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Abstract

We propose a novel class of language models, La-
tent Thought Models (LTMs), which incorporate
explicit latent thought vectors that follow an ex-
plicit prior model in latent space. These latent
thought vectors guide the autoregressive gener-
ation of ground tokens through a Transformer
decoder. Training employs a dual-rate optimiza-
tion process within the classical variational Bayes
framework: fast learning of local variational pa-
rameters for the posterior distribution of latent
vectors (inference-time computation), and slow
learning of global decoder parameters. Empiri-
cal studies reveal that LTMs possess additional
scaling dimensions beyond traditional Large Lan-
guage Models (LLMs), such as the number of
iterations in inference-time computation and num-
ber of latent thought vectors. Higher sample
efficiency can be achieved by increasing train-
ing compute per token, with further gains pos-
sible by trading model size for more inference
steps. Designed based on these scaling prop-
erties, LTMs demonstrate superior sample and
parameter efficiency compared to autoregressive
models and discrete diffusion models. They sig-
nificantly outperform these counterparts in val-
idation perplexity and zero-shot language mod-
eling tasks. Additionally, LTMs exhibit emer-
gent few-shot in-context reasoning capabilities
that scale with model size, and achieve competi-
tive performance in conditional and unconditional
text generation. The project page is available at
https://deqiankong.github.io/blogs/Itm.
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Figure 1: Analysis of model scaling behavior of valida-
tion perplexity across model size, inference steps, and the
number of latent thought vectors N,. Autoregressive and
diffusion baselines are plotted as dashed lines.

1. Introduction

Recent years have witnessed remarkable advancements in
the field of natural language processing, primarily driven by
the development of large language models (LLMs). These
models, exemplified by GPT-3 (Brown et al., 2020), PaLM
(Chowdhery et al., 2022), and their successors, have demon-
strated impressive capabilities across a wide range of lan-
guage tasks, from text generation and translation to question
answering and complex reasoning. Their performance has
often approached, and in some cases even surpassed, human-
level competence in specific domains.

The remarkable success of LLMs is underpinned by well-
established scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022), which predict performance improvements with
increased model and data size. The induced equations re-
veal that larger models achieve significantly higher sample
efficiency (evaluated by the number of training tokens for
achieving certain performance), making it computationally
optimal to train very large models and stop before conver-
gence. However, as model sizes grow rapidly, data availabil-
ity has emerged as a critical bottleneck for continued scaling.
This limitation motivates our exploration of a novel class of
language models that introduces new scaling dimensions to
unlock further improvements in sample efficiency.

We propose Latent Thought Models (LTMs), which incor-
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porate explicit latent thought vectors that follow explicit
prior model in the latent space. These latent vectors control
an autoregressive Transformer decoder’s (Vaswani et al.,
2017) generation of each token throughout the sequence,
effectively creating an abstract representation of the entire
sequence. LTMs are trained within the classical variational
Bayes framework (Jordan et al., 1999; Blei et al., 2017;
Murphy, 2012), with a dual-rate optimization process: fast
learning or inference-time computation of local variational
parameters for the posterior distribution of latent vectors,
and slow learning of global decoder parameters. This ap-
proach enables rapid adaptation to specific inputs while
gradually accumulating general linguistic knowledge.

The architecture and learning scheme of LTMs draw inspi-
ration from established cognitive models. Within the frame-
work of the declarative-procedural model (Ullman, 2004),
the latent thought vectors and local variational parameters
parallel the declarative or episodic memory, while the global
decoder parameters correspond to procedural memory. The
dual-rate learning scheme reflects the interplay between
fast episodic learning and slow schematic learning in hu-
man cognition (Kumaran et al., 2016). Moreover, under the
language of thought hypothesis (Fodor, 1975), the latent
thought vectors can be interpreted as “words” of an internal
cognitive language.

LTMs introduce novel dimensions for investigating scaling
behaviors: the number of iterations in inference-time com-
putation (inference steps), and the number of latent thought
vectors (latent size). To empirically study the scaling be-
haviors of LTMs, we conducted extensive experiments at
GPT-2 scale (Radford et al., 2019) using the OpenWebText
dataset (Gokaslan & Cohen, 2019). The perplexity of LTMs
scales with data size, model size, inference steps and latent
size. While traditional LLMs primarily trade off between
data size and model size, LTMs introduce a higher-level
trade-off between data size and compute per token (training
FLOPs per token (trFLOPs/tok)). At a fixed trFLOPs/tok
budget, LTMs can be optimized across multiple dimensions:
inference steps, model size, and latent size. While scaling
any of these dimensions improves performance, as shown in
Fig. 1, increasing inference steps enhances both sample and
compute efficiency, with larger latent sizes providing addi-
tional headroom for improvement (Fig. 4). These relation-
ships provide preliminary guidance for sample-efficient and
compute-optimal training of LTMs, revealing that inference-
time computation represents a fundamentally new axis that
complements traditional model parameter and data scaling.

In comparison with traditional autoregressive models (Rad-
ford et al.,, 2019) and more recent diffusion-based ap-
proaches (Lou et al., 2024; Shi et al., 2024; Sahoo et al.,
2024), LTMs demonstrate superior efficiency in data and
parameters, and excel in several key language tasks:

* Pretraining Perplexity: Given fixed training compute,
LTM-Medium achieves perplexity comparable to GPT-
2-Large (10.95 vs. 11.5) with equivalent trFLOPs/tok
but only 6.7% of GPT-2-Large parameters. LTM-Small
achieves 11.85 perplexity with 26% less trFLOPs/tok and
5.0% of GPT-2-Large parameters. LTM-Large, chosen
for its favorable tradeoff between sample efficiency and
inference speed, reaches a validation perplexity of 3.05
using only 76M parameters trained on 3B tokens.

» Language Modeling: LTMs’ superior pretraining per-
plexity translates to zero-shot language modeling perfor-
mance, with LTM-Medium and LTM-Large achieving
52.2% and 91.7% reductions in perplexity compared to
state-of-the-art results at GPT-2 scale.

* Arithmetic Reasoning: LTMs demonstrate emergent few-
shot in-context learning at scales that are significantly
smaller than GPTs. This is significant even in our smallest
model, LTM-Small. This capability scales further with
increased model size. We also find scaling the number of
latent thought vectors appears to be helpful.

» Text Generation: LTM-Large outperform both autore-
gressive and diffusion counterparts in conditional sentence
completion when measured with MAUVE score (Pillutla
et al., 2021). In unconditional generation, LTM-Large
achieves generative perplexity (Dieleman et al., 2022) and
token-level entropy (Zheng et al., 2024) comparable to
GPT-2-Large, while being significantly faster.

Contributions. Language models with explicit latent
thought vectors that follow a prior model in latent space
are much under-explored in recent years. Compared to
ground tokens, the latent thought vectors provide a highly
compact, abstract and structured representation in a lifted
latent space. This paper constitutes a systematic exploration
of this model class with the following contributions:

1. Introduction of language models incorporating explicit
latent thought vectors and prior models in latent space.

2. Development of a dual-rate optimization algorithm that
effectively combines learning and posterior inference.

3. Comprehensive analysis of scaling properties, especially
along the dimensions of inference steps and model size.

4. Demonstration of superior pretraining perplexity and
zero-shot performance compared to existing approaches.

5. Evidence that our models achieve in-context learning
capabilities for arithmetic reasoning with significantly
fewer parameters than GPTs.

6. Demonstration of competitive performance in both con-
ditional and unconditional text generation tasks.
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Figure 2: Illustration of the LTM. The latent thought vec-
tors z are sampled from a standard normal distribution
N(0,1). For each layer [ in the autoregressive genera-
tor pg(x|z), the corresponding vectors z; are incorporated
through cross-attention. z represents instance-specific lo-
cal parameters, while 3 denotes global parameters shared
across all samples.

2. Method
2.1. Latent Thought Models (LTMs)

Let z denote the latent thought vectors and x =
(@, M (V) represent the sequence of ground to-
kens of natural language. Our model assumes that z follows
a prior model p(z) and generates x via a Transformer de-
coder p(x|z). In this setup, z controls the generation of
each token, making our model a conditional autoregressive
model where z cross-attends to each layer of the decoder.

We formulate our framework as a structured probabilistic
model that captures the relationship between latent thought
vectors and observed sequences as shown in Fig. 2.

Layered Thought Vectors. We assume z = (z1,...,21),
where z; consists of thought vectors cross-attending to layer
[ of the Transformer decoder. IV, denotes the total number
of latent vectors, except in Section 2.4 where it represents
the number per layer. While we explored an alternative
design using a single set of thought vectors attending to all
layers simultaneously, empirical evidence strongly favors
the layered approach. The layered structure, where distinct
sets of thought vectors attend to different layers, appears to
capture multiple levels of abstraction more effectively.

Prior Model. For the prior model p(z), we assume an
isotropic Gaussian prior over the latent thought vectors z =
(z1,...,21) ~ N(0,I). This prior model is a proper starting
point due to its simplicity. It is already a structured prior
model with multiple layers of latent thought vectors. We
shall explore more sophisticated learnable prior model p,, (z)

in future work.

Thought-Guided Generator. The key component of
our model is a thought conditioned autoregressive gen-
erator pg(x|z). It can be realized by a Transformer de-
coder (Vaswani et al., 2017) with parameter 8. Unlike stan-
dard autoregressive models that only condition on previous
elements (Radford et al., 2019), our model incorporates the
thought vector z at each generation step:

N
ps(x|z) = [] psa™ |z, x=), (1)

n=1

where x(<™) denotes previous tokens before (™). Each
Transformer decoder layer ! incorporates its corresponding
vectors z; through cross-attention, where z; provides the
keys and values while the input x offers the queries. The
thought vectors z can be considered instance-specific local
parameters, while 3 represents the global parameters shared
across all samples.

Short Context Window. We are particularly interested in
models with a short context window of size k: pg(x|z) =
HnN=1 DB (z() |z, x(=Fn=1)) "where x(»~%"~1) denotes
the k previous elements. This short context forces z to serve
as a information carrier, integrating information across tem-
poral segments that would otherwise be disconnected due
to the short context window. k£ = 256 in our experiments.

2.2. Learning and Posterior Inference

We present three approaches for learning and posterior in-
ference of LTMs, each offering different trade-offs between
computational efficiency and modeling flexibility.

Maximum Likelihood Learning with Langevin Sampling.
This baseline approach directly maximizes the marginal
log-likelihood L(8) = £ Y7 | log ps(x;). The marginal

T n

distribution is given by:

ps) = [ palxiz)p(a)ia @
where p(z) = N(0,I). The learning gradient is:
Vislogps(x) =Ep,(z1x) [Vslogps(xz)].  (3)

The expectation can be estimated with Monte Carlo sam-
ples from the posterior distribution pg(z|x) using Langevin
dynamics:

27T =27 + 5V, logps(27|x) + V2s €7, 4)

where 7 indexes the time step, s is the step size, and €7 ~

N(0,1).

Classical Variational Bayes Learning. This approach,
which we adopt, introduces a sequence-specific variational
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posterior q(z|x) = N (u, 0?) with variational parameters
(u,02) (Jordan et al., 1999; Blei et al., 2017; Murphy,
2012). p is the posterior mean vector and o is the poste-
rior variance-covariance matrix, assumed to be diagonal for
computational efficiency. We maximize the evidence lower
bound (ELBO) (Hoffman et al., 2013; Murphy, 2012):

L(B, m,07) = Egzx) [log ps(x|z)] — Dkr(q(z|x)|p(z)),
5)

where z ~ ¢(z|x) is sampled using re-parametrization
trick (Kingma & Welling, 2013).

It is crucial to emphasize that (i, o) are local parameters,
specific to each training or testing sequence x. This is in
contrast to the parameters in the decoder generator, which
are shared by all the training sequences and thus are global
parameters. As detailed in Algorithm 1, we employ a dual-
rate learning algorithm: fast inference of local parameters
using a gradient descent algorithm, Adam (Kingma & Ba,
2014; Loshchilov & Hutter, 2019), with high learning rates
(e.g., 0.3) and few steps (e.g., 16), alternating with slow
updates of global decoder parameters (e.g., learning rate
0.0004). This enables rapid per-instance adaptation while
gradually building general linguistic knowledge.

In our work, we use finite number of steps (e.g., Tt = 16)
for fast learning or inference-time computation for the poste-
rior distribution of latent thought vectors. Such a finite-step
inference-time computation is usually affordable on mod-
ern GPUs, especially for a relatively small decoder model
with short context window. While finite-step fast learning
may introduce a bias relative to maximum likelihood if lo-
cal variational inference does not converge (Hoffman et al.,
2013), we empirically study how scaling the number of steps
influences this bias under LTMs’ architectural conditions.

Variational Autoencoder with Amortized Inference. As
another baseline, the VAE approach (Kingma & Welling,
2013) introduces an inference model g (z|x) with global
parameters ¢ to amortize the iterative inference computa-
tion in classical variational learning. In our experiments
on VAE, we observe severe posterior collapse (Lucas et al.,
2019; Pang et al., 2021), even with careful annealing on the
KL-divergence term in ELBO (Eq. (5)). Note that the infer-
ence model only has a fixed number of parameters, which
are shared by all data points, while the classical variational
Bayes inference has local parameters whose size is propor-
tional to the number of training examples. As a result, the
inference model is more likely than the classical variational
Bayes to take the easy route and only minimize the KL term
in ELBO. A simple fix is to infer the local parameters in the
traditional variational Bayes framework, and then distill the
inferred local parameters to the inference model.

Comparisons. We adopt classical variational Bayes, leav-
ing Langevin-based learning and VAE as ablation baselines.

Algorithm 1 Fast-Slow Learning of LTM

1: Training data {x;} ,, generator ps(x|z), learning
rates Ngse and Ngiow, fast learning steps Trag.

2: while not converged do

3:  Sample mini-batch {x;}2 ;

4 for each x; in the mini-batch do

5 // fast learning or

Inference-time computation

6: Initialize p;, o2
7: for t = 1to Tt do
8: Sample z ~ q,,, o2 (z|x;)
9: Compute
£ = Eqllog ps(xil2)] — Dice(a(zlx:)||p(a)).

10: Update e, U? using Adam with 7.

11: end for

12:  end for

13:  // slow learning

14:  Compute batch 10ss Loaeh = 5 Eil L;
15:  Update 8 using AdamW with 70y

16: end while

Compared to Langevin sampling, it provides more efficient
optimization. Compared to VAE, it avoids learning a large
inference model and mitigates posterior collapse by avoid-
ing the initial mismatch between the inference model and
the true posterior. More importantly, the classical variational
method allows us to explore gradient descent for inference,
connecting our approach to fast-slow learning and inference-
time or test-time computation paradigms (Ba et al., 2016;
Krause et al., 2018).

2.3. Conditional and Unconditional Generation

To generate samples from a trained LTMs, we need to first
sample latent thoughts z. For conditional generation, the
principled distribution for completion y given a prefix or
prompt X is:

poly1x) = [ plax)ps(ylx. 20dz = By s y1x,2)]
(6)
We sample the posterior distribution p(z|x) x p(z)pg(x|z)
using classical variational inference, following the same
mechanism as the fast learning of ¢(z|x) in Eq. (5) during
training. The actual sampling distribution becomes:

pﬁ(y|x) ~ Eq(z|x) [pﬂ(y‘xv Z)] @)

Zelikman et al. (2022); Hu et al. (2023); Phan et al. (2023)
also sample posterior latent (chain-of-)thoughts for condi-
tional generation from p(y|x), but their approaches differ
fundamentally from LTMs since they work on post-training
of traditional autoregressive models on finetuning sets, while
LTMs’ posterior inference is naturally optimized during
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Figure 3: Distribution of compute in different model sizes.

pre-training. Sampling from pg(y|x,z) follows standard
autoregressive sampling techniques (Freitag & Al-Onaizan,
2017; Holtzman et al., 2019). For unconditional generation,
we sample from:

Pp(%) = Eps) [ps(x]2)] (®)

An alternative sampling scheme is to incorporate each newly
generated token into the prefix and then updating z through
variational inference. We leave exploration of this more
computationally intensive approach to future work.

2.4. Inference-Time Computation

Compared to language models operating in the token space
(e.g., ARMs and DDMs), LTMs introduce a distinct com-
putational cost in the form of inference-time compute —
a requirement stemming from the fast learning of latent
thought vectors. This inference-time computation occurs in
both model training and testing. Let’s start from analyzing
it within the context of total training compute.

For one single iteration of LTM’s dual-rate learning with
Ttast inference steps on an input sequence of IV tokens (vo-
cabulary size V'), we consider a model with L attention
layers, IV, latent thought vectors per layer, and hidden di-
mension H. The forward pass computational complexity is
approximately O(L(N?H + NN,H + NH?) + NVH),
comprising O(LN?H) for self-attention, O(LN N, H) for
cross-attention with latent vectors, O(LN H?) for feed-
forward layers, and O(N'V H) for embedding layers. The
backward pass doubles this cost due to gradient computa-
tion and activation storage (Chowdhery et al., 2023). With
Ttast backward passes in fast learning, and 1,y additional
backward pass in slow learning, the training compute per
token (trFLOPs/tok) is O((Ttas+ Lsiow ) L(N?H + N N, H +
N H?) + (Trat + 1gow) NV H). Thus, while both LTMs and
ARMs involve gradient back-propagation for training, LTMs
distribute compute differently: they trade ARMs’ compute
in slow learning of global parameters for fast learning of
local parameters.

To anticipate the scaling behavior of LTMs, we analyze
how the three key scaling factors influence the profile

of trFLOPs/tok by drawing analogies with the chain-of-
thought tokens in ARMs (Guo et al., 2025). Among all
three factors —N,, L, and T,q— NN, has minimal impacts
on trFLOPs/tok because we use far fewer latent vectors than
input tokens (N, < N). We anticipate it to play a different
role than scaling the number of chain-of-thought tokens in
ARMs even though these two number appear to be quite rel-
evant. The contribution of L will not become dominant until
the computation in attention layers exceeds the offset of em-
bedding layers, as illustrated in Fig. 3. We anticipate mod-
erately significant scaling when L is comparable to V/N,
which is the regime we explore. T}, is the most influential
factor for trFLOPs/tok. When T}, > 1, the compute for
fast learning dominates slow learning, and the trFLOPs/tok
of O(Ttust L(N?H + NN, H + NH?) + T, NV H) repre-
sents both the training compute (with negligible slow learn-
ing step) and the inference-time compute (pure 7, itera-
tions). We anticipate T,y to be the primary scaling factor,
potentially playing a similar role to the number of chain-of-
thought tokens in ARMs.

During testing, [V varies by task: it represents the token
sequence length for latent vector inference in likelihood
estimation and generation tasks. As detailed in Section 2.3,
generation tasks’ inference-time compute can further vary
by sampling scheme. For our adopted sampling scheme, the
trFLOPs/tok derived above provides a worst-case estimate
of inference-time compute across all tasks.

3. Empirical Study
3.1. Experimental Setup

Datasets. For model pre-training, we use OpenWebText
dataset (OWT) (Gokaslan & Cohen, 2019), which is an
open-source replication of the WebText dataset used in GPT-
2 (Radford et al., 2019) training. OWT includes around 8B
web-crawled text tokens and is a standard choice to compare
against GPT-2 and other language models. Following Lou
et al. (2024), we reserve the last 100K documents as valida-
tion set. For zero-shot perplexity evaluation, we include the
validation splits of Penn Tree Bank (PTB) (Marcus et al.,
1993), Wikitext (Merity et al., 2016), One billion word
benchmark (LM1B) (Chelba et al., 2013), Lambada (Pa-
perno et al., 2016), AG News (Zhang et al., 2015), PubMed
and Arxiv subsets (Cohan et al., 2018).

Baselines. We evaluate LTMs against both autoregres-
sive models and discrete diffusion models. For autore-
gressive baselines, we include GPT-2-Medium and GPT-
2-Large (Radford et al., 2019), as well as variants trained
by Sahoo et al. (2024) and by ourselves. For text diffu-
sion models, we compare against three diffusion models:
SEDD (Lou et al., 2024), MDLM (Sahoo et al., 2024), and
MD4 (Shi et al., 2024).
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Figure 4: Scaling behaviors over training tokens and compute. We plot the performance of LTM training runs across
inference steps (Tt.r =16-64), latent size (N, =24-96) and model sizes (38M-76M). Models with more inference steps
demonstrate improved sample efficiency and become compute-efficient beyond certain training compute thresholds.

Architectures and Training. All LTMs share similar ar-
chitectures, with small, medium, and large variants using 3,
6, and 12 layers respectively. Our training was conducted
on 8§ H100 GPUs with an epoch batch size of 512. We
employed two learning rate schedulers for dual-rate learn-
ing: fast learning schedules linearly increasing from 0.3 to
0.34, and slow learning schedules beginning at 4 x 10~
with cosine decay. Other training details are provided in
Appendix A.2.

3.2. Scaling Behaviors

Scaling model size, inference steps, and latent size. LTMs
extend traditional autoregressive models with two additional
design axes: inference steps and latent size. Fig. |1 shows
validation perplexity across our configuration sweep.

* Latent size: More latent thought vectors improve perfor-
mance across all model sizes and inference step configura-
tions. The 76M parameter models show clear performance
gains when increasing from N, = 24 to to N, = 96, in-
dicating that latent dimensionality serves as an effective
scaling dimension for LTMs.

* Inference steps vs model size: Performance improvements
from inference steps become apparent starting from 16
steps to 128 steps. For larger steps, we find that scheduling
the fast learning rate helps for stable training, In particular,
we adopt a cosine decay scheduler. Conversely, at fixed
latent size and inference steps, model size has minimal
impact, likely because attention layers’ contribution has
not yet overtaken that of embedding layers at this scale.

Inference steps drive sample and compute efficiency.
When extrapolating scaling properties to larger training
compute regimes, converged performance becomes less rel-
evant for model selection. As demonstrated by Kaplan et al.

(2020), training larger models without reaching convergence
proves more compute-efficient than training smaller mod-
els to convergence. Fig. 4 shows that LTMs possess similar
properties: models with more inference steps achieve greater
sample efficiency and become more compute-efficient be-
yond certain thresholds of training compute. Additionally,
larger latent sizes (N, = 48, 96) further enhance both sam-
ple and compute efficiency when combined with more infer-
ence steps. The minimal influence of model size on these
curves likely stems from embedding layers’ computation
remaining comparable to attention layers at this scale.

3.3. Comparison with Existing Language Models

Our scaling study yields three representative models with
varying trFLOPs/tok, for which we controlled the latent size
to highlight the comparison between scaling model sizes and
scaling inference steps. LTM-Small, our most lightweight
model, uses only 38M parameters with minimal inference
steps. LTM-Medium matches GPT-2-Large’s trFLOPs/tok
while using only 6.7% of GPT-2-Large parameters. LTM-
Large is selected for its favorable tradeoff between inference
speed and sample efficiency. When consuming compute that
is equivalent to training other LTMs, it is far from conver-
gence on OWT. Detailed configurations of them are reported
in Table 1. Variations in latent size will be discussed sepa-
rately where relevant.

Pretraining Perplexity. LTMs’ perplexities on OWT vali-
dation set are marked in Fig. 1. The inference-time compute
for this evaluation is close to trFLOPs/tok, except that there
is no slow learning. Trained with equivalent trFLOPs/tok as
GPT-2-Large, LTM-Medium performs slightly better, with
only 10% parameters. The model size can be further re-
duced to 38M, as in LTM-Small, without compromising
much performance. LTM-Large achieves state-of-the-art
validation perplexity: 3.05 even if it is only trained with 3B
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Table 1: Zero-shot unconditional perplexity (|) across datasets. LTMs are trained with N, = 24 and evaluated at
checkpoints with equivalent total training compute. The total compute used is less than other listed models. Both diffusion
models and LTMs report perplexity upper bounds. Results without citations are from our reproductions or evaluations.

Model Family Model Size  trFLOPs/tok  # Tokens PTB WikiText LMIB LAMBADA AG News PubMed Arxiv
GPT-2-Medium 345M 2.42G - 130.04 32.14 44.03 36.09 44.53 23.33 23.82
GPT-2-Large 762M 5.32G - 161.33 30.09 45.61 34.26 39.93 68.15 21.01
AR (Sahoo et al., 2024) 110M 0.85G 524B 82.05 25.75 51.25 51.28 52.09 49.01 41.73
AR-Retrained 76M 0.46G 105B 258.95 52.49 107.37 61.55 110.31 60.61 55.35
SEDD (Sahoo et al., 2024) 110M 0.85G 524B <100.09 <3428 <68.20 < 49.86 <62.09 <4453 <3848
SEDD (Lou et al., 2024) 345M 2.42G - <8712 <2998 <6119 < 42.66 - - -
MDLM (Sahoo et al., 2024) 110M 0.85G 524B <9526 <3283 <67.01 <47.52 <6115 <41.89 <37.37
MD¥4 (Shi et al., 2024) 345M 2.42G - <66.07 <2584 <5145 @ <44.12 - - -
LTM-Small (T}, = 16) 38M 4.07G 7B < 34.71 <18.87 < 23.59 <19.31 <3476 <2273 <21.67
LTM-Medium (Tr,g = 16) 51M 5.52G 5.2B <3206 <1739 <2516  <17.32 <27.89 <2045 <19.22
LTM-Large (Tr,s = 64) 76M 32.2G 0.9B <443 <366 <392 <3.48 <456 <387 <3.54
tokens. While more inference steps could yield higher sam- 30 0-shot
ple efficiency, and better perplexity we choose LTM-Large 5-shot
. . . 25 10-shot GPT-2-Medium
as it provides a favorable tradeoff between inference speed . -ShOt | () test-time search)
and sample efficiency. U B e
g DR | S Bl B B
S GPT-2-Medium
. , .. . g
Language Modeling. LTMs’ pretraining perplexity trans- <15y (Finetuned)
lates to zero-shot language modeling performance. Different I
. . . . . . . © 10
evaluation schemes exist for this task, which mainly differ in o
using sliding windows or non-overlapping blocks as text se- 5
quences. We pick the non-overlapping blocks following Lou
. 0
et al. (2024) and subsequent work Sahoo et al. (2024); Shi ﬂ.med"“g\px_l-ta‘ge s M \Nz’lgﬂ
et al. (2024) as sliding windows may favor autoregressive P Bl

models. Table | summarizes these results. For fair compari-
son, we evaluate all LTMs at checkpoints with equivalent
training compute. LTMs consistently outperform existing
baselines across all benchmarks.

Arithmetic Reasoning on GSM8K. LTMs significantly out-
perform GPT-2 counterparts in zero-shot testing on GSM8K
(Cobbe et al., 2021). The evaluation metric at this scale
is pass@5 metric (pass rate given 5 trials of conditional
generation), following Li et al. (2022).

We then explore LTMs few-shot in-context learning capabil-
ity, which traditionally emerges only at GPT-3 scale (Brown
et al., 2020). Using randomly sampled training examples as
in-context demonstrations, we find that LTMs exhibit this
capability even in our most lightweight configuration (38M
parameters). As shown in Fig. 5, LTM-Small with 5-shot
demonstrations surpasses the baselines from Li et al. (2022)
that incorporates finetuning or test-time search. Increased
model size further improves both zero-shot and few-shot
performance. Motivated by the hypothesis that a more ex-
pressive latent space enables stronger abstract reasoning,
we tested an LTM-Large variant with 192 latent thought
vectors, which achieves the best performance. Additional
experiment details are included in Appendix A.3.

LTMs’ few-shot learning capability differs fundamentally

Figure 5: Evaluation of arithmetic reasoning (GSMS8K).
LTMs with few-shot demonstrations outperform GPT-2s
across various settings. Dashed lines indicate baselines
reported by Li et al. (2022): GPT-2-Medium finetuned on
GSMS8K, and GPT-2-Medium with test-time search.

from related approaches. Unlike autoregressive models
(Brown et al., 2020), LTMs use gradient-based inference
for latent thought vectors, enabling few-shot learning at
much smaller model scales. This suggests more efficient
pattern discovery at abstract levels. The emergent nature
of this capability contrasts with meta-learning via bi-level
optimization on downstream tasks (Finn et al., 2017; Yoon
et al., 2018) — LTMs achieve few-shot learning directly
within the context window without specialized training.

Conditional Generation. We evaluate LTM’s conditional
generation capabilities by generating fixed-length comple-
tions for 50-token prompts from the OWT validation set,
following Lou et al. (2024). We assess generation quality
using MAUVE scores (Pillutla et al., 2021), which measure
the distributional similarity between generated and ground-
truth text, following Lou et al. (2024) and Han et al. (2022).

While GPT-2 requires nucleus sampling to achieve compa-
rable performance with diffusion models, LTMs outperform
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Table 2: Evaluation of conditional generation. LTM
achieves better performance in text completion than autore-
gressive model and diffusion model counterparts. Baselines
are obtained from Lou et al. (2024).

Model Sampling method MAUVE(T)
GPT-2-Medium Nucleus-0.95 0.955
Multinomial 0.802
SEDD Standard None 0.957
SEDD Infill None 0.942
LTM-Large Multinomial 0.974
Greedy 0.972

Table 3: Evaluation of unconditional generation. LTMs
achieve comparable performance on Gen PPL and Entropy
while offering substantially faster generation speed.

Model Gen PPL(}]) Entropy(1) Samples/s(1)
GPT-2-Medium 229.7 6.02 0.053
GPT-2-Large 60.4 5.71 0.014
LTM-Small 178.7 5.67 0.23
LTM-Medium 104.5 5.62 0.14
LTM-Large 87.1 5.61 0.08

both approaches using standard multinomial sampling. As
shown in Table 2, LTMs maintain nearly equivalent per-
formance even with greedy decoding, suggesting that the
per-token distribution conditioned on latent thought vec-
tors, pg(2(™|z,x(<™), is highly concentrated. We include
additional samples in Appendix A.5.

Unconditional Generation. One principled metric to eval-
uate unconditional generation is

Dxv(ps(x)|[paata(x)) = Ep, x) [~ 108 Paata (x)] = H(pp)-

As both terms are intractable, alternative metrics have been
proposed: Dieleman et al. (2022) introduce generative per-
plexity (Gen PPL), which approximates pgat, in the first
term using a larger language model, while Zheng et al.
(2024) propose token-level entropy to approximate the sec-
ond term and detect mode collapse. We use GPT-2-XL as
the proxy for pqata to calculate the Gen PPL.

Table 3 presents the results. While SEDD-M achieves a Gen
PPL of 32.63 with 1024 sampling steps and an entropy of
5.27, we follow Zheng et al. (2024)’s recommendation to
consider only baselines with entropy exceeding 5.6. Under
these criteria, LTM-Large achieves performance compara-
ble to GPT-2-Large on both metrics while providing a 5x
faster sampling speed. Experiment details can be found in
Appendix A.3, with additional samples in Appendix A.4.

3.4. Ablation Studies

We explore inference strategies for LTMs. Our VAE base-
line, which employs an identical decoder and a 12-layer

Table 4: Ablation results on inference strategies. LTM
with Langevin sampling and variational Bayes learning mit-
igates posterior collapse, while the variational Bayes ap-
proach enables more efficient optimization.

Inference type Model Size  Val. PPL  Gen PPL  Entropy
Langevin 76M - 148.9 5.1
VAE 114M 29.96 1.1 1.83

encoder with full attention, suffers from posterior collapse,
resulting in repetitive prior samples and low entropy dis-
tributions. While implementing Langevin sampling with
LTMs using the same decoder helps mitigate posterior col-
lapse, it produces lower quality generations compared to the
variational Bayes learning approach.

3.5. Probing Results on Latent Thought Vectors

We investigate how semantic information distributes hier-
archically across LTMs’ layers through progressive recon-
struction experiments, where we evaluate reconstruction
accuracy by progressively including layers of latent thought
vectors from bottom to top.

The study in Fig. 10 reveals that LTMs process information
in a layered fashion, with different model sizes showing
distinct hierarchical patterns. For the 12-layer LTM model
with 96 latent thought vectors, we observe distributed infor-
mation processing with steady increases in reconstruction
accuracy through bottom and middle layers (1-8), reaching
approximately 65% accuracy. This is followed by crucial
synthesis at top layers (9-10), where accuracy jumps dramat-
ically to over 95%. The case study in Fig. 11 demonstrates
this clear semantic progression. Bottom layers produce scat-
tered, disconnected terms, middle layers develop structural
coherence with emerging phrases and descriptive elements,
while top layers achieve complete semantic integration and
perfect reconstruction. This hierarchical organization re-
veals distinctive “synthesis layers” in the top of the network
that integrate information from earlier layers, showing how
LTMs encode and process semantic information through the
layered thought vectors. See Appendix B for more details.

4. Limitations: Prior and Reward

Learnable Structured Prior Models. Our current work as-
sumes a simple Gaussian prior model for the latent thought
vectors. The only structural design we employ is to assume
separate sets of thought vectors that cross-attend to different
layers of Transformer decoder. While such a simple prior
model is a suitable starting point for initial systematic inves-
tigation, much can be gained by imposing a more structured
and learnable prior model with more interpretable latents,
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pa(2z). For instance, language of thoughts (Fodor, 1975)
may be modeled by a latent reasoning model that gener-
ates a chain of latent thought vectors in the latent space,
transforming posterior inference into a process of parsing,
formalization, compression, and understanding.

Reward or Verifier Models in Latent Space. Our model
currently lacks a reward model or verifier model defined in
the latent space, p.(r|z), which can be used to guide the
optimization of z as a form of inference-time computation
for reasoning. In our recent work on latent plan transformer
models, we have applied such models to offline reinforce-
ment learning (Kong et al., 2024b) and online optimization
for molecule design (Kong et al., 2024a).

5. Related Work

Autoregressive and Diffusion Language Modeling. LLMs
based on autoregressive modeling, like GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022) and their succes-
sors, have achieved tremendous successes across a wide
range of language tasks. On the other hand, discrete diffu-
sion (Austin et al., 2021) arises as an alternative for language
modeling (Lou et al., 2024; Shi et al., 2024; Sahoo et al.,
2024) recently. A popular version is masked diffusion that
iterative transits tokens into a masked state in the forward
process. It is closely related to any-order autoregressive
models (Uria et al., 2014; Hoogeboom et al., 2022).

Variational Bayes Language Modeling. Bowman et al.
(2016) introduce a variational autoencoder for text genera-
tion. Building on this, Xu & Durrett (2018) propose the use
of von Mises-Fisher distribution in VAEs. Li et al. (2020)
present OPTIMUS, a large-scale pretrained deep latent vari-
able model for natural language. Pang & Wu (2021); Yu
etal. (2022); Xu et al. (2023) study language modeling with
learnable prior model.

Large Language Models with Explicit Latent Space. Ze-
likman et al. (2022); Hu et al. (2023); Phan et al. (2023)
repurpose token-level LLMs to generate latent chains of
thought. Hao et al. (2024) repurpose the hidden state of
Transformers as continuous latent space. They are all post-
training methods that demonstrate the advantages of explicit
latent learning. Concurrent to our work, The et al. (2024)
train generative models for the latent embedding of a pre-
trained auto-encoder.

Declarative-Procedural Model in Cognitive Science. The
declarative-procedural model, primarily developed by Ull-
man (Ullman, 2004), offers a cognitive framework for un-
derstanding language processing and memory. This model
posits two distinct but interacting systems: Declarative mem-
ory: Responsible for storing and recalling facts, events, and
arbitrary associations. In language, it is associated with
vocabulary, irregular forms, and idiomatic expressions (Ull-

man, 2001). Procedural memory: Involved in learning
and executing cognitive and motor skills. In language, it
is linked to grammar rules, regular morphology, and syn-
tax (Ullman, 2004). In our model, z parallels declarative
or episodic memory, representing explicit facts and events.
The decoder generator corresponds to procedural memory,
embodying the implicit rules and patterns for language gen-
eration and comprehension.

Language of Thought (LOT) Hypothesis. Proposed by
Fodor (Fodor, 1975), the LOT hypothesis posits that think-
ing occurs in a mental language with its own syntax and
semantics. This “mentalese” is theorized to underlie our
ability to learn and use natural languages. Recent work
has explored computational implementations of LOT-like
structures in cognitive modeling (Piantadosi et al., 2011)
and program induction (Lake et al., 2015).

Complementary Learning: Fast and Slow. The dual-rate
learning can be connected to the theory of complementary
learning systems (McClelland et al., 1995), which suggests
that the hippocampus supports rapid learning of specific
experiences, while the neocortex facilitates slower learning
of general knowledge.

Test-Time Computation. The field of language modeling
has seen growing interest in adaptive computation — also
known as dynamic evaluation — as a method to enhance test-
time performance. Graves (2016) pioneered this approach
to introduce the Adaptive Computation Time mechanism
for recurrent neural networks, enabling dynamic adjustment
of per-step computation. The concept evolved with Krause
et al. (2018), who developed dynamic evaluation to adapt
model parameters at test time based on recent context. A
recent advancement came from Kasai et al. (2022), who in-
troduced a non-parametric cache mechanism that efficiently
adapts to local context during test time without modifying
model parameters.

6. Conclusion

In this paper, we introduce Latent Thought Models (LTMs),
which incorporate explicit latent thought vectors that fol-
low explicit prior models in latent space. We develop a
novel dual-rate optimization algorithm for training these
models and conduct extensive empirical investigations on
their properties, with particular focus on scaling behaviors
along inference steps and latent dimensionality. Our ap-
proach draws inspiration from cognitive science theories,
including declarative-procedural memory systems, the lan-
guage of thought hypothesis, and complementary learning
systems. Our work lays the groundwork for further develop-
ment of more structured and interpretable prior models and
reward-verifier models in the latent space for the purpose of
reasoning and planning.
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Latent Thought Models

A. Appendix
A.1. Model Details

We adopt flash attention (Dao et al., 2022) and the Liger kernel (Hsu et al., 2024) to accelerate training and posterior
inference. For the attention layers, we apply RMS layer normalization (Zhang & Sennrich, 2019) and use SwiGLU as the
activation function.

All LTMs have 512 hidden dimensions, 8 attention heads, and a maximum sequence length of 1024. The latent thought
vector z shares the same dimensionality as the hidden vectors. Our autoregressive generator uses a sliding window size of
256. We employ rotary position embedding for both ground tokens and latent thought vectors z in each layer.

We use the GPT-2 tokenizer for OpenWebText, adding a single [EOS] token. We do not pad or truncate sequences. Instead,
we concatenate documents and wrap them to a maximum length of 1024, inserting the [EOS] token between wrapped
segments. Because OpenWebText does not include a predefined validation split, we follow Sahoo et al. (2024) and reserve
the last 100K documents for validation.

A.2. Training Details

We train all models using a “slow” learning rate of 4 x 10~ followed by cosine decay schedule to 4 x 10~°. We also apply
a linear warmup schedule to the first 1000 iterations, and clip the gradient norm to 1 during training. For the “fast” learning
rate, we start from 0.3 and linearly increases to 0.34.

We use AdamW optimizer (Loshchilov, 2017) with 5; = 0.9, and 8> = 0.95 to update the global parameters. We use Adam
to update the latent thought vectors without introducing additional inductive bias in the optimization.

A.3. Experiment Details

Zero-shot Perplexity Following prior works in language modeling (Radford et al., 2019; Lou et al., 2024; Sahoo et al.,
2024), we evaluate the zero-shot capabilities of LTMs by taking our models trained on OpenWebText and measuring
perplexity on standard benchmarks. Specifically, we use the validation splits of Penn Tree Bank (PTB) (Marcus et al., 1993),
Wikitext (Merity et al., 2016), One billion word benchmark (LM1B) (Chelba et al., 2013), Lambada (Paperno et al., 2016),
AG News (Zhang et al., 2015), PubMed and Arxiv subsets (Cohan et al., 2018). We adopt the detokenizers used by Sahoo
et al. (2024) and insert an [EOS] token in between sequences in the dataset.

Arithmetic Reasoning on GSM8K Each GSMS8K problem consists of a question, intermediate reasoning steps, and a
final solution. We evaluate both baseline models and LTMs on the 1K test set, using pass@5 accuracy as in Li et al. (2022).
For each problem, we generate five candidate solutions (each up to 50 new tokens) and consider the problem solved if any
candidate matches the final solution.

For GPT-2 baselines, we use beam search with a beam size of 5. In contrast, LTMs infer z five times per prompt, and then
draw a multinomial sample for each inference. In few-shot scenarios, we concatenate examples as prompts and generate
responses accordingly.

Conditional Generation Following Lou et al. (2024) and Han et al. (2022), we evaluate conditional generation on 1,000
samples from the OWT validation set. For each ground-truth sample, we generate five new sequences by conditioning on
the first 50 tokens and then generating 50 additional tokens. We then compute MAUVE on these generated samples. All
baseline results in Table 2 are taken from Lou et al. (2024).

Unconditional Generation We evaluate the unconditional generation capability of LTMs using the generative perplexity
metric proposed by Dieleman et al. (2022). Specifically, we prompt LTMs with a single [BOS] token to produce 64 sampled
sequences of length 1024 with greedy decoding (top-k = 1, temperature= 1). We then measure the perplexity of these
sequences using GPT-2-XL as the evaluation model. While Lou et al. (2024) and Sahoo et al. (2024) use GPT-2-Large for
evaluation, we opt for GPT-2-XL to ensure a fair calculation on the Gen PPL of GPT-2-Large. All evaluations are performed
with a batch size of 8.
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A.4. Samples for Unconditional Generation

What is this more like an angry person’s life?

From this year’s season, the most recent episode of a comic season has come out of nowhere. But it’s a year of
serious drama. It’s still fun to watch. But it’s not a year of story.

Dead Future: A True Story, like any other medium, is just an adaptation of the story of a television show. It’s a story
about a story that relives years of story, and the story itself has a big degree in intelligence.

The series was never a good story. But, as the series grew popular and with interest and relives as much as anybody
else, the characters are a lot smaller.

It’s not that the series has any particular focus on what it’s like to be an actor, and even if it’s something you might
be interested in doing something that might foster a deeper understanding of the story.

But it’s hard to say if the story could be an adaptation for another long time. It’s a series that focuses on a story that
has gone beyond the story of the past, and it doesn’t have any distinctive characteristics to be seen.

Dan Abrams is a fan and a fan of writing and a voice in a series of comics and television shows, and he also created
a very original series about the story of The Wire. He was born in Sydney in 1991 and grew up in Sydney, the family
home of a well-known Melbourne businessman.

So he’s been a regular on a television show since 2003 — and he’s also a very regular character. But he hasn’t always
been much invested in storytelling. His first TV show is about exploring relationships and co-created stories with
people in the community.

So far, the stories are about people who work in the comics and don’t end up being familiar with the comics.

Dan Abrams is a much more relaxed character. He’s not just a “fun” character that’s been given yet another new set
of episodes.

“I’'m just a masterful man,” he said. “I can’t say I'm happy with my life. I'm happy with my life.”

The second half of the show frequently appears somewhere between Jon and Dana. He’s playing with Brian
O’Malley in the first season, but he isn’t shy about making a deal with that guy.

“I can’t say that’s going to be funny,” he said. “The best part is that when you get to know him and you’re going to
get to know him, and I’m happy with him and I'm happy with his life.”

The show ended in some awkward scenes, but there was little I could tell about the past. There was no line of
dialogue that led to the end of the episode, but there was no line of dialogue that left Jon unanswered for the second
season’s arc to end.

Perhaps the ‘fun’ series had been set in motion over the last two seasons, but it wasn’t entirely self-aware. As Jon
hobbled with the plot and has become angrier about whether or not he’s going to be fired, he was quickly moved
forward and out of power.

“I was not comfortable with that,” Jon said. “The question of whether or not I'm willing to run a show is always a
matter of time.”

But it wasn’t easy to come up with a kind of self-perpetuating character. But Jon and Jon’s relationship grew
increasingly strained, and many fans felt the show was more stable than ever before.

“We're playing a very young guy who can’t even play his character anymore,” Jon said. “But that’s not what ’'m
saying, but it’s not what I’'m saying, I’'m not saying I'm giving that.”

It’s hard to imagine how the show would work if Jon’s character had been found.As we go through some of the
most popular anime series, I’ve found myself constantly being uninterested in anime content. There is no way to say
that, because it is a series that does pretty well, and I suspect that one of the most popular series is based on anime.
There’s no need to worry about that at all.

Figure 6: Unconditional sample for LTM-Small.
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One of the most notorious Patriots litigators, Ted Gronkowski mixed up with Chris now openly taking
an in-kind tirade on the offense. Angry over the performance of Ted Gronkowski, Patriots’ running back
for the Super Bowl win over Cincinnati Bengals, jostly, we rate him woefully above than was Opher
by Rich Eisenblick in this week’s roundup. Even though Gronkowski sparked an even more fury with
criticism, he continued to rant off the opportunities created by the Dallas Cowboys. Gronkowski allowed
277 yards or less to tag as wide receiver, but his fans only showed up when Cowboys fans broadcast to
the Spots at city hall to mark the Aggies’ feast of Oxnard. Brady fans should respect the Brady matchup
as a line for Gronay when that was against the Dallas Cowboys, the ones which dominated the day.
When Ahmad themselves exploded in CBS’s Morning Report this week, it was a glitch in the statistics
that it could only be mentioned by a 2 to 1 person bracket. Ahmad was at his best the Browns so far
with a head coaching job that included J.J. Watt, Drew Brees, Hunter Henry, Charles Hasson, Earl
Thomas, and Malcolm McDaniels. However, the Browns got a surprise offensive breakdown when the
Falcons stepped up from within the five-headed dominance that did little to an elite offense like USC. In
contrast to Brady’s 73 wins showing in his next game, Ahmad was both able to tank under a one-point
situation in which he turned to 500+ calls and never showed too much during his coverage. Ahmad
came off as a late-stage, catalysts in the scheme of his 49-yard rush for a 44-yard touchdown with one
touch, and appeared to do so to celebrate with a game like that during the game. You count that game,
and there’s many un-beeacious numbers to fall in the end zone against Brinson and edge-cut-keepers,
like the production figures of many exploring zone led by Ahmad and the no-hards. Other garbage-pro
players are even more pricyies for Fort Worth veteran Boogie Miller.

With the offensive lows but, at the very least, Ahmad helped build a truly dynamic offense teams that
were all serving the same demands, being put in the same building at a high rate. Newton, running
back, wide receiver and wide receiver, led Newton in the third most important mark of his career. Four
interceptions, including, quite simply, reverses a pretty sloppy bob defense, was shorted. There was
a shot by Garrett Gardner to show off his exceptional ability to harass and duck from there. Through
4’12 and over, Gardner unleashed a barrage of ringing seconds during a 10-yard burst, and, eventually,
abandoned one of the then-prize quarterback pressures Newton had given him. Needless to say, these
screams never really occurred to passers Burge. Every touch injury created a fumble return that might
explain Burge these days.

Aside from truly dynamic passing linebackers—Ilike the legendary lefty Michael Guerrero—Jalbert’s
calm and, yes, slow motion, leading gas canister. One of the Texans is simply making the fourth-seventh-
ranked defensive line all over the league from outside of theide, Kevin Kynellish—the now potent blue
six. You can’t generate a quarterback from nowhere that’s too much of a prodigious speed to win a
game. His speed also tells you just how far this can go for greater leverage. On top of all the crying over
the cigarette, this line is one of the sweet places both Xavier and his defense have earned, where every
game was run together.

The truth is a defense is particularly important. Aaron Rodgers never moaned anything for anything
over before beating Carolina’s Joey Robinson in 2013. He’s the best player on the football field!Even
though it’s a top-10 football team that needs to cry out for going over and fighting like nothing, in the
end they were in luck when the first benefit was paid off. Every team laughs their awful quarterback
antics every lumps quarters that separates teams around them. If these tiny mistakes somehow make
you even seem like a kind of mark on the past, soon you’ll see defense does. CHARGE CANNAPS
THAN WHAT WELL THAN the Panthers could be proud of in today’s pictures.

When anyone does an offense pressureily putting toward the line, you need an excuse to drop back
and conduct a miracle. Top of the line is Aaron Brooks, who is a huge leap forward next to Seattle’s
next post-reception swing, Heisman Trophy-winning and career career. Giants? The team knows this?!
That’s kinda-good-but-bad-thing excuse to say.

Figure 7: Unconditional sample for LTM-Medium.
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(2) Affirm a hospital leave. It all may feel *better* that the intervention is there. However it has been
taken to choke off the baby. It is painful and painless. It can render you “less-attractive” if you assume
your situation is there. Just so we can point out any imperfections with which you have stuck, hoping
for a recommendation later.

After all the beating, forgetting more than you know, adore My Baby turns out to be good for her life but
the patient who caused it manages to cause it. And as a pediatric practitioner, she needs to get at least a
sniff at what I know about her baby. To start, the patient need to appreciate the fact that early sometime
has not happened and home-cooked bread is missing. Brian Carr, BCCI Bournemouth.The United States
has total dependence on most fossil fuels, including natural gas of every form, and continues to hold on
to nature’s greatest fossil energy addiction, by killing as many as 3,000 Americans, scientists say.
Alina Minerva Venable’s colleague, Stefan Megalike of the University of Gotecschmid in Munich,
Germany, says that using renewable sources such as renewable energy, technology based on bad weather,
to help cut CO2 by 39 percent, is mistaken. When exercise supplies turn on CO2 gas it releases methane
and halts the CO 2 by up to 75 percent. But the emissions it holds up as a by-product — using just
enough gas to cool down meteorologists and crooks — are far from 100 percent. Almost everything,
through every storm, has been exceeded only by CO 2.1 has tripled or tripling worldwide on weather
systems on hundreds of billions of miles of land. The United States is an exception. In fact, scientists
sometimes wonder if climate change will benefit just as well.

Some of the countries rich in green fossil fuels have buckled under government environmental regulation,
seeking even more than 15 percent of our active fossil-fuel use. Ideally, they could support continued
progress in clean energy policies so that fossil sources keep to rock and that energy can produce far more
than their attempts to supply new fossil fuels. But the two proposals that raise goals for humanity are a
continuing thorn in the side of scientists alarmed by rapidly increasing federal programs for hundreds of
billions of dollars in research and development. Elsewhere, heads of countries have become increasingly
hospitable, faithful users. And in France, where 80,000 individuals lay their loved ones at the base of a
cannon,Fortunately for our care and privacy, recent environmental studies widely discovered some of
the worst abuses that the United States has been experiencing — the grave levels of growing carbon
emissions from below.

Most Canadians are disgusted with warming land. But should they let the huge quantity of 20,000
barrels per year carry on, society won’t get to living on the one thing the United States led the global
megadunnel, which can all but mandate its own unimaginable task. We don’t need to keep creeping
the self-inflicted Mephistophe-Bertrand Aristide to stomach the degree to which he has been behaving
consistent with reality.

“The ideal application of science and natural science right now involves reporting people practices that
deviate from reality into the confines of evolutionary evolution,” Dr. Ann Paxton, director of the Natural
Resources Defense Council’s Bureau of Meteorology, or Bioethics, makes explicit this assertion. “For
even a object has its staying power,” she says.

That said, so-called green asteroids hit record levels in 2005 — or atmospheric cloudbursts and CME-
bursts when they’re amphitonic: they have hit rock basins with an unusually light atmosphere that air
droplets in the crust were understung in 1952 a couple of years earlier — when the asteroids eventually
crossed the atmosphere and reached a cesarean limit. A scale back to 66 years in 2002 and a memory of
when its too light days to challenge a Scanlan-Tri Garin to see chutes meant it acted entirely in line with
reality? How could scientists determine that such a feat is possible?

Rather than waiting for Creation to pay more attention to scientific questions so big, there are at least a
handful of families — the Greenpeace science director Terence Benton — who have the capacity to
sidestep science to express its genetic data.

For many families who are simply not knowing because only they know the Creation Museum is there,
they wonder if their loved ones have had something akin to science wrong — or rather faith in the nature
of nature’s intricate organization, their cognitive beings leading them into the galaxy. But they need —
and that’s why, each couple has had to make their displeasure public. Tyrannosaurus rex’s wing on the
other hand struck off with a shattering force.

Figure 8: Unconditional sample for LTM-Large.
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A.5. Samples for Conditional Generation

The man accused of plowing into a group of people at the South By Southwest festival has been charged.
“A man suspected of drunken driving is charged with capital murder in the deaths of two people at the
South by Southwest conference in Austin, Texas on Dec. 22. He faces “capital murder” charges, plus
capital murder. The 15-year-old victim was strangely drunk when he drove into the Austin district
building in a big accident. He is married to the

Figure 9: Conditional sample for LTM-Large. Generated tokens in blue.

B. Probing the Latent Thought Vectors

To understand how LTMs hierarchically encode information, we evaluate reconstruction accuracy by progressively including
layers of latent thought vectors from bottom to top across 200 samples from the OpenWebText validation set. We test
two model configurations shown in Fig. 10: LTM-Medium (6-layer, 24 latent vectors with 4 per layer) and LTM-Large
(12-layer, 96 latent vectors with 8 per layer), measuring how reconstruction accuracy improves as we incrementally include
more layers during text generation. Additionally, we present a detailed case study in Fig. 11 that demonstrates the specific
reconstruction patterns emerging at each layer of latent thought vectors.

B.1. Progressive Layer Inclusion
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Figure 10: Left: 6-layer LTM-Medium with with 24 latent vectors (4 per layer). Right: 12-layer LTM-Large with 96 latent
vectors (8 per layer). Distribution of Reconstruction Accuracy with Progressive Layer Inclusion for LTM models. The plots
show how reconstruction accuracy improves as layers are progressively included from bottom to top, measured across 200
sequences from OpenWebText validation set. (a) 6-layer LTM-Medium shows gradual improvement through layers 1-5
(~55% accuracy) followed by a sharp jump at layer 6 to complete reconstruction. (b) 12-layer LTM-Large demonstrates
more distributed information processing with steady increases through layers 1-8 (~65%), followed by crucial synthesis at
layers 9-10, reaching >95% accuracy. This reveals the hierarchical nature of LTMs’ latent representations, with deeper
models distributing information more gradually across layers and featuring distinctive “synthesis layers” that integrate
information from earlier representations.
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B.2. Case Study

Progressive Inclusion of Latent Thought Vectors (2)
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Using Layers 1-9 Only (65% Accuracy):
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Figure 11: Progressive reconstruction of text using latent thought vectors from a 12-layer LTM. This figure displays only
the correctly reconstructed words at each layer, showing how text accuracy improves as more layers are included. Dots
(...) represent incorrect or missing words. Color coding: purple for partial reconstructions and for near-complete or
complete reconstructions. At layer 0-3 (22% accuracy), only scattered words match the original. By layer 0-6 (30%), more
structural elements emerge, including some phrases about the ocean and landscape. Layer 0-9 (65%) shows substantial
improvement with coherent phrases and key descriptive elements. Complete accuracy (100%) is achieved with all 12 layers.
This progression demonstrates how semantic information is hierarchically distributed across the model’s latent space.
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