
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TENT: EfficientQuantization of Neural Networks
on the tiny Edge with Tapered FixEd PoiNT

Anonymous Author(s)

ABSTRACT

In this research, we propose a new low-precision framework, TENT,
to leverage the benefits of a tapered fixed-point numerical format
in TinyML models. We introduce a tapered fixed-point quantization
algorithm that matches the numerical format’s dynamic range and
distribution to that of the deep neural network model’s parameter
distribution at each layer. An accelerator architecture for the ta-
pered fixed-point with TENT framework is proposed. Results show
that the accuracy on classification tasks improves up to ≈31% with
an energy overhead of ≈17-30% as compared to fixed-point, for
ConvNet and ResNet-18 models.

KEYWORDS

deep neural networks, low-precision arithmetic, tapered fixed-point

1 INTRODUCTION

In the last decade, there has been a surge in deep neural network
(DNN) development and deployment for a wide range of use-cases,
from bio-medicine [34] to precision agriculture [27]. One of the
reasons for this success can be attributed to the dramatic enhance-
ment in the knowledge capacity of DNN models. For instance, the
knowledge capacity of DNNs for language translation has boosted
by 629x from the GNMTmodel (278 million parameters) [38] to the
recent GPT-3 model (175 billion parameters) [4] within a four year
timespan. Increasing the knowledge capacity of DNNmodels also in-
creases the number of operations, mostly multiply-and-accumulate
(MAC), at trillions of operations per ML inference [15]. However,
these large networks, classified as CloudMLmodels are deployed on
cloud based datacenters where each node utilizes massive compute
resources which require hundreds of watts of power(eg., RTX-3070
Nvidia GPU has 8 GB memory, with 20 TFLOPs throughput, and
220 watt power consumption).

Tangential to the trend of upscaling cloudML models to improve
performance, a new class of models have emerged. MobileML [33,
35] and TinyML [2, 3, 12, 22, 23, 30] models address the rapidly
growing demand to deploy DNNs on the edge and on the tiny edge
(<1W) devices.

To deploy these models on such resource constrained tiny edge
platforms (eg., ARM M-7 MCU with 2 MB, 216 million cycles per
second (MCPS) throughput, and 0.3 watt power consumption [2]),
the TinyMLmodels are either designed from scratch through neural
architecture search (NAS) [2, 22, 23] or by compressing a version of
the CloudMLmodels. Often these compression mechanisms include
approaches such as low-precision arithmetic [9, 21, 30], model prun-
ing [12], knowledge distillation [5], and low-rank approximation
[36]. Of the aforementioned techniques for TinyML models, low-
precision arithmetic has been gaining significant traction. With
this technique, the performance of the models can be compromised
based on the numerical format selected.

TinyML models with low-bit precision have been deployed on
tiny edge devices [30]. Unfortunately, reducing the bit-precision in
fixed-point numerical formats (binary/ternary in extreme cases) can
jeopardize the model performance due to the limited and fixed dy-
namic range [26, 29]. Equispaced distribution of values expressed by
these numerical formats exacerbates the issue to some degree [26].
Pre- and post-processing approaches such as quantization aware
training (QAT) [7, 16, 18], retraining [24] and calibration [25] to
boost the performance of TinyMLmodels using fixed-point increase
their computational complexity. To overcome the performance loss
with minimal hardware overhead, a new numerical format with
unequal-magnitude spacing (tapered accuracy) and flexible dynamic
range is needed. The tapered fixed-point format [20] offers both of
these characteristics lacking in the conventional fixed-point format.

In this introductory paper, we are motivated to evaluate the effi-
cacy of the tapered fixed-point numerical format compared to the
standard fixed-point numerical format on multiple benchmarks. To
study the performance of this new numerical format, a new frame-
work, TENT, has been developed that quantizes TinyML model
parameters to tapered fixed-point. The dynamic range and distri-
bution (tapered or uniform) of the numerical format is adapted
proportional to the dynamic range and distribution of parameters
of each layer in the model. Furthermore, a hardware architecture
is designed to study the complexity of the approach compared to
fixed-point for ≤ 8-bit TinyML model inference in terms of latency
and energy (on the CIFAR-10 dataset).

The key contributions of this work are as follows:
(1) a tapered fixed-point quantization algorithm that adapts the

numerical format to best represent the layerwise dynamic
range and distribution of parameters within a TinyMLmodel.

(2) a low-precision deep learning framework,TENT, that demon-
strates better performance of tapered fixed-point over fixed-
point formats for multiple classification tasks.

(3) an implementation of the TENT framework as a custom
hardware architecture to study the latency and energy con-
sumption of tapered fixed-point vs standard fixed-point.

2 TAPERED FIXED-POINT FORMAT

The tapered fixed-point numerical format (TFX) [20] can be il-
lustrated as a combination of the posit [13] and fixed-point nu-
merical formats. It combines the hardware-oriented characteristics
of fixed-point and the high accuracy of posit with tapered preci-
sion; where the values are distributed in a non-uniform tent shape
which closely resemble the shape of DNN statistics. Specifically,
the binary encoding to represent the integer bits in fixed-point is
replaced with the signed unary encoding that was previously used
to represent the regime bits in posit [13]. This change adds tapered
precision characteristics to the fixed-point numerical format. The
fraction remains the same as the standard fixed-point where the
fraction is added to the integer rather than scaling, which reduces

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

, , Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the hardware complexity as compared to posit and floating-point.
The tapered fixed-point is defined as TFX(𝑛,𝐼𝑆) where 𝑛 refers to
the total number of bits and 𝐼𝑆 (in a range of [1, 𝑛]) indicates the
maximum number of unary encoded integer bits. The 𝐼𝑆 value con-
trols both the dynamic range as in (1) and the tapered precision.
The dynamic range and tapered precision are scaled proportional to
𝐼𝑆 . For instance, the TFX(𝑛, 𝐼𝑆) numerical format with 𝑛 = 5, 𝐼𝑆 = 1
and 𝐼𝑆 = 2 has the two smallest dynamic ranges (1

0.0625) and (
2

0.125)
respectively, and behaves similar to fixed-point numerical format
with uniform precision. Also, 𝑛 = 𝐼𝑆 = 5 represents the maximum
dynamic range (5

0.125) and maximum tapered precision.

𝐷𝑇𝐹𝑋 =

{
1

2𝑛−1 , if 𝐼𝑆 = 1
𝐼𝑠
2𝑛−2 , if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

The value of a TFX number is represented by (2), where 𝐼 is
computed in (3) representing the integer value, 𝑓 indicates the
fraction value and 𝑓 𝑠 the maximum number of bits allocated for the
fraction. Note that, the TFX number can also be scaled up/down by
2 raised to the power 𝑆𝐶 .

𝑥 = 𝐼 + 𝑓

2𝑓 𝑠
(2)

The integer bit-field is encoded based on the runlength 𝑚 of
identical bits (𝐼 ...𝐼) terminated by either an integer terminating bit 𝐼
or the end of the 𝑛-bit value. Note that the sign bit is flipped and is
also considered as the first bit of the integer.

𝐼 =

{
−𝑚, if 𝐼 = 0
𝑚 − 1, if 𝐼 = 1

(3)

For instance, 3.875 in the TFX(8,8) numerical format is repre-
sented by 3 as an integer (𝐼), 0.875 as a fraction (𝑓), as shown by
Fig 1. More details about the tapered fixed-point number format
can be found in [20].

0/1 1 1 1 0 1 1 1

Figure 1: Representation of a number in the tapered fixed

point TFX(8,8) format

3 RELATEDWORK

Studies considering low-precision arithmetic have experimentally
shown that TinyML models using 8-bit fixed-point numbers can
achieve inference accuracy comparable to that of 32-bit floating-
point numbers [2, 9, 21–23]. However, it requires either pre-processing
such as calibration [25], quantization aware training (QAT) [7, 16,
18], or post-processing such as retraining [24]. For instance, Ban-
bary et al. demonstrate the efficacy of 8-bit fixed-point for TinyML
models on the visual wake words (VWW) dataset [2]. The outcome
of this study, which uses the QAT approach to quantize weights
and activations, indicates that 8-bit fixed-point model parameters

are sufficient to achieve inference performance comparable to that
of MobileNetV2 on the VWW corpora [8] (within <1% variation)
which uses 32-bit floats.

While it is possible to achieve similar inference performance of
TinyMLmodels (32-bit float conversion to 8-bit fixed-point) through
pre- or post processing approaches, reducing the bit-precision to
fewer than 8 bits degrades the performance significantly [26, 29]. To
mitigate this problem, researchers have explored mixed-precision
fixed-point numerical format [10, 11, 14, 17, 30, 31, 37]. However, uti-
lizing mixed-precision fixed-point required a precision-assignment
policies for TinyML model parameters across layers. For instance,
Rusci et al. leveraged the combination of reinforcement learning and
QAT to automatically select the appropriate precision of TinyML
parameters across layers [30]. And thus demonstrates that it is pos-
sible to evaluate even the ImageNet corpora using mixed-precision
fixed-point formats on MobileNetV2, with results within <1% vari-
ation as compared to inference with 32-bit floats.

This research proposes a tapered fixed-point quantization algo-
rithm for TinyML models where the dynamic range of this numeri-
cal format is adapted to the dynamic range of the TinyML model
parameters. A notable difference between this work and previous
works is that this quantization approach does not required complex
hardware or algorithmic approaches such as precision-assignment
policies, QAT or calibration.

4 TENT FRAMEWORK

The goal of the TENT empirical framework is to emulate ML in-
ference with quantization using low-precision tapered fixed-point
format. Formally, the TinyML model parameters are quantized to
tapered fixed-point such that the dynamic range and distribution of
TinyML model parameters matches the distribution of values rep-
resented by tapered fixed-point. Therefore, the TENT framework,
as shown in Figure 2, approximates the optimal tapered fixed-point
numerical format for TinyML model parameters in each layer by se-
lecting appropriate IS and SC values. These parameters are selected
based on dynamic range of TinyML model parameters in each layer.
After this step, the learned weights and activations (32-bit floats)
are quantized to the low-precision tapered fixed-point format, upon
which the dot product operations are then carried out.

In particular, the TENT empirical framework comprises of three
key aspects: Tapered fixed-point parameters selection, quantization
to tapered fixed-point, and the low-precision tapered fixed-point
dot product.

4.1 Tapered Fixed-Point Parameter Selection

Algorithm 1 presents the IS and SC optimization procedure. To
select these parameters, in the first step, the maximum absolute
value of the DNN parameters at each layer (𝑊𝑎𝑚𝑎𝑥 , and𝐴𝑎𝑚𝑎𝑥) are
computed (lines 2-3) and rounded up to generate the appropriate 𝐼𝑆
value. Algorithm 1, defines the process by which 𝐼𝑆 is selected to
tailor the numerical format to the range and distribution of param-
eters in each individual layer. In the worst case scenario, when the
dynamic range of DNN parameters is larger than dynamic range of
tapered fixed-point, the maximum possible value 𝑛 (total number
of bits represented in tapered fixed-point format) is selected for 𝐼𝑆

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TENT: Efficient Quantization of Neural Networks

on the tiny Edge with Tapered FixEd PoiNT , ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

FC

CONV
44-45-46

CONV
47-48-49

CONV
2-3-4

CONV
5-6-7

CONV
8-9-10

CONV
11-12-13

CONV+
MAX POOL

CIFAR-10
EXAMPLE CLASSIFIER

OUTPUT

LAYERWISE
PARAMETER
DISTRIBUTION

𝝎𝝎𝟏𝟏𝟏𝟏

TAPERED FORMAT
DISTRIBUTION

ALGORITHM-1

TAPERED
FIXED-POINT
QUANTIZED FORMAT

𝑸𝑸𝒓𝒓 R

𝑨𝑨𝒒𝒒

𝑾𝑾𝒒𝒒

MAC STRUCTURE

AT EVERY LAYER

SELECTION OF

IS & SC

WEIGHTS
& ACTIVATIONS

[no SC shifting]

TAPERED FIXED-POINT

SIGN BIT

IS BITS FRACTION BITS

LEADING BIT
FINAL IS BIT

IS FS

SC
+

-

Figure 2: TENT: a low-precision framework for TinyML inference with tapered fixed-point parameters. The framework is

applied to each layer individually, selecting specific IS and SC values tomatch the distribution and range of parameters within

the layer. IS specifies the𝑚𝑎𝑥𝑖𝑚𝑢𝑚 number of integer bits, and SC specifies the degree of shift required (left-shift if positive,

right-shift if negative). The MAC structure displays the multiply-and-accumulate unit explained in figure 3.

(lines 4-13). Selecting 𝐼𝑆 based on the algorithm 1 reduces the over-
flow error in quantization. However, when the maximum absolute
value of a DNN parameter is less than the maximum absolute value
representable by the tapered fixed-point format selected; many bit-
patterns in the numerical format are unused. To mitigate this issue,
the the maximum absolute value of tapered fixed-point format is
scaled down by 2 raised power of 𝑆𝐶 that determines as a base-2
logarithm of𝑤𝑎𝑚𝑎𝑥 (lines 14-21).
4.2 Quantization with Tapered Fixed-Point

In this paper, the quantization function 𝑄 (𝑥𝑖 , 𝑞) defined in (4) ap-
proximates each parameter 𝑥𝑖 to 𝑥 ′𝑖 (a 𝑞-bit tapered fixed-point). In
the quantization procedure, the values that lie outside the dynamic
range of a given tapered fixed point format configuration,𝑄 (·, ·, ·, ·),
clips to the format maximum (𝑢) or minimum (𝑙) appropriately. A
value that is between consecutive tapered fixed-point numbers is
rounded to the nearest even number (𝑅𝑁𝐸 (𝑥𝑖)).

𝑥 ′𝑖 = 𝑄 (𝑥𝑖 , 𝑙, 𝑢, 𝑞) =


𝑙, 𝑥 > 𝑙

𝑅𝑁𝐸 (𝑥𝑖), 𝑙 > 𝑥 > 𝑢

𝑢, 𝑢 > 𝑥

(4)

4.3 Tapered Fixed-Point Dot Product

The tapered fixed-point dot product is presented in Algorithm 2.
In the first step, a set of quantized weights and activations are
decoded to the tapered fixed-point (lines 2,3). To decode the tapered
fixed point format, the sign bit, integer bits (through leading zero
detection algorithm), and remaining fractional bits require to be
extracted. Then, the product of the tapered fixed-point weights
and activations are calculated without truncation or rounding after

Algorithm 1 Compute the maximum integer bit width (IS) and
scaling factor (SC) of tapered fixed-point for DNN parameters
Input: layers weights (𝑊𝑙), layers activations (𝐴𝑙)
Output: 𝐼𝑆𝑤𝑙

,𝐼𝑆𝐴𝑙
,𝑆𝐶𝑤𝑙

tapered fixed-point parameters

1: procedure 𝐼𝑆 , 𝑆𝐶 Selection (𝑊𝑙 , 𝐴𝑙)
2: wamax ← max(|wl |)
3: Aamax ← max(|Al |)

Compute the 𝐼𝑆𝑤𝑙
, 𝐼𝑆𝐴𝑙

4: if ⌊Wamax⌋ + 1 < nbit then
5: ISw ← ⌊Wamax⌋ + 1
6: else
7: ISw ← nbit
8: end if
9: if ⌊Aamax⌋ + 1 < nbit then

10: ISA ← ⌊Aamax⌋ + 1
11: else
12: ISA ← nbit
13: end if

Compute the 𝑆𝐶𝑤𝑙

14: SCwl ← 0
15: if Wamax < 1 then
16: SCW ← |

⌊
log2 (Wamax)

⌋
| + 1

17: end if
18: return ISwl , ISAl , SCwl
19: end procedure

multiplication operations (lines 6-11). The products are then stored
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

, , Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2 Tapered fixed-point dot product operations for 𝑛-bit
inputs each with log𝑛 𝑅𝑆 bits, log𝑛 𝑆𝐶 bits.
Input: layers quantized weights (𝑊𝑙𝑞), layers quantized activations
(𝐴𝑙𝑞),
Output: 𝑅 as Dot Product result

1: procedure Tapered fixed-point DP (𝑊𝑙𝑞 , 𝐴𝑙𝑞)
2: signw, Intw, fracw ← Decode(𝑊𝑙𝑞 , 𝐼𝑆𝑤)
3: signa, Inta, fraca ← Decode(𝐴𝑙𝑞 , 𝐼𝑆𝑎)

Multiplication

4: signmult ← signw ⊕ signa
5: Valuew ← (Intw + fracw) ≪ fracbitw + SCw
6: Valuea ← (Inta + fraca) ≪ fracbita
7: pmult ← {sign, Valuew × Valuea}

Accumulation & Normalize

8: sumquire ← pmul + sumquire ⊲ Accumulate
9: sumnquire ← sumquire ≫ fraca + fracw + SCw

Rounding & Encode

10: result← Rounding & Encoding(sumnquire)
11: return result
12: end procedure

in a wide register (quire[13]) for𝑚 multipliers with size of𝑤𝑞𝑢𝑖𝑟𝑒

as in (5) (lines 12-15).

𝑤𝑞𝑢𝑖𝑟𝑒 = ⌈log2 (𝑚)⌉ + 2 × ⌈log2 (
𝑀𝑎𝑥𝑇𝐹𝑋

𝑀𝑖𝑛𝑇𝐹𝑋
)⌉ + 2 (5)

The stored products are then converted and accumulated with fixed-
point arithmetic. At the end, the accumulated result is encoded back
into the tapered fixed-point numerical format (lines 16-18).

5 SYSTEM DESIGN AND ARCHITECTURE

The TENT framework gives insights into adopting a new numer-
ical format for storing the weights and activations which reduce
the quantization loss at low precision. This section describes the
framework designed to simulate DNNs on hardware platforms
in order to evaluate the performance of the tapered fixed-point
representation in terms of latency and energy consumption. Fig-
ure 3 shows the high-level architecture of the designed framework
guided by the design of Eyeriss v2 [6]. Primarily, it is composed
of processing elements (PEs) arranged in a 2D systolic array ar-
chitecture accompanied by a hierarchical memory organization.
Systolic architectures have shown promising results in computing
convolutions at low energy cost due to the data reuse characteristics
and parallel processing features [19]. Most systolic architectures,
commonly used to perform convolution operations, adopt input
stationary, weight stationary, and output stationary dataflows. Of
which, output stationay has shown to reduce execution time and
energy consumption when PE computations are confined to a sin-
gle pixel in the output feature map, and was thus selected for this
architecture.

The PE in the systolic array has a tapered fixed-point based
MAC unit with configurable bit-precision. It is controlled by an
external control signal (IS) which defines the integer value and

dynamic range of the format. Each MAC unit first reads an N-bit
activation and weight in tapered fixed-point format and decodes
them to ⌈𝑙𝑜𝑔2 (𝑛)⌉ + 𝑛 bits fixed-point value with ⌈𝑙𝑜𝑔2 (𝑛)⌉ + 1
integer bits and 𝑛 − 2 fraction bits. The decoding process utilizes
a count leading zeros (CLZ) unit, which counts the total number
of leading zeros (from MSB), representing the integer value of the
fixed-point as shown in 4. Furthermore, the 3-bit 𝑆𝐶 signal controls
the scaling factor of the weight by shifting the fixed-point number
based on the magnitude and the sign of the 𝑆𝐶 signal. The decoded
activations and scaled weights are multiplied using a fixed-point
multiplier which is further accumulated. Unlike other dataflows, the
output stationary dataflow does not require the quantization of the
accumulated value at every step which avoids generation of partial
sums and thus eliminates the quantization error which normally
occurs in intermediate stages. The accumulated fixed-point value
uses a unary encoding mechanism, based on the magnitude and
sign of the integer, while converting to the n-bit tapered fixed-point
format.

The memory hierarchy consists of 128 MB off-chip main mem-
ory (DRAM) and 3×108 kB on-chip scratchpad memory (SRAM).
The main memory is dedicated to storing input data, activations
and weights/filters that are loaded by the host processor, whereas
the scratchpad memory serves as a global buffer. In order to es-
timate latency, we bridge our framework with the SCALE-Sim
tool [32]. SCALE-Sim, however, does not consider the cycles con-
sumed in shuttling data back and forth between the global buffer
and the DRAM. Therefore, the total latency is re-approximated
by considering PE array execution time and DRAM access time
(Micron MT41J256M4). For energy estimation analysis, calculation
of execution time, and power utilization, we factor in 45nm CMOS
technology node.

6 EXPERIMENTAL SETUP, RESULTS &

ANALYSIS

The TENT framework is implemented in C++ and extended to
support the TensorFlow framework [1]. To demonstrate the efficacy
of the TENT framework, the performance of low-precision tapered
fixed-point is evaluated on three inference tasks and is compared
to the low-precision fixed-point numerical format. The specifics
of the evaluation tasks and the inference performance achieved
on them with 32-bit float DNNs are summarized in Table 1. The
MNIST and CIFAR-10 datasets are chosen for evaluation, as they
are ideal for tinyML applications [3]. To appropriately evaluate
the benefits of the tapered fixed point format, the Fashion-MNIST
dataset is also considered which presents additional challenges to
the classification task, while still falling under a similar category
as the MNIST dataset. The base model selected to perform the
classification task on these datasets is an extremely compact model
containing less than 2 million parameters that can be stored on
tiny edge devices (eg., ARM M-7 MCU) [2]. In the evaluation of
each format, 𝐼𝑆 ∈ [1..𝑛 − 1] and 𝑆𝐶 ∈ [0..𝑛 − 1] are considered
for tapered fixed-point, and 𝐼 ∈ [1..𝑛 − 1] and 𝑓 𝑠 ∈ [1..𝑛 − 1] are
considered for standard fixed-point.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TENT: Efficient Quantization of Neural Networks

on the tiny Edge with Tapered FixEd PoiNT , ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

HOST

PROCESSOR

DDR3

DRAM

SYSTEM

ARCHITECTURE

FILTER SRAM
108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3 PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

CONTROL UNIT

16 COLUMNS

1
6

R

O
W

S

PROCESSING

ELEMENT

STRUCTURE

INPUT

FEATURE

IS WEIGHT

DECODER

DECODER

ENCODER

108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3

108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3

IFmap SRAM

OFmap SRAM

OUTPUT

FEATURE

HOST

INTERFACE

16x

NBITS

16x

NBITS

NBITS

c log (N) NBITS

NBITS

MEMORY

INTERFACE

16x

NBITS

PE

2

SC

3BITS

Figure 3: Deep Neural Network accelerator architecture for TENT, with custom tapered fixed-point processing elements. The

architecture is evaluated in a full cycle-emulator to analyze the performance and energy constraints.

CLZ

>>

TA
PE

R
ED

 F
IX

ED
- P

O
IN

T

1

`[n-2: 0]`

n n-1
/

/

/

/

/
`[n-2: 1]`

/

1
/SIGN BIT

FI
XE

D
- P

O
IN

T

FRACTION
BITS

n-1
/

INTEGER
BITS

/

<<

>>>>>>

LEFT
SHIFT

RIGHT
SHIFT

/

M
U

X

n-1
/

n
/

N

1
/

n-1

/
1

ST
IC
K
Y_

B
IT

/

/

/

01

10

SIGN BIT

010101
>>>

01

10

01

10

01

10

01

10

01

10

01

10

01

10

01

10

M
U

X
M

U
X

01

10FRACTION
BITS

n+1
/

n-1 /

/IS

IS

1
/

DECODER

ENCODER

ARITHMETIC
RIGHT SHIFT

/

/

TA
PE

R
ED

 F
IX

ED
- P

O
IN

TFI
XE

D
- P

O
IN

T

FRACTION
BITS

/
/

>>

CLZ

<<

M
U

X

M
U

X

>>

CLZ

<<

M
U

X

M
U

X

01

⌈log(n)⌉+1

⌈log(n)⌉

⌈log(n)⌉+1 ⌈log(n)⌉+n
⌈log(n)⌉+1

⌈log(n)⌉

⌈log(n)⌉+n ⌈log(n)⌉+n
⌈log(n)⌉+1

Figure 4: RTL design for decoder, converting tapered point precision to fixed- point with count leading zero governed by 𝐼𝑆

parameter and encoder, converting fixed-point to tapered fixed-point with rounding off fraction bits to nearest value.

6.1 Inference Performance with TENT

The efficacy of the TENT framework is evaluated on DNN infer-
ence with varied IS and SC, as shown in Table 2. The findings
show that the low-precision tapered fixed-point outperforms the
standard fixed-point on various benchmarks by up to ≈31%. For
instance, the performance of an 8-bit low-precision tapered fixed-
point ResNet-18 network on the CIFAR-10 dataset is improved by
27.44% compared to the fixed-point based network. Furthermore,
we observed that the tapered fixed-point shows greater benefits
on TinyML models whose parameters have a large dynamic range,
such as ResNet model shown in Table 1 and Table 2. These per-
formance benefits can be intuitively explained by the auto-tuning
capability of the TENT framework, which adapts the format to the

dynamic range of the weights and activations, so as to reduce the
quantization error. The best performance observed on all the bench-
marks (when analyzed across the full [5..8]-bit range) is achieved
with tapered fixed-point.

6.2 Hardware System Results

The execution time of the DNN model is mainly governed by
the dataflow and the PE array architecture. The output stationary
dataflow offers a 24% reduction in latency as compared to weight
stationary dataflowwhile performing inference [32]. For a compute-
boundDNN this is a significant improvement, considering that infer-
ence favors latency over throughput [28]. The homogeneous 16×16
PE configuration with no sophisticated architectural features offers

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

, , Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Description of the TinyML models and benchmarks using 32-bit float parameters.

Dataset TinyML Model W-Range 1 A-Range 1 # Parameters # MACs 2 Performance

MNIST ConvNet 3 [−0.78, 0.62] [0, 3.61] 1.40 M 58.7 K 99.32%
Fashion-MNIST ConvNet 4 [−0.74, 0.45] [0, 5.97] 1.88 M 69.8 K 92.54%

CIFAR-10 ResNet-18 [−2.12, 1.17] [0, 10.21] 0.27 M 286.72 K 91.54%
1 W: Weights; A: Activations
2 The number of MACs are calculated for a DNN inference with a batch size of 1.
3 2 Convolutional layers, 2 fully-connected layers, and 1 Pooling layer
4 3 Convolutional layers, 2 fully-connected layers, 2 Pooling layers, 1 Batch normalization layer

Table 2: Performance of TinyML models during inference with the tapered fixed-point(TFX) and fixed-point.

Bit Precision MNIST Fashion-MNIST CIFAR-10

TFX Fixed-Point TFX Fixed-Point TFX Fixed-Point

8-bit 99.33% 99.18% 92.59% 89.59% 81.66% 54.20%
7-bit 99.32% 97.14% 92.47% 88.63% 75.90% 24.50%

6-bit 99.30% 97.08% 92.14% 85.31% 46.79% 12.96%
5-bit 99.29% 96.96% 89.35% 83.46% 23.44% 11.11%

improvement in computing efficiency from 89.58% to 91.82%, with a
significant reduction in energy consumption. Figure 5(c) illustrates
the energy-delay product (EDP) for the tapered fixed-point network
ResNet-18 while performing inference on the CIFAR-10 dataset. It
is worth noting that tapered fixed-point offers 31% improvement in
classification accuracy with a negligible EDP overhead (17 − 30%)
as compared to fixed-point. Reduced bit-precision economizes the
local memory storage size and the number of operational cycles in
both tapered and standard fixed-point.

Overall, the use of the tapered fixed-point numerical format
helps in paving a path towards minimizing the power consump-
tion (inference), which aligns with the ultimate goal envisioned by
the TinyML community (≤ 1 mw [3]). Our analyses have shown
that this work’s adaptation of the ResNet-18 architecture consumes
power within the range of 189-270 mw to classify a single sample
of the CIFAR-10 dataset, which befits the low-power requirements
of devices that operate on the edge [2]. Additionally, the proposed
TENT framework further enhances the performances by leverag-
ing the flexibility of a tapered precision numerical format and its
affinity to represent parameters with reduced quantization error
(as compared to standard fixed point formats).

7 CONCLUSIONS

This paper presents a low-precision framework, TENT, that offers
quantization using tapered fixed point to perform inference on
TinyML models. The maximum integer bit width and scaling factor
parameters are dynamically selected to best fit the variability of
the parameter and activation distributions within each layer of the
model. We observe reduction in total quantization error that leads
to an improvement in inference accuracy by ≈ 31% over fixed-point
models. Furthermore, we show that tapered fixed-point achieves

this with a moderate increase in energy consumption over fixed-
point.

REFERENCES

[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. https://www.tensorflow.org/ Software available from
tensorflow.org.

[2] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro, Urmish
Thakkar, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul N What-
mough. 2020. MicroNets: Neural Network Architectures for Deploying TinyML
Applications on Commodity Microcontrollers. arXiv preprint arXiv:2010.11267
(2020).

[3] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy
Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,
et al. 2020. Benchmarking TinyML Systems: Challenges and Direction. arXiv
preprint arXiv:2003.04821 (2020).

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[5] Gianmarco Cerutti, Rahul Prasad, Alessio Brutti, and Elisabetta Farella. 2019.
Neural Network Distillation on IoT Platforms for Sound Event Detection.. In
Interspeech. 3609–3613.

[6] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2:
A flexible accelerator for emerging deep neural networks on mobile devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact: Parameterized
clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085
(2018).

[8] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. 2019. Visual wake words dataset. arXiv preprint arXiv:1906.05721
(2019).

[9] Miguel de Prado, Romain Donze, Alessandro Capotondi, Manuele Rusci, Serge
Monnerat, Luca Benini, and Nuria Pazos. 2020. Robust navigation with tinyML
for autonomous mini-vehicles. arXiv preprint arXiv:2007.00302 (2020).

[10] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. 2020. Hawq-v2: Hessian aware trace-weighted quantization of
neural networks. Advances in Neural Information Processing Systems 33 (2020).

[11] A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh, and H. Es-
maeilzadeh. 2020. ReLeQ : A Reinforcement Learning Approach for Automatic
Deep Quantization of Neural Networks. IEEE Micro 40, 5 (2020), 37–45.

6

https://www.tensorflow.org/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TENT: Efficient Quantization of Neural Networks

on the tiny Edge with Tapered FixEd PoiNT , ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5-bit 6-bit 7-bit 8-bit
Bit-width

300

350

400

450

500

550

600

650

700

M
ax

im
um

 F
re

qu
en

cy
 [M

H
z]

Tapered fixed-point
Fixed-point

5-bit 6-bit 7-bit 8-bit
Bit-width

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
re

a
[(

m
)2

]

Tapered fixed-point
Fixed-point

5-bit 6-bit 7-bit 8-bit
Bit-width

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

En
er

gy
 [p

J]

Tapered fixed-point
Fixed-point

5-bit 6-bit 7-bit 8-bit
Bit-width

450

500

550

600

650

700

750

800

850

En
er

gy
 D

el
ay

 P
ro

du
ct

 [
J.

s]

Tapered fixed-point
Fixed-point

Figure 5: Plots depict (a) Maximum frequency, (b) Area of Tapered fixed point and standard fixed point MAC unit, (c) Energy

consumption of computing one MAC operation, and (d) Energy-delay product of ResNet-18 benchmarked with CIFAR-10 for

tapered fixed-point and standard fixed-point. The performance was evaluated for different bit widths to represent the weights

and activations.

[12] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough. 2019.
Sparse: Sparse architecture search for cnns on resource-constrained microcon-
trollers. In Advances in Neural Information Processing Systems. 4977–4989.

[13] John L Gustafson and Isaac T Yonemoto. 2017. Beating Floating Point at its Own
Game: Posit Arithmetic. Supercomputing Frontiers and Innovations 4, 2 (2017),
71–86.

[14] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi. 2018.
Ristretto: A framework for empirical study of resource-efficient inference in con-
volutional neural networks. IEEE Transactions on Neural Networks and Learning
Systems (2018).

[15] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Ja-
cob Jackson, Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.
2020. Scaling Laws for Autoregressive Generative Modeling. arXiv preprint
arXiv:2010.14701 (2020).

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, et al. 2018. Quanti-
zation and Training of Neural Networks for Efficient Integer-Arithmetic-Only
Inference. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[17] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie En-
right Jerger, Raquel Urtasun, and Andreas Moshovos. 2018. Proteus: Exploiting
precision variability in deep neural networks. Parallel Comput. 73 (2018), 40–51.

[18] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342 (2018).

[19] Hsiang-Tsung Kung. 1982. Why systolic architectures? IEEE computer 15, 1
(1982), 37–46.

[20] John L. Gustafson. 2020. A Generalized Framework for Matching Arithmetic
Format to Application Requirements. In https://posithub.org/.

[21] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: efficient
neural network kernels for arm cortex-M CPUS. CoRR abs/1801.06601 (2018).
arXiv preprint arXiv:1801.06601 (2018).

[22] Edgar Liberis, Łukasz Dudziak, and Nicholas D Lane. 2020. muNAS: Constrained
Neural Architecture Search for Microcontrollers. arXiv preprint arXiv:2010.14246
(2020).

[23] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet:
Tiny deep learning on iot devices. Advances in Neural Information Processing
Systems 33 (2020).

[24] Jeffrey L McKinstry, Steven K Esser, Rathinakumar Appuswamy, Deepika Bablani,
John V Arthur, Izzet B Yildiz, and Dharmendra S Modha. 2018. Discovering
low-precision networks close to full-precision networks for efficient embedded
inference. arXiv preprint arXiv:1809.04191 (2018).

[25] S Migacz. 2017. 8-bit inference with TensorRT. In GPU Technology Conference.
[26] Asit Mishra and Debbie Marr. 2017. Apprentice: Using Knowledge Distilla-

tion Techniques To Improve Low-Precision Network Accuracy. arXiv preprint
arXiv:1711.05852 (2017).

[27] Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, et al. 2019. Deep-
Weeds: A Multiclass Weed Species Image Dataset for Deep Learning. Scientific
Reports 9, 1 (2019), 2058.

[28] David A Patterson. 2004. Latency lags bandwith. Commun. ACM 47, 10 (2004),
71–75.

[29] Hadi Pouransari, Zhucheng Tu, and Oncel Tuzel. 2020. Least squares binary
quantization of neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. 698–699.

[30] Manuele Rusci, Marco Fariselli, Alessandro Capotondi, and Luca Benini. 2020.
Leveraging Automated Mixed-Low-Precision Quantization for tiny edge micro-
controllers. arXiv preprint arXiv:2008.05124 (2020).

[31] Charbel Sakr and Naresh Shanbhag. 2018. An analytical method to determine
minimum per-layer precision of deep neural networks. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1090–1094.

[32] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-sim: Systolic cnn accelerator simulator. arXiv preprint
arXiv:1811.02883 (2018).

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4510–4520.

[34] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, et al. 2020.
Improved protein structure prediction using potentials from deep learning. Nature
(2020), 1–5.

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2820–2828.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

, , Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[36] Murad Tukan, AlaaMaalouf, MatanWeksler, and Dan Feldman. 2020. Compressed
deep networks: Goodbye svd, hello robust low-rank approximation. arXiv preprint
arXiv:2009.05647 (2020).

[37] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. Haq: Hardware-
aware automated quantization with mixed precision. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 8612–8620.
[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

8

	Abstract
	1 Introduction
	2 Tapered fixed-point format
	3 Related work
	4 TENT Framework
	4.1 Tapered Fixed-Point Parameter Selection
	4.2 Quantization with Tapered Fixed-Point
	4.3 Tapered Fixed-Point Dot Product

	5 System Design and Architecture
	6 Experimental Setup, Results & Analysis
	6.1 Inference Performance with TENT
	6.2 Hardware System Results

	7 Conclusions
	References

