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Abstract

Recent works on text-to-3d generation show that using
only 2D diffusion supervision for 3D generation tends to
produce results with inconsistent appearances (e.g., faces
on the back view) and inaccurate shapes (e.g., animals
with extra legs). Existing methods mainly address this is-
sue by retraining diffusion models with images rendered
from 3D data to ensure multi-view consistency while strug-
gling to balance 2D generation quality with 3D consistency.
In this paper, we present a new framework Sculpt3D that
equips the current pipeline with explicit injection of 3D
priors from retrieved reference objects without re-training
the 2D diffusion model. Specifically, we demonstrate that
high-quality and diverse 3D geometry can be guaran-
teed by keypoints supervision through a sparse ray sam-
pling approach. Moreover, to ensure accurate appear-
ances of different views, we further modulate the output of
the 2D diffusion model to the correct patterns of the tem-
plate views without altering the generated object’s style.
These two decoupled designs effectively harness 3D in-
formation from reference objects to generate 3D objects
while preserving the generation quality of the 2D diffu-
sion model. Extensive experiments show our method can
largely improve the multi-view consistency while retaining
fidelity and diversity. Our project page is available at:
https://stellarcheng.github.io/Sculpt3D/.

1. Introduction

There has been growing research attention towards text-to-
3d generation. Compared to image generation, the data
available for 3D generation is less in quantity and lower
in quality. Thus, many studies [19, 28, 41] have begun to
generate 3D objects using 2D text-to-image models [9, 30]
as supervision to leverage their strong priors learned from
billions of real images.

Lifelike tiger with fierce expression

An antique glass perfume bottle

Prolificdreamer Ours Reference Sets

Figure 1. Comparison of objects generated by our method and
ProlificDreamer. We retain the 2D model’s capability to produce
high-fidelity objects and adaptively learn 3D information from ref-
erence templates retrieved from external datasets.

These methods mainly contain two steps: the first step
is to continuously sample images from different views of
a randomly initialized 3D representation (e.g. NeRF [26],
DMTet [33]). The second step uses a 2D diffusion model
to individually judge whether each image is a high-quality
image that conforms to the text description. Compared to
2D image generation, 3D generation not only requires pro-
ducing high-quality images for each individual viewpoint
but also needs to create plausible shapes and appearances
as a whole 3D object. Thus, a high-quality 2D generative
model and a mechanism that can accurately provide 3D pri-
ors are two keys to achieving decent 3D generation results.
Since early works [19, 28, 41] mainly use the sole 2D diffu-
sion model as supervision, they tend to produce inaccurate
shapes (shape ambiguity) and appearances that are incon-
sistent across viewpoints (appearance ambiguity), as shown
in Figure 1 left, where examples include incomplete bottles,
tigers with multiple legs, and tails.

Recently, some efforts have been made to expand the
3D datasets [10]. Following this, there were immediate at-
tempts to retrain 2D diffusion models on these 3D datasets
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A cactus with pink 
flowers

A metal wristwatch
A worn-out red 
flannel shirt

A gold glittery 
carnival mask

A well-worn straw
sun hat A plastic water gun

An iron key A chipped, white
coffee mug

A dented brass
trumpet

A chameleon perched 
on a tree branch

Steampunk gear 
sculpture

A simple burgundy 
colored feather quill

Figure 2. Our methods can generate high-fidelity objects with decent shapes using various text prompts. The model adaptively incorporates
information from the reference shape displayed on the left, resulting in the creation of objects that range from moderately resembling to
substantially diverging from the reference shape. Please find more video results in the supplementary materials.

Figure 3. As shown in the first row, our method can generate diverse 3D objects given the same reference shape. The second row also
shows the diverse results generated by randomly selecting reference objects from the top five retrieved samples. All templates are marked
as gray and shown in the corner.

to learn 3D information [21, 22, 35]. Although these meth-
ods have made impressive progress, they require expensive
training costs to re-train the large-scale models, and training
2D diffusion models on rendered images often degrades the

model’s generation quality [21, 35] learned on large real im-
age dataset. Similar situations have arisen in the NLP field.
As language models grow huger, it becomes increasingly
difficult to inject new information by retraining the models,
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thus researchers start to explicitly introduce external knowl-
edge through retrieval augmentation [13, 36]. Motivated by
these developments, we design a retrieval mechanism to ex-
plicitly supervise the 3D geometry and appearance using re-
trieved templates without re-training the 2D diffusion model
on rendered 3D data.

Explicitly constraining the geometry [37, 39] presents
an intrinsic challenge: strong constraints on the shape may
make the generated results closely resemble the template,
while too lax constraints may fail to ensure a reasonable
shape [38]. To adaptively learn the 3D shape information
from the template, we exploit the geometric creative capa-
bilities of the 2D diffusion model during volume rendering
to enable creative point growth and pruning during the opti-
mization process. Specifically, we design a sparse ray sam-
pling method to selectively discard points, supervising only
a minimal number of keypoints that can describe the over-
all structure, thereby greatly enhancing the 2D diffusion
model’s freedom in imaginative shape generation. More-
over, we update the template by pruning and generating new
points in areas of low and high NeRF output density, respec-
tively, guided by the diffusion model’s confidence. Since
we directly supervise the NeRF without making modifica-
tions to the 2D diffusion models, our method can fully pre-
serve the generative quality of the diffusion models while
ensuring a decent 3D shape. The generated examples show-
cased in Figure 2 demonstrate that our method is capable
of generating photo-realistic objects that adapt to the tem-
plate shape, with the diffusion model determining the de-
gree of similarity to the template. In cases where users de-
sire results significantly different from the initial template,
we further devised a re-retrieval mechanism that corrects
the retrieval results through the generated shape to make
full use of the external 3D dataset.

The aforementioned design enables our model to gener-
ate diverse and accurate 3D objects in most cases. However,
we also observed that the diffusion model may still gener-
ate appearances that are inconsistent across views despite
the shape being accurate. For instance, it may produce the
appearance of an animal’s face at the back or side view, even
when the geometry of the face is not generated there. Thus,
we further utilize the template’s appearance information to
refine the generated objects.

Considering the appearance of generated objects often
differs from the template, our challenge here is to correct
only the inaccurate aspects of the object’s appearance with-
out altering its style and geometry. Fortunately, recent ad-
vances in image controlling [27, 43, 45] enable users to
easily modify various attributes of an image, such as style,
content, and geometry, in a decoupled manner by training
lightweight image adapters. Given the fact that the tem-
plate always provides accurate guidance on view-specific
patterns, like which view the eyes and nose should appear.

We utilize a unified image adapter to first adapt the template
to the generated object’s style and then use the adapted im-
age to align the generated erroneous appearances with the
correct patterns. As we only modulate the generated pat-
terns for each view without limiting the generated structure,
our method only requires four sparse template views to su-
pervise the 3D space partitioned according to four standard
orientations. To summarize, our key contributions are:
• We introduce Sculpt3D which explicitly integrates 3D

shape and appearance information for multi-view con-
sistent text-to-3d generation while maintaining the high-
quality generation capabilities of the 2D diffusion model.

• We enable creative point growth and pruning during the
2D diffusion and 3D geometry co-supervision process,
which hones 2D diffusion’s ability to produce shapes that
are both accurate and creative. We further use the appear-
ance pattern information of the template to modulate the
output of the diffusion model for resolving appearance
ambiguities.

• Extensive experiments show that our method is able to
significantly improve the multi-view consistency of text-
to-3d generation while retaining generalizability.

2. Related work
Large Scale Text-to-Image Diffusion Model. With the
tremendous progress in large-scale generative models, a
surge of methods [9, 30] have been proposed to perform
various types of text-to-image Generation and Editing. To
further enhance the generative capabilities of large mod-
els, various methods [16, 31] have been proposed to inte-
grate external control signals into these models. Control-
Net [45] fine-tunes the Stable Diffusion [30] models to en-
able more conditional inputs like edge maps, segmentation
maps, keypoints, etc. Similar to ControlNet, T2I-Adapter
[27] and IPAdapter [43] introduce lightweight adapters for
different conditions, providing additional conditional con-
trol and supporting the simultaneous use of multiple condi-
tions for one generation. Using external knowledge to aug-
ment models has recently drawn attention in both NLP and
visual models [2–4, 6, 17]. In image synthesis, Re-Imagen
[6] retrieves semantic neighbors to improve the grounding
of the diffusion models to real-world knowledge. RDM [2]
empowers smaller models with external memory to achieve
high-fidelity image generation results. Inspired by these ap-
proaches, we utilize template appearances as references to
modulate the diffusion process, ensuring the generated im-
ages align with the intended viewpoints.

Learning 3D from 2D Diffusion Prior. Pioneering
works like Dreamfusion [28] and SJC [40] demonstrate the
possibility of supervising NeRF to generate 3D objects us-
ing only 2D diffusion. Although their advancements are
groundbreaking, the results they produced are somewhat
blurry. Subsequent researchers approach the challenge from
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Figure 4. Given a text prompt, we retrieve the most semantically matching samples from an external 3D database. With the retrieved
object, we sparsely select the keypoints of the reference shape to co-supervise the geometry with 2D diffusion model. The appearance of
the reference object is also used to modulate the 2D diffusion to avoid appearance ambiguity.

various perspectives [7, 8, 42, 44]. Specifically, Magic3D
[19] improves both the speed and quality by introducing
DMTet [33]. Latent-NeRF [25] seeks to optimize NeRF
from an implicit space perspective. Fantasia3D [5] sepa-
rates geometry and texture modeling to better learn the de-
tails of 3D objects. Prolificdreamer [41] introduces the VSD
loss to learn the variational distribution of 3D scenes, signif-
icantly improving the generation quality. There’s also a line
of works focused on image-to-3D generation. For instance,
several works [11, 24] use image-conditioned diffusion as a
prior to enhancing the generation of unseen viewpoints.

With the release of the large 3D dataset [10], recent
methods [22, 23, 34, 35] have attempted to fine-tune 2D
diffusion with 3D data. Among them, Zero 1-2-3 [21] in-
troduces camera parameters as conditions to predict images
from arbitrary angles relative to the input image. MVDream
[35] proposes 3D self-attention to further enhance the gen-
eration. Syncdreamer [22] synchronizes the multiview dif-
fusion model to produce multiple new viewpoint images si-
multaneously.

Different from previous works, our Sculpt3D explicitly
explores the 3D priors from reference samples to enhance
both the generated shape and appearance without retraining
the diffusion model.

3. Approach
As shown in Figure 4, our method uses retrieved tem-
plates to provide shape and appearance priors for shape
co-supervision and appearance modulation. The details of
these components will be given in the following sections.

3.1. Revisiting 2D Diffusion for 3D Generation

Dreamfusion [28] introduces a Score Distillation Sampling
(SDS) loss to perform text-to-3d generation. The loss is
designed for distilling knowledge from 2D diffusion models
to train a 3D representation. Specifically, given a NeRF
model g(θ) which can produce image x at arbitrary camera
poses, SDS provides the gradient direction to update θ such
that all rendered images are pushed to the high probability

density regions conditioned on the text embedding y under
the diffusion prior. The SDS computes the gradient as:

∇θLSDS(ϕ, x = g(θ)) = Et,ϵ

[
w(t) (ϵϕ(zt; y, t)− ϵ) ∂x

∂θ

]
, (1)

where w(t) is a weighting function, zt is the noised latent
of image x at timestep t, and ϵϕ is the denoising network of
Stable Diffusion. As aforementioned, while the SDS loss
can effectively train the NeRF model, its generated outputs
often suffer from oversaturation and are lacking in detail.

To address these issues, Prolificdreamer [41] introduces
the VSD Loss. The VSD Loss incorporates the LoRA [16]
model to further fit the variational distribution of the 3D
scene produced by the training NeRF. It then computes the
difference between a pre-trained diffusion model and the
LoRA model to guide the NeRF, which is formulated as:

∇θLV SD(θ) ≜ Et,ε,c [ω(t) · (ϵpretrain(xt, t, y)

−ϵϕ(xt, t, c, y)) ·
∂g(θ, c)

∂θ

]
. (2)

In the formula, ϵϕ represents the score of a noisy ren-
dered image predicted by the LoRA model, and c is the
camera parameter corresponding to the rendered view. We
recommend readers refer to Prolificdreamer’s [41] original
paper for more details. The VSD loss can effectively im-
prove the fidelity of the generated samples, thus we use it as
the 2D diffusion prior by default.

In our experiments, we found that although the VSD loss
is able to produce detailed results, its outputs still suffer
from inaccurate shapes and appearances. To address these
challenges, we next introduce our method of equipping the
current pipeline with retrieval capability to explicitly inject
3D priors in the following sections.

3.2. 3D and 2D Co-supervised 3D Generation

Based on previous observations, we now turn to illustrate
how to use 3D prior when doing text-guided 3D generation.
In our setup, 3D priors can be obtained either by user input
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or retrieved from external datasets. Recent advances in rep-
resentation learning suggest that by scaling up 3D represen-
tations, it is accessible to align the CLIP [29] space with 3D
data, thereby enabling the retrieval of the most semantically
matching objects in a 3D database using natural language.
In the experiment, we use the recently released OpenShape
[20] model which scales up the 3D backbone to align with
CLIP as our 3D retrieval module. NeRF is chosen as our
3D representation due to its flexibility in modifying prior
shapes.

To inject the 3D prior, we initially used the 3D template
shape to directly initialize the volume density of NeRF.
Specifically, inspired by Latent-NeRF [25], we constrain
the density of each point during NeRF training. Here, the
density label of each point is calculated from the winding
number [1] of the normalized template. If the winding num-
bers show that a point is inside the 3D template shape, we
set the density label of that point to 1. Conversely, the
point’s label is set to 0. After obtaining an accurate initial-
ized shape, we continue training NeRF using 2D diffusion
as supervision. However, we find that the 2D diffusion tends
to destroy the initial object shape and converge to a distorted
shape. Similar results are also observed by [14, 32]. They
find that continuing to modify a well-trained NeRF using ei-
ther SDS or VSD loss will destroy the initially well-learned
3D representation. In order to effectively generate the cor-
rect geometry, we supervise NeRF using both 2D diffusion
and 3D shapes. Which is formulated as:

Lco = Ldiff + λLshape. (3)

As aforementioned, too tight supervision on the shape
will make the generated result too similar to the template,
and sometimes it even produces an incorrect appearance due
to discrepancies between the diffusion prior and the tem-
plate shape prior. To effectively use 3D prior, we next intro-
duce our shape learning method.

3.2.1 3D Prior Guided Shape Learning

To allow the diffusion model to adaptively learn the 3D
prior, we introduce a sparse ray sampling technique to se-
lectively supervise a small number of keypoints that roughly
describe the object’s shape. Specifically, every time when
randomly sampling a view to train NeRF, 2D diffusion is
utilized to supervise all rays to learn the correct RGB and
density of each point in the 3D space. At the same time,
we maintain the field of view (FOV) unchanged and pro-
portionally reduce the width and height of the ray sampling
plane by a factor of N for shape supervision. In this way,
as shown in Figure 4, the sampled rays are much sparser,
roughly depicting the 3D object shape and providing direct
shape guidance. Since the shape constraint only provides
a correct sparse prior, diffusion can freely unleash its gen-

erative capabilities in the unconstrained space. The shape
supervision loss is defined as a binary cross-entropy loss:

Lshape = − 1

|R|
∑
o∈R

[so log do+(1−so) log(1−do)], (4)

where R denotes the set of keypoints, so denotes the density
of the keypoint o, and do is the NeRF output density.

Considering the co-supervision of 3D shapes and 2D dif-
fusion, two types of conflicts may arise: 2D diffusion might
tend to either prune certain points existing in the template
or generate points that are not present in the template. To
leverage the creativity of the diffusion model to drive the
model’s generation, we default the shape supervision scale
λ in equation 3 to 0.1. With this configuration, as the dif-
fusion loss scale is larger, points prone to pruning by the
diffusion model will have their density optimized towards
0. Conversely, points inclined to be generated will be opti-
mized towards 1. To accelerate the removal of these unnec-
essary points and the growth of new ones, we further impose
a sparsity loss to enforce the generated points’ density to be
either zero or one, and the points with a density of zero will
be pruned and no longer supervised. As shown in the results
Figure 2, our technique can effectively remove unwanted
points and generate new points to create new shapes. The
sparsity loss is defined as follows:

Lsparse =
1

|T |
∑
o∈T

[log( do) + log(1− do)], (5)

where T denotes the set of all points. The final loss we used
is L = Lco + Lsparse.

The aforementioned design can effectively assist the
model in generating new shapes. When the user wishes to
significantly increase the downsampling factor N to create
objects that differ greatly from the template, we further de-
sign a re-retrieval mechanism. Specifically, we extract the
initially generated shape representation and use it to retrieve
matching shapes in the top 100 objects retrieved by text.
This allows for further utilization of 3D datasets to find the
reference shape that best matches the structure generated by
diffusion.

3.2.2 3D Appearance Modulated 2D Diffusion Prior

Couple shape guidance with 2D diffusion prior can effec-
tively help the model to correctly understand the 3D world,
thereby producing correct generation results. However, in
our experiments, we also find that the model still cannot in-
fer the correct appearance even when the shape is entirely
accurate in some hard cases. To explicitly guide the model
to generate the correct appearance for each view, we de-
sign an optional technique that uses the appearance of the
template as a semantic reference to modulate the diffusion
process in hard cases.
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Text 2D Diffusion

Retrieved Template Multi-face objectColor and hue transferred template  

Adapter

Figure 5. Illustration of the appearance modulation. Four canoni-
cal views of the templates are transferred to the generated object’s
style to modulate the 2D diffusion.

Specifically, recent works [27, 43] demonstrate that var-
ious external signals can be applied to control the output
of diffusion by training a lightweight adapter. The adapter
can utilize images as prompts to generate results with se-
mantic patterns similar to the reference image. In order to
correct the appearance of the generated object without af-
fecting its overall style, we first utilize the adapter to convert
the template objects to match the hue and color distribution
of the generated one. This can be simply achieved by using
the color distribution of the generated object as a condition.
Since the converted template view contains accurate view-
specific patterns, it is used as the image prompt together
with the text to align the diffusion generation results with
the correct semantics pattern. As LoRA is designed to fit
the scene distribution of the trained NeRF in VSD loss, the
diffusion prior coupled with the image adapter can be for-
mulated as:

∇θLdiff (θ) ≜ Et,ε,c [ω(t) · (ϵpretrain(xt, f, t, y)

−ϵϕ(xt, t, c, y)) ·
∂g(θ, c)

∂θ

]
, (6)

where f denotes the image features extracted by the adapter.
As shown in figure 5, since the semantic pattern of the
image is constant within a certain observation range, our
method only requires 4 sparse template images correspond-
ing to 4 canonical view spaces.

4. Experiments
To comprehensively assess the effectiveness of our method,
we use the text descriptions provided by T3Bench [15] for
testing, which contains 100 text prompts covering various
types of single objects. Additionally, we use ChatGPT to
generate 40 different prompts for testing, including both
common everyday objects and some imaginative objects.

4.1. Implementation Details

Our method is built on the implementation from Threestu-
dio [12]. All experiments are conducted on an NVIDIA

A6000 GPU. The model used for 3D retrieval is OpenShape
[20], an open-world retrieval model trained using multiple
ensemble datasets. By default, the shape ranked first in the
retrieval results is used as the reference shape in the exper-
iments. The scale of constraint on shape λ is consistently
set to 0.1. The sparse keypoints selection factor N is set to
8, meaning 2D diffusion supervises 3D points on rays sam-
pled from a 512×512 space, while geometry supervision is
applied to 3D points on rays sampled from a 64×64 image
space. The initial shape is obtained at the 5000 training step
when performing shape retrieval. The version of diffusion
used in the experiments is Stable Diffusion 1.5. The image
adapter used in appearance learning is the publicly available
pre-trained T2I-Adapter [27].

4.2. Results of Sculpt3D

We show the generated results of Sculpt3D in Figure 2, in-
cluding the generated results and the corresponding refer-
ence shapes shown on the left. The results demonstrate
that our method can generate objects with accurate geom-
etry using various text descriptions while maintaining the
ability of 2D diffusion to produce highly realistic appear-
ances. It can be observed that our method can adaptively
learn geometry information from the template. Some gen-
erated objects resemble the reference shapes, while others
show significant differences. Moreover, Figure 3 also show-
cases Sculpt3D’s capability to produce diverse results. We
illustrate this through two sets of examples: one where the
same template is used to generate multiple times and an-
other where various templates are randomly chosen from
the top five retrieved results. The results are shown in the
first and second rows respectively. It can be seen that even
when using the same template, Sculpt3D can produce re-
markably different results due to the sufficient creative free-
dom allowed in the generation process. Additionally, since
the external 3D dataset contains different samples that con-
form to the same semantic description, randomly selecting
from the retrieval results also effectively yields diverse gen-
erative results.

4.3. Comparison to Baselines

We compare our method with five baselines, DreamFusion
[28], Latent-NeRF [25], Magic3D [19], Fantasia3D [5], and
ProlificDreamer [41]. We use the implementation from
Threestudio [12] for all these baselines. As shown in Fig-
ure 6, previous methods struggle to generate shapes with
reasonable geometry and high-quality appearances, while
our method is capable of simultaneously producing objects
with good geometry, higher fidelity, and more details.

4.4. Quantitative Evaluation

To quantitatively evaluate the text-to-3d method, T3Bench
[15] designs two metrics based on multi-view CLIP score

6



DreamFusion Magic3D Latent-NeRF Fantasia3D 

A leather-bound book with gold details

ProlificDreamer Ours

Enchanted forest tree

A colorful parrot on a tree branch

Figure 6. Comparison with baselines. Our method can generate objects with decent shapes, which not only have high fidelity and rich
details but also maintain 3D consistency.

Template Fully supervision Ours

Figure 7. Comparisons with fully shape supervision, the density
changes during training are depicted in the gray box below. It is
observable that full supervision tends to result in the generated
shapes closely resembling the template, thereby leading to a loss
in diversity. Moreover, the discrepancy between 2D priors and 3D
shape priors could potentially result in inaccuracies in the appear-
ance of the shapes.

and GPT-4 evaluation to assess the generated object’s qual-
ity and alignment using 100 prompts. As our work focuses

Table 1. Quantitative comparisons with the baselines.

Methods Quality Alignment Cons. Rate

Dreamfusion 24.9 24.0 34%
Latent-NeRF 34.2 32.0 30%
Magic3D 38.7 35.3 38%
Fantasia3D 29.2 23.5 26%
ProlificDreamer 51.1 47.8 32%
Ours 53.6 49.3 76%

A long woolen scarf, 
striped red and black

A faux fur leopard 
print hat

Figure 8. We also showcase the generation results when no match-
ing samples are retrieved. Even though the retrieval model failed
to find samples that fully match the semantics, our method is still
capable of effectively absorbing useful information from the tem-
plate to produce correct results.

on generating 3D content with multi-view consistency, we
further follow previous work [18] to evaluate 3D consis-
tent rate. Specifically, we randomly select 50 prompts from
T3Bench, and manually identify and count 3D inconsisten-
cies (e.g., multiple faces, legs, and other distorted shapes.)
of each method. The consistent rate is then determined by
dividing the number of 3D consistent objects by the total
generated results. As shown in Table 1, our method signif-
icantly improves the multi-view consistency rate while sur-
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Initial 
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Revised
Shape

Figure 9. Illustration of the effectiveness of re-retrieval using gen-
erated shapes. When users desire results significantly different
from the initial template, we can utilize the outputs from the rough
generation stage, as shown in the first row, to re-retrieve more ac-
curate reference shapes, demonstrated in the second row.

passing the baseline in both quality and alignment metrics.

4.5. Ablation Study

Figure 10. Multi-view inconsistency (appearance) issue. Each col-
umn shows a single view of the object. 1st, 3rd rows: Despite the
accuracy of the shape, there is a potential for ambiguity in appear-
ance (highlighted in the red box) that may still arise. 2nd, 4th
rows: Our appearance modulation method can effectively correct
this type of appearance confusion.

Effectiveness of Shape Learning. As shown in Figure
7, we compare the progression of NeRF density changes
and the final generated results of our method with the
fully shape supervision method proposed in Latent-NeRF
[30], which is designed to make minor modifications to a
given shape surface. The result shows that when applying
their constraining coupled with VSD on the high-resolution
NeRF, the model converges quickly to the reference shape,
excessively limiting the diffusion model’s creativity and re-
sulting in an unnatural shape. Furthermore, the gap be-

tween the diffusion model’s prior and the template’s ge-
ometry may cause the model to generate incorrect appear-
ances in inappropriate locations (e.g., multiple dog faces).
In cases where the reference shapes are not accurate, it be-
comes increasingly crucial to grant the diffusion model a
suitable level of creative freedom. In Figure 8, we show
the generated results when the mismatching templates are
retrieved. It is evident that our model can still effectively
generate correct results by adding and pruning points based
on the inaccurate template shape. We also demonstrate situ-
ations where further reducing the supervised points. Figure
9 illustrates the scenario when the sparse selection factor is
set to 16. In this scenario, the model may make significant
modifications to the initial reference shape, such as remov-
ing the reference shape’s lid or combining two rings of a
bracelet into one. Our re-retrieval method still can effec-
tively utilize the initial generated shape to retrieve the most
matching sample from the candidate set, thus accelerating
the creation of the final high-quality object.

Effectiveness of Appearance Modulation. Though the
correct shape is guaranteed by shape supervision, some
challenging cases also show appearance ambiguities. As
shown in the first row of Figure 10, our baseline model can
generate the correct shape of a yellow rubber duck, but be-
hind its head, despite the absence of corresponding shapes
for the mouth and eyes, it still generates the appearance of a
duck’s face at the back view. By using the template with the
correct pattern to refine erroneous appearances, our method
can effectively adapt the generated objects to the correct ap-
pearance without changing their overall style. In the case
of the golden retriever, which presents a difficult pose, our
baseline model initially generates an extra face on the side
by mistake. Through refinement, we are able to effectively
correct the appearance mismatch for this challenging pose.

5. Conclusion & Limitation
Conclusion: In this paper, we propose Sculpt3D which
explicitly utilizes the 3D shape and appearance informa-
tion from the retrieved template to aid text-to-3D gener-
ation. Sculpt3D is capable of performing creative point
growth and pruning within a framework of sparse geom-
etry constraints, thus enabling flexible and accurate shape
generation. Moreover, we use the correct pattern informa-
tion from the template’s appearance to fix ambiguities in
the generated object’s appearances without changing their
style. Sculpt3D enhances multi-view consistency in a man-
ner that explicitly supervises the 3D representation, thereby
preserving the generative capabilities of 2D diffusion. Ex-
periments on text-to-3d benchmarks show the effectiveness
of the proposed model, and more extensive ablation studies
further confirm the generalizability of our method.

Limitation: While our method has shown promising
performance, we also note some limitations. Since we ex-
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plicitly supervise the geometry, it is difficult for our method
to correctly generate when the initial retrieved shape ex-
ceeds the prior of the 3D dataset. Early in our development,
we experimented with generating an initial 3D shape with-
out constraints and then using that shape to retrieve match-
ing reference objects. Unfortunately, this approach often
fails to produce reasonable reference objects due to the lim-
itations of existing generation methods.
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Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior:
Supplementary Material

A. Supplementary Materials

We have prepared supplementary materials, including a
document and a video, to provide a more comprehensive
understanding of our Sculpt3D. In the document, we dis-
cuss the technical details of our implementation in Sec. B.
Moreover, we present additional examples and comparisons
in Sec. C to demonstrate the performance of our method.
Furthermore, we have prepared a video that showcases the
results and comparisons of Sculpt3D.

B. Technical Details

Implementation details. This section provides more im-
plementation details of our experiments.

• In our experiments, we observe that most objects in Ob-
jectverse [10] are aligned with the observer’s frontal view.
Thus we only normalized the vertices and centers of the
templates without manually adjusting their poses. In ad-
dition to the 100 prompts provided by T3bench, we also
use ChatGPT to generate 40 additional prompts, includ-
ing common objects as well as some unusual and special
items. The prompts we used with ChatGPT are as fol-
lows. I am utilizing a text-to-3D model to generate vari-
ous 3D objects. Please create 40 prompts for me, includ-
ing both everyday common objects and some unusual and
special items.

• When performing appearance modulation, three adapters
are utilized to correct erroneous patterns without alter-
ing the style of the generated objects. The adapters we
used are a spatial color palette adapter, a structure adapter,
and an image adapter. Specifically, since T2I-Adapter
[27] supports combining multiple adapters to utilize com-
plementary ability between different adapters, we use
sketches extracted from the template objects as structure
pattern conditions and the hue and color distribution of
the generated object as spatial color conditions. Both the
sketch and spatial color palette extraction model are the
default models from the T2I-Adapter. This approach ef-
fectively retains the pattern information of the template
while transferring it to the color distribution of the gener-
ated object. When the color distribution of the template is
transferred, it is used as the image condition to modulate
the diffusion process using the equation 6.

C. More Results

Loss balancing ablation In addition to the ablation stud-
ies of the shape learning provided in Sec. 4.5, we conduct
another ablation study to discuss the effectiveness of sparse
ray sampling, which is described in Sec. 3.2.1. We first re-
move sparse ray sampling and keep the value of λ in equa-
tion 3 as 0.1 to evaluate the effectiveness of sparse ray sam-
pling.

As shown in Figure C.1, the results show that removing
sparse ray sampling causes the generated objects to closely
resemble the template, due to the geometric constraints be-
ing uniformly applied to all points. For example, the folds
in the hat closely match those in the template, and the back
cover of the water gun doesn’t close. As shown in the third
column of Figure C.1, by implementing sparse ray sampling
our method can generate imaginative and reasonable geom-
etry under the guidance of the reference shape.

w/o sparse ray sampling w/ sparse ray sampling

A well-worn straw
sun hat

A plastic water gun

Figure C.1. Ablation on the sparse ray sampling strategy.

For the choice of λ in equation 3, we study the effect of
it by applying sparse ray sampling with λ values of 1, 0.1,
and 0.01. The results are shown in Figure C.2. It’s evi-
dent that even at λ = 1, our sparse sampling approach is
able to provide sufficient flexibility for the model to learn
new shapes. Compared to the results with λ = 1, setting
λ as 0.1 can further increase the geometry freedom in the
generated results. For instance, the shape of the straw hat
is obviously changed. When set λ as 0.01, the model can
create significantly new geometries, but it may produce un-
desirable outcomes. Therefore, we default λ as 0.1 in our
experiments.
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Steampunk gear 
sculpture

A well-worn straw
sun hat

𝜆=1 𝜆=0.1 𝜆=0.01

Figure C.2. Ablation on the shape co-supervision value λ in equa-
tion 3.

Details of comparison with baselines. To further vali-
date the effectiveness of the sparse prior scheme in sculpt3d,
we conduct two additional experiments. We first study the
effectiveness of the sketch shape loss proposed by Latent-
NeRF [25]. They propose it to allow the model to make
slight changes in the template’s surface, the loss is formu-
lated as:

LSketch-Shape = CE(αNeRF(p), αGT(p)) · (1− e
− d2

2σS ), (7)

where αNeRF and αGT are the NeRF occupancy and tem-
plate shape’s occupancy, respectively. The loss is applied
to all points, d represents the distance of a point p from the
surface, and σS is a hyperparameter that controls how le-
nient the loss is. A higher σS value means a more relaxed
constraint to the surface of the generated object. Since their
method operates with the SDS loss at a low resolution of 64
rendering, for a more comprehensive comparison, we use
their code to conduct experiments in their 64 setting and
combine it with the VSD loss to train at a higher resolution
of 512 rendering. To fully utilize the new geometry gener-
ation capability of their method, we employ the maximum
value of σS , 1.2, as used by them in all experiments.

Reference 
shape

Low resolution

High resolution

Figure C.3. Ablation of the strategy proposed by [25] in both low
and high resolution rendering.

The experimental results are illustrated in Figure C.3,
where we showcase the generated outcomes at two differ-
ent resolutions along with their corresponding occupancy.
It is observable that at lower resolutions, their method is

able to alter surfaces, like thinning watch straps. However,
at higher resolutions, their approach struggles to change the
object’s shape, which results in the generated geometries
closely resembling the templates. Additionally, it is noted
that their method of relaxing surface constraints often leaves
residual artifacts on the surface. This is evident in the occu-
pancy results of the watch straps in the first row, stemming
from an incomplete removal of surface density.

Comparison with mesh initiation. In the main text, we
mentioned that directly using the template’s shape to initial-
ize NeRF’s density can not guarantee a satisfactory shape.
Unlike our approach, Fantasia3D uses a mesh-based DMTet
as a 3D representation, thus supporting initialization with an
initial mesh. To more comprehensively verify the role of ge-
ometric initialization, we also used our template to initialize
Fantasia3D. As shown in Figure C.4, the results show that
simple initialization is hard to ensure the subsequent learn-
ing direction of the model. Despite the model being ini-
tialed by a reasonable shape, it still produces unsatisfactory
outcomes, such as the distorted shapes of birds and books.
This further underscores the necessity of employing geom-
etry and 2D co-supervision during the learning process.

Templates

Figure C.4. Ablation on the mesh initiation strategy.

More comparisons. Here, we showcase more multi-view
examples generated by our method in Figure C.5.

Furthermore, we also provide more comparisons with
baselines in Figure C.6 and Figure C.7. To compare with
the best results demonstrated by the baseline methods, we
follow the previous works [5, 19, 41] to directly copy the
figures from the corresponding papers for comparisons.
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Templates

An elegant feather-quill ink pen

A cobweb-covered old wooden chest

Wooden Chess Board

Floating cloud city

An imperial state crown of england A model of a house in Tudor style

Figure C.5. More multi-view examples generated by our method, the retrieved templates are shown on the left.
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Ours ProlificDreamer

Fantasia3D Magic3D

Ours ProlificDreamer

DreamfusionMagic3D

A small saguaro cactus planted in a clay pot.

A car made out of sushi.

Figure C.6. Additional examples for qualitative comparison with baselines.
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Ours ProlificDreamer

Fantasia3D Dreamfusion

A delicious croissant.

Figure C.7. Additional examples for qualitative comparison with baselines.
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