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Abstract

Discovering causal structures with latent variables from observational data is a fun-
damental challenge in causal discovery. Existing methods often rely on constraint-
based, iterative discrete searches, limiting their scalability to large numbers of
variables. Moreover, these methods frequently assume linearity or invertibility,
restricting their applicability to real-world scenarios. We present new theoretical
results on the identifiability of nonlinear latent hierarchical causal models, relaxing
previous assumptions in literature about the deterministic nature of latent variables
and exogenous noise. Building on these insights, we develop a novel differentiable
causal discovery algorithm that efficiently estimates the structure of such models.
To the best of our knowledge, this is the first work to propose a differentiable
causal discovery method for nonlinear latent hierarchical models. Our approach
outperforms existing methods in both accuracy and scalability. We demonstrate
its practical utility by learning interpretable hierarchical latent structures from
high-dimensional image data and demonstrate its effectiveness on downstream
tasks.

1 Introduction

Causal discovery, the task of inferring causal relationships from observational data, is fundamental to
understanding complex systems across various scientific disciplines. Traditional causal discovery
methods often assume the absence of latent confounders, a property known as causal sufficiency
[40, 8]. However, this condition is frequently violated in real-world scenarios, where unobserved
variables can introduce spurious correlations among observed variables. For instance, in image
analysis, latent semantic variables often act as common causes for multiple pixels, creating complex
dependencies that are not directly observable.

Recognizing the limitations of causal sufficiency conditions, researchers have developed various
approaches to handle latent confounders. Fast Causal Inference (FCI) and its extensions [40, 34, 45,
12, 11, 1] leverage conditional independence information to infer a class of possible causal graphs.
While these methods can identify the presence of latent confounders, they do not provide information
about causal relationships among the latent variables themselves.

Therefore, another line of research has emerged, focusing on methods that can identify causal relations
between latent variables. These approaches typically introduce restrictive parametric conditions, such
as linearity or discrete data, to make the problem tractable [38, 26, 19, 43, 14, 37, 42, 13, 2, 23].
Recently, Kong et al. [24] proposed a method for identifying the causal structure of non-linear latent
hierarchical models. However, their approach assumes that latent variables and exogenous noise
are deterministic functions of measured variables. In this paper, we establish the identifiability of
non-linear latent hierarchical models without this condition.
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Moreover, these methods often employ an iterative procedure, learning local graph structures se-
quentially. Such iterative approaches often face challenges including scalability issues [9, 32], error
propagation, and sensitivity to testing order [39, 12]. To address these empirical issues, researchers
have proposed differentiable causal discovery methods [47, 44, 46, 48, 36, 29]. Unlike iterative
methods or discrete search-based approaches, these methods formulate the combinatorial search
problem of causal discovery as a continuous optimization algorithm, incorporating differentiable
algebraic constraints to enforce structural requirements, such as acyclicity. However, these methods
typically assume no latent variables. Notable exceptions are the recent work by Bhattacharya et al. [6]
and Ma et al. [28] that extended these methods to include latent variables, which assume linearity and
do not recover the causal relations between latent variables. To tackle these limitations, we propose a
scalable differentiable causal discovery method for non-linear latent hierarchical models.

Our key contributions are as follows:

1. We establish theoretical guarantees for the identifiability of non-linear latent hierarchical
models under considerably relaxed conditions. Notably, we eliminate the requirement for
latent variables and exogenous noise to be deterministic functions of measured variables.

2. We introduce a novel differentiable causal discovery method for latent hierarchical models.
Through comprehensive experiments on synthetic and real datasets, we demonstrate our
method’s improved performance and scalability compared to existing approaches for latent
hierarchical models.

2 Non-linear Latent Hierarchical Causal Models

z1

z2 z3

z4 z5 z6 z7 z8 z8

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Figure 1: Example of a graph we consider. Note that we allow multiple paths between two nodes and
hence generalize trees. The latent variables are shaded.

We consider a latent hierarchical causal model represented by a directed acyclic graph (DAG)
G = (V, E), where V = Z ∪ X comprises latent variables Z = {z1, z2, . . . , znz} and measured
variables X = {x1, x2, . . . , xnx}, and E denotes the set of edges representing causal relationships.
The variables follow the data-generating procedure:

zj = fzj (Pa(zj), εzj );xi = fxi
(Pa(xi), εxi

) (1)
where Pa(·) represents the set of parent variables of a given node in G, and Pa(xi),Pa(zj) ⊆ Z.

The structure of DAG G can be characterized by binary matrices Mz and Mx, where Mz
ij = 1 if

and only if there is an edge zi → zj , and Mx
ij = 1 if and only if there is an edge zi → xj . Without

loss of generality, we assume Mz is upper triangular. The binary adjacency matrix M is obtained by
horizontally concatenating Mz and Mx, i.e., M = [Mz | Mx]. The goal of this work is to recover
the binary matrix M upto the relabeling of the latent variables.

In general, latent hierarchical models are not identifiable. Hence, we require structural conditions on
the model to make it identifiable. We consider the following structural conditions:
Definition 1 (Pure Children). vi is a pure child of another variable vj , if vj is the only parent of vi
in the graph, i.e., Pa(vi) = {vj}.
Condition 1. (i) Each latent variable has two at least pure children. (ii) For any latent variable
zi ∈ Z, let Di = De(zi) ∩ X be the set of measured descendants of zi where De(.) denotes the
descendants. Then, for all xj , xk ∈ Di, d(zi, xj) = d(zi, xk) where d(·, ·) denotes the length of the
directed path between two nodes in the graph G.
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We provide additional discussion on the above condition in Appendix D.1.

Define Zl = {zi ∈ Z : ∀xj ∈ De(zi) ∩ X, d(zi, xj) = l}. This denotes the set of latent variables in
the lth layer of the model. Henceforth, we denote the vector obtained by concatenating the elements
in Zl as zl and zli as the ith element of layer l. Note that since any node in Zi has parents only in
Zi−1, the adjacency matrix M can be transformed via suitable column and row permutations to the
block upper-triangular structure as shown below:

M =


0 Mk 0 · · · 0
0 0 Mk−1 · · · 0
...

...
...

. . .
...

0 0 0 · · · M1

 (2)

where M i ∈ {0, 1}|Zi|×|Zi−1| are binary matrices that model the causal structure between Zi and
Zi−1. M1 ∈ {0, 1}|Z1|×|X| is the binary matrix between Z1 and X. Henceforth in the paper, we
assume M is modeled this way and hence always satisfies condition 1 (ii).

Our structural conditions are fairly general. We reduce the required number of pure measured
variables relative to Silva et al. [38] and Kummerfeld & Ramsey [26]. Unlike Choi et al. [10] and
Drton et al. [16], we do not restrict children to have only one latent parent. Furthermore, our method
imposes no constraints on the neighborhood structure of variables as in [19, 43].

Additional Notation: For any matrix A, we use Ai,: to denote its i-th row, A:,j for its j-th column,
and Ai,j for the element at the i-th row and j-th column. For a set A, a denotes the vector obtained
by concatenating all the elements in A and ai denotes the ith element of a.

3 Identifiability Theory

In this section, we describe the identifiability theory for general latent hierarchical models. Prior
work has used rank constraints on the observed distribution as a graphical indicator of latent variables
[38, 19, 14] for linear causal graphs. We propose a novel indicator which allows us to determine the
number of latent variables which d-separate the two measured sets in the general case.

Intuition: Consider the case where a set of latent variables, denoted by Z, d-separates two sets of
measured variables, X and Y. In this scenario, the conditional distribution p(y|x) can be expressed
as: p(y|x) =

∫
p(y|z)p(z|x)dz. If the cardinality of Z is smaller than that of X or Y, this imposes

a constraint on the observable distribution. In most cases, the size of Z would to the minimum
dimension of latent variables such that p(y|x) can be written as

∫
p(y|z)p(z|x)dz. Based on this

observation, we formulate a criterion based on the rank of the Jacobian of the function E[y|x], which
allows us to show that the general case holds with probability one.

In order to rigorously prove identifiability results, we introduce some standard differentiability and
faithfulness conditions [19, 14].
Condition 2 (Generalized Faithfulness). A probability distribution P is faithful to a DAG G if every
rank Jacobian constraint on a pair of set of measured variables that holds in P is entailed by every
structural equation model with respect to G.

Faithfulness conditions are widely used in causal discovery [40, 45, 38, 19]. This is often justified by
the fact that the Lebesgue measure of distributions violating faithfulness has been shown to be zero.
The following proposition justifies the faithfulness condition for non-linear latent hierarchical models
along similar lines.
Proposition 1. The probability of a distribution P generated by a structural model with respect to G
violating Generalized Faithfulness is zero.
Condition 3 (Differentiability). (i) For every pair of measured sets X and Y, the function f : R|X| →
R|Y| defined as f(x) = E[y|x] is continuously differentiable. (ii) For every pair of measured set
X and latent set Z, there exists a continuous differentiable function g : R|X| → R|Z| such that
p(z|x) = p(z|g(x)).

Our approach considerably relaxes the constraints compared to existing work. Unlike previous
methods that require linear relationships [19, 14] or deterministic functions (z, ϵ = f(x)) [24], our
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framework accommodates a broader class of non-linear relationships between variables. Also, note
that these conditions are sufficient but not necessary. In Section 5 we show we can identify structures
even when Condition 3 does not hold.

We introduce a theorem that relates the graphical structure to a constraint of the distribution between
two sets of measured variables.
Theorem 1. Let G be a hierarchical latent causal model satisfying Condition 1. For any two sets of
measured variables X and Y in G, let f(x) = E[y|x]. Under the faithfulness and differentiability
conditions, for any r < |X|, |Y|, the rank of the Jacobian matrix Jf = ∂f

∂x = r if and only if the size
of the smallest set of latent variables that d-separates X from Y is r. Formally,

rank(Jf ) = min
Z

|Z| such that X ⊥⊥G Y|Z (3)

where Z is a subset of latent variables in G, and ⊥⊥G denotes d-separation in the graph G.

Henceforth, we use r(X,Y) to denote the rank of the Jacobian of the function E[y|x]. Moreover,
it can be shown that pure descendants of latent variables can be used as a surrogate to calculate
d-separation between sets of latent variables as stated in Theorem 2 below. This theorem is partly
inspired by Huang et al. [19].
Theorem 2. Let G be a hierarchical latent causal model satisfying Condition 1. Let ZX ,ZY ⊆ Z
be two disjoint subsets of latent variables in G, i.e., ZX ∩ ZY = ∅. Let X be the set of measured
variables that are d-separated by ZX from all other measured variables in G and let Y be the set of
measured variables that are d-separated by ZY from all other measured variables in G. Then,

r(ZX ,ZY ) = r(X,Y)

We now introduce three lemmas that are instrumental in proving identifiability. These lemmas provide
a systematic approach to uncover the latent structure:
Lemma 1. Let G be a graph satisfying Conditions 1. A set of measured variables S are pure children
of the same parent if and only if for any subset T ⊆ S, r(T,X \ T) = 1.
Lemma 2. Let G be a hierarchical latent causal model satisfying Conditions 1. Let X ⊂ V be the
set of measured variables. Under the generalized faithfulness condition, for any measured variable
c ∈ X and any set of latent variables P ⊆ Z1, c is a child of exactly the variables in P if and only if
the following conditions hold:

1. For each S ⊆ X such that |S∩Ch(zi)| = 1 for each zi ∈ P, where Ch(zi) denotes the set of
pure children of zi:

r(S,X \ (S ∪ {c})) = r(S ∪ {c},X \ (S ∪ {c}))

2. The equality in condition (1) does not hold for any proper subset of P.
Lemma 3. Let G be a graph satisfying Conditions 1. A measured variable c has no parent if and
only if r({c},X \ {c}) = 0.

Discussion: Lemma 1 enables us to identify pure children among the measured variables X. For
example, in Figure 1 all subsets of {x1, x2} are d-separated from the rest of the variables by one
variable {z4}. However, for the set {x1, x2, x3, x4}, the subset {x1, x3} requires two variables
{z4, z5} to be d-separated from the rest of the variables. Lemma 2 provides a method to determine
the parents of non-pure children. For example, in Figure 1, consider {x12} whose parents are
{z8, z9}. For a set like {x9, x12}, which contains exactly one pure child of both parents of {x12},
r({x9, x12},X \ {x9, x12}) = r({x9, x12, x11},X \ {x9, x12, x11}). However, this is not true for
any other set of latent variables. Lemma 3 allows us to identify measured variables that have no latent
parents.

Having established the necessary lemmas, we now present the identifiability of the graph structure in
hierarchical latent causal models.
Theorem 3. Let G = (V, E) be a hierarchical latent causal model satisfying Condition 1. Let M be
the binary adjacency matrix representing the structure of G. Let data X be generated according to the
structural equation model defined in Equation 1. Given a function r(S,T) which outputs the minimum
number of latent variables that d-separate any two measured sets S and T, M is identifiable up to
the permutation of the latent variables.
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The proof for Theorem 3 leverages the preceding lemmas and recursion. We begin by applying
Lemmas 1, 2, and 3 to infer the structure between Z1 and X. Theorem 2 then allows us to relate
d-separation between sets in Z1 to their pure children in X. Thus, this process can be applied
recursively to higher levels of the hierarchy, enabling the identification of the entire graph structure.

4 Differentiable Causal Discovery Approach

In the previous section, we demonstrated that hierarchical models satisfying Condition 1 yield a
unique hierarchical structure for a given distribution of measured variables. To learn the causal
structure, two key steps must be performed: (i) matching the observed data distribution, and (ii)
enforcing structural constraints on the model.

4.1 Matching the Data Distribution

To learn the causal structure, we consider the structural equation models (SEMs) in Equation 1
explicitly parameterized by the binary adjacency matrix M .

zij = f i
j(M

i+1 ⊙ zi+1, εzi
j
); xj = gj(M

1 ⊙ z1, εxj ). (4)

We employ a variational autoencoder (VAE) [22] as a generative model to learn the distribution over
the measured variables. Let θ be the parameters of the VAE, and M represent the binary adjacency
matrix controlling the structure of the SEM. We aim to maximize the evidence lower bound (ELBO)
to approximate the true data distribution.

log p(x; θ̂,M) ≥ −KL(q(ϵ|x)||p(ϵ; θ̂)) + Eq[log p(x|ϵ; θ̂,M)] (5)

Here, ϵ represents the latent variable vector obtained by concatenating all individual noise terms
εzi

j
and εxj . The objective of the VAE is to minimize the negative ELBO LELBO, where the KL

divergence regularizes the variational posterior, and the second term encourages the generative model
to match the observed data distribution.

The encoder of the VAE models the approximate posterior q(ϵ|x). An advantage of modeling q(ϵ|x)
over q(z|x) is that it simplifies the process of enforcing the independence of each dimension of ϵ.
The decoder models the conditional likelihood p(x|ϵ; θ̂,M), and is designed to follow the SEM
equations in Equation 4. This allows the decoder to respect the structural constraints encoded in the
binary adjacency matrix M , ensuring that the learned distribution also reflects the underlying causal
structure.

4.2 Enforcing Structural Constraints

In order to enforce structural constraints, we relax the binary adjacency matrix M for gradient-based
optimization by using the Gumbel-softmax trick [21]. Here, M ∼ σ(γ), where σ represents the
softmax function and γ is a trainable parameter representing the logits. To ensure the causal structure
satisfies Condition 1 (ii), we define M as a block upper-triangular matrix as shown in Equation 2.
We now introduce the following lemma to justify the constraint required for Condition 1 (i).
Lemma 4. Consider a DAG G with a binary adjacency matrix M . G satisfies Condition 1 (i) if and
only if: ∥∥∥Mi,: ⊙

∏
j ̸=i

(1−Mj,:)
∥∥∥
1
≥ 2 ∀i. (6)

To encourage sparsity and avoid learning spurious edges, we apply an ℓ1 regularization on σ(γ),
similar to other differentiable causal discovery methods [30, 7]. The optimization objective is
formulated as:

max
θ,γ

EM∼σ(γ) [ELBO(θ,M)]− λ∥σ(γ)∥1, (7)

subject to ∥Mi,:∥1
∥∥∥∥Mi,: ⊙

∏
j ̸=i

(1−Mj,:)
∥∥∥
1
≥ 2 ∀i. (8)
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Table 1: Performance of latent hierarchical causal discovery methods on various graphs

Ours KONG [24] HUANG [19] GIN [42]

Structure SHD ↓ F1 ↑ Time (s) ↓ SHD ↓ F1 ↑ Time (s) ↓ SHD ↓ F1 ↑ Time (s) ↓ SHD ↓ F1 ↑ Time (s) ↓
Tree 0.67 0.96 231.40 5.83 0.63 4965.20 6.00 0.65 2.87 7.50 0.00 3.78

(1.49) (0.08) (18.53) (2.04) (0.09) (2382.16) (3.00) (0.08) (0.04) (1.50) (0.00) (0.06)

V-structure 0.67 0.97 266.23 7.67 0.61 5719.62 5.50 0.72 5.07 8.00 0.17 6.13
(1.10) (0.05) (11.33) (4.08) (0.14) (2588.82) (2.50) (0.08) (0.06) (0.00) (0.17) (0.193)

Note: SHD = Structural Hamming Distance (lower is better ↓). F1 scores range from 0 to 1 (higher is better ↑).
Time is measured in seconds (lower is better ↓). Standard deviations are reported in parentheses.

Note, that we allow some rows of M to go zero. This allows us to learn the number of latent
variables. The above method of using Gumbel softmax to approximate the binary adjacency matrices
is inspired by Ng et al. [30], Brouillard et al. [7]. Furthermore, to ensure the independence of the
noise terms ε, we introduce the following independence loss, denoted as Lind(ϵ), which minimizes
the KL divergence between the joint distribution of ϵ and the product of individual noise distributions
Lind(ϵ) = KL

(
p(ϵ)∥

∏
j

∏
i p(εzi

j
)
∏

j p(εxj )
)

. This can be estimated using the Donsker-Varadhan
representation [15, 4]. Therefore, the final loss function is:

Lfinal = −EM∼σ(γ) [ELBO(θ,M)] + KL(q(ϵ|x)∥p(ϵ))
+ λ1Lind(ϵ) + λ2∥σ(γ)∥1

+ λ3

(∑
i

max(0, ∥Mi,:∥1(2− ∥Mi,: ⊙
∏
j ̸=i

(1−Mj,:)∥1))
)2

. (9)

5 Experiments

We conduct empirical studies to examine the efficacy of our differentiable causal discovery method.
Specifically, we experiment with synthetic data in Section 5.1 and real image data in Section 5.2.

5.1 Synthetic Data

We conduct experiments on four causal structures given in Figure 3 to validate our method. We
consider both trees and v-structures. We compare against other methods designed to discover
latent hierarchical causal models, namely KONG [24], HUANG [19] and GIN [42]. The structural
Hamming distance (SHD) and F1 score are computed for each structure and reported in Table 1. We
also report the time taken for each method in seconds. We did not run 1-factor model methods like
FOFC [26] since our data does not meet their conditions, and their implementation results in runtime
errors. Further experimental details are given in Appendix C.1.

We observe substantial improvement in both the SHD and F1 score compared to the baselines.
We note that this improvement is despite the fact that the data does not satisfy Condition 3 since
LeakyReLU is not differentiable everywhere. Since other methods are designed for a restrictive class
of latent hierarchical models, they are unable to identify the causal graph. Xie et al. [42] does not
predict edges for most of the runs resulting in a mean F1 score close to zero.

The linear baselines [19, 42] are faster than the non-linear methods. This is because they do not
have to train a non-linear model like a neural network since all relationships are linear. However, we
observe that we require a much shorter runtime compared to Kong et al. [24] since we only train one
neural network instead of O(ln2).

5.2 Image data

In this section, we learn a latent causal graph for the MNIST dataset [27]. As shown in Figure 2a, we
model a latent hierarchical causal structure followed by a decoder that generates the images. Since
our causal discovery approach can be trained end-to-end, incorporating the decoder does not alter our
methodology. The convolution decoder allows us to use spatial information and reduce the number of
measured variables. Further training details are provided in Appendix C.2.
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(a) (b) (c)

Figure 2: Figures for the Image experiments. (a) Latent causal graph for digit images (b) Visualization
of subgraph of the learnt latent causal graph on MNIST (c) Samples of CMNIST digits; train set - top
row; test set (reverse) - middle row, test set (blue) - bottom row

Table 2: Test Accuracy on the CMNIST dataset. Standard deviations are reported in parentheses.

Ours Autoencoder VAE β-VAE (β = 1e−3) β-VAE (β = 1e−1) β-VAE (β = 10)

Reverse 0.979 (0.004) 0.854 (0.037) 0.536 (0.000) 0.843 (0.140) 0.536 (0.000) 0.536 (0.000)
Blue 0.753 (0.106) 0.6492 (0.195) 0.536 (0.000) 0.487 (0.215) 0.536 (0.000) 0.536 (0.000)

We initialize the causal model with three layers and learn the underlying structure. The top layer
typically captures global features, such as digit identity, while the middle layer learns variations
within the same digit. The lowest layer focuses on local features that have minimal impact on the
overall digit structure. Figure 2b visualizes a subset of the learned causal graph, highlighting these
patterns, which were generated by intervening on different nodes in the subgraph. The top node
denotes the concept of a digit three. The lower nodes are visualized upon intervention. The full causal
graph, shown in Appendix C.2, has 62 latent variables demonstrating the scalability of our method.

Causal representations often contribute to better generalization and transfer learning due to the
transfer of causal relations [35]. To demonstrate the effectiveness of our learned representations in
domain transfer, we evaluate them on the CMNIST dataset [3]. Figure 2c shows our train and test
sets. Further details on the data generating process are given in Appendix C.2.

To predict the digit labels, we first learn a latent causal structure from the dataset. We then train a
logistic regression classifier on these latent representations, applying L1 regularization to encourage
sparsity in the model weights. This regularization promotes the use of features within the Markov
blanket of the label. We evaluate the model on the test set, and the results are presented in Table 2.

Table 2 compares performance on the two test sets: ‘Reverse,’ where the color-digit relationship is
reversed in the test set, and ‘Blue,’ where all digits in the test set are blue.

6 Conclusion

In this work, we introduce a differentiable causal discovery method for recovering the structure of
latent hierarchical causal graphs under rather mild conditions. Our approach significantly outperforms
existing baselines and is scalable to high-dimensional datasets such as images. Additionally, we
establish novel identifiability results without imposing restrictive assumptions on the structural
equation models. Notably, our result that provides graphical information based on rank of the
Jacobian matrix may inspire future work in this area.
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A Related Work

Causal Discovery for Latent Hierarchical Models: Prior work has focused extensively on the
linear case [38, 2, 26, 42, 19, 43, 14]. Silva et al. [38] and Kummerfeld & Ramsey [26] utilize tetrad
conditions—the rank of each 2× 2 sub-covariance matrix—to discover latent variables. However,
they require further structural conditions, such as trees and three measured pure children for each
latent variable. Anandkumar et al. [2] employ matrix factorization to identify latent variables based
on decomposing the covariance matrix. Xie et al. [42, 43] extend the independent noise condition to
latent models with non-Gaussian noise.

Huang et al. [19] use rank deficiency constraints on pairs of measured variable sets to identify
the minimum number of latent variables that d-separate the two sets. Dong et al. [14] extend this
framework to allow measured variables to be parents of other variables as well. Both these methods
use an iterative search procedure with rank deficiency test to discover the latent graph, with a time
complexity at least quadratic in the number of variables.

Kong et al. [24] introduce identifiability results for the non-linear case when the latent variables
and exogenous noise are a differentiable invertible function of the measured variables (z, ϵ = f(x)).
Similar to other methods, they rely on an iterative search procedure that requires training at least
O(ln2) generative models, where n is the number of measured variables and l is the number of layers
in the model.

Another line of work focuses on learning hierarchical structures for discrete latent variables [33, 10,
17]. However, these approaches assume the measured variables are discrete, which often does not
hold in many real-world scenarios, such as images. Kong et al. [25] allows continuous variables to
be adjacent to latent discrete variables. However, causal relationships and the hierarchical structure
are only learned for discrete variables. Moreover, latent variables are assumed to be a deterministic
invertible function of the measured variables, similar to Kong et al. [24].

Differentiable Causal Discovery: NOTEARS introduced a continuous optimization-based algo-
rithm to learn linear directed acyclic graphs (DAG) by formulating graphical constraints into differen-
tiable constraints [47]. Subsequent work parameterized DAGs using neural networks [44, 46, 30].
[48] extended these approaches to non-parametric DAGs. While these approaches scale well, they
usually assume the absence of any latent variables in the DAG.

More recent differentiable causal discovery algorithms have been developed for handle latent variables
[6, 5]. However, these methods do not recover the causal relations between latent variables and
assume linearity. [28] make similar conditions but use a supervised approach for causal discovery.

Non-linear ICA: Non-linear Independent Component Analysis methods aim to recover independent
latent sources from a set of measured variables. However, they do not consider generic dependence
between latent variables and rely on additional assumptions such as existence of auxiliary variables
[20] or sparsity [49].

B Proofs

B.1 Proof of Proposition 1

Proposition 1. The probability of a distribution P generated by a structural model with respect to G
violating Generalized Faithfulness is zero.

Proof. We begin our proof with the following lemma.

Lemma 5. Let A ∈ Rm×p and B ∈ Rp×n be random matrices drawn from a continuous distribution
with m,n ≥ p, whose entries are drawn from continuous distributions. Let C = AB be their product.
Then,

P(rank(C) < p) = 0

with respect to the Lebesgue measure on Rm×n.
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Proof. The lebesgue measure of non-full rank matrices is zero. Therefore P(rank(A) = p) = 1 and
P(rank(B) = p) = 1.

Since C = AB, rank(C) ≤ min(rank(A), rank(B)) = p. For rank(C) < p, the vectors Ab:,i
would have to be linearly dependent. This adds hard constraints on the matrices which has lebesgue
measure zero.

Using the proof of Theorem 1, we know Jh(x) = Jf (g(x))·Jg(x) where Jf (g(x)) ∈ R|Y|×|Z|, Jg ∈
R|Z|×|X|. Condition 3 ensures the Jacobian matrices are continuous. By Lemma 5, rank(Jh(x)) =
|Z| with probability one. Therefore, the probability of rank(Jh(x)) < |Z| for all x is zero.

B.2 Proof of Theorem 1

Theorem 1. Let G be a hierarchical latent causal model satisfying Condition 1. Under the faithfulness
and differentiability conditions, for any two sets of measured variables X and Y in G, the rank of
the Jacobian matrix Jf = ∂f

∂x = r < |X|, |Y| (where f(x) = E[y|x]) if and only if the size of the
smallest set of latent variables that d-separates X from Y is r. Formally,

rank(Jf ) = min
Z

|Z| such that X ⊥⊥G Y | Z (10)

where Z is a subset of latent variables in G, and ⊥⊥G denotes d-separation in the graph G.

Proof. Let X and Y be two sets of measured variables in G. By the structure of the hierarchical latent
causal model and Condition 1, there are no direct edges between measured variables. Therefore, any
d-separation between X and Y must be mediated through a set of latent variables.

Let Z be the minimal set of latent variables that d-separates X from Y, i.e.,

X ⊥⊥G Y | Z.

This implies that the conditional distribution satisfies

p(y|x) =
∫

p(y|z)p(z|x)dz.

Taking expectations, we obtain

E[y|x] =
∫

y p(y|x)dy (11)

=

∫
y

(∫
p(y|z)p(z|x)dz

)
dy (12)

=

∫ (∫
y p(y|z)dy

)
p(z|x)dz (13)

=

∫
E[y|z] p(z|x)dz. (14)

By Condition 3, there exists a differentiable function g : R|X| → R|Z| such that

p(z|x) = p(z|g(x)).

Substituting this into the expectation, we have

E[y|x] =
∫

E[y|z] p(z|g(x))dz = h(g(x)),

where we define the function h : R|Z| → R|Y| by

f(w) =

∫
E[y|z] p(z|w)dz.
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Applying the chain rule to the composition of functions, the Jacobian of E[y|x] with respect to x is

Jf (x) = Jh(g(x)) · Jg(x),
where Jh(g(x)) is an |Y| × |Z| matrix and Jg(x) is an |Z| × |X| matrix.

Using the rank inequality for matrix multiplication, we have

rank(Jf (x)) ≤ min (rank(Jh(g(x))), rank(Jg(x))) .

Therefore,
rank(Jf (x)) ≤ min(|Z|, |X|, |Y|)

Proposition 1 implies that the Jacobian achieves its maximal possible rank almost everywhere. Thus,
using Condition 2,

rank(Jf (x)) = min(|Z|, |X|, |Y|)

Therefore, Jf = ∂f
∂x = r < |X|, |Y| if and only if |Z| = r. This completes the proof.

Linear Case: We show that linear latent hierarchical models ([19]) are a special case of this theorem.
If the causal relationsip between y and z is linear, we have: E[y|x] = E[y|E[z|x]]. Therefore,
E[z|x]] being a continuous differentiable function of x suffices and we do not require Condition 3
(ii).

B.3 Proof of Theorem 2

Theorem 2. Let G be a hierarchical latent causal model satisfying Condition 1. Let ZX ,ZY ⊆ Z
be two disjoint subsets of latent variables in G, i.e., ZX ∩ ZY = ∅. Let X be the set of observed
variables that are d-separated by ZX from all other observed variables in G and let Y be the set of
observed variables that are d-separated by ZY from all other observed variables in G. Then,

r(ZX ,ZY ) = r(X,Y)

Proof. Since ZX and ZY d-separate X and Y from all other variables, we know that X are the
measured pure descendants of ZX , and Y are the measured pure descendants of ZY . Therefore, if Z
d-separates ZX and ZY , if Z d-separates X and Y. Moreover, if Z d-separates X and Y then given
our structure, it must d-separate ZX and ZY .

This completes the proof.

B.4 Proof of Lemma 1

Lemma 1. Let G be a graph satisfying Conditions 1. A set of measured variables S are pure children
of the same parent if and only if for any subset T ⊆ S, r(T,X \ T) = 1.

Proof. (⇒) Suppose the measured variables in S are pure children of the same parent node p. For
any subset T ⊆ S, T and X \ T are d-separated by node p. Therefore, we have r(T,X \ T) = 1.

(⇐) We prove the contrapositive. Suppose the union of parents of measured variables in S contains
more than one node. Then there exist distinct parent nodes p and p′ such that at least one of their
respective children is in S. We can choose T such that both T and X \ T contains at least one pure
child of p and one pure child of p′. This choice is possible due to Condition 1, which states that all
latent variables have at least two pure children.

For this choice of T, we have r(T,X \T) ≥ 2, as both p and p′ are needed to d-separate the two sets.
This contradicts the condition that r(T,S \ T) = 1 for all T ⊆ S.

B.5 Proof of Lemma 2

Lemma 2. Let G be a hierarchical latent causal model satisfying Conditions 1. Let X ⊂ V be the set
of observed variables. Under the faithfulness condition, for any observed variable c ∈ X and any
set of latent variables P ⊆ Z1, c is a child of exactly the variables in P if and only if the following
conditions hold:
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1. ∀S ⊆ X such that |S ∩ Ch(zi)| = 1 for each zi ∈ P, where Ch(zi) denotes the set of pure
children of zi:

r(S ∪ {c},X \ (S ∪ {c})) = P

2. The equality in condition (1) does not hold for any proper subset of P.

Proof. We will prove both directions of the if and only if statement.

(⇒) Suppose c is a child of exactly the variables in P.

Let S ⊆ X be any set such that |S ∩ Ch(zi)| = 1 for each zi ∈ P, and let T = X \ (S ∪ {c}).
By the structure of the graph, P d-separates S from T, and P also d-separates S ∪ {c} from T. This is
because c is a child of all nodes in P, so including it with S doesn’t create any new paths to T that
aren’t blocked by P. Therefore, we have r(S,T) = r(S ∪ {c},T) = |P|.
This satisfies condition (1). Condition (2) is satisfied because no proper subset of P contains all
parents of c, so no proper subset of P can d-separate S ∪ {c} from T.

(⇐) Now suppose conditions (1) and (2) hold. We will prove that c is a child of exactly the variables
in P.

First, we show that P d-separates c from all other variables in X not in S ∪ {c}.

Let S be as defined in condition (1), and T = X \ (S ∪ {c}). The equality in condition (1) implies:

r(S ∪ {c},T) = |P|

Note that, P d-separates S and T. Hence, r(S,T) = |P|. Any set d-separating S ∪ {c} from T must
contain P. Therefore, r(s ∪ {c}, t) ≥ |P|. However, since they are equal, P d-separates c from T
This implies that the parents of c must be a subset of P, as any path from c to T not going through P
would violate the d-separation.

Now, condition (2) states that this equality doesn’t hold for any proper subset of P. This means that
every variable in P is necessary for the d-separation. If any variable in P were not a parent of c, then
we could remove it and still maintain the d-separation, contradicting condition (2).

Therefore, c must be a child of exactly the variables in P.

B.6 Proof of Lemma 3

Lemma 3. Let G be a graph satisfying Conditions 1. A measured variable c has no parent if and
only if r({c},X \ {c}) = 0.

Proof. We will prove both directions of the if and only if statement.

(⇒) Suppose c has no parent.

In this case, c is independent of all other variables in the graph. Therefore, r({c},X \ {c}) = 0.

(⇐) Suppose r({c},X \ {c}) = 0.

This means that no latent variables are needed to render c independent of all other observed variables.
In other words, c is already independent of all other observed variables.

Now, suppose for the sake of contradiction that c has a parent z. By Condition 1, z must have at
least two pure children, one of which could be c, and let’s call the other one x. Then c and x would
be dependent through their common parent z, contradicting the independence of c from all other
observed variables.

Therefore, c cannot have any parent.

B.7 Proof of Theorem 3

Theorem 3. Let G = (V, E) be a hierarchical latent causal model satisfying Condition 1. Let M
be the binary adjacency matrix representing the structure of G. Let data X be generated according
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to the structural equation model defined in Equation 1. Given a function r(S,T) which outputs the
minimum number of latent variables which d-separate any two sets measured sets S and T, M is
identifiable up to the permutation of the latent variables.

Proof. We prove Theorem 3 using the principle of mathematical induction on the number of layers.
We begin with three lemmas that we require for our proof.

We prove this theorem by induction on the number of layers in the hierarchical latent causal model.

Base case: Let G = (V, E) be a hierarchical latent causal model with one latent layer, i.e., Z = Z1.

We begin by identifying the pure children of each latent variable in Z1. By Lemma 1, for any set of
measured variables S ⊆ X, if r(T,X \ T) = 1 for all T ⊆ S, then all variables in S are pure children
of the same parent. For all |T| = 1, this trivially holds. Using Theorem 1, we can exhaustively check
this condition for all subsets |T| > 1 of X to identify all sets of pure children.

Next, we identify the parents of non-pure children using Lemma 2. For each observed variable c ∈ X
that is not identified as a pure child in the previous step, we determine its parents by verifying the
conditions stated in Lemma 2 for all possible subsets of Z1. For most cases, |S∪{c}|, |X\(S∪{c})| >
|P| which allows us to use Theorem 1. For cases, where this does not hold, it implies P = Z1. In this
case, Lemma 2 can be applied for all other subsets of Z1 and if none of them satisfy the conditions,
the set of parents has to be Z1.

Through these two steps, we fully identify the structure between Z1 and X, thus recovering the binary
adjacency matrix M for the one-layer model.

Inductive step: Assume the theorem holds for all models with L− 1 layers, where L > 1. We will
prove it holds for models with L layers.

Let G = (V, E) be a hierarchical latent causal model with L layers. We first identify the structure
between Z1 and X using the same process as in the base case, applying Lemmas 1 and 2.

Let G′ = (V ′, E ′) be the subgraph of G obtained by removing all measured variables X. We claim
that G′ satisfies Condition 1. Each latent variable in Z2 has at least two pure children in G′, and these
belong to Z1. Moreover, the equal path length condition is preserved since the path from any latent to
any variable in Z1 is one less than the path to any variable in X. Some variables Z1 may not have any
parent. We can identify those using Lemma 3.

To determine the d-separation relations between variables in Z1, we utilize Theorem 2. For any two
subsets ZX ,ZY ⊆ Z1, let X and Y be sets of their respective pure children. By Theorem 2, we have
r(ZX ,ZY ) = r(X,Y), allowing us to infer the d-separation relations within Z1.

Now, G′ is a hierarchical latent causal model with L − 1 layers that satisfies the conditions of
the theorem. By the induction hypothesis, we can identify the structure of G′, recovering the
corresponding part of the binary adjacency matrix M .

Therefore, by the principle of mathematical induction, the theorem holds for hierarchical latent causal
models with any number of layers.

B.8 Proof of Lemma 4

Lemma 4. Consider a DAG G with a binary adjacency matrix M . G satisfies Condition 1 (i) if and
only if:

∥Mi,: ⊙
∏
j ̸=i

(1−Mj,:)∥1 ≥ 2 ∀i. (15)

Proof. To prove this lemma, we need to demonstrate that the given condition on the adjacency matrix
M holds if and only if each latent variable has at least two pure children, as stated in Condition 1.

Let’s first analyze the term inside the ℓ1 norm:

Mi,: ⊙
∏
j ̸=i

(1−Mj,:)
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The kth element of this vector is given by:

Mik ·
∏
j ̸=i

(1−Mjk)

This product equals 1 if and only if Mik = 1 and Mjk = 0 for all j ̸= i. In other words, this term
is 1 if and only if the vertex vk is a child of vi and not a child of any other vj (j ̸= i). Hence, this
product identifies whether vk is a pure child of vi.

The ℓ1 norm, ∥·∥1, sums up all these terms, meaning it counts the number of pure children of vi.

Now, according to Condition 1, each latent variable vi must have at least 2 pure children. Therefore,
the condition:

∥Mi,: ⊙
∏
j ̸=i

(1−Mj,:)∥1 ≥ 2 ∀i

ensures that each vi has at least 2 pure children, satisfying Condition 1.

Conversely, if each latent variable vi has at least 2 pure children, the sum
∥∥∥Mi,: ⊙

∏
j ̸=i(1−Mj,:)

∥∥∥
1

must be at least 2 for each i, proving the equivalence.

Thus, the lemma is proven.

C Experimental Details

In this section, we provide a detailed explanation of our experimental setup, model architecture,
training procedure, hyperparameter settings, and evaluation metrics used in the paper.

C.1 Synthetic Data

We follow the same procedure and hyperparameter values for all four graphs.

Data generation: For the ground truth graphs, the functions in Equation 1 are modeled using a
linear transformation of the input followed by a LeakyReLU activation function with α = 0.2. The
weights for the linear transformation are uniformly sampled from [−5,−2] ∪ [2, 5]. Exogenous noise
is sampled from [−α, α] where α is sampled from [−3,−1] ∪ [1, 3].

Model architecture: We use a VAE to learn our causal structure as described in Section 4. The
model consists of several components. The VAE encoder is a two-hidden-layer fully connected neural
network with 64 and 32 hidden neurons, followed by ReLU activations. The encoder outputs both
the mean (µ) and the log variance (log σ2) for the latent variables. For the decoder, each function
in Equation 4 is modeled using a one-hidden-layer fully connected neural network with 32 hidden
neurons. The masking matrices have shape

⌊
|X|
2i+1

⌋
×
⌊
|X|
2i

⌋
since Condition 1 allows a maximum of⌊

|X|
2i

⌋
latent variables in Zi. We use ReLU activation for all neural networks.

Training Procedure: We use mean squared error as the reconstruction loss. We calculate the
Lind(ϵ) = KL(p(ϵ)∥

∏
j

∏
i p(εzi

j
)
∏

j p(εxj
)) using a method similar to MINE ([4]). We warm up

the MINE model for 100 epochs before training. Our model is trained using the Adam optimizer with
a learning rate of 1 × 10−3 for 400 epochs. We use a batch size of 32. For Gumbel-Softmax, we
set the temperature to 1.0 throughout training. The coefficient for Lind(ϵ) is set to 10. λ2 is set to
1e-4 and λ3 is set as 10−3+ epoch

100 . Since the training objective is non-convex, we may get suboptimal
solutions [31]. Therefore, we run the model with 10 random initializations and select the one with
the lowest loss.

Baselines: For [24], we use the code shared with us by the authors. For [19] and [42], we use the
publicly available implementation. Default hyperparameters were used for all methods. We attempted
to use FOFC [26] as a baseline, however an error occurred for our data since it does not satisfy the
conditions for their code to run.
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Evaluation Metrics: We evaluate our model using the Structural Hamming Distance (SHD) and F1
score between the learned adjacency matrix and the ground truth. We train each run three times for
different seed values and report the mean and standard deviation across the three runs of two graphs.
Since the latent graph may only be recovered up to a permutation of the latent variables, we calculate
the SHD over all possible |Z|! permutations of the estimated graph and select the lowest SHD. Since
the evaluation time is O(n!) in the number of latent variables, evaluating methods becomes intractable
for very large graphs. The time was calculated in seconds. For the standard deviation of time, we
report the mean of the standard devation of each graph since time can vary a lot based on the size of
the graph.

z1

z2 z3

x1 x2 x3 x4

(a)

z1

z2 z3 z4

x1 x2 x3 x4 x5 x6

(b)

z1

z2 z3
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(d)

Figure 3: Ground truth causal graphs for Synthetic Experiments. (a) and (b) are trees (only one path
between any two nodes). (c) and (d) allow v-structures (multiple paths between two nodes)

C.2 Image Data

Model Architecture: The proposed Hierarchical VAE model consists of a convolutional encoder,
a hierarchical latent structure, and a transposed convolutional decoder. The convolutional encoder
has two convolution layers (32 and 64 filters, 3x3 kernels, stride 2) followed by a fully connected
layer. Each structural equation (Equation 4) is modeled using a neural network with three hidden
layer. The first two layers are shared to reduce the number of parameters. The convolutional decoder
reconstructs images from the final latent layer. The decoder consists of a fully connected layer that
maps the final latent representation of dimension 49 to a 1568-dimensional space. This output is then
reshaped to a 32-channel 7x7 feature map. We then have two transposed convolutional layers with 32
and 16 filters respectively (both using 3x3 kernels, stride 2, padding 1, and output padding 1), and a
final transposed convolutional layer that reconstructs the image. We initialize M with three layers
with 10, 20 and 49 nodes in each of the three layers. We use ReLU activation for all neural networks.

Training: We train the model on a subset of 10,000 images. The model was trained for 300 epochs.
We use batch size of 256 and do not use MINE to enforce independence between the exogenous
variables. We find it makes little difference to the final output. The temperature for gumbel softmax
starts at 100 and exponentially decreases to 0.1 at 120 epochs and then stays constant. λ2 is 0.03
and λ3 is exponentially increased from 10−3 to 10 at 100 epochs and then stays constant. We used a
Adam optimizer with learning rate 1e-3.

Visualization: Figure 4 displays the complete causal graph constructed from the MNIST dataset.
Note that due to non-convexity, we could not achieve zero loss for the pure children constraint term.
Hence, the learnt graph does not exactly satisfy Conditions 1. To interpret the semantics of each latent
feature, we perform targeted interventions designed to isolate their individual effects. Specifically,
for each latent variable at the topmost layer, we set its ancestral nodes to values 5 standard deviations
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above or below their means, while keeping the remaining variables at their mean values. We then
intervene on the current node by setting its value to the mean, effectively neutralizing its direct
influence, and observe the resulting changes in the generated images. This procedure allows us
to visualize and understand the specific contribution of each latent variable to the overall image
structure.

By comparing the images before and after the intervention, we can discern the unique effects
attributable to each latent feature. Table 3 presents these visualizations for each feature. For each
feature, the first image shows the output when the top latent variable is set 5 standard deviations
below the mean; the second image shows the result when, in addition, the target feature is intervened
upon and set to the mean; the third image displays the output when the top latent variable is set 5
standard deviations above the mean; and the fourth image shows the result when the target feature is
intervened upon and set to the mean under this condition.

For Figure 2b, we adopt a different methodology to visualize the influence of latent variables. Starting
from the topmost layer of the causal graph, we traverse downward through each subsequent layer. At
each node, we randomly assign its value to be either five standard deviations above or below its mean.
This stochastic intervention allows us to observe the cumulative effects of these variations as they
propagate through the graph.

CMNIST details: For the coloured MNIST dataset, we have around 12,000 training samples
and 2,000 test samples. In this dataset, the training set consists of digits 0 and 1, colored either
red or green. The color acts as a cause for the digit, with P (digit = 0|color = red) = 0.9 and
P (digit = 0|color = green) = 0.1 in the training set. These probabilities are reversed in the test set.
We further evaluate on an additional test set where all digits are colored blue. Samples from these
sets are shown in Figure 2c. Although the correlation between color and digit varies across datasets,
the causal relationship between the digit’s image features and its label remains unchanged.

Since we do not aim to visualize the images, we downsample them to 14x14 and train our model. We
train our model for 50 epochs with early stopping with patience 3. After training the latent hierarchical
model, we train a logistic regression classifier to predict the digit from the latent representations. The
coefficient of the L1 regularization is 10. For all the baselines, we train the model for 50 epochs with
early stopping with patience 3. For all models, we used a Adam optimizer with learning rate 1e-3.

We compare our method with standard Autoencoders, Variational Autoencoders (VAEs) [22], and
β-VAEs [18] across different values of β. For each baseline, a logistic regression classifier is trained
on the learned latent representations. All methods are evaluated over three random trials, with the
mean and standard deviation reported to assess performance consistency.

D Discussion

D.1 Condition 1

In Figure 5, we see two examples of causal graphs which violate Condition 1. Figure 5a violates the
pure children condition since each latent does not have two pure children. Figure 5b violates the
Condition 1(ii) since d(z1, x4) = 2 ̸= 1 = d(z1, x3). While Condition 1(ii) may not hold in all cases,
it is a reasonable assumption to make for image data. Several prior works Vahdat & Kautz [41], Kong
et al. [25] have effectively modeled images using a multi-level latent hierarchical structure.

18



Figure 4: Latent causal graph for the MNIST Dataset. zi,j denotes the jth latent variable in Zi.

z1 z2 z3

x1 x2

(a) Causal structure which violates Condition 1(i)

z1

z2 z3

z4

x1 x2

x3 x5

x4

(b) Causal structure which violates Condition 1(ii)

Figure 5: Two examples of causal structures which violate Condition 1
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Table 3: Visualization of MNIST layer dimensions. For each feature, he first image shows the output
when the top latent variable is set 5 standard deviations below the mean; the second image shows the
result when, in addition, the target feature is intervened upon and set to the mean; the third image
displays the output when the top latent variable is set 5 standard deviations above the mean; and the
fourth image shows the result when the target feature is intervened upon and set to the mean under
this condition.

Dim Image Dim Image Dim Image

z00 z01 z02

z03 z04 z05

z07 z08 z10

z11 z12 z13

z15 z16 z18

z19 z111 z112

z113 z114 z115

z116 z117 z119

z20 z22 z23

z24 z25 z26

z27 z28 z29

z210 z211 z212

z215 z216 z217

z218 z219 z220

z221 z222 z223

z224 z225 z226

z228 z230 z232

z233 z234 z235

z236 z237 z238

z240 z241 z242

z244 z245 z246

z247 z248
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