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Abstract

This paper presents two approaches to predict Epidermal Growth Factor Receptor
(EGFR) mutation status in non-small cell lung cancer (NSCLC) patients from
Hematoxylin and Eosin (H&E) stained histopathology whole slide images (WSIs).
The first uses a two-step process: training a vision transformer on histology classi-
fication, then using it as a frozen feature extractor for a multiple instance learning
(MIL) aggregator. The second implements end-to-end training of a pre-trained
foundation model encoder and an MIL aggregator using distributed training. An
in-real-time pipeline is presented for rapid clinical EGFR screening. Experiments
on a large patient cohort demonstrate effectiveness, with the best model achiev-
ing 0.83 AUC and 2-minute inference time per slide, offering a potential rapid,
cost-effective alternative to conventional molecular testing in a live clinical setting.

1 Introduction

Lung cancer is the deadliest cancer in the United States (US). EGFR testing is the cornerstone of
early treatment protocols and determine first line of therapy with EGFR tyrosine kinase inhibitors
(TKIs) [Network, 2024]. This targeted approach leads to improved progression-free survival, en-
hanced quality of life, and potentially reduced overall disease burden in patients with EGFR-mutant
NSCLC [Riely et al., 2024, Ramalingam et al., 2020]. Only 22% of advanced NSCLC patients in
the US had access to NGS testing between 2010-2018, with even lower rates in other developed
countries [Schilsky and Longo, 2022, Normanno et al., 2022]. Limited adoption stems from high
costs, infrastructure gaps, tissue sampling issues, and time constraints [Hiley et al., 2016]. Where
NGS is unavailable, less sensitive rapid tests are used [Grant et al., 2022, Momeni-Boroujeni et al.,
2021].

Given these constraints, there is a need for complementary techniques to efficiently screen NSCLC
patients for EGFR status prediction. Artificial intelligence (AI)-based approaches utilizing digital
whole slide images (WSIs) of routine hematoxylin and eosin (H&E) stained histopathology slides
have emerged as a promising solution [Coudray et al., 2018]. AI-based EGFR screening requires only
digitized H&E slides, making it potentially cost-effective and accessible even in resource-limited
settings. This could serve as a valuable adjunct to genomic testing allowing for lower cost, faster
turnaround time, and better tissue utilization. Based on these considerations, this paper presents: (a)
Development and validation of two AI-based approaches to predict EGFR mutation status directly
from WSIs of NSCLC patients. (b) Comprehensive evaluation of the proposed EGFR prediction
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methods utilizing one of the largest retrospective patient cohorts. (c) A demonstration of the clinical
implementation of an EGFR status prediction system, designed to assess WSIs of NSCLC patients in
real-time and at scale.

2 Background

Recent advances in deep learning have shown great promise for automated analysis of histopathology
WSIs. However, WSIs are gigapixel images, often containing around 100,000 pixels per dimension
at 20× magnification (0.5 microns per pixel), making pixel-level annotations time-consuming and
expensive. To overcome this, researchers have developed weakly supervised learning techniques that
rely on slide-level labels instead of pixel-level annotations.

2.1 Weakly Supervised Learning

Due to the large size of WSIs, slides are typically divided into tens of thousands of smaller patches,
which are then analyzed using multiple instance learning (MIL). MIL formulates WSI classification
as a bag-of-instances problem, where each WSI is a bag containing many patches (instances). A WSI
is considered positive if at least one patch is positive. Ilse et al. proposed an attention-based MIL
approach that learns to identify the most informative regions in a WSI for breast and colon cancer
detection [Ilse et al., 2018]. Building on this work, Campanella et al. developed a deep learning
system trained on over 44,000 WSIs using only slide-level labels, achieving performance comparable
to pathologists in cancer diagnosis [Campanella et al., 2019].

Most recently, various foundation models developed through self-supervised learning have been
shown to be powerful feature extractors, delivering better performance in MIL-based methods for
various downstream pathology tasks. Virchow, UNI, and Prov-GigaPath are vision transformer
models pretrained on large datasets of histopathology slides using self-supervised learning techniques.
Virchow, trained on 1.5 million H&E slides, excels in pan-cancer detection [Vorontsov et al., 2024].
UNI, pretrained on 100 million image patches from 100,000 whole slide images across 20 tissue
types, outperforms previous models on various pathology tasks [Chen et al., 2024]. Prov-GigaPath,
trained on 1.3 billion image tiles from 171,000 slides, demonstrates strong performance in biomarker
prediction and pan-cancer detection [Xu et al., 2024]. All three models use variations of the DINO
v2 algorithm for pretraining [Oquab et al., 2023].

2.2 EGFR Status Prediction

Several studies have demonstrated the feasibility of MIL to predict EGFR mutations from H&E
stained WSIs. Coudray et al. were among the first to train a convolutional neural network (CNN) on
TCGA data for EGFR prediction in NSCLC patients [Coudray et al., 2018]. Their approach involved
training an CNN on patches from manually curated regions of interest, followed by aggregating patch-
level predictions to make slide-level classifications. However, their reliance on manual curation and a
dataset with high tumor purity limited clinical applicability. Sethi et al. developed an approach that
used self-supervised contrastive learning to pretrain a feature extractor, followed by attention-based
MIL to aggregate patch features for slide-level prediction without requiring manual annotations [Sethi
et al., 2021]. Similarly, [Pao et al., 2023] used a CNN to extract patch features, which were then
aggregated using an attention mechanism to produce slide-level predictions. While these studies have
shown promising results, several limitations remain. Most models have been developed and validated
primarily on surgical resection specimens, with limited evaluation on biopsy samples that are more
common in clinical practice. Additionally, there are no studies, to the best of our knowledge, that
have shown how to integrate these models in clinical practice for real-time EGFR status assessment.

3 Proposed Methods

This papers proposes the following two approaches to predict EGFR mutation status directly from
H&E stained WSIs:

Approach 1: This approach consists of training two separate models –
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Patch-level encoder: This encoder extracts a feature vector for each patch of a given WSI. The
encoder’s weights are frozen after training, and it serves as a feature extractor for the next stage.

Slide-level aggregator: This model takes as input the feature vectors produced by the patch-level
encoder for all patches in a WSI. It then aggregates these features to produce a slide-level prediction
of EGFR mutation status.

Figure 1a shows an illustration of the proposed Approach 1. During patch-level encoder training,
tumor containing region of interest (ROI) is extracted for each WSI in the training set by using Otsu’s
thresholding [Otsu et al., 1975] followed by morphological dilation for background and small (< 64
pixels) object (tissue area) removal. Non-overlapping patches of size 224 × 224 pixels are then
extracted from the identified ROI for every WSI. These patches are subsequently used as input to a
vision transformer (ViT) [Dosovitskiy et al., 2021] that learns to assign each input patch to one of the
histological types of lung cancer – acinar, solid, lepidic, papillary, or micropapillary [Nicholson et al.,
2022]. The ground truth histological labels for each WSI are obtained by extracting the results of the
comprehensive genomics testing and curating the EGFR mutations that are biologically relevant and
targets of mutation specific therapy. The weights of the ViT are frozen after training and it is used as
an encoder to extract feature vectors (CLS token [Dosovitskiy et al., 2021]) for input patches of size
224× 224 pixels in the next stage.

Slide-level aggregator obtains feature vectors for every (non-overlapping) patch obtained from an
ROI in a given WSI and applies MIL pooling on these patch-level feature vectors to compute a
slide-level feature vector, which is subsequently used for EGFR status prediction. In this paper, gated
multi-head attention (GMA) as proposed in [Ilse et al., 2018] is used for slide-level aggregation. Note
that the weights of slide-level aggregator are only updated in the second stage of Approach 1 while
the pre-trained encoder weights are frozen as illustrated in 1a.

Approach 2: In this proposed approach the encoder weights are no longer frozen and are updated
along with the MIL weights as illustrated in Figure 1b. Noticeably, this approach is computationally
expensive as it requires processing multiple WSIs during training that involves ROI identification,
patch extraction, a forward pass through the encoder followed by MIL mechanism, loss function
computation, and then backpropagation to update the weights of both the encoder and the MIL
module.

Thus, to implement this approach we adopted a distributed training method presented in [Campanella
et al., 2024b] and summarized in Algorithm A1. It utilizes 2 or more GPUs during training2, with
one GPU dedicated to the aggregator process and N GPUs serving as encoder processes. For each
slide, the algorithm distributes batches of image patches across the N encoder GPUs. These GPUs
perform parallel forward passes through the encoder to generate patch-level features. The resulting
features are then gathered on the aggregator GPU, where they are concatenated and processed by the
aggregator to produce a slide-level feature vector. The slide level feature vector is used to predict the
EGFR status, and a loss is computed. The backward pass begins on the aggregator GPU, computing
gradients up to the concatenated features. These gradients are then split and scattered back to the
encoder GPUs. Each encoder GPU computes a pseudo-loss using its portion of the gradients and
backpropagates through the encoder. Finally, the encoder and aggregator models are updated using
their respective gradients. This distributed approach allows for efficient processing of large WSIs
by leveraging multiple GPUs, potentially improving training speed and enabling the handling of
high-resolution image data. Note that the proposed Approach 2 does not require a surrogate task of
lung histology classification to train an encoder.

In Real Time EGFR Assesment: Figure A1 illustrates the proposed in-real-time (IRT) pipeline to
identify and process WSIs (using proposed Approach 1 or 2) for EGFR prediction in a live clinical
setting. The purpose of the IRT pipeline is that, unlike publications that work with retrospective
sample for which models can be built that overfit these datasets, the proposed methods must generalize
such that any new WSI will perform as it would in a live clinical scenario. *Our institute* processes
90− 110 NSCLC cases per month for which EGFR testing is clinically indicated. The proposed IRT
pipeline identifies slides that are scanned for molecular testing as well as the slides scanned from
the same surgical pathology block for which molecular testing was ordered. Two watchers run every
hour to identify 1) which slides have been scanned; 2) which lung cancer cases are sent for molecular
analysis. When a slide that matches the molecular case is identified, the slide is transferred from the

2Inference is performed using a single GPU after training the model with Approach 2.
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(a) Proposed Approach 1: A two-step process for predicting EGFR mutation status. Step 1: An encoder (vision
transformer [Dosovitskiy et al., 2021] is shown as example) is trained on the surrogate task of lung histology
classification. Step 2: The pre-trained encoder with frozen weights is used as a feature extractor for patches,
followed by a slide-level aggregator (gated attention [Ilse et al., 2018] is shown as example) to predict EGFR
mutation status.

(b) Proposed Approach 2: An end-to-end training process for predicting EGFR mutation status that updates both
the encoder and MIL weights simultaneously.

Figure 1: The proposed approaches for predicting EGFR mutation status from H&E stained WSIs.

archive and the AI model is run immediately. This allows for a real-time EGFR prediction. If two or
more WSIs are scanned, the mean probability score is used. When there is a large deviation in score
from one slide to the next, the case is flagged to assess if one of the slides is from a different block
than molecular testing.

4 Experiments and Results

4.1 Data Description

We applied the proposed approaches on a real-world clinical data to predict EGFR mutation status
consisting of digitized slides of LUAD patient – scanned 20× magnification with Aperio AT2
digital slide scanner from Leica Biosystems, at *our institute* paired with ground truth EGFR
mutational status obtained from the IMPACT sequencing panel [Cheng et al., 2017]. Additionally,
we evaluated the performance of the proposed methods on an external dataset from the TCGA LUAD
cohort [Network et al., 2014]. Table A1 presents the distribution of WSIs across different stages of
our study for two distinct approaches. Note that while Approach 2 utilizes all slides in the training
set, the training set is divided into two subsets: one for encoder pre-training and another for MIL
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model training for Approach 1. Both approaches share identical model selection (validation) and
independent testing sets, ensuring a fair comparison. All slides in the training, model selection, and
independent test sets were scanned at 20× magnification. For the IRT set, both 20× and 40× lung
cancer slides (requiring EGFR testing) scanned at *our institute* in the past 90 days are used. For
40× slides in the IRT set, 448× 448 sized patches are extracted and downsampled to 224× 224 for
a forward pass through the trained models of both approaches.

4.2 Results

The learning parameters for the two proposed approaches are presented in Table A2 in Appendix A.
EGFR status prediction performance of all experiments is reported in terms of the area under curve
(AUC), sensitivity, and specificity metrics for binary classification (EGFR positive or negative with
0.5 threshold). The best model for each approach is selected on the basis of the best AUC value on
the model selection (validation) set (see Table A1).

Table A3 in Appendix A presents the results of EGFR status prediction with the proposed Approach
1 using different encoder architectures with GMA [Ilse et al., 2018] on the validation set. Table A3
shows that ViT-B [Dosovitskiy et al., 2021] achieved the highest AUC among all encoders. While
ViT-L [Dosovitskiy et al., 2021] shows marginally better performance, the improvement does not
justify its increased parameter count. Consequently, ViT-B is used as the encoder with GMA based
MIL for all subsequent experiments with Approach 1. Prov-Gigapath [Xu et al., 2024] is used
as the encoder model for fine-tuning with GMA based MIL in Approach 2 as it has shown better
performance for several downstream tasks [Campanella et al., 2024a].

Results in Table 1 reveal that while Approach 1 marginally outperformed on the model selection
set, Approach 2 demonstrated superior generalization, consistently achieving higher AUC values
on both the independent test set and IRT cases across 20× and 40× magnifications. This enhanced
performance of Approach 2 can be attributed to two key factors: (1) the use of the Prov-Gigapath
foundation model, pre-trained on a large corpus of pathology images, providing more robust initial
weights, and (2) the end-to-end learning paradigm that allows fine-tuning of encoder weights based
on EGFR prediction errors in the training set. These advantages enable Approach 2 to capture
intricate pathological features more effectively and adapt its feature extraction process specifically to
the EGFR prediction task. Consequently, Approach 2 shows greater potential for EGFR mutation
prediction in clinical settings, despite being more expensive to train than Approach 1.

Table 1: Performance metrics for the proposed approaches across different datasets at 0.5 threshold
for binary classification. Bold text indicates the best model (in terms of AUC).

Dataset
(n = # of WSIs)

Approach 1 Approach 2

AUC Sensitivity Specificity AUC Sensitivity Specificity

Model Selection
(n = 260)

0.96 0.83 0.92 0.90 0.88 0.93

Independent
Testing (n =
6300)

0.89 0.72 0.96 0.90 0.84 0.95

TCGA-LUAD (n
= 519)

0.78 0.60 0.81 0.86 0.78 0.74

IRT (n = 1000) 0.80 0.65 0.80 0.83 0.62 0.83

For IRT, the inference time for both approaches is about 2 minutes per slide, offering a significant
improvement in turnaround time compared to conventional methods. The most common IdyllaTM

rapid (PCR-based) EGFR testing has a 2-day turnaround time while suffering from issues with
technical sensitivity, potentially missing important mutations. In contrast, the more comprehensive
IMPACT-based genomic assessment [Cheng et al., 2017], has a 18-days turnaround time and is
more costly. The proposed method offer a significantly shorter turnaround time, processing all slides
scanned in a single day at the hospital within 30-45 minutes (median turn around time is 20 minutes).
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5 Conclusion

This paper demonstrates the feasibility and clinical value of AI-driven EGFR mutation prediction
from histopathology images in NSCLC patients. The proposed approaches offer rapid turnaround ( 2
minutes per slide), cost-effectiveness, and performance comparable to rapid PCR-based tests. The
in-real-time (IRT) pipeline shows promise for expediting mutation detection, potentially leading to
faster treatment decisions and optimized tissue sample utilization. As models are refined based on IRT
performance, further improvements are anticipated. This work represents a significant step towards
integrating AI-powered diagnostics into NSCLC management, advancing precision oncology.
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Figure A1: In-real-time (IRT) pipeline for EGFR prediction involves scanning and storing WSIs,
retrieving slides of lung cancer patients that require EGFR testing, processing slides for EGFR
prediction, and assessing results. The last step involves applying for regulatory approvals after
completing required evaluations.

A Appendix

Table A1: Number of WSIs in the training, model selection (validation), and testing sets

Encoder
Pre-training

MIL Model
Training

Model
Selection

Independent
Testing

TCGA IRT

Approach 1 3475 1558
260 6300 514 1000

Approach 2 5033

Table A2: Training parameters for the proposed approaches

Parameter Approach 1 Approach 2
Encoder Pre-training MIL Training

Number of GPUs 1 1 4

GPU NVIDIA A100

Number of epochs
(Nepochs)

80 50 150

Learning rate (η) 1× 10−5 1× 10−4

Optimizer Adam

Weight decay (λ) 0.01 1× 10−4 1× 0.001

Loss function Cross-Entropy Weighted Binary
Cross-Entropy

Weighted Binary
Cross-Entropy

Learning rate
scheduler Cosine with restarts StepLR (Nstep = 15,

γ = 0.1) Cosine with restarts

Class weighting Not used wpositive = 0.7 wpositive = 0.7
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Table A3: Performance metrics of various encoders with MIL using GMA [Ilse et al., 2018] on the
validation set (260 slides, Table A1)

Encoder
Architecture AUC Sensitivity Specifity

ResNet50 0.82 0.76 0.80
ViT-S 0.84 0.79 0.81
ViT-B 0.96 0.83 0.92
ViT-L 0.97 0.85 0.91

Algorithm A1 Distributed Encoder-Aggregator Training

1: Input: N + 1 GPUs, WSI Dataset D, Encoder E, Aggregator A
2: Output: Trained Encoder E and Aggregator A

3: Initialize:
4: Rank 0 GPU as aggregator process
5: Ranks 1 to N GPUs as encoder processes
6: Wrap E with DistributedDataParallel

7: for each epoch do
8: for each slide in D do
9: Distribute N batches of image patches to N encoder GPUs using distributed sampler

▷ Forward Pass
10: for rank r in 1 to N in parallel do
11: fr ← E(batchr) ▷ Generate patch-level features
12: end for
13: F ← Gather(f1, . . . , fN ) to rank 0 ▷ Break computing graph

14: On rank 0:
15: Fconcatenated ← Concatenate(F )
16: slide_feature← A(Fconcatenated) ▷ Slide-level aggregator
17: output← Project(slide_feature) ▷ EGFR status prediction
18: loss l← ComputeLoss(output, ground_truth)

▷ Backward Pass
19: On rank 0:
20: Compute gradients from l back to Fconcatenated
21: Split gradients into N chunks: g1, . . . , gN
22: Scatter(g1, . . . , gN ) to ranks 1 to N

23: for rank r in 1 to N in parallel do
24: pseudo_loss le ← N ×

∑|F |
i=1(fr[i]× gr[i])

25: Backpropagate le through E
26: end for

▷ Update
27: Update E on ranks 1 to N (handled by DistributedDataParallel)
28: Update A on rank 0
29: end for
30: end for

31: return E, A
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