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ABSTRACT

Vision Language Action (VLA) models derive their generalization capability from
diverse training data, yet collecting embodied robot interaction data remains pro-
hibitively expensive. In contrast, human demonstration videos are far more scal-
able and cost-efficient to collect, and recent studies confirm their effectiveness in
training VLA models. However, a significant domain gap persists between human
videos and robot-executed videos, including unstable camera viewpoints, visual
discrepancies between human hands and robotic arms, and differences in mo-
tion dynamics. To bridge this gap, we propose MimicDreamer, a framework that
turns fast, low-cost human demonstrations into robot-usable supervision by jointly
aligning vision, viewpoint, and actions to directly support policy training. For vi-
sual alignment, we propose H2R ALIGNER, a video diffusion model that gener-
ates high-fidelity robot demonstration videos by transferring motion from human
manipulation footage. For viewpoint stabilization, EGOSTABILIZER is proposed,
which canonicalizes egocentric videos via homography and inpaints occlusions
and distortions caused by warping. For action alignment, we map human hand
trajectories to the robot frame and apply a constrained inverse kinematics solver
to produce feasible, low-jitter joint commands with accurate pose tracking. Em-
pirically, VLA models trained purely on our synthesized human-to-robot videos
achieve few-shot execution on real robots. Moreover, scaling training with human
data significantly boosts performance compared to models trained solely on real
robot data; our approach improves the average success rate by 14.7% across six
representative manipulation tasks.

1 INTRODUCTION

Vision Language Action (VLA) models (Black et al., 2024; 2025; X Square Robot Team, 2025;
Cheang et al., 2025a; Bjorck et al., 2025) have shown strong generalization in robotic manipulation,
but their progress is constrained by the cost and efficiency of data collection. Meanwhile, large-
scale datasets (Khazatsky et al., 2025; Collaboration et al., 2025; AgiBot-World-Contributors et al.,
2025) often rely on long teleoperation across heterogeneous hardware, which is time-consuming
and limits task diversity. Unlike computer vision and natural language processing that can lever-
age Internet-scale corpora (Schuhmann et al., 2022; Dodge et al., 2021), robotics lacks cheap and
abundant data sources. Human demonstrations (Bahl et al., 2022; Lepert et al., 2025; Grauman
et al., 2022b) provide a more efficient and lower-cost path. Hand videos and action trajectories
can be gathered quickly without continuous robot execution (Chao et al., 2021; Kwon et al., 2021),
reducing hardware dependence and maintenance overhead. More importantly, human motion natu-
rally encapsulates strategies and efficiencies observed in real operations, not brittle, preprogrammed
paths, but adaptable procedures. Using human demonstrations as a primary data source, therefore,
both reduces collection cost and supplies broadly applicable supervision for VLA training.

Existing mimic methods (Wang et al., 2023; Kareer et al., 2024; Xie et al., 2025; Yang et al., 2025a;
Qiu et al., 2025) show that human demonstrations can effectively improve robot policy learning.
Most of these methods incorporate human data as auxiliary signals or in limited pipelines, rather
than turning them into fully robot-usable supervision for large-scale training. Human demonstra-
tions cannot be used directly (Bahl et al., 2022; Kareer et al., 2024) because of domain and em-
bodiment mismatches. We therefore convert human demonstrations into robot supervision and train
VLA models end-to-end on the converted data. Direct transfer, however, still faces three gaps: view-
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point, actions, and vision. (1) For the viewpoint, first-person human operation videos are typically
captured by moving cameras with parallax and jitter, which complicates spatiotemporal alignment
across sequences and tasks. (2) For actions, humans express intent through end-effector trajectories
and dexterous manipulation, whereas robots operate in joint space under kinematic and dynamic
constraints, making the semantics-to-control mapping often indirect and difficult to implement. (3)
For vision, human hands and robot arms differ significantly in appearance, materials, and motion
statistics, limiting the direct transfer of visual representations. Existing methods typically address
only one of these issues (Kareer et al., 2024; Yang et al., 2025a), lacking a systematic approach that
simultaneously tackles viewpoint stabilization, executable action mapping, and visual consistency.

Therefore, we propose MimicDreamer, a framework that turns fast, low-cost human demonstrations
into robot-usable supervision by jointly aligning vision, viewpoint, and actions. To bridge the vi-
sion gap, we propose H2R ALIGNER, a video diffusion model that renders high-fidelity robot-arm
videos by transferring motion from human manipulation footage while respecting arm geometry and
camera priors (Yang et al., 2025c). Quantitative and qualitative results show realistic arm appear-
ance and contact geometry consistent with the source task. For viewpoint stabilization, EGOSTA-
BILIZER canonicalizes egocentric frames via homography-based warping to a task-level reference
view (estimated by averaging per-category rotations) and inpaints distortions or occlusions intro-
duced by warping (Zhou et al., 2023). Experiment results confirm reduced ego-motion drift and
improved cross-sequence comparability. To align the action space, we encode intention as relative
end-effector pose increments in the shared frame and execute it via a constrained inverse kinematics
(IK) solver with distributional normalization and temporal smoothness, yielding feasible, low-jitter
joint trajectories. Visualized rollouts exhibit accurate end-effector tracking while respecting joint
and velocity limits.

In experiments, training the VLA model (Black et al., 2024) solely on MimicDreamer-synthesized
human to robot videos enables few-shot execution on real robots. Across six representative manip-
ulation tasks, increasing the scale of human demonstration data yields consistent gains, improving
an average success rate by 14.7% over a baseline trained only on real robot data. The primary
contributions of this work are as follows:

1. We propose MimicDreamer, a unified human–robot egocentric demonstrations transferring
framework that simultaneously reduces the human-to-robot discrepancy along vision, viewpoint,
and action dimensions and enables scalable VLA training from low-cost human demonstrations.

2. For vision, we introduce H2R ALIGNER based on video diffusion and geometric camera priors
to synthesize high-fidelity robot arm videos. For viewpoint, we introduce EGOSTABILIZER, which
canonicalizes frames to a task reference view by homography and repairs warping occlusions. For
actions, we map human hand trajectories to the robot frame and apply constrained IK to produce
feasible, low-jitter joint commands with accurate pose tracking.

3. The VLA policy trained on synthesized robot demonstrations achieves few-shot execution on real
robots, and across six manipulation tasks, we realize scalable VLA training, improving an average
success rate over the robot data baseline by 14.7%, demonstrating both stronger generalization and
higher sample efficiency.

2 RELATED WORK

2.1 VISION LANGUAGE ACTION MODELS

Recent Vision Language Models (VLM) (Li et al., 2023; Bai et al., 2025; Group, 2025) have made
rapid progress in grounding and instruction following, providing strong semantic priors for down-
stream control (Huang et al., 2024; Kuo et al., 2023). Building on these foundations, Vision Lan-
guage Action (VLA) models (Sapkota et al., 2025) aim to couple internet-scale vision-language
semantics with control policies, mapping observations and natural-language instructions directly to
executable actions in embodied settings. Early pioneering works demonstrated this potential; for
instance, SayCan (Ahn et al., 2022) combined a Large Language Model (LLM) for high-level rea-
soning with learned affordance functions to ground feasible skills, while PaLM-E (Driess et al.,
2023) injected continuous sensory tokens into an LLM, and RT-2 (Brohan et al., 2023) showed
that web-scale vision-language pretraining can transfer semantic knowledge into action policies. A
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prominent trend is the adoption of dual-system or hierarchical frameworks that separate high-level
planning from low-level execution. This approach is exemplified by models like Galaxea’s G0 (Jiang
et al., 2025), GR00T N1 (NVIDIA et al., 2025), and π0.5 (Cheang et al., 2025b), which use a VLM
as a deliberative planner to interpret scenes and decompose tasks into sub-goals. In contrast, other
works focus on creating more tightly integrated, end-to-end models. WALL-OSS (Zhai et al., 2025),
for instance, directly confronts the modality and training objective gaps between VLM and robotics
by introducing a tightly-coupled mixture of experts architecture and a unified cross-level chain of
thought framework that seamlessly unifies reasoning, planning, and action synthesis.

To achieve open-world generalization, recent works augment robot-specific datasets by co-training
on heterogeneous data sources. Models like π0.5 (Intelligence et al., 2025) have demonstrated the
benefits of a mixed training recipe including web data, cross-embodiment trajectories, and verbal
instructions. This concept is further structured by GR-3 (Cheang et al., 2025b) and GR00T N1
(NVIDIA et al., 2025), which utilize a “data pyramid” of web, synthetic, and real-robot data. Despite
these advances, the scarcity of robot data remains a primary bottleneck. MimicDreamer addresses
this by leveraging abundant egocentric videos to enhance policy learning.

2.2 LEARNING FROM EGOCENTRIC VIDEOS

Egocentric videos have emerged as a scalable supervision source for robotic arms, offering a cost-
effective alternative to extensive robot teleoperation (Nair et al., 2022; Bahl et al., 2023; Wang
et al., 2023; Kareer et al., 2024; Yang et al., 2025b). Early works in this area leveraged large-scale
human video datasets primarily for perception-centric pre-training. For instance, R3M (Nair et al.,
2022) pretrains a frozen visual encoder on Ego4D (Grauman et al., 2022a) using time-contrastive
and video-language objectives, which improves the data efficiency of downstream policy learning.
Similarly, VRB (Bahl et al., 2023) learns to extract visual affordances, identifying how to interact,
from human videos on the Internet to guide various control and reinforcement learning paradigms.

Building upon these perceptual priors, subsequent research has focused on more direct imitation
from human behaviour, translating first-person demonstrations into robot-executable policies. Mim-
icPlay (Wang et al., 2023) adopts a hierarchical strategy, learning a high-level latent plan from
unstructured “human play” data to guide a low-level visuomotor controller. In contrast, EgoMimic
(Kareer et al., 2024) proposes a unified framework that co-trains a single policy on both egocen-
tric human videos and robot data. Further advancing the direct use of human data, EgoVLA (Yang
et al., 2025b) pre-trains a VLA model exclusively on human videos to predict human wrist and
hand actions; these actions are then mapped to the robot’s control space via inverse kinematics and
retargeting, followed by a final fine-tuning stage on robot data to refine the policy.

While these methods address individual aspects of the human-robot gap, they do not offer a holistic
solution. Our work, MimicDreamer, introduces a framework that systematically aligns human and
robot data across three critical dimensions simultaneously: vision, viewpoint, and actions. By effec-
tively turning human videos into robot-usable supervision, our framework not only enables few-shot
adaptation but also demonstrates that performance scales consistently as more human data is added,
significantly boosting success rates over baselines trained only on robot data.

3 METHOD

As shown in Figure 1, we propose MimicDreamer, a low-cost pipeline that turns egocentric human
demonstrations into robot-usable supervision through viewpoint canonicalization, human-to-robot
visual alignment, and action alignment. Given egocentric videos, EGOSTABILIZER applies warp
perspective and background inpainting to produce stable egocentric videos. In parallel, 3D hand
trajectories are mapped to the robot frame and converted into feasible, low-jitter robot actions via a
constrained IK solver. Then the robot actions, together with the robot URDF, drive the manipulator
motion in the simulation engine, and a calibrated virtual camera with preset intrinsics and extrinsics
renders egocentric simulation robot videos, which we use as robot-view priors. H2R ALIGNER
consumes the stable egocentric and rendered simulation robot videos to synthesize paired robot-
view manipulation videos. We then train a VLA policy on aligned synthesized robot videos and
IK-derived actions, using a few real robot data for grounding, thereby enabling robot-policy learning
directly from egocentric human demonstrations.
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Figure 1: Overview of MimicDreamer. Viewpoint branch (top left): egocentric videos are stabi-
lized by EGOSTABILIZER (warp perspective + background inpainting) to produce stable egocentric
videos. Camera intrinsics/extrinsics and the robot URDF drive sim rendering to generate additional
stable ego views. Action branch (bottom left): 3D hand trajectories are converted to robot actions
with IK solver. Visual alignment (right): H2R ALIGNER learns to bridge the human-to-robot visual
gap using stable egocentric videos and simulation robot videos. The resulting synthesized robot
videos and robot actions are used for VLA training.

3.1 VIEWPOINT STABILIZATION

Egocentric videos often contain nonstationary camera motion such as head micro-shake, rapid
swings, and scale changes. An unstable background enlarges the appearance gap between robot-
view priors and human videos, which weakens the effectiveness of using rendered priors to guide
the synthesis of robot-view videos. We therefore propose EGOSTABILIZER. By stabilizing and
canonicalizing the viewpoint, it reduces inter-frame angular variation and high-frequency jitter, im-
proves registration robustness and alignment quality, increases data efficiency, and provides cleaner
supervision for subsequent H2R visual alignment and VLA training.

Warp Perspective We match features between adjacent frames or against a reference frame and
estimate a homography Ht with RANSAC (Fischler & Bolles, 1981; Hartley & Zisserman, 2004).
The camera path is temporally smoothed (Liu et al., 2011) to obtain H̃t, and we form a compensation
transform Wt = H̃tH

−1
t . Applying this compensation to each frame removes high-frequency jitter

and aligns frames to a canonical camera path:

Ĩt(x) = It
(
(Wt)

−1x
)
, (1)

where x denotes a pixel in homogeneous coordinates, It is the original frame, and Ĩt is the stabilized
but potentially holey frame. We then compute the maximal common visible region over all {Ĩt} and
apply uniform scaling and light cropping to avoid black borders and field-of-view jitter.

Video Inpainting From out-of-bounds and interpolation-missing regions after remapping, we de-
rive a binary mask Mt. The stabilized frames {Ĩt} together with {Mt} are fed into video inpainter
model (Zhou et al., 2023), which uses spatiotemporal feature propagation and cross-frame consis-
tency to aggregate reliable observations from neighboring frames and to fill holes and disocclusions,
producing Ît with coherent backgrounds and smooth boundaries. This step alleviates artifacts due
to geometric compensation, reduces temporal flicker, and yields a stabilized sequence that is better
suited for H2R visual alignment and the synthesis of robot-view videos.

3.2 ACTIONS ALIGNMENT

We construct a unified H2R action space that deterministically maps human wrist poses to robot
joint commands while respecting kinematics and smoothness. For a bimanual robot, the action is

qt =

[
qL
t

qR
t

]
, qa

t ∈ R7 (a∈{L,R}), qa
t =

[
qat,1, . . . , q

a
t,6, g

a
t

]⊤
, (2)
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Figure 2: H2R ALIGNER. During training, the real robot video Vgt, background Vscene, and simu-
lated foreground Vsim are encoded by a frozen VAE and channel-concatenated as [z̃tar, zscene, zsim]
before entering the trainable H2R DiT, optimized with CogVideoXLoss loss. During inference, a
hand-masked human background and IK-replayed simulation serve as conditions; the target starts
from noise, is denoised by H2R DiT, and decoded by the frozen VAE into synthesized robot videos.

where t is time, the first six entries control the End-Effector (EE) pose, and gat is the gripper DoF.

Human-side Normalization We express human 3D keypoints in a body-centric frame FB : pB =

R⊤
B(p−oB), and estimate a continuous wrist pose (pH,B

t ,RH,B
t ) from the hand skeleton. We then

register to the robot base FR via a rigid transform (RHR, tHR):

p∗
t = RHRp

H,B
t + tHR, R∗

t = RHRR
H,B
t . (3)

Orientation Treatment Because the human wrist behaves like a near-spherical joint while many
EEs largely roll around the tool axis, we align only the tilt (pitch/yaw). The process of softly masking
roll can be represented as:

ϕ(q) = Log
(
R∗

t REE(q)
⊤)∨ ∈ R3, WR = diag(wx, wy, wz), wz≪wx, wy. (4)

IK Resolver For each arm a∈{L,R}, we recover a feasible joint configuration by solving

min
qa

∥∥pEE(q
a)− p∗a

t

∥∥2
2
+ ϕ(qa)⊤WRϕ(q

a) + λ
∥∥qa − qa

t−1

∥∥2
2

s.t. qmin ≤ qa ≤ qmax. (5)

We warm-start from qa
t−1 and use Damped Least Squares (DLS) (Buss & Kim, 2005) steps for fast,

smooth trajectories. The DLS update, Jacobian forms, stopping criteria, and ablations are provided
in the Appendix A.

Gripper The binary gripper command gat ∈ [0, 1] is inferred from hand openness via a lightweight
VGG-based (Simonyan & Zisserman, 2015) classifier and a short median filter reduces flicker.

3.3 VISUAL ALIGNMENT

During experiments, we found that, due to the large visual discrepancy between the PiPER manip-
ulator and human hands, training a VLA policy with first-person human demonstration videos plus
aligned actions struggled to accomplish the corresponding tasks. To remove this human–robot visual
gap, we design H2R ALIGNER as shown in Figure 2, a unified visual aligner from human to robot
that converts inexpensive but “not directly usable” human clips into robot training samples that are
executable, evaluable, and semantically consistent. Built on CogVideoX-5b-I2V (Hong et al., 2022;
Yang et al., 2025c), H2R ALIGNER conditions on instruction embeddings, the real video stream,
and the simulation rendering stream, trains a multi-conditional video diffusion generator, and uses
the generated clips to construct the mimic robot dataset for subsequent VLA post-training.

During the training phase, we organize batches at the episode level with length f . Each episode e
contains a joint-position sequence and action labels q, a ∈ Rf×14, as well as a head-camera video

5
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of the real manipulator Vgt ∈ Rf×H×W×c. We decompose the conditioning inputs into two parts:
a robotic foreground stream and a background scene stream. The foreground stream is obtained by a
simulation replay of the real joint trajectory. Given the URDF ur that matches the real platform and
a virtually calibrated camera (intrinsics and extrinsics aligned to real setup), the simulator renders:

Vsim = Sim(q, ur). (6)

The background stream provides environmental observations without the manipulator. To this
end, we project the simulator’s manipulator silhouette into the real video to obtain a mask, apply
slight dilation to mitigate boundary pixels, and remove the masked region from Vgt to obtain a
clean background sequence Vscene ∈ Rf×H×W×c. We use three videos to train H2R ALIGNER
{Vgt,Vscene,Vsim}. Here Vgt is used only as the target path for noising/denoising during training,
while Vscene,Vsim serve as conditional paths. They are encoded by a shared, frozen video VAE
into latent sequences {zgt, zscene, zsim}. The target latent ztar is perturbed at a randomly sampled
diffusion timestep to produce the denoising target z̃tar,t; the scene and simulated-foreground latents
remain clean as conditions. We then concatenate the three along the channel dimension and, together
with 3D spatiotemporal positional encodings, feed them into H2R DiT to perform latent-space de-
noising and conditional fusion:

z̃tar,t =
√
ᾱt ztar +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (7)

zt = concatchannels
[
z̃tar,t, zscene, zsim

]
, (8)

where ᾱt is the cumulative product of the noise-schedule coefficients up to timestep t.

Next, the H2R DiT denoises zt in latent space under 3D spatio-temporal positional encodings, out-
puts the residual prediction in timestep t, and updates the H2R DiT backbone during training. Let θ
denote the trained H2R DiT parameters, the final optimized latent is:

ztar,0 = Tθ

(
zscene, zrobot; ξ, τ

)
, (9)

During the inference phase, the foreground stream replays the IK-derived joint sequence qik in sim-
ulation to produce Vik

sim. The background stream uses the real hand video segmented by Grounded-
SAM2 (Ravi et al., 2024; Ren et al., 2024), with slight dilation to obtain the hand mask, yielding
Vik

scene; the human video is first stabilized by the viewpoint procedure in Sec. 3.1 before entering
this module. The target latent is initialized from noise ξ, and Vgt is not used at inference.

Finally, we create the mimic robot dataset by time-aligning the synthesized robot videos (Vrob) with
their corresponding actions (aik). This dataset translates human strategies into the robot’s visual
domain and can be used independently for policy training or combined with real robot data to im-
prove robustness. By preserving human strategy while constraining visual appearance to the robot’s
domain, H2R ALIGNER transforms inexpensive human videos into executable and semantically
aligned training samples. This provides a stable data foundation for learning instruction-to-control
mappings.

3.4 VLA TRAINING

We use the mimic robot data synthesized by H2R ALIGNER and IK solver as the primary training
source and then mix in a small amount of real demonstrations for post-training, so the policy attains
both broad semantic alignment and real-world executability. We initialize the policy from the π0

pretrained model (Black et al., 2024), reusing its VLM backbones and action tokenization, and
perform post-training on our data. During training, the instruction is encoded by a text encoder to
obtain an instruction embedding, and a short-window video encoder processes the video. The policy
head outputs intention-level controls, which are projected to joint commands, ensuring feasible,
low-jitter trajectories. We supervise the action tokens with a conditional flow matching objective
(Lipman et al., 2022; Tong et al., 2024):

LCFM(θ) = Ec,a, t, ϵ

[
∥uθ(yt, c, t)− u⋆(yt | a, ϵ, t)∥22

]
, (10)

where θ are the model parameters, c is the fused context from the video and instruction encoders,
a ∈ Rd is the ground-truth action token, t ∼ U(0, 1) and ϵ ∼ N (0, I), the noisy interpolant is
yt = α(t)a + σ(t)ϵ with schedules α(0) = 0, α(1) = 1, σ(1) = 0, the target velocity is u⋆(yt |
a, ϵ, t) = α̇(t)a + σ̇(t)ϵ, and uθ(·) is the learned velocity predictor. We optimize θ with AdamW
(Loshchilov & Hutter, 2019) and select the final checkpoint by validation of CFM loss LCFM.
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Table 1: Quantitative Results Across Three Training Setups. SR and PSR for a Robot Only baseline
(20 robot data), w. Minimal Robot trained primarily on synthesized data (20 human-to-robot data +
3 robot data), and w. Equal Data using a balanced mix (20 human-to-robot data + 20 robot data).

Method Pick Bag Clean Surface Stack Bowls Dry Hands Insert Tennis Stack Cups

SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑
Robot Only 70% 82% 90% 90% 65% 80% 80% 88% 25% 38% 65% 80%

w. Minimal Robot 75% 85% 95% 95% 70% 85% 85% 93% 25% 43% 65% 85%

w. Equal Data 90% 93% 100% 100% 90% 93% 100% 100% 45% 70% 90% 90%

4 EXPERIMENTS

4.1 RESULTS OF VLA POLICY ON MIMIC ROBOT DATA

Experiment Setup In this study, we employ the EgoDex dataset (Hoque et al., 2025) for our
experiments, which provides a large-scale collection of egocentric videos. The EgoDex dataset is
essential for training models to learn dexterous manipulation, offering 829 hours of high-quality,
1080p egocentric videos paired with 3D upper-body poses for 194 tasks.

Evaluation Tasks To evaluate our framework’s ability to generalize from human demonstrations
to robotic actions, we constructed six scenarios that resemble those in the EgoDex dataset, e.g.,
Pick Bag,Clean Surface, Stack Bowls, Dry Hands, Insert Tennis, and Stack
Cups. The specific task and subtask setup are detailed in the Appendix B.3.

Evaluation Metrics Following (Yang et al., 2025b), the evaluation is conducted using Success
Rate (SR), which quantifies overall task success, and Progress Success Rate (PSR), which measures
the average number of completed subtasks relative to the total subtasks in each task.

4.1.1 FEW-SHOT EXPERIMENTAL RESULTS

We conducted experiments with three distinct data configurations to evaluate the effectiveness of the
MimicDreamer framework in improving robotic task execution. As shown in Table 1, we present the
performance of each experimental setup across six manipulation tasks. Averaged over all tasks, the
Robot Only setup attains 65.8% SR/76.3% PSR, whereas the w. Minimal Robot setup already lifts
performance to 70.0%/81.0%. The strongest results come from the Equal Data setup: 85.0%/91.0%.
Per-task, the Equal Data method improves SR on every task (+10 ∼ 25%) and PSR on every task
(+10 ∼ 32%), achieving 100% SR/PSR on Clean Surface and Dry Hands. The largest
relative gains appear on the hardest setting, the performance on Insert Tennis Task grows from
25%/38% to 45%/70% and on long-horizon stacking tasks (Stack Bowls: +20%SR/+13%PSR;
Stack Cups: +25%SR/+10%PSR).

Even with minimal robot data, MimicDreamer surpasses Robot Only setup on both metrics and most
tasks, indicating that human demonstrations provide strong priors that transfer to robot control. The
average gap between SR and PSR shrinks from 10.5% (Robot Only) to 6.0% (w. Equal Data), and
PSR variability across tasks drops. Together, these trends suggest that MimicDreamer converts more
partial attempts into full successes and behaves more consistently across diverse tasks.

4.1.2 SCALING EXPERIMENT RESULTS

To assess the scalability of the Mimic Robot Data, we start from a baseline VLA trained with 20
real-robot trajectories and then progressively add human-to-robot data from 5 to 30. As the number
of human demonstrations increases, both SR and PSR rise monotonically across all six tasks, show-
ing that robot demonstrations synthesized from human demonstrations by MimicDreamer exhibit
clear scalability in VLA training. As shown in Figure 3, the largest gains occur between 5 and 20
human data, after which improvements exhibit diminishing returns due to ceiling effects as success
rates approach 100%, indicating a fast-then-steady scaling trend. At a 50–50 mix percentage of
human-to-robot and robot data (20 human + 20 robot), the success rate improves over the baseline
by 11.0%, 10.0%, 13.0%, 12.0%, 32.0%, and 10.0% across the six tasks. Overall, viewpoint canon-
icalization and visual alignment first deliver stable partial success gains, while constrained IK with
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temporal smoothing converts partial success into complete task success; once visual and viewpoint
factors saturate, remaining headroom is dominated by dexterous skills such as precise grasping,
which benefit more from additional human demonstrations. More quantitative results are shown in
Appendix B.6.

20 Robot +5 +10 +15 +20 +25 +30

0.70

0.75

0.80

0.85

0.90

0.95

S
R

 / 
P

S
R

SR
PSR

(a) Pick Bag

20 Robot +5 +10 +15 +20 +25 +30

0.90

0.92

0.94

0.96

0.98

1.00

S
R

 / 
P

S
R

SR
PSR

(b) Clean Surface

20 Robot +5 +10 +15 +20 +25 +30

0.65

0.70

0.75

0.80

0.85

0.90

0.95

S
R

 / 
P

S
R

SR
PSR

(c) Stack Bowls

20 Robot +5 +10 +15 +20 +25 +30

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

S
R

 / 
P

S
R

SR
PSR

(d) Dry Hands

20 Robot +5 +10 +15 +20 +25 +30

0.3

0.4

0.5

0.6

0.7

S
R

 / 
P

S
R

SR
PSR

(e) Insert Tennis

20 Robot +5 +10 +15 +20 +25 +30

0.65

0.70

0.75

0.80

0.85

0.90

0.95

S
R

 / 
P

S
R

SR
PSR

(f) Stack Cups

Figure 3: Scaling Experiment Results. As more human-to-robot data is added, the MimicDreamer’s
success rate monotonically increases across all six tasks.

4.2 RESULTS OF H2R ALIGNER

Experiment Setup We train H2R-Aligner on 24 manipulation categories. Raw clips are randomly
cropped to 640× 360 and resized to 672× 384; this yields 3, 735 samples, each 64 frames at 30 fps,
split 9 : 1 into train and val set.

Visual Results We present several visual results for H2R-ALIGNER on cloth manipulation. As
shown in Figure 4, the top row is the original human demonstration, the middle row is the simulated
replay with the same trajectories, and the bottom row is the synthesized robot-domain video. The
results show that H2R-ALIGNER generates realistic robot-arm sequences aligned with both task
semantics and background context. Additional examples are provided in Appendix B.5.

Human

Robot

�0 �1 �2 �3

Sim

Figure 4: Visual Results of H2R ALIGNER. Top: original human demonstration video. Middle:
replayed robot simulation from the same action trajectories. Bottom: synthesized robot-domain
video generated by H2R ALIGNER. The generated sequences transfer human motions into robot-
arm appearances while preserving background context and manipulation semantics.

4.3 RESULTS OF EGOSTABILIZER

Quantitative Results To contextualize the following results, we adopt a unified evaluation proto-
col across six data categories, using the original videos as the reference. We report three stability
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Table 2: Per-category, frame-weighted means. “↓” lower is better; “↑” higher is better. Cells show
before→ after (relative ∆%).

Category Videos Stability ↓ Jitter RMS ↓ H-RMSE ↓
Pick Bag 332 0.4086→ 0.3752(−8.2%) 0.9757→ 0.8566(−12.2%) 0.00233→ 0.00166(−28.9%)

Clean Surface 1941 0.1144→ 0.0939(−17.9%) 0.1538→ 0.1421(−7.6%) 0.000568→ 0.000560(−1.5%)
Stack Bowls 2731 0.1156→ 0.0949(−17.9%) 0.1404→ 0.1321(−5.9%) 1.2245→ 1.2066(−1.5%)
Dry Hands 2681 0.4347→ 0.2952(−32.1%) 0.5777→ 0.4462(−22.8%) 1.0319→ 1.0040(−2.7%)

Insert Tennis 279 0.1065→ 0.0941(−11.6%) 0.2130→ 0.2030(−4.7%) 4.9562→ 4.8813(−1.5%)
Stack Cups 976 0.4369→ 0.3483(−20.3%) 1.3137→ 1.0448(−20.5%) 11.3364→ 10.6954(−5.7%)

All 8940 -21.9% -13.1% -3.3%

metrics, Stability (Grundmann et al., 2011), Jitter RMS (Liu et al., 2013), and Homography RMSE
(H-RMSE) (Wang et al., 2019; Balntas et al., 2017) , to jointly assess viewpoint steadiness and
geometric alignment. These complementary metrics quantify the impact of EGOSTABILIZER on
stability and geometric consistency. Formal definitions and equations are provided in Appendix B.4.

As shown in Table 2, EGOSTABILIZER substantially enhances viewpoint consistency while preserv-
ing geometric fidelity. On average across all categories, our method reduces the Stability mean by
21.9% and the Jitter RMS by 13.1%, indicating a significant reduction in camera shake. This stabi-
lization is achieved at a low geometric cost, evidenced by a modest 3.3% decrease in H-RMSE. A
per-category analysis reveals that the stabilization gains are positively correlated with the initial in-
stability of the sequence. For example, Dry Hands benefits the most (32.1% Stability reduction),
whereas already-stable sequences such as Stack Bowls show more moderate improvements.

Quality Result To isolate and evaluate viewpoint stabilization, we first remove dynamic objects
by segmenting human hands and inpainting the background. This process yields background-only
sequences where inter-frame changes are dominated by camera motion. As shown in Figure 5, we
compare keyframes from a 300-frame sequence by tracking the displacement of static background
features. The original video exhibits pronounced jitter, whereas keypoints in the EGOSTABILIZER
output show negligible displacement, demonstrating robust viewpoint stabilization. Additional ex-
amples are provided in the supplementary materials.

Vertical

before after
Align lineIntersection point

Horizontal

before
after

�150

�0

�300

�0 �150 �300

Figure 5: Qualitative evaluation of EGOSTABILIZER. On a 300-frame Clean Surface video, frames
at indices 0, 150, and 300 are shown beforeand after stabilization. Keypoints such as wall corners
and table–image intersections exhibit large jitter in the original video, whereas the stabilized outputs
show negligible displacement, confirming effective viewpoint stabilization.

5 CONCLUSION

MimicDreamer converts low-cost human demonstrations into effective robot supervision by align-
ing visual content, viewpoint, and actions. Training VLA models on the transferred dataset enables
few-shot execution on real robots and scales with additional human data. The approach lowers data
collection cost while preserving generalization. Future work will target richer, dexterous, and de-
formable object manipulation, integrate force and contact cues, improve long-horizon temporal co-
herence, and expand cross-robot and cross-scene generalization. We also plan cost-aware scheduling
of human and robot data and larger-scale synthesis to raise the ceiling of scalable VLA training.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Figure 1 and Figure 2 clearly
describe the proposed MimicDreamer framework and its three modules (EGOSTABILIZER, H2R-
ALIGNER, and action alignment). The training details for both H2R-ALIGNER and the VLA pol-
icy are provided in the Appendix B.1, including model architectures, hyperparameters, and dataset
preprocessing steps. Complete mathematical formulations of the objectives and metrics are also in-
cluded in Appendix B.4. For experimental reproducibility, we describe data splits, training settings,
and evaluation protocols in Section 4, and further report metric definitions in the supplementary
materials. We plan to release our codebase, training scripts, and dataset processing pipeline to the
community in the near future to further facilitate verification and extension of our work.
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A DETAILS FOR UNIFIED HUMAN-TO-ROBOT ACTION SPACE

Human-side Coordinate Normalization All human 3D keypoints are expressed in a body-centric
frame FB whose origin is the spine base:

pB = R⊤
B(p− oB). (11)

From these keypoints, we estimate a continuous wrist pose (pH,B
t ,RH,B

t ); RH,B
t is constructed

from stable anatomical axes (optionally using the mean of several metacarpophalangeal joints to
reduce jitter).

Human-to-robot Rigid Alignment Given the robot base frameFR, we use a fixed rigid transform
(RHR, tHR) to place human motion in the robot workspace:

p∗
t = RHRp

H,B
t + tHR, R∗

t = RHRR
H,B
t . (12)

Tilt-only Orientation Treatment Instead of enforcing full SO(3) alignment, we emphasize palm
tilt (pitch/yaw) and de-emphasize tool-axis roll. Let

Rerr(q) = R∗
t REE(q)

⊤, ϕ(q) = Log
(
Rerr(q)

)∨ ∈ R3, (13)

and apply a diagonal weight WR = diag(wx, wy, wz) with wz ≪ wx, wy to softly mask the roll
channel.

Per-arm IK Objective With Smoothness and Limits For each arm a ∈ {L,R} we recover a
feasible joint configuration by solving

min
qa

∥∥pEE(q
a)− p∗a

t

∥∥2
2
+ ϕ(qa)⊤WR ϕ(qa) + λ

∥∥qa − qa
t−1

∥∥2
2

(14)

s.t. qmin ≤ qa ≤ qmax. (15)

We warm-start with qa
t−1 to encourage temporal smoothness and faster convergence. We implement

the above with DLS steps on the stacked task error

e(q) =

[
pEE(q)− p∗

t

W
1/2
R ϕ(q)

]
, (16)

∆q = J⊤(JJ⊤ + µ2I
)−1

e(q) − λ
(
q− qt−1

)
, (17)

where J is the geometric Jacobian at q and µ is the damping coefficient. We iterate the update and
enforce box constraints at each step:

q ← clip
(
q+∆q, qmin, qmax

)
, (18)

until the solution converges or a fixed, small number of steps is reached.
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Gripper For the seventh DoF, we infer a binary open/close command gat ∈ [0, 1] from the human
hand state. A lightweight VGG-based classifier predicts the state from hand images; after manual
spot-check correction on a small subset, we threshold to obtain gat and optionally apply a short
median filter to reduce flicker.

B EXPERIMENT DETAILS

B.1 HYPERPARAMETER SETTINGS

H2R ALIGNER We train H2R ALIGNER on 24 manipulation categories. Raw clips (approxi-
mately 640×460) are randomly cropped to 640×360 and then resized to 672×384; this augmen-
tation expands the dataset from 1,245 to 3,735 samples. Each sample contains 64 consecutive
frames at 30 fps, and we split the data into training and validation sets with a 9:1 ratio. Ev-
ery sample provides three synchronized streams: (i) real robot video Vgt (used only as the tar-
get path during training for noise/denoise supervision), (ii) simulated foreground Vsim rendered
in RobotWin by replaying the joint trajectory q with a URDF and camera intrinsics/extrinsics
aligned to the real setup, and (iii) background Vscene obtained by projecting the simulated sil-
houette onto Vgt and removing the foreground after dilation (kernel size 5, 3 iterations). Instruc-
tion text is encoded online by the T5 encoder bundled with CogVideoX-5b-I2V (max length 226,
clean prompt=True, with attention mask=True, with cache=True). The model is
built upon THUDM/CogVideoX-5b-I2V: the video VAE (AutoencoderKLCogVideoX) is frozen
and only encodes videos to the latent space, while the 3D DiT (CogVideoXTransformer3DModel)
is the trainable backbone. During training, the target latent is noised at a random timestep, whereas
zscene and zsim remain clean as conditions; the three are concatenated along channels in the fixed
order [z̃tar,t, zscene, zsim] and fed to the DiT (input channels = 48), together with the instruction
embedding and 3D rotary positional embeddings. The loss is the latent-space diffusion objective im-
plemented by CogVideoXLoss (noise/residual prediction). We optimize with AdamW (learning
rate 2×10−5, weight decay 1×10−4) under a constant schedule, using bf16 precision and Deep-
Speed ZeRO-2 on 4 GPUs (batch size per GPU = 2, gradient accumulation = 8). Training runs
up to 100 epochs with EMA and activation checkpointing on CogVideoXBlock; checkpoints are
saved every 10 epochs with a maximum of 10 kept, and logging uses TensorBoard. Human videos
or Grounded-SAM2 segmentation are not used during training; at inference, a human-background
video and the IK-replayed simulation serve as conditions to synthesize pseudo-robot videos for
downstream VLA training.

VLA Training We train the VLA policy by mixing pseudo-robot data from H2R ALIGNER with
real demonstrations in a single dataloader. Each sample is a 64 -frame window at 30 fps and
672×384 resolution, paired with the instruction text and time-aligned 14-DoF actions. The model is
initialized from pi0 pretrained weights via the provided WeightLoader; parameters selected by
freeze filter are frozen (cast to bfloat16), while those matching trainable filter
are optimized. Training uses the model’s built-in behaviour cloning objective compute loss on
(observation, actions), optimized with Optax (created by create optimizer) under
the configured learning-rate schedule; gradients are computed only over trainable parameters (via
nnx.DiffState). We run on a multi-device sharded mesh (FSDP) with batch size divisible
by device count, enable mixed precision (bf16), and maintain EMA weights when ema decay
is set. Checkpoints are saved at the configured save interval (with resume support), and
Weights&Biases logs loss, gradient norm, and parameter norm at log interval.

B.2 VISUAL TRANFERRED RESULTS OF MimicDreamer

Figure 6 illustrates visual transfer results of MimicDreamer. On the left, we show egocentric hu-
man demonstration frames for four representative tasks (Clean Surface, Pick up a Bag,
Insert Tennis, Stack Cups). On the right, we present the corresponding synthesized robot-
domain videos generated by MimicDreamer, which preserve the task semantics while replacing
human hands with robot arms. Additional examples are provided in the supplementary materials.
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Figure 6: Illustration of videos generated by MimicDreamer for human-to-robot transfer, which
stabilize egocentric viewpoints and translate human hands into robot manipulators, enabling control
of foreground and background appearance while preserving 3D structure and kinematic plausibility.

B.3 TASK DESCRIPTION

We constructed six scenarios that resemble those in the EgoDex dataset. As shown in Figure 7, we
provide the initial state and steps of six tasks. These scenarios are designed to assess a variety of
manipulation skills that robots must perform. The details of tasks and corresponding sub-tasks are
as follows:

Pick Bag Under a neutral background, a robot manipulator interacts with an orange shopping
bag on a tabletop. The task is divided into three sub-tasks: Step 1 Grasp the handle: the end-effector
closes to securely hold the bag. Step 2 Lift and place: the bag is lifted in a stable manner.

Clean Surface The manipulator uses a lint roller to clean a blue T-shirt placed on the table.
The task contains two sub-tasks: Step 1 Grasp the roller: the end-effector securely holds the lint
roller. Step 2 Coverage rolling: perform back-and-forth rolling to clean the garment.

Stack Bowls Three bowls are arranged on the table with space reserved for stacking. The task
contains two sub-tasks: Step 1 Place the left bowl on top of the middle bowl. Step 2 Place the right
bowl on top of the middle bowl to complete a three-bowl stack.

Dry Hands The robot uses its right arm to grasp a towel and wipe its left arm. The task contains
two sub-tasks: Step 1 Grasp the towel: the end-effector securely pinches and holds the towel. Step
2 Coverage wiping: the towel contacts the left arm, and a wiping motion is executed.

Insert Tennis Pick up a tennis ball from the table and place it into the bottle opening. The
task contains two sub-tasks: Step 1 Pick up the ball: the end-effector securely grasps and lifts the
ball. Step 2 Insert into the bottle: move to the bottle mouth and release the ball.

Stack Cups Stack two or three cups on a flat surface. The task contains two sub-tasks: Step 1
Grasp the cup: the target cup for stacking is securely grasped. Step 2 Stack the cups: all cups are
successfully stacked together.
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Initial State Step 1 Step 2

(b) Clean Surface

(c) Stack Bowls

(e) Insert Tennis

(f) Stack Cups

(a) Pick up a Bag

(c) Dry Hands

Figure 7: Initial State and Steps of Tasks

B.4 EVALUATION METRIC FORMULAS

Notation. Let It ∈ RH×W denote the t-th frame (grayscale or luma). Feature correspon-
dences (RANSAC inliers) between two frames are {(xi,x

′
i)}Ni=1 with homogeneous coordinates
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x̃ = [x, y, 1]⊤. A homography Ht or an affine transform At =

[
a b tx
c d ty

]
aligns a source frame

to It. Ωt is the valid (inlier/visible) pixel set, with cardinality |Ωt|. All angles are in degrees (◦).

1. View Consistency. It measures the viewing Angle change (in degrees) of adjacent frames and
directly reflects the jitter size The per-step viewpoint change is approximated by the rotation part of
At:

ϕt = atan2(b, a) [◦]. (19)
Aggregate statistics:

µVC =
1

T − 1

T∑
t=2

ϕt, (20)

P95VC = percentile
(
{ϕt}Tt=2, 95%

)
, (21)

σVC =

√√√√ 1

T − 2

T∑
t=2

(
ϕt − µVC

)2
. (22)

2. Viewpoint Jitter RMS. It calculates the high-frequency residual energy after the low-pass path,
only characterizing ”fast jitter”. Let ϕ̃t = S(ϕt) be a low-pass filtered version. The jitter energy is

JitterRMS =

√√√√ 1

T − 1

T∑
t=2

(
ϕt − ϕ̃t

)2
. (23)

3. Homography RMSE (H-RMSE). We compute the homography reprojection error as a mea-
sure of global geometric consistency. With Ht aligning a reference frame (e.g., 1 or t−1) to It,
and RANSAC inlier correspondences {(xi,x

′
i)}Ni=1 (where x̃ = [x⊤, 1]⊤ and π([u, v, w]⊤) =

[u/w, v/w]⊤), the per-inlier error is

ei =
∥∥π(Ht x̃i

)
− x′

i

∥∥
2
. (24)

The per-frame RMSE is

H-RMSEt =

√√√√ 1

N

N∑
i=1

e 2
i . (25)

To remove resolution dependence, normalize by the image diagonal D =
√
W 2 +H2:

H-RMSEnorm
t = H-RMSEt/D (unitless). (26)

4. Occlusion-aware MSE. Warp a reference frame to It, yielding Î0→t. Evaluate only on Ωt:

OccMSEt =
1

|Ωt|
∑
x∈Ωt

(
It(x) − Î0→t(x)

)2

. (27)

5. Dataset-level Aggregation. For video v with Tv frames and per-frame metric mv,t: frame-
weighted average (recommended for frame-defined metrics):

m =

∑
v

∑
t mv,t∑

v Tv
. (28)

Alternatively, per-video equal weight: compute m̄v = 1
Tv

∑
t mv,t, then m = 1

V

∑
v m̄v .

B.5 ADDITIONAL QUALITATIVE RESULTS OF EXPERIMENT OF H2R ALIGNER

Figure 8 presents additional qualitative examples of H2R-ALIGNER. Similar to the main paper, each
triplet shows the original human demonstration (top), the simulated replay (middle), and the synthe-
sized robot-domain video (bottom). These results further confirm that H2R-ALIGNER consistently
produces realistic robot sequences aligned with task semantics and background context.
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Human

Robot
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Sim

Figure 8: Additional qualitative examples of H2R-ALIGNER. Each triplet shows human demon-
stration (top), simulated replay (middle), and synthesized robot-domain video (bottom).

Table 3: SR and PSR across tasks as human-to-robot data scale, with 20 robot data trials fixed.

Setting
Pick Bag Clean Surface Stack Bowls Dry Hands Insert Tennis Stack Cups

SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑ SR↑ PSR↑

20 Robot 70% 82% 90% 90% 65% 80% 80% 88% 25% 38% 65% 80%
+ 5 Human 75% 85% 95% 95% 70% 85% 85% 93% 25% 43% 65% 85%
+ 10 Human 80% 88% 97% 97% 77% 88% 90% 96% 30% 52% 73% 87%
+ 15 Human 85% 91% 98% 99% 83% 90% 95% 98% 37% 61% 82% 89%
+ 20 Human 90% 93% 100% 100% 90% 93% 100% 100% 45% 70% 90% 90%
+ 25 Human 92% 94% 100% 100% 93% 94% 100% 100% 48% 73% 93% 95%
+ 30 Human 93% 95% 100% 100% 95% 95% 100% 100% 50% 75% 95% 95%

B.6 MORE RESULTS FOR SCALING EXPERIMENT RESULTS

To quantitatively assess the scalability of our approach, we conducted an experiment where a base-
line VLA policy, trained on a fixed set of 20 robot data, was progressively augmented with human-
to-robot data. Table 3 presents the results of this analysis, detailing the Success Rate (SR) and Partial
Success Rate (PSR) across six manipulation tasks as the number of added human-to-robot data in-
creases incrementally from 5 to 30. This setup allows for a direct evaluation of how performance
scales with the quantity of synthesized data while keeping the robot data constant.

The data reveals a clear and consistent trend: performance monotonically improves across all six
tasks with the addition of synthesized human demonstrations. This improvement exhibits a ”fast-
then-steady” scaling pattern, where the most substantial gains in both SR and PSR are typically
observed when adding the first 15 to 20 demonstrations. For instance, simpler tasks such as Clean
Surface and Dry Hands rapidly approach 100% success, hitting a ceiling effect. Meanwhile,
the most challenging task, Insert Tennis, shows the largest relative SR gain (doubling from 25%
to 50%), while tasks like Stack Cups demonstrate a significant narrowing of the gap between
partial and full success, indicating that the added data effectively refines complex skills.

In summary, these results provide strong empirical evidence for the scalability and effectiveness of
our method. This demonstrates that MimicDreamer can effectively leverage human input to augment
sparse real data, significantly enhancing final policy performance and offering a practical solution
to the data scarcity problem in robot learning.
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C STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized the large language model (ChatGPT-5 by OpenAI)
as a writing assistance tool. Its use was strictly limited to language polishing, which included im-
proving grammar, spelling, clarity, and sentence structure. The LLM was not used for generating
scientific ideas, conducting analysis, or interpreting results. The authors have carefully reviewed
and edited all model-generated text and take full responsibility for the final content of this paper.
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