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ABSTRACT

Recent developments in offline reinforcement learning have uncovered the im-
mense potential of diffusion modeling, which excels at representing heterogeneous
behavior policies. However, sampling from diffusion policies is considerably
slow because it necessitates tens to hundreds of iterative inference steps for one
action. To address this issue, we propose to extract an efficient deterministic
inference policy from critic models and pretrained diffusion behavior models,
leveraging the latter to directly regularize the policy gradient with the behavior
distribution’s score function during optimization. Our method enjoys powerful
generative capabilities of diffusion modeling while completely circumventing the
computationally intensive and time-consuming diffusion sampling scheme, both
during training and evaluation. Extensive results on D4RL tasks show that our
method boosts action sampling speed by more than 25 times compared with vari-
ous leading diffusion-based methods in locomotion tasks, while still maintaining
state-of-the-art performance. Code: https://github.com/thu-ml/SRPO.
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Figure 1: Performance and computational efficiency of different algorithms in D4RL Locomotion
tasks. Computation time is assessed using a consistent hardware setup and PyTorch backend.

1 INTRODUCTION

Offline reinforcement learning (RL) aims to tackle decision-making problems by solely utilizing a
pre-collected behavior dataset. This offers a practical solution for tasks where data collection can
be associated with substantial risks or exorbitant costs. A central challenge for offline RL is the
realization of behavior regularization, which entails ensuring the learned policy stays in support of
the behavior distribution. Weighted regression (Peng et al., 2019; Kostrikov et al., 2022) provides
a promising approach that directly utilizes behavioral actions as sources of supervision for policy
training. Another prevalent approach is behavior-regularized policy optimization (Kumar et al., 2019;
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Wu et al., 2019), which builds a generative behavior model, followed by constraining the divergence
between the learned and the behavior model during policy optimization.

An expressive generative model holds a pivotal role in the aforementioned regularization methods.
In weighted regression, a unimodal actor is prone to suffer from the “mode covering” issue, a
phenomenon where policies end up selecting out-of-support actions in the middle region between
two behavioral modes (Wang et al., 2023a; Hansen-Estruch et al., 2023). Expressive policy classes,
with diffusion models (Ho et al., 2020) as prime choices, help to resolve this issue. In behavior-
regularized policy optimization, diffusion modeling can also be significantly advantageous for an
accurate estimate of policy divergence, due to its strong ability to represent heterogeneous behavior
datasets, outperforming conventional methods like Gaussians or variational auto-encoders (VAEs)
(Goo & Niekum, 2022; Chen et al., 2023).

However, a major drawback of utilizing diffusion models in offline RL is the considerably slow
sampling speed – diffusion policies usually require 5-100 iterative inference steps to create an action
sample. Moreover, diffusion policies tend to be excessively stochastic, forcing the generation of
dozens of action candidates in parallel to pinpoint the final optimal one (Wang et al., 2023a). As
existing methods necessitate sampling from or backpropagating through diffusion policies during
training and evaluation, it has significantly slowed down experimentation and limited the application
in fields that are computationally sensitive or require high control frequency, such as robotics.
Therefore, it is critical to systematically investigate the question: is it feasible to fully exploit the
generative capabilities of diffusion models without directly sampling actions from them?

In this paper, we propose Score Regularized Policy Optimization (SRPO) with a positive answer to
the above question. The basic idea is to extract a simple deterministic inference policy from critic
and diffusion behavior models to avoid the iterative diffusion sampling process during evaluation.
To achieve this, we show that the gradient of the divergence term in regularized policy optimization
is essentially related to the score function of behavior distribution. The latter can be effectively
approximated by any pretrained score-based model including diffusion models (Song et al., 2021).
This allows us to directly regularize the policy gradient instead of the policy loss, removing the need
to generate fake behavioral actions for policy-divergence estimation (Section 3).

We develop a practical algorithm to solve continuous control tasks (Section 4) by combining SRPO
with implicit Q-learning (Kostrikov et al., 2022) and continuous-time diffusion behavior modeling
(Lu et al., 2023). For policy extraction, we incorporate similar techniques that have facilitated recent
advances in text-to-3D research such as DreamFusion (Poole et al., 2023). These include leveraging
an ensemble of score approximations under different diffusion times to exploit the pretrained behavior
model and a baseline term to reduce variance for gradient estimation. We empirically show that these
techniques successfully help improve performance and stabilize training for policy extraction.

We evaluate our method in D4RL tasks (Fu et al., 2020). Results demonstrate that our method
enjoys a more than 25× boost in action sampling speed and less than 1% of computational cost for
evaluation compared with several leading diffusion-based methods while maintaining similar overall
performance in locomotion tasks (Figure 1). We also conduct 2D experiments to better illustrate that
SRPO successfully constrains the learned policy close to various complex behavior distributions.

2 BACKGROUND

2.1 OFFLINE REINFORCEMENT LEARNING

Consider a typical Markov Decision Process (MDP) described by the tuple ⟨S,A, P, r, γ⟩, where S
is the state space, A the action space, P (s′|s,a) the transition function, r(s,a) the reward function
and γ the discount factor. The goal of reinforcement learning (RL) is to train a parameterized policy
πθ(a|s) which maximizes the expected episode return. Offline RL relies solely on a static dataset Dµ

containing interacting history {s,a, r, s′} between a behavior policy µ(a|s) and the environment to
train the parameterized policy.

Suppose we can evaluate the quality of a given action by estimating its expected return-to-go using
a Q-network Qϕ(s,a) ≈ Qπ(s,a) := Es1=s,a1=a;π[

∑∞
n=1 γ

nr(sn,an)], we can formulate the
training objective of offline RL as maxπ Es∼Dµ,a∼π(·|s)Qϕ(s,a)− 1

βDKL [π(·|s)||µ(·|s)] (Wu et al.,
2019). Note that a KL regularization term is added mainly to ensure the learned policy stays in
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Figure 2: Comparison of different policy extraction methods under bandit settings. Forward KL
policy extraction is prone to generate out-of-support actions if the policy is not sufficiently expressive
(e.g., Gaussians). This can be mitigated either by employing a more expressive policy class or by
switching to a reverse KL objective (our method), which demonstrates a mode-seeking nature.

support of explored actions. β is some temperature coefficient. Previous work (Peters et al., 2010;
Peng et al., 2019) has shown that the optimal policy for such an optimization problem is

π∗(a|s) = 1

Z(s)
µ(a|s) exp (βQϕ(s,a)) , (1)

where Z(s) is the partition function. The core problem for offline RL now becomes how to efficiently
model and sample from the optimal policy distribution π∗(·|s).

2.2 OPTIMAL POLICY EXTRACTION

Existing methods to explicitly model π∗ with a parameterized policy πθ can be roughly divided into
two main categories—weighted regression and behavior-regularized policy optimization:

min
θ

Es∼Dµ DKL [π
∗(·|s)||πθ(·|s)]︸ ︷︷ ︸xy Forward KL

⇔ max
θ

E(s,a)∼Dµ

[
1

Z(s)
log πθ(a|s) eβQϕ(s,a)

]
︸ ︷︷ ︸

Weighted Regression

, (2)

min
θ

Es∼Dµ DKL [πθ(·|s)||π∗(·|s)]︸ ︷︷ ︸
Reverse KL

⇔ max
θ

Es∼Dµ,a∼πθ
Qϕ(s,a)−

1

β
DKL [πθ(·|s)||µ(·|s)]︸ ︷︷ ︸

Behavior-Regularized Policy Optimization

. (3)

Weighted regression directly utilizes behavioral actions as sources of supervision for policy training.
This circumvents the necessity to explicitly model the intricate behavior policy but leads to another
mode-covering issue due to the objective’s forward-KL nature (Eq. (2)). The direct consequence is
that weighted regression algorithms display sensitivity to the proportion of suboptimal data in the
dataset (Yue et al., 2022), especially when the policy model lacks distributional expressivity (Chen
et al., 2023), as is depicted in Figure 2. Recent work (Wang et al., 2023a; Lu et al., 2023) attempts to
alleviate this by employing more expressive policy classes, such as diffusion models (Ho et al., 2020).
However, these methods usually compromise on computational efficiency (Kang et al., 2023).

In comparison, behavior-regularized policy optimization (Wu et al., 2019) emerges as a more suitable
approach for training simpler policy models such as Gaussian models. This fundamentally stems
from its basis on a reverse-KL objective (Eq. (3)), which inherently encourages a mode-seeking
behavior. However, approximating the second KL term in Eq. (3) is usually difficult. Regarding this,
in practical implementation previous studies (Kumar et al., 2019; Wu et al., 2019; Xu et al., 2021)
usually first construct generative behavior models to approximate the policy-behavior divergence.

2.3 DIFFUSION MODELS FOR SCORE FUNCTION ESTIMATION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) are powerful gener-
ative models. They operate by defining a forward diffusion process to perturb the data distribution
into a noise distribution for training the diffusion model. Subsequently, this model is employed to
reverse the diffusion process, thereby generating data samples from pure noise.
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In particular, the forward process is conducted by gradually adding Gaussian noise to samples x0

from an unknown data distribution q0(x0) := q(x) at time 0, forming a series of diffused distributions
qt(xt) at time t. The transition distribution qt0(xt|x0) is:

qt0(xt|x0) = N (xt|αtx0, σ
2
t I), which implies xt = αtx0 + σtϵ. (4)

Here, αt, σt > 0 are manually defined, and ϵ is random Gaussian noise.

For the reverse process, Ho et al. (2020) train a diffusion model ϵθ(xt|t) to predict the noise added to
the diffused sample xt in order to iteratively reconstruct x0. The optimization problem is

min
θ

Et,x0,ϵ

[
∥ϵθ(xt|t)− ϵ∥22

]
. (5)

More formally, Song et al. (2021) show that diffusion models are in essence estimating the score
function ∇xt

log qt(xt) of the diffused data distribution qt, such that:

∇xt
log qt(xt) = −ϵ∗(xt|t)/σt ≈ −ϵθ(xt|t)/σt, (6)

and the reverse diffusion process can alternatively be interpreted as discretizing an ODE:

dxt
dt

= f(t)xt −
1

2
g2(t)∇xt

log qt(xt), (7)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t , leaving ∇xt

log qt(xt) as the only unknown term.
In offline RL, diffusion models have been discovered as an effective tool for modeling heterogeneous
behavior policies. Usually states s are considered as conditions while actions a are considered as data
points x, such that a conditional diffusion model ϵ(at|s, t) can be constructed to represent µ(a|s).

3 SCORE REGULARIZED POLICY OPTIMIZATION

In this paper, we seek to learn a deterministic policy πθ to capture the mode of a potentially complex
policy distribution π∗ introduced in Eq. (1). To achieve this, we employ a reverse-KL policy extraction
scheme (Eq. (3)) given its mode-seeking nature:

maxLπ(θ) = Es∼Dµ,a∼πθ
Qϕ(s,a)−

1

β
DKL [πθ(·|s)||µ(·|s)] . (8)

Solving the above optimization problem requires estimating DKL [πθ(·|s)||µ(·|s)]. Regarding this,
previous research (Kumar et al., 2019; Wu et al., 2019; Xu et al., 2021; Wu et al., 2022) use sample-
based methods: first constructing a behavioral model µψ ≈ µ, followed by sampling fake actions
from µψ(·|s) and πθ(·|s) to approximate the policy divergence. However, this approach necessitates
sampling from the behavior model during training, imposing a substantial computational burden.
This drawback is exacerbated when employing expressive yet sampling-expensive behavior models
such as diffusion models.

We propose an alternative way to solve Eq. (8). By decomposing the KL term, we can get

Lπ(θ) = Es∼Dµ,a∼πθ
Qϕ(s,a)︸ ︷︷ ︸

Policy optimization

+
1

β
Es∼Dµ,a∼πθ

logµ(a|s)︸ ︷︷ ︸
Behavior regularization

+
1

β
Es∼DµH(πθ(·|s))︸ ︷︷ ︸
Entropy (often constant1)

. (9)

Then we calculate the gradient of Eq. (9) under the condition that πθ is deterministic. Applying the
chain rule and the reparameterization trick, we have:

∇θLπ(θ) = Es∼Dµ

∇aQϕ(s,a)|a=πθ(s) +
1

β
∇a logµ(a|s)|a=πθ(s)︸ ︷︷ ︸

=−ϵ∗(at|s,t)/σt|t→0 (by Eq. 6)

∇θπθ(s). (10)

It is noted that the only unknown term above is the score function ∇a logµ(a|s) of the behavior
distribution. Our key insight is that a pretrained diffusion behavior model can be leveraged to

1In this paper we only consider the cases where πθ is an isotropic Gaussian with fixed variance. For brevity,
we informally view Dirac as Gaussian whose variance is infinitesimally small.
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Figure 3: Illustration of SRPO in 2D bandit settings. (a) A predefined complex data distribution,
which represents the potentially heterogeneous behavior policy µ(a). (b) A diffusion model µ̂(a) is
trained to fit the behavior distribution. The data density can be analytically calculated based on Song
et al. (2021). (c) The Q-function is manually defined as a quadratic function: Q(a) := −(a− atar)

2,
where atar represents the 2D point with the highest estimated Q-value and is selected from a set of
grid intersections. These individual Q-functions with different atar are depicted together in a stacked
way in Figure (c). (d)&(e) By optimizing deterministic policies π(·) = areg according to Eq. (10)
and tuning the temperature coefficient β, resulting policies shift from greedy ones which tend to
maximize corresponding Q-functions to conservative ones which are successfully constrained close
to the behavior distribution. See more experimental results in Appendix A.

Behavior Density (VAEs) BCQ (Fujimoto et al., 2019) BEAR (Kumar et al., 2019) TD3+BC (Fujimoto & Gu, 2021)

Figure 4: Performance of other behavior regularization methods. See more results in Appendix A.

effectively estimate this term. This is because diffusion models ϵ(x|t) are essentially approximating
the score function ∇x logµt(x) of the diffused data distribution µt(xt) (Eq. (6)).

Specifically, we first pretrain a diffusion behavior model, denoted as ϵ(at|s, t), to approximate
∇a logµ(a|s). By doing so, we can regularize the optimization process of another deterministic
actor πθ. We term our method as Score Regularized Policy Optimization (SRPO), given its distinctive
feature of performing regularization at the gradient level, as opposed to the loss function level. Figure
3 provides a 2D bandit example of SRPO.

Compared with previous work (Wang et al., 2023a; Lu et al., 2023; Hansen-Estruch et al., 2023)
that directly trains a diffusion policy for inference in evaluation, the main advantage of SRPO is its
computational efficiency. SRPO entirely circumvents the computationally demanding action sampling
scheme associated with the diffusion process. Yet, it still taps into the robust generative strengths of
diffusion models, especially their ability to represent potentially diverse behavior datasets.

4 PRACTICAL ALGORITHM

In this section, we derive a practical algorithm for applying SRPO in offline RL (Algorithm 1). The
algorithm includes three parts: implicit Q-learning (Section 4.1); diffusion-based behavior modeling
(Section 4.1); and score-regularized policy extraction (Section 4.2).

4.1 PRETRAINING THE DIFFUSION BEHAVIOR MODEL AND Q-NETWORKS

For Q-networks, we choose to use implicit Q-learning (Kostrikov et al., 2022) to decouple critic
training from actor training. The core ingredient of the training pipeline is expectile regression, which
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Figure 5: Empirical benefits of ensembling multiple diffusion times. See Remark 1 in Appendix B
for a detailed explanation.

requires only sampling actions from existing datasets for bootstrapping:

min
ζ

LV (ζ) = E(s,a)∼Dµ [Lτ2(Qϕ(s,a)− Vζ(s))], where Lτ2(u) = |τ − 1(u < 0)|u2, (11)

min
ϕ

LQ(ϕ) = E(s,a,s′)∼Dµ

[
∥r(s,a) + γVζ(s

′)−Qϕ(s,a)∥22
]
. (12)

When the expectile parameter τ ∈ (0, 1) is larger than 0.5, the asymmetric L2-objective LV (ζ) would
downweight suboptimal actions which have lower Q-values, removing the need of an explicit policy.

For behavior models, in order to represent the behavior distribution with high fidelity and estimate its
score function, we follow previous work (Chen et al., 2023; Hansen-Estruch et al., 2023) and train a
conditional behavior cloning model:

min
ψ

Lµ(ψ) = Et,ϵ,(s,a)∼Dµ

[
∥ϵψ(at|s, t)− ϵ∥22

]
at=αta+σtϵ

, (13)

Algorithm 1 SRPO

Initialize parameters ψ, ζ, ϕ, θ.
// Critic training (IQL)
for each gradient step do
ζ ← ζ − λV∇ζLV (ζ) (Eq. 11)
ϕ← ϕ− λQ∇ϕLQ(ϕ) (Eq. 12)

// Behavior training
for each gradient step do
ψ ← ψ − λµ∇ψLµ(ψ) (Eq. 13)

// Policy extraction
for each gradient step do
θ ← θ + λπ∇θLsurr

π (θ) (Eq. 15)

where t ∼ U(0, 1) and ϵ ∼ N (0, I). The model ar-
chitecture of ϵψ is consistent with the one proposed by
Hansen-Estruch et al. (2023), with the sole difference be-
ing that our model uses continuous-time inputs similar to
Lu et al. (2023) instead of discrete ones as used by Wang
et al. (2023a) and Hansen-Estruch et al. (2023).

Once we have finished training the behavior model
ϵψ, we can use it to estimate the score function
of µt, the diffused distribution of µ(a|s) at time t.
We have ∇at

logµt(at|s, t) = −ϵ∗ψ(at|s, t)/σt ≈
−ϵψ(at|s, t)/σt as shown by Song et al. (2021).

4.2 POLICY EXTRACTION FROM PRETRAINED MODELS

The policy extraction scheme proposed in Section 3 only leverages the pretrained diffusion behavior
model ϵϕ(at|s, t) at time t→ 0, where the behavior distribution µ has not been diffused. However,
ϵϕ(at|s, t) is trained to represent a series of diffused behavior distributions µt at various times
t ∈ (0, 1). In order to exploit the generative capacity of ϵϕ, we replace the original training objective
Lπ(θ) with a new surrogate objective:

max
θ

Lsurr
π (θ) = Es,a∼πθ

Qϕ(s,a)−
1

β
Et,sω(t)

σt
αt
DKL [πt,θ(·|s)||µt(·|s)] , (14)

where t ∼ U(0.02, 0.98), s ∼ Dµ. Both µt and πθ,t follow the same forward diffu-
sion process in Eq. (4), where µt(at|s) := Ea∼µ(·|s)N (at|αta, σ2

t I), and πθ,t(at|s) :=

6
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Ea∼πθ(·|s)N (at|αta, σ2
t I). ω(t) is a weighting function that adjusts the importance of each time t.

We can nearly recover Lπ(θ) by setting ω(t) to δ(t− 0.02)α0.02

σ0.02
(ablation studies in Section 6.3).

Empirically, the surrogate objective Lsurr
π (θ) ensembles various diffused behavior policies µt to

regularize training of the same parameterized policy πθ. This is supported by an observation
(Proposition 1 in Appendix B): argminπDKL [πt(·|s)||µt(·|s)] = argminπDKL [π(·|s)||µ(·|s)].
Similarly to Section 3, we can optimize Eq. (14) by calculating its gradient:
Proposition 2. (Proof in Appendix B) Given that πθ is deterministic (a = πθ(s)) such that πθ,t is
Gaussian (at = αta+ σtϵ, ϵ ∼ N (0, I)), the gradient for optimizing maxLsurr

π (θ) satisfies

∇θLsurr
π (θ) ≈

[
Es∇aQϕ(s,a)|a=πθ(s) −

1

β
Et,s,ϵω(t)(ϵψ(at|s, t) −ϵ︸︷︷︸

subtracted baseline

)|at=αtπθ(s)+σtϵ

]
∇θπθ(s). (15)

Note that we additionally subtract the action noise ϵ from ϵψ(at|s, t) in the above equation. This
term does not influence the expected value of ∇θLsurr

π (θ) but could reduce the estimation variance
since it is correlated with ϵψ(at|s, t) (See Appendix B). We refer to it as the baseline term because it
is similar to the subtracted baseline in Policy Gradient (Sutton & Barto, 1998) algorithms.

The idea of ensembling diffused behavior policies for regularization and subtracting the baseline
term to reduce estimation variance both draw inspiration from the latest developments in text-to-3D
research such as DreamFusion (Poole et al., 2023). We elaborate more on the connection between the
two work in Section 5 and ablate these techniques in the realm of continuous control in Section 6.3.

5 RELATED WORK

Behavior Regularization in Offline Reinforcement Learning. Behavior regularization can be
achieved either implicitly or explicitly. Explicit methods usually necessitate the construction of a
behavior model to regularize the learned policy. For example, TD3+BC (Fujimoto & Gu, 2021)
implicitly views the behavior as Gaussians and introduces an auxiliary L2-loss term to realize the
regularization. SBAC (Xu et al., 2021) and Fisher-BRC (Kostrikov et al., 2021) leverage explicit
Gaussian (mixture) behavior models. BCQ (Fujimoto et al., 2019) and BEAR (Kumar et al., 2019)
leverage VAE behavior models (Kingma & Welling, 2014). Diffusion-QL (Wang et al., 2023a) is
similar to TD3+BC but swaps the auxiliary loss with a diffusion-centric objective. QGPO (Lu et al.,
2023) views a pretrained diffusion behavior as the Bayesian prior in energy-guided sampling.

Diffusion Models in Offline Reinforcement Learning. Recent advancements in offline RL have
identified diffusion models as an impactful tool. A primary strength of diffusion modeling lies
in its robust generative capability, combined with a straightforward training pipeline (Dhariwal &
Nichol, 2021; Xu et al., 2022; Poole et al., 2023). This renders it particularly suitable for modeling
heterogeneous behavior datasets (Janner et al., 2022; Wang et al., 2023a; Ajay et al., 2023; Hansen-
Estruch et al., 2023), generating in-support actions for Q-learning (Goo & Niekum, 2022; Lu et al.,
2023), and representing multimodal policies (Chen et al., 2023; Pearce et al., 2022).

However, a significant concern for integrating diffusion models into RL is the considerable time
taken for sampling. Various strategies have been proposed to address this challenge, including
employing a parallel sampling scheme during both training and evaluation (Chen et al., 2023),
utilizing a specialized diffusion ODE solver such as DPM-solver (Lu et al., 2022; 2023), adopting an
approximate diffusion sampling scheme to minimize sampling steps required (Kang et al., 2023), and
crafting high-throughput network architectures (Hansen-Estruch et al., 2023). While these techniques
offer improvements, they don’t entirely eliminate the need for iterative sampling.

Score Distillation Methods. Recent developments in text-to-3D generation have enabled the
transformation of textual information into 3D content without requiring any 3D training data (Poole
et al., 2023; Wang et al., 2023b). This is realized by distilling knowledge from text-to-image diffusion
models. A representative method in this domain is DreamFusion (Poole et al., 2023). It optimizes a 3D
NeRF model (Mildenhall et al., 2021) by ensuring its projected 2D gradient follows the score direction
of a large-scale, pretrained 2D diffusion model (Saharia et al., 2022). Similar to DreamFusion, SRPO
also employs a diffusion model to guide the training of a subsequent network. However, our method
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Dataset Environment BEAR TD3+BC IQL SfBC Diffuser Diffusion-QL QGPO IDQL SRPO (Ours)

Medium-Expert HalfCheetah 53.4 90.7 86.7 92.6 79.8 96.8 93.5 95.9 92.2± 3.0
Medium-Expert Hopper 96.3 98.0 91.5 108.6 107.2 111.1 108.0 108.6 100.1± 13.9
Medium-Expert Walker2d 40.1 110.1 109.6 109.8 108.4 110.1 110.7 112.7 114.0± 2.1

Medium HalfCheetah 41.7 48.3 47.4 45.9 44.2 51.1 54.1 51.0 60.4± 0.8
Medium Hopper 52.1 59.3 66.3 57.1 58.5 90.5 98.0 65.4 95.5± 2.0
Medium Walker2d 59.1 83.7 78.3 77.9 79.7 87.0 86.0 82.5 84.4± 4.4

Medium-Replay HalfCheetah 38.6 44.6 44.2 37.1 42.2 47.8 47.6 45.9 51.4± 3.4
Medium-Replay Hopper 33.7 60.9 94.7 86.2 101.3 100.7 96.9 92.1 101.2± 1.0
Medium-Replay Walker2d 19.2 81.8 73.9 65.1 61.2 95.5 84.4 85.1 84.6± 7.1

Average (Locomotion) 51.9 75.3 76.9 75.6 75.3 88.0 86.6 82.1 87.1

Default AntMaze-umaze 73.0 78.6 87.5 92.0 - 93.4 96.4 94.0 97.1± 2.7
Diverse AntMaze-umaze 61.0 71.4 62.2 85.3 - 66.2 74.4 80.2 82.1± 10.8

Play AntMaze-medium 0.0 10.6 71.2 81.3 - 76.6 83.6 84.5 80.7± 7.1
Diverse AntMaze-medium 8.0 3.0 70.0 82.0 - 78.6 83.8 84.8 75.0± 12.3

Play AntMaze-large 0.0 0.2 39.6 59.3 - 46.4 66.6 63.5 53.6± 12.5
Diverse AntMaze-large 0.0 0.0 47.5 45.5 - 56.6 64.8 67.9 53.6± 6.3

Average (AntMaze) 23.7 27.3 63.0 74.2 - 69.6 78.3 79.1 73.6

Table 1: Evaluation numbers of D4RL benchmarks (normalized as suggested by Fu et al. (2020)).
We report mean ± standard deviation of algorithm performance across 6 random seeds at the end of
training. Numbers within 5 % of the maximum in every individual task are highlighted.

emphasizes score regularization as opposed to score distillation. The behavior score is additionally
incorporated to regularize the Q-gradient instead of being the only supervising signal.

6 EVALUATION

6.1 D4RL PERFORMANCE

In Table 1, we evaluate the D4RL performance (Fu et al., 2020) of SRPO against other offline
RL algorithms. Our chosen benchmarks include conventional methods like BEAR (Kumar et al.,
2019), TD3+BC (Fujimoto & Gu, 2021), and IQL (Kostrikov et al., 2022), which feature extracting a
Gaussian/Dirac policy for evaluation. We also look at newer diffusion-based offline RL techniques,
such as Diffuser (Janner et al., 2022), DIffusion-QL (Wang et al., 2023a), SfBC (Chen et al., 2023),
QGPO (Lu et al., 2023), and IDQL (Hansen-Estruch et al., 2023). These methods tend to be more
computationally intensive but generally offer better results.

Of all the baselines, our comparison with IDQL is particularly informative. This is because SRPO
shares a virtually identical training pipeline and model architecture for critic and behavior models
with IDQL, as is deliberately crafted. The most significant distinction lies in their approaches for
extracting policy: IDQL skips the policy extraction step, choosing to evaluate directly with the
behavior policy, using a selecting-from-behavior-candidates technique (Chen et al., 2023). In contrast,
SRPO extracts a Dirac policy from behavior and critic models.
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Figure 6: Training curves of SRPO (ours) and sev-
eral baselines. See complete experimental results
in Appendix D.

Overall, SRPO consistently surpasses referenced
baselines that also utilize a Gaussian (or Dirac)
inference policy, leading by large margins in the
majority of tasks. It also comes close to match-
ing the benchmarks set by other state-of-the-art
diffusion-based methods, such as Diffusion-QL
and IDQL, though it features a much simpler
inference policy. Moreover, in the case of the
convergence rate and training stability, we show-
case training plots of SRPO alongside several
baselines in Figure 6. Results also suggest that
compared with both weighted regression meth-
ods like IQL and reverse-KL-based optimization
strategies like Diffusion-QL, SRPO exhibits more
favorable attributes. We attribute the performance
gain of SRPO to the utilization of diffusion behav-
ior modeling, which facilitates a more effective
realization of the training formulation.
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6.2 COMPUTATIONAL EFFICIENCY
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Figure 7: Training and inference (evaluation) time
required for different algorithms in D4RL loco-
motion tasks. All experiments are conducted with
the same PyTorch backend and the same comput-
ing hardware setup.

As indicated by Figure 1 and 7, SRPO maintains
high computational efficiency, especially fast in-
ference speed, while enabling the use of a power-
ful diffusion model. Notably, the action sampling
speed of SRPO is 25 to 1000 times faster than
that of other diffusion-based methods. Addition-
ally, its computational FLOPS amount to only
0.25% to 0.01% of other methods. This makes
SRPO ideal for computation-sensitive contexts
such as robotics. It also speeds up experimenta-
tion, since policy evaluation typically consumes
over half of the experiment duration for previ-
ous diffusion-based approaches. This efficiency
stems from SRPO’s design, which completely
avoids diffusion sampling throughout both train-
ing and evaluation procedures.

6.3 ABLATION STUDIES
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Figure 8: Ablation for implementation details of
Eq. (15). All results are averaged under 6 random
seeds.

Weighting function ω(t). As is explained in
Section 4.2, if ω(t) ∝ δ(t− 0.02), the surrogate
objective nearly recovers the original one, which
could guarantee convergence to the wanted opti-
mal policy π∗. Adjusting ω(t) to ensemble dif-
fused behavior score at various times t ∈ (0, 1)
might yield a smoother and more robust gradi-
ent landscape. However, it biases the original
training objective. In an extreme case where
ω(t) ∝ δ(t − 0.98), the estimated behavior
score almost becomes the score function of pure
Gaussian distribution, making it entirely help-
less. From Figure 8, we empirically observe that
Antmaze tasks are sensitive to variation of ω(t),
while Locomotion tasks are not. Overall, we
find ω(t) = σ2

t is a suitable choice for all tested
tasks and choose it as the default hyperparameter
throughout our experiments. This hyperparam-
eter choice is consistent with previous literature
(Poole et al., 2023).

Subtracting baselines ϵ. In Figure 8, we show that subtracting baselines ϵ from the estimated
behavior gradient, as is described in Eq. (15), consistently offers slightly better performance.

Temperature coefficient β and others. Varying β directly controls the conservativness of policy,
and thus influences the performance. Experimental results with respect to β and other implementation
choices are presented in Appendix C.

7 CONCLUSION

In this paper, we introduce Score Regularized Policy Optimization (SRPO), an innovative offline RL
algorithm harnessing the capabilities of diffusion models while circumventing the time-consuming
diffusion sampling scheme. SRPO tackles the behavior-regularized policy optimization problem
and provides a computationally efficient way to realize behavior regularization through diffusion
behavior modeling. The fusion of SRPO with techniques like implicit Q-learning can further solidify
its application in computationally sensitive domains, such as robotics.
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REPRODUCIBILITY

To ensure that our work is reproducible, we submit the source code as supplementary material. Re-
ported experimental numbers are averaged under multiple random seeds. We provide implementation
details of our work in Appendix C.
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A COMPLETE 2D EXPERIMENTS
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Figure 9: Experimental results of SRPO and other baselines in 2D bandit settings.
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Figure 10: Empirical benefits of ensembling multiple diffusion times
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Figure 12: Effect of varying temperature β.
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B THEORETICAL ANALYSIS

In this section, we provide some theoretical analysis related to the SPRO algorithm.

First, we aim to provide some insights into why it is reasonable to replace

Lπ(θ) = Es∼Dµ,a∼πθ
Qϕ(s,a)−

1

β
DKL [πθ(·|s)||µ(·|s)]

with the surrogate objective

Lsurr
π (θ) = Es,a∼πθ

Qϕ(s,a)−
1

β
Et,sω(t)

σt
αt
DKL [πt,θ(·|s)||µt(·|s)]. (16)

Proposition 1. Given that π is sufficiently expressive, for any time t, any state s, we have

argmin
π

DKL [πt(·|s)||µt(·|s)] = argmin
π

DKL [π(·|s)||µ(·|s)] ,

where both µt and πt follow the same predefined diffusion process in Eq. (4).

Proof. Our proof is inspired by Wang et al. (2023b). Regarding the property of the KL divergence,
we have argminπDKL [π(·|s)||µ(·|s)] = µ(·|s) and π∗

t (·|s) := argminπDKL [πt(·|s)||µt(·|s)] =
µt(·|s).
We conclude that π∗

t (·|s) = µt(·|s) is equivalent to π∗(·|s) = µ(·|s) by transforming all distributions
into their characteristic functions.

According to the forward diffusion process defined by Eq. (4), for any prespecified state s, we have

aπt = αta
π
0 + σtϵ = αta

π + σtϵ,

such that
πt(at|s) =

∫
N (at|αta, σ2

t I)π(a|s)da,

Therefore, the characteristic function of πt(at|s) satisfies

ϕπt(·|s)(u) = ϕπ(·|s)(αtu)ϕN (0,I)(σtu) = ϕπ(·|s)(αts)e
−σ2

t u2

2 .

Similarly, we also have

ϕµt(·|s)(u) = ϕµ(·|s)(αtu)ϕN (0,I)(σtu) = ϕµ(·|s)(αts)e
−σ2

t u2

2 .

Finally, we can see that

π∗
t (·|s) = µt(·|s) ⇔ ϕπ∗

t (·|s)(u) = ϕµt(·|s)(u) ⇔ ϕπ∗(·|s)(u) = ϕµ(·|s)(u) ⇔ π∗(·|s) = µ(·|s)

Remark 1. It is imperative to note that although argminπDKL [πt(·|s)||µt(·|s)] and
argminπDKL [π(·|s)||µ(·|s)] converge to the same global optimal solution. maxLsurr

π (θ) does
not converge to the wanted optimal policy π∗(a|s) ∝ µ(a|s) exp (βQϕ(s,a)) while maxLπ(θ)
does. This discrepancy arises primarily from the inclusion of the additional Q-function term. Fur-
thermore, in practical scenarios, the parameterized policy πθ lacks expressivity, which hinders its
ability to truly attain the global optimum. Nevertheless, ensembling a series of t might be beneficial
for the optimization to get to a better minimum in practice. Since the distribution µ(·|s) is usually
complex and high-dimensional, it is easy to become trapped in a local minimum while maximizing its
likelihood. However, the distribution of µt(·|s) gets smoother as t gets larger.

Next, we derive the gradient for Lsurr
π (θ) under the condition that πθ is a deterministic actor.

Proposition 2. Given that πθ is a deterministic actor (a = πθ(s)) and ϵ∗ is an optimal diffusion
behavior model (ϵ∗(at|s, t) = −σt∇at

logµt(at|s)), the gradient for optimizing maxθ Lsurr
π (θ) in

Eq. (16) satisfies

∇θLsurr
π (θ) =

[
Es∇aQϕ(s,a)|a=πθ(s) −

1

β
Et,s,ϵω(t)(ϵ∗(at|s, t)−ϵ)|at=αtπθ(s)+σtϵ

]
∇θπθ(s)
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Proof. According to the predefined forward diffusion process (Eq. (4)), for any state s, we have

πθ,t(at|s) =
∫

N (at|αta, σ2
t I)πθ(a|s)da =

∫
N (at|αta, σ2

t I)δ(a−πθ(s))da = N (at|αtπθ(s), σ2
t I).

Therefore πθ,t(·|s) is a Gaussian with expected value αtπθ(s) and variance σ2
t I . We rewrite the

training objective below:

Lsurr
π (θ) = Es,a∼πθ(·|s)Qϕ(s,a)−

1

β
Et,sω(t)

σt
αt
DKL [πt,θ(·|s)||µt(·|s)]

= Es,a∼πθ(·|s)Qϕ(s,a) +
1

β
Et,s,at∼πt,θ(·|s)ω(t)

σt
αt

[logµt(at|s)− log πt,θ(at|s)]

= EsQϕ(s,a)|a=πθ(s) +
1

β
Et,sω(t)

σt
αt

Eat∼N (·|αtπθ(s),σ2
t I)

[logµt(at|s)− log πt,θ(at|s)]

Then we derive the gradient of Lsurr
π (θ) by applying the chain rule and the parameterization trick:

∇θLsurr
π (θ) =

∂EsQϕ(s,a)

∂a
|a=πθ(s)

∂πθ(s)

∂θ
+

1

β
Et,sω(t)

σt
αt

Eϵ
∂[logµt(at|s)]

∂at︸ ︷︷ ︸
behavior score

∂at
∂θ

|at=αtπθ(s)+σtϵ

− 1

β
Et,sω(t)

σt
αt

[
Eϵ

∂[log πt,θ(at|s)]
∂at︸ ︷︷ ︸

policy score

∂at
∂θ

|at=αtπθ(s)+σtϵ + Eat∼πt,θ(·|s)
∂ log πt,θ(at|s)

∂θ︸ ︷︷ ︸
parameter score

]
(17)

The behavior score term in the above equation can be represented by the optimal diffusion behavior
model:

∂[logµt(at|s)]
∂at

= −ϵ∗(at|s, t)
σt

.

The policy score term is the score function of πt,θ(·|s) = N (αtπθ(s), σ
2
t I), we have

∂[log πt,θ(at|s)]
∂at

= − ∂

∂at

∥at − αtπθ(s)∥22
2σ2

t

|at=αtπθ(s) =
ϵ

σt
.

The parameter score term equals 0 for any distribution πt,θ, regardless of whether it is Gaussian:

Eat∼πt,θ(·|s)
∂ log πt,θ(at|s)

∂θ
=

∫
πt,θ(at|s)

∂ log πt,θ(at|s)
∂θ

dat

=

∫
∂πt,θ(at|s)

∂θ
dat

=
∂

∂θ

∫
πt,θ(at|s)dat

=0

Continue on ∇θLsurr
π (θ) and substitute the conclusions from above:

∇θLsurr
π (θ) =

∂EsQϕ(s,a)

∂a
|a=πθ(s)

∂πθ(s)

∂θ
+

1

β
Et,sω(t)

σt
αt

Eϵ −
ϵ∗(at|s, t)

σt

∂at
∂θ

|at=αtπθ(s)+σtϵ

− 1

β
Et,sω(t)

σt
αt

[
Eϵ

ϵ

σt

∂at
∂θ

|at=αtπθ(s)+σtϵ + 0

]
=
∂EsQϕ(s,a)

∂a
|a=πθ(s)

∂πθ(s)

∂θ
− 1

β
Et,sω(t)

1

αt
Eϵ [ϵ∗(at|s, t)− ϵ]

∂at
∂θ

|at=αtπθ(s)+σtϵ

=
∂EsQϕ(s,a)

∂a
|a=πθ(s)

∂πθ(s)

∂θ
− 1

β
Et,sω(t)

1

αt
Eϵ [ϵ∗(at|s, t)− ϵ]αt

∂πθ(s)

∂θ
|at=αtπθ(s)+σtϵ

=

Es∇aQϕ(s,a)|a=πθ(s) −
1

β
Et,s,ϵω(t)(ϵ∗(at|s, t) −ϵ︸︷︷︸

subtracted baseline

)|at=αtπθ(s)+σtϵ

∇θπθ(s)
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Remark 2. The subtracted baseline ϵ above corresponds to the policy score term in Eq. (17). It does
not influence the expected value of the empirical surrogate gradient ∇θLsurr

π (θ). To see this, consider
isolating the baseline term 1

βEt,s,ϵϵ. Given that ϵ is a random Gaussian noise independent of both
state s and time t, we can prove Et,s,ϵϵ = 0. Still, previous work (Roeder et al., 2017; Poole et al.,
2023) shows that keeping the policy score term can reduce the variance of the gradient estimate and
thus speed up training.

C EXPERIMENTAL DETAILS FOR D4RL BENCHMARKS

Critic training. We train our critic models following Kostrikov et al. (2022). For the convenience
of readers, we recap some key hyperparameters: All networks are 2-layer MLPs with 256 hidden
units and ReLU activations. We train them for 1.5M gradient steps using Adam optimizer with a
learning rate of 3e-4. Batchsize is 256. Temperature: τ = 0.7 (MuJoCo locomotion) and τ = 0.9
(Antmaze).

Behavior training. We adopt the model architecture proposed by Hansen-Estruch et al. (2023),
with a modification to accommodate continuous-time input. A single scalar time input is mapped to a
high-dimensional feature using Gaussian Fourier Projection before concatenated with other inputs.
The network is basically a 6-layer MLP with residual connections, layer normalizations, and dropout
regularizations. We train the behavior model for 2.0M gradient steps using AdamW optimizer with
a learning rate of 3e-4 and a batchsize of 2048. Empirical observations suggest that much fewer
pretraining iterations (e.g., 0.5M steps) do not cause a drastic performance drop, but we want to
ensure training convergence in this work. The diffusion data perturbation method follows the default
VPSDE setting in Song et al. (2021) and is consistent with prior work (Lu et al., 2023).

Policy extraction (Locomotion). The policy model is a 2-layer MLP with 256 hidden units and
ReLU activations. It is trained for 1.0M gradient steps using Adam optimizer with a learning rate
of 3e-4 and a batchsize of 256. For all tasks ω(t) = σ2

t . For the temperature coefficient, we sweep
over β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and observe large variances in appropriate values across
different tasks (Figure 15). We speculate this might be due to β being closely intertwined with the
behavior distribution and the variance of the Q-value. These factors might exhibit entirely different
characteristics across diverse tasks. Our choices for β are detailed in Table 2.

Figure 13: The training instability issue.
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Figure 14: Ablation for Antmaze tasks.

Policy extraction (Antmaze). We empirically
find that a deeper policy network improves over-
all performance in Antmaze tasks (Figure 14).
As a result, we employ a 4-layer MLP as the
policy model. Additionally, we observe that the
adopted implicit Q-learning method sometimes
has a training instability issue in Antmaze tasks,
resulting in highly divergent estimated Q-values
(Figure 13). To stabilize training for policy ex-
traction, we replace the temperature coefficient
β with βnorm(s,a) :=

β
∥∇aQ(s,a)∥2

. We sweep
over β ∈ {0.01, 0.02, ..., 0.05} for umaze en-
vironments, and β ∈ {0.03, 0.04, ..., 0.08} for
other environments. Our choices for β are de-
tailed in Table 2. Other hyperparameters remain
consistent with those in the locomotion tasks.

Evaluation. We run all experiments over 6
independent trials. For each trial, we additionally collect the evaluation score averaged across 20 test
episodes at regular intervals for plots in Figure 16. The average performance at the end of training is
reported in Table 1. We use NVIDIA A40 GPUs for reporting computing results in Figure 1.
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Figure 15: Ablation of the temperature coefficient β in D4RL benchmarks.

Locomotion-Medium-Expert Walker2d Halfcheetah Hopper
0.1 0.01 0.01

Locomotion-Medium Walker2d Halfcheetah Hopper
0.05 0.2 0.05

Locomotion-Medium-Replay Walker2d Halfcheetah Hopper
0.5 0.2 0.2

AntMaze-Fixed Umaze Medium Large
0.02 0.08 0.06

AntMaze-Diverse Umaze Medium Large
0.04 0.05 0.05

Table 2: Temperature coefficient β for every individual task.
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D TRAINING CURVES FOR OFFLINE REINFORCEMENT LEARNING
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Figure 16: Training curves of SRPO (ours) and several baselines. Scores are normalized according to
Fu et al. (2020).
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