 1995), allowing early distortion
control while avoiding averaging at inference. Lastly, as highlighted, embedding statistics provide δ
guideline, reinforcing why the embedding layer is the most effective place to inject noise.

5. Experiments

Our extensive experiments shed light on 1) δ-STEAL’s effectiveness against watermarks; 2) Its impact
on model utility, including text generation and downstream tasks; 3) Comparisons with existing
attacks; 4) The trade-off between attack success and utility under LDP guarantees; and 5) The
influence of δ-STEAL’s components on this trade-off.



δ-STEAL: LLM STEALING ATTACK WITH LDP

Algorithm 1 δ-STEAL Algorithm

1: Inputs: Service provider’s model θ, adversary’s model θadv, N adversary’s prompts {xi}Ni=1, Ntest

service provider’s testing prompts {xj}Ntest
j=1 , training iterations T , watermark W , detector D, loss L

2: Outputs: Adversary’s model θadv and watermark detector results I(θadv, θ)
3: At the Service Provider:
4: Watermark Injection
5: Initialize model parameters and fine-tune θ using training data available at the service provider
6: Inject a watermark W to outputs before releasing them to users: ywm = θ(x,W)
7: Watermark Detection
8: for j = 1, . . . , Ntest do
9: Query the adversary’s model to collect its outputs: yj = θadv(xj)

10: Check if yj is watermarked: I
(
D(yj) = 1

)
11: Return I(θadv, θ) based on I

(
D(yj) = 1

)
for all {yj}Ntest

j=1

12: At the Adversary:
13: Initialize model parameters θadv
14: for i = 1, . . . , N do
15: Query the service provider’s model to collect its outputs: ywm

i = θ(xi,W)
16: Add Laplace LDP noise into token embeddings with a noise scale δ:

{x̄i, ȳi} = {xi + Lap(0, δ), ywm
i + Lap(0, δ)}

17: Form a training set: Dadv = {x̄i, ȳi}Ni=1

18: for t = 1, . . . , T do
19: Randomly select a set of training samples Dt ⊆ Dadv

20: θtadv = θt−1
adv − η ▽θadv

L(θtadv, Dt)
21: Return θadv = θTadv

5.1. Baselines

We evaluate six state-of-the-art (SOTA) watermarks: 1) KGW (Kirchenbauer et al., 2023), which
splits the vocabulary into green/red tokens and biases logits toward green ones; 2) EXP (Kuditipudi
et al., 2023), which maps sequence keys to tokens during sampling; 3) SIR (Liu et al., 2024), which
adjusts logits based on the semantics of previous tokens; 4) SemStamp (Hou et al., 2024), which
accepts sentences mapped to valid semantic regions; 5) TW Yang et al. (2023): A binary text
watermark that replaces tokens with context-aware synonyms, guided by a Bernoulli-based random
encoding; and 6) DeepTextMark Munyer et al. (2024) (referred to as DTM), which substitutes tokens
with synonyms using Word2Vec Mikolov et al. (2013). Each method includes its own watermark
detector and watermarked output under attack-free environment is denoted as the Baseline.

In addition, we compare δ-STEAL with three SOTA watermarking attacks: 1) WMremoval (Zhang
et al., 2024), which paraphrases outputs while using a quality oracle to preserve fluency; 2) Dipper
(Krishna et al., 2024), which paraphrases the outputs through context reordering and lexical changes;
and 3) Substitution, adapted from (Pan et al., 2024), which replaces words with WordNet synonyms
(Miller, 1995). An LLM output without watermarks or attacks is denoted as the Original.

5.2. Dataset and Model Configurations

We evaluate δ-STEAL on text generation and downstream tasks. For text generation, we randomly
select 10, 000 training samples and 2, 000 test samples from the C4 dataset (Dodge et al., 2021), using
the first 200 tokens as prompts and generating up to 200 tokens. This setup applies to Original and
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Baseline. For the downstream task, we use the massive multi-task language understanding MMLU
(Hendrycks et al., 2021), a multiple-choice benchmark across 57 subjects of varying difficulty.

We conduct experiments on two LLMs, including LLaMA-2 7B (Touvron et al., 2023) and
Mistral 7B (Jiang et al., 2023), as the Original models. We employ a Laplace mechanism (Dwork
et al., 2014), widely used in LDP, to add noise to the token embeddings. We vary the Laplace noise
Lap(0, δ) with different noise scales δ ∈ {0.001, 0.01, 0.05, 0.1}. These noise scales are associated
with ϵ values of {300, 30, 6, 3} for the LLaMA-2 and {50, 5, 1, 0.5} for the Mistral. Details on how
δ is computed from noise scales are provided in Appx. B. We fine-tune adversary models using LoRA
(Hu et al., 2022) with the Adam optimizer on 10 epochs with a learning rate of 10−5.

5.3. Evaluation Metrics

A model stealing attack is considered successful if it achieves high attack success rates while
preserving utility, ensuring strong performance on both the main task (e.g., text generation) and
downstream tasks (e.g., MMLU). To evaluate δ-STEAL, we examine three key aspects. First, for
effectiveness, we compute the attack success rate (AttackSR) as follows:

AttackSR = 1−

∑Ntest

i=1 I
(
D(θadv(xi)) = 1

)
Ntest

(2)

where Ntest is the number of test samples located at the service provider and D(θadv(xi)) represents
the watermark detector, such that D(θadv(xi)) = 1 if the output of θadv given xi, denoted as
θadv(xi), is watermarked and D(θadv(xi)) = 0 otherwise. In addition, I is the indicator function,
where I(x) = 1 if x is True, and I(x) = 0 otherwise. Eq. 2 defines AttackSR, which measures the
failure rate of watermark detection on the adversary’s outputs; higher values indicate better evasion.
Second, we assess utility using: 1) Perplexity (PPL) for text generation, and 2) Average accuracy on
MMLU (Hendrycks et al., 2021). Third, we further perform qualitative analysis through side-by-side
visualization of prompt-output pairs across watermarks and attacks on different LLMs.

5.4. Experimental Results

5.4.1. δ-STEAL AGAINST EXISTING WATERMARKS

In Fig. 3, δ-STEAL demonstrates effectiveness across watermarks, LLMs, and noise scales, achieving
high AttackSR and low PPL (where lower is better). For example, with LLaMA-2 at δ = 0.001, δ-
STEAL yields 69.28% AttackSR and 4.29 PPL on KGW, but achieves 89.90% and 92.13% AttackSR
with 5.82 and 6.17 PPL on EXP and SIR, respectively. These results show that δ-STEAL is more
evasive with SIR, achieving a higher AttackSR with minimal impact on PPL. In addition, as the noise
scale δ increases, AttackSR improves while PPL slightly worsens yet remains close to the Baseline
and Original outputs. For instance, with KGW on Mistral, as the noise scale δ increases from 0.001
to 0.1, AttackSR rises from 89.28% to 96.95% while PPL slightly increases from 3.61 to 4.73. We
observe similar trends with EXP and SIR, showing increases of 1.72%− 6.14% in AttackSR and
9.08− 23.41 in PPL values. Additional results from DTM and TW remained consistent, achieving
high AttackSR and minimal utility degradation, further confirming δ-STEAL’s effectiveness.

Furthermore, the performance does not exhibit a linear trade-off between AttackSR and PPL.
This non-linear response is expected due to the inherent randomness of noise injection and the
discrete nature of text. If AttackSR is already near its maximum, further increases in noise will not
significantly improve evasion, resulting in flat regions. Similarly, for certain watermarks, moderate



δ-STEAL: LLM STEALING ATTACK WITH LDP

(a) AttackSR (LLaMA-2) (b) AttackSR (Mistral)

(c) Perplexity (LLaMA-2) (d) Perplexity (Mistral)

Figure 3: δ-STEAL performance on different watermarks.

noise may be sufficient to destroy the detector, so AttackSR rises quickly while PPL remains relatively
stable over a range of δ. These patterns reflect threshold effects rather than linear trade-offs.

To validate our work, we conducted statistical significance testing on a representative setting of
KGW under LLaMA-2 with δ = 0.01. The experiment was repeated five times, comparing the mean
AttackSR with the reported 68.34% (Table 2). The observed mean of 68.94% is close to the reported
value, and a one-sample t-test yields a p-value of 0.486, indicating no significant difference. These
results confirm the consistency and reliability of our findings beyond a single trial.

Table 2: AttackSR significance testing of KGW on LLaMA-2 with δ = 0.01.

Reported AttackSR Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 p-value

68.34% 68.85% 69.00% 68.10% 67.01% 71.75% 0.486

Intuitively, δ-STEAL introduces noise into token embeddings, and as the noise scale increases (i.e.,
higher values of δ), the modifications become more substantial. This makes it increasingly difficult
for watermark detectors to detect the watermarks, thereby improving AttackSR. In distortionary
watermarks such as KGW or SIR the generated watermarked tokens depend on preceding context.
Perturbing token embeddings can alter token selection, causing noise accumulation across tokens
and disrupting the watermark signature. Similarly, for non-distortionary watermarks such as EXP,
watermarked tokens are chosen via a predefined sampling process while preserving the probability
distribution. However, the introduction of LDP noise into token embeddings causes deviations in the
rule-based token sampling process. This results in inconsistencies in token choices and weakens the
injected watermark patterns, reducing detectability of watermark detectors.
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Despite these perturbations, δ-STEAL highly preserves model utility for two reasons. First,
the perturbed outputs stay close to the original distribution while the training pipeline remains
unchanged, allowing the surrogate θadv to capture semantic and syntactic patterns of the provider’s
model. Second, since the noise is added only during fine-tuning in a controllable LDP-preserving
manner, the core learning signal remains intact. This allows the stolen model’s outputs to retain
fluency, coherence, and task performance, even while obfuscating watermark patterns. As a result,
δ-STEAL empirically achieves a strong balance between watermark evasion and model functionality,
making it highly effective for stealing proprietary LLM behavior without degrading output quality.

(a) LLaMA-2 with KGW (b) LLaMA-2 with EXP (c) LLaMA-2 with SIR

(d) Mistral with KGW (e) Mistral with EXP (f ) Mistral with SIR

Figure 4: AttackSR and Perplexity results. (Best attacks are in the bottom-right.)

5.4.2. COMPARISON OF δ-STEAL AND EXISTING ATTACKS

Fig. 4 compares the performance of δ-STEAL with other attacks (WMremoval, Dipper, and Sub-
stitution). Notably, a higher AttackSR and lower PPL indicate a better attack; therefore, attacks
appearing in the bottom-right corner are considered more effective. As shown, δ-STEAL achieves
a high AttackSR while maintaining low PPL, comparable to that of the Baselines. For instance,
with δ = 0.1, δ-STEAL achieves an AttackSR of 83.14% and a PPL of 4.71, compared to 4.46 of
LLaMA-2 with KGW Baseline. Similarly, for Mistral with KGW, δ-STEAL achieves an AttackSR of
96.95% at a PPL of 4.73, compared to the Baseline PPL of 4.43. Meanwhile, other attacks usually
exhibit lower values of AttackSR but much higher values of PPL, indicating a substantial impact
on the watermarked outputs, reduced attacked output quality. For instance, WMremoval achieves a
high AttackSR of 93.44% for LLaMA-2 with KGW but raises PPL to 20.31 from the Baseline of
4.46. It is also computationally expensive, requiring paraphrasing and quality checks for every token
to generate non-watermarked outputs. Dipper encounters similar issues, reaching an AttackSR of
87.37% at the cost of 10.09 PPL while significantly degrading model utility on downstream tasks
(Table 3). Substitution attack performs worst, showing high PPL or low AttackSR across settings
due to random token replacements that disrupt semantics and reduce utility.
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5.4.3. δ-STEAL ON DOWNSTREAM TASKS

Table 3: MMLU accuracy across LLMs
and watermarks.

Accuracy (%) LLaMA-2 Mistral
Original 46.70 58.90

KGW
Baseline 44.50 58.60

0.001-STEAL 44.10 42.30
0.01-STEAL 43.00 39.30

EXP
Baseline 45.90 58.70

0.001-STEAL 45.50 47.70
0.01-STEAL 43.30 29.20

Dipper 9.60

Table 3 compares MMLU performance under three
settings: 1) the Original, 2) Baseline, and 3) δ-
STEAL attack applied to the Baseline with noise
scales δ ∈ [0.001, 0.01]. Overall, δ-STEAL maintains
model utility with only a subtle drop in accuracy com-
pared with the Original and Baseline. For LLaMA-2,
δ-STEAL maintains strong performance across all wa-
termarks, with a small accuracy drop of 1.5− 2.6%
at δ = 0.01. Meanwhile, Mistral exhibits greater
sensitivity, showing a more significant accuracy drop
up to 29.5% at δ = 0.01 and 16.30% at δ = 0.001.

The MMLU task is characterized by low entropy and more deterministic text, since outputs are
multiple-choice answers, thus making it highly sensitive to noise. Even small perturbations can lead
to noticeable drops in performance, especially in models like Mistral. In contrast, Dipper, the most
effective attack in the early experiments, performs poorly on this task, achieving only 9.6% accuracy.
This is due to its aggressive paraphrasing process, which significantly alters the semantics of the text
and disrupts the model’s ability to select the correct multiple-choice answers. These observations
further emphasize δ-STEAL’s effectiveness in maintaining model utility unlike other attacks.

5.4.4. TRADE-OFF BETWEEN ATTACK EFFECTIVENESS AND MODEL UTILITY IN δ-STEAL

Throughout all experiments, we observe a trade-off between attack effectiveness and model utility. As
the noise scale δ increases, AttackSR improves, while model utility decreases. Intuitively, increasing
the noise scale δ introduces greater perturbations to the token embeddings. This increases the
difference between outputs generated by the service provider and those generated by the adversary,
making it more challenging for watermark detectors to detect the presence of watermarks, thereby
improving the AttackSR. However, the added noise can distort text quality, making it crucial to
choose an optimal noise scale δ that could efficiently balance attack effectiveness and model utility. In
this work, we present empirical results with δ ∈ [0.001, 0.1], and discuss its effect on the embedding
space in section 5.4.6, leaving the theoretical analysis of optimal noise for future work.

5.4.5. SEMANTIC PRESERVATION OF δ-STEAL OUTPUTS

Table 4 presents different watermarked baseline examples of LLaMA-2. Additional examples are
provided in Table 6 (Appx.C). We observe that δ-STEAL effectively preserves semantic meaning
compared to the Baselines, as indicated by the large green portions in text, while the red portions,
despite textual changes, retain the original content. For instance, the δ-STEAL attack on KGW
introduces slight modifications while preserving the overall semantic meaning, replacing “elections
in the city” with “polls in Delhi” (based on earlier context mentioning Delhi) or “We have to show that
the BJP’s victory” with “We cannot ignore the BJP’s victory.” Examples with EXP and SIR follow
a similar pattern. For instance, in the EXP example, given a financial disclosure context, “Trump
denies the allegation” is modified to “Cohen recently revealed that Trump personally reimbursed
him,” subtly shifting the focus but retaining the core idea. In the SIR example, “traditional television
platform” is changed to “major network television” without significantly changing the meaning.
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Table 4: Prompts and watermarked outputs w/wo δ-STEAL. Green is similarities, red is differences.

Prompt Watermarked output (W) δ-Steal (δ = 0.01) output (A) PPL(W) PPL(A)
... do that for the MCD
polls, ” said a senior
party leader. Another
reason behind not
targeting Modi in the
MCD polls is the
massive victory the B...

KGW: JP achieved in the 2014 Lok
Sabha polls in Delhi , where the party
won all seven seats. “ We have to take
into account the ground reality and the
political equation in the city. We can
not ignore the BJP ’s victory in the
2014 Lok Sabha [...continues]

KGW: JP registered in the 2014 Lok
Sabha elections in the city. “ We have to
convince the people of Delhi that why
we are the best option to govern the city.
We have to show that the BJP ’s victory
in the 2014 Lok Sabha elections was a
[...continues]

3.33 3.67

. . . Daniels, who was
born Stephanie Clifford,
was paid 130,000 by
Cohen after she signed
a nondisclosure
agreement barring her
from talking about her
alleg...

EXP: ed affair with Trump. Trump
denies the allegation. Cohen has
admitted making the payment to
Daniels, which he said was done to
protect Trump’ s campaign from the
allegations. It’ s possible that the
reimbursement payment revealed in the
financial disclosure may [...continues]

EXP: ed affair with Trump. Cohen
recently revealed that Trump personally
reimbursed him for the payment to
Daniels. As a result of the payment to
Cohen, the government ethics office sent
a reminder to Trump that he must
disclose in his annual financial disclosure
report any payments made [...continues]

4.12 5.05

. . . other shows, it’s a
GoPro on a windshield,
” Foley said referring to
Ride Along. “ I think if
this was a show that
was on...

SIR: a traditional television platform,
we would be able to do more with it.
As it stands, it’s a while we do any new
episodes of Holy Folesy! ” Foley also
addressed why his daughter Noelle is
n’t pursuing a career [...continues]

SIR: a major network television, we
would be able to do more with it. I think
we would have a bigger budget and be
able to do some cool things with it. ”
Foley also talked about why his daughter
Noelle is n’t pursuing an [...continues]

8.12 8.23

(a) MMLU Accuracy (Mistral) (b) Embedding Distribution across LLMs

Figure 5: MMLU accuracy and Sensitivity of different LLMs.

5.4.6. VARYING COMPONENTS OF δ-STEAL

Varying LDP Levels. Table 3 and Fig. 3 show that as the noise scale δ increases, AttackSR
improves while PPL values rise. For instance, in text generation, with δ = 0.001, δ-STEAL achieves
69.28% AttackSR and 4.29 PPL under LLaMA-2 with KGW. When δ increases to 0.1, AttackSR
and PPL also increase to 83.14% and 4.71 respectively. Similarly, in the MMLU downstream task,
at δ = 0.001, δ-STEAL achieves 44.10% in average accuracy, but the performance drops to 43.00%
as δ is increased to 0.01. This observation is consistent with different watermarks and LLMs.

Varying LLMs. Table 3 and Figs. 3, 4 exhibit similar trade-offs between attack effectiveness
and utility across watermarks and LDP levels across LLMs. However, Mistral demonstrates larger
performance gaps across noise scales, whereas those of LLaMA-2 remains relatively stable. For
instance, in Table 3, the average accuracy of MMLU using LLaMA-2 only drops by 0.8% between
noise scales of 0.01 and 0.001, while Mistral’s average accuracy drops by 3.0%. Fig. 5a further shows
that Mistral maintains high MMLU accuracy at smaller noise scales, achieving results comparable to
the Baseline. At δ = 10−4, δ-STEAL on Mistral achieves 85.99% AttackSR with a low PPL of 4.44.
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Table 5: Effect of adversary training data size on AttackSR and PPL (LLaMA-2, KGW, δ = 0.01).

Training size 100 1,000 5,000 10,000 20,000 50,000 100,000

AttackSR (%) 97.95 89.94 78.30 68.33 62.58 56.08 45.30
PPL 4.54 4.36 4.56 4.30 5.09 5.14 5.17

The performance gap between LLaMA-2 and Mistral under δ-STEAL stems from differences in
their embedding layer weight distributions. In Fig. 5b, Mistral’s embedding weights follow a sharply
peaked distribution with a significantly smaller standard deviation of 0.0027, while LLaMA-2’s
distribution is flatter, with a standard deviation of 0.01681, approximately 6.22× higher. As a result,
Mistral is more sensitive to perturbations, and applying the same noise scale to this LLM would cause
greater distortion. Therefore, analyzing the embedding weight distribution is a practical approach to
guide the choice of noise scale δ and to anticipate its impact on attack performances.

SemStamp results are also reported in Appx. C. We used the authors’ pre-trained sentence
embedder without fine-tuning, which is not well-suited for our setup. While fine-tuning a stronger
embedder would likely improve detection, it is beyond the scope of this work. Nonetheless, the
results provide useful insights into SemStamp’s performance under these conditions.

5.4.7. VARYING TRAINING DATA SIZE

Our experiments assume an attacker with a maximum query budget of 104, which is substantial and
potentially costly in practice. However, an adversary could accumulate more prompts over time to
train a local model. To study this, we vary the number of training samples from 100 to 100, 000
using LLaMA-2 with KGW and a noise scale of 0.01. In Table 5, as the training size increases, the
AttackSR decreases. This is because larger training datasets may lead the adversary model to overfit
watermark-related patterns, making it more detectable. These results highlight an important caution,
in which more data does not necessarily equate to more effective attacks and underscore the need for
overfitting-resistant training strategies in large-scale deployments of δ-STEAL.

6. Discussion

Novelty and Contribution. While our work has limited novelty in terms of algorithmic mechanics,
its contribution lies in being the first to integrate LDP theory with model stealing as a lightweight
and empirically effective watermark evasion method. Prior studies on LDP have not considered this
threat model, and we view our results as opening a new direction for the watermark security research.
Theoretical Limitations. Our framework does not fully formalize the link between ϵ-LDP guaran-
tees and the disruption of watermark-specific statistical features. The present work relies mainly
on empirical evidence and intuition about embedding-layer noise to break detector correlations.
Although Appx. A provides a bound on distributional shifts under ϵ-LDP, it is not a formal proof that
watermark detectability is eliminated. Establishing rigorous theoretical links between ϵ, δ parameters
and bounded watermark detection remains an important direction for future research.
Practical Deployment and Scalability. We acknowledge that real-world deployment may introduce
additional complexity, such as diverse model architectures, varying query patterns, and adaptive
watermarking defenses. However, the initial results from δ-STEAL, showing high attack success
rates with minimal utility loss, suggest practical feasibility in deployment-like settings. While
finer-grained δ values could provide more detailed insights, they would significantly increase training
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cost; the noise levels were carefully calibrated using embedding sensitivity, capturing the range from
negligible perturbation to semantic distortion. In addition, leveraging efficient LoRA fine-tuning
with modest hardware, δ-STEAL remains scalable to larger models and datasets.
Ablation on Noise Location. To better understand the effect of noise injection location, we conduct
a study comparing three strategies on LLaMA-2 with KGW at δ = 0.01 on (1) noisy embeddings
during fine-tuning (δ-STEAL), (2) noisy pre-logits, and (3) noisy embeddings applied at inference.
Adding noise only at inference produces the lowest utility (highest PPL 5.27) and the lowest AttackSR
(67.69%), since it directly affects model performance at deployment. Injecting noise at the pre-logits
layer raises AttackSR by nearly 9% (74.75%) but also increases PPL by 13% (PPL 4.86), reflecting
a less favorable utility–robustness balance. By contrast, δ-STEAL setting achieves the best trade-off,
confirming the effectiveness of embedding-layer perturbation. Details are reported in Appx. D.

7. Conclusion

This study introduces δ-STEAL, a novel model stealing attack that leverages LDP to bypass watermark
detectors. By applying LDP to token embeddings without altering the tokens themselves, δ-STEAL

effectively preserves model utility. In addition, we bound the differences between watermarked and
non-watermarked outputs, making it difficult for the service provider to distinguish whether the
adversary’s model was trained on the service provider’s watermarked data, thereby evading detection.
We show that even with small noise, δ-STEAL can evade watermark detectors with a high AttackSR,
reaching up to 96.95% and an average of over 80%, while maintaining model utility similar to the
original model without attacks. Furthermore, δ-STEAL outperforms existing attacks across different
watermarks, LDP levels, and LLMs, enhancing its practical applicability in various scenarios.

Although our empirical analysis quantitatively shows the connection between the injected noise
scale δ and attack effectiveness, establishing formal theoretical connections remains a challenging
and open problem. In addition, deriving certified bounds that link embedding sensitivity, perturbation
magnitude, attack success, and downstream performance degradation could provide deeper insights
into these trade-offs and is an important direction for future work.
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