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Abstract

Concept erasure has become a fundamental safety requirement for text-to-image
diffusion models, enabling removal of objectionable or copyrighted content with-
out costly retraining. To preserve generative capacity, localized concept erasure
is proposed which confines edits to the region occupied by the target concept
and leaves the remainder of the scene untouched. However, existing localized
concept erasure still suffer from a Concept Neighborhood gap: suppressing the
target often attenuates neighboring, semantically related concepts, diminishing
overall fidelity and limiting practical utility. To bridge this gap, we present
Localized-Attention-Guided Concept Erasure (LACE), a training-free framework
whose three stages progress from coarse to fine control: (1) Representation-space
projection, which suppresses the target concept subspace while reinforcing se-
mantic neighbors; (2) Attention-guided spatial gate, which derives a spatial mask
identifying regions of residual concept activation and conduct attention suppres-
sion; (3) Gated Feature Clean-up, which performs a hard scrub on gated feature
activations. This three-stage pipeline enables precise and localized removal of
visual concepts while retaining semantic structure and expressiveness. Experiments
show that LACE effectively removes targeted concepts, preserves semantically
related neighbors, and maintains overall image composition.

1 Introduction

Recently, text-to-image (T2I) diffusion models have been widely adopted in creative and industrial
domains for generating high-quality visuals from a wide range of prompts Song et al. [2020], Nichol
et al. [2021], Rombach et al. [2022], Ramesh et al. [2022], Saharia et al. [2022], Yang et al. [2023].
However, their training on large-scale, uncurated datasets Schuhmann et al. [2022], Carlini et al.
[2019] poses risks of reproducing copyrighted artistic style Jiang et al. [2023], Setty [2023], Shi et al.
[2024a] or harmful content Mirsky and Lee [2021], Schramowski et al. [2023]. To enable safe and
compliant deployment, concept erasure, which refers to the removal of specific visual concepts from
the model’s generative capacity, has become a critical requirement.

Recent studies on concept erasure in T2I diffusion models mainly follow two lines. Training-based
approaches fine-tune model components, modify prompt embeddings, or apply gradient-driven edits
to suppress target concepts Li et al. [2024a], Liu et al. [2024], Zhang et al. [2024], Liang et al. [2024].
While often effective, they demand substantial computation, weight access, and carefully curated
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Figure 1: Erasure Effectiveness and Neighbor Retention: GLoCE vs. LACE(Ours)

data to prevent forgetting or unintended shifts. Training-free approaches, in contrast, operate in the
input or latent space, such as projection into orthogonal subspaces Gandikota et al. [2023, 2024],
Gong et al. [2024], Biswas et al. [2025] or attention suppression Orgad et al. [2023], which remove
concepts without retraining. Despite their efficiency, these global operations can still distort unrelated
content or cause semantic drift, motivating the need for more localized and targeted erasure strategies.

To maintain fidelity and spatial precision, Localized Concept Erasure has recently been proposed
Lee et al. [2025]. Instead of suppressing a concept globally across all latent features, localized
erasure seeks to remove the target concept only from the region of the image where it visibly appears,
leaving the remainder of the scene untouched. In detail, GLoCE introduces a gated low-rank adapter
that attenuates the influence of the target token during denoising. However, we identify a critical
limitation in this formulation: the neighbor gap-a phenomenon where semantically adjacent concepts
are unintentionally suppressed alongside the target. To illustrate this, we conduct an experiment in
which a specific dog breed is erased. As shown in Fig. 1, while both methods succeed in suppressing
the target, GLoCE also degrades the generation quality of other dog breeds, indicating a lack of
semantic precision in preserving neighboring concepts.

To bridge this gap, we introduce Localized-Attention-Guided Concept Erasure(LACE), a training-
free framework that performs localized concept erasure while explicitly preserving the semantics of
neighboring concepts and global image quality. LACE follows a three-stage pipeline that progresses:

• Stage 1: Representation-Space Projection. we perform spectrum-aware projection in
the token embedding space to suppress the semantic subspace of the target concept while
preserving nearby semantics. We apply this projection to the Key and Value matrices in the
UNet cross-attention layers, ensuring consistent erasure across both the input prompt and
the model’s internal attention activations.

• Stage 2: Attention-Guided Spatial Gating. We execute a forward pass to extract attention
maps from an early cross-attention layer. Then we identify live target tokens based on their
projection magnitude and construct a spatial gate that highlights regions where residual
concept attention remains. This gate is reused across layers to suppress attention toward
target tokens in a second forward pass.

• Stage 3: Gated Feature Clean-up. For regions identified by the attention gate, we apply
a hard scrub operation that projects UNet hidden features away from the target concept
subspace. This ensures complete elimination of residual traces without affecting the rest of
the image.

Extensive experiments on 3 datasets across diverse prompts and erasure scenarios demonstrate that
LACE effectively removes targeted concepts, preserves neighbor concepts and maintains the quality
of the generated images.

Our contributions are as follows:
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• We identify and formalize the Concept Neighborhood gap in current localized, training-free
concept erasure methods.

• We propose LACE, a principled, training-free pipeline that explicitly preserves neighbor
concepts while achieving complete and localized erasure of the target.

• Experiments show that LACE achieves high erasure precision, preserves semantic neighbors,
and maintains overall generation quality across different datasets and settings.

2 Related Work

Concept Erasure in Text-to-Image Diffusion Models. Training-based interventions are the dom-
inant approach to concept erasure, enabling control through parameter updates. Typical methods
include retraining or finetuning on filtered datasets with negative guidance Li et al. [2024b], Gandikota
et al. [2023], Zhang et al. [2024], Chin et al. [2023], or minimizing divergence between harmful
and safe concepts Shi et al. [2024b]. Other strategies involve adversarial training Kim et al. [2024],
preference optimization Park et al. [2024], Das et al. [2024], and self-supervised latent manipula-
tion Li et al. [2024a]. Partial finetuning targets specific layers to forget undesired knowledge Lu et al.
[2024], Heng and Soh [2023]. While effective, these methods require substantial computation and
risk overfitting or forgetting Chang et al. [2024]. Recent efforts shift towards training-free strategies.
Some methods directly mask latent features correlated with the concept Orgad et al. [2023], others
apply projection into the null space of semantic embeddings Gandikota et al. [2024], Gong et al.
[2024], and spectral methods like CURE Biswas et al. [2025] decompose activations to suppress
concept-aligned directions. Despite their practicality, these techniques often erase concepts too
aggressively or too imprecisely, harming surrounding visual fidelity.

Localized Concept Erasure and its Limitations. To balance safety and generative quality, Localized
Concept Erasure (LCE) was proposed in GLoCE Lee et al. [2025], which limits erasure to the spatial
and temporal regions where the target concept appears. It uses gated LoRA adapters applied only to
attention-predicted areas. While LCE improves visual fidelity and avoids global degradation, it only
attenuates rather than fully removes the concept, allowing it to resurface during denoising. The learned
gating mechanism adds complexity and lacks flexibility. Crucially, it does not preserve semantically
related neighbor concepts, which may also be unintentionally suppressed. Our method, LACE, builds
upon LCE by applying explicit projection and residual feature removal, while preserving neighbor
semantics to maintain visual and structural consistency.

Concept Neighborhood Preservation. The Concept Neighborhood problem refers to the unintended
removal of semantically related but valid concepts during erasure. FADE Thakral et al. [2025]
highlights this issue, showing that removing “cat" can unintentionally affect “lion" or “tiger" due to
shared embedding components. Although FADE mitigates this via disentangled attention filters, it
relies on finetuning and cannot fully prevent leakage. Inspired by FADE, we address this challenge in
a training-free setup by explicitly constructing a neighbor concept subspace. We identify the target
concept’s top-k semantic neighbors using cosine similarity in CLIP embedding space, followed by
concreteness and popularity filtering. These neighbors are then used to guide selective projection that
removes the target direction while preserving related semantics.

3 Preliminaries and Problem Formulation

LetMθ denote a pretrained text-to-image diffusion model parameterized by θ, which synthesizes
image samples x0:T conditioned on a text prompt P through a denoising process. Given a discrete
vocabulary V and its associated token embeddings E ∈ R|V|×d, the prompt P is tokenized as a
sequence [w1, . . . , wn], with corresponding CLIP embeddings [x1, . . . , xn].

Let F ⊂ V be a set of target tokens representing the visual concept to be erased. Let N ⊂ V denote
the neighborhood of F—tokens semantically close to the target concept but not to be removed. Our
goal is to construct a modified model M̃ that satisfies:

• Erasure completeness: For any prompt containing tokens in F , images sampled from M̃
should not exhibit recognizable visual traces of the target concept.
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Figure 2: Workflow of LACE.

• Neighbor preservation: For prompts containing tokens in N \ F , the output distribution of
M̃ should remain close to the baseline modelMθ.

• Global quality retention: For prompts not mentioning F or N , the image quality and
diversity should remain nearly unchanged.

• Training-free practicality: The transitionMθ → M̃ must avoid backpropagation, auxil-
iary datasets, or network modifications.

4 Main Approach

We introduce Localized-Attention-Guided Concept Erasure(LACE), a training-free, three-stage
pipeline that removes the target concept while preserving semantically related neighbor concepts and
maintaining generation fidelity. As Fig. 2 shows, the three stages progressively refine the erasure:
from representation-space projection, to spatial localization, to gated cleanup.

4.1 Stage 1: Representation-Space Projection

Stage 1 is to operate in the token-level representation space to selectively suppress the semantics of
the target concept while restoring coherent generation capacity by reinforcing semantically related
neighbor concepts. This is achieved by explicitly projecting embeddings away from the target
concept subspace and re-injecting a controlled, weighted subspace spanned by neighbor tokens. This
dual operation ensures that target concepts are erased at the semantic embedding level, while the
expressiveness and plausibility of the output are preserved.

Identifying the Target Concept Subspace. Let F ⊂ V be the set of target tokens to be erased,
and XF = {xj | wj ∈ F} ⊂ Rd be their corresponding embeddings. We compute the low-rank
representation of the target concept via Singular Value Decomposition(SVD)Wall et al. [2003], Baker
[2005], obtaining a rank-r orthonormal basis:

XF = UFΣFV
⊤
F , UF ∈ Rd×r (1)

where ΣF = diag(s1, . . . , sr).

To reflect the relative contribution of each direction, inspired by Biswas et al. [2025], we adopt
Spectral Expansion mechanism for spectral regularization which selectively modulates singular
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vectors based on their relative significance to control the strength of forgetting. Specifically, we
define the spectral expansion function as:

λ
(F)
i =

αtarget · r(F)
i

(αtarget − 1) · r(F)
i + 1

, where r
(F)
i =

s2i∑
j s

2
j

, (2)

Then we compute the corresponding projection operator that captures the target concept subspace as
follows:

PF = UFΛFU
⊤
F , where ΛF = diag(λ

(F)
1 , . . . , λ(F)

r ), (3)

This formulation enables fine-grained control over suppression strength along each semantic axis of
the target concept.

Mining Neighbor Concept. Given the target concepts XF , we use the following steps to obtain
Neighbor concepts:

• Embedding-Based Retrieval. Let Call denote a large external concept pool (e.g., Wikipedia
titles). Using a pretrained sentence embedding model (e.g., Qwen-embedding), we compute
cosine similarities between each xf ∈ XF and all xi ∈ Call:

cos(xf , xi) =
x⊤
f xi

∥xf∥ · ∥xi∥
. (4)

We select the top-k most similar concepts to form an initial candidate set Ck.

• Concreteness Filtering. We use a pretrained RoBERTa-based SVR model Wartena [2024]
to estimate a concreteness score si ∈ [1, 5] for each candidate ci ∈ Ck. Only concepts with
si ≥ τ (e.g., τ = 3.5) are retained.

• Popularity Filtering. To remove obscure concepts, we enforce a minimum popularity
threshold Pop(ci) ≥ Pthresh. We employ page view statistics as a surrogate for popularity.

• CLIP-based Final Reranking. Remaining candidates are re-ranked by their CLIP similarity
to the original target embeddings. The final top-k embeddings {xj}j∈Nk

form the neighbor
concept set Nk.

Neighbor Subspace Construction. Let XNk
be the stacked embeddings of the selected neighbors.

We perform SVD to extract a low-rank basis:

XNk
= UNΣNV ⊤

N , UN ∈ Rd×r. (5)

where ΣF = diag(σ1, . . . , σr).

Similar to Target Concept Subspace, we firstly define the spectral expansion function:

λ
(N )
i =

αneighbor · r(F)
i

(αneighbor − 1) · r(F)
i + 1

, where r
(F)
i =

σ2
i∑
j σ

2
j

, (6)

Then we construct neighbor space as follows:

PN = UNΛNU⊤
N , where ΛN = diag(λ

(N )
1 , . . . , λ(N )

r ), (7)

This projection operator PN reinforces directions aligned with semantically related neighbor concepts
while maintaining a data-driven structure.

Final Projection Operator. We define a composite projection operator that simultaneously removes
the target concept and injects neighbor semantics:

P = (I − βPF ) + γPN , (8)
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where β, γ ∈ [0, 1] are user-defined hyperparameters that control the erasure and reinjection strength,
respectively.

Prompt Embedding Rewriting. For each token embedding in the prompt:

xproj
j =

{
Pxj , wj ∈ F
xj , otherwise

(9)

UNet Cross-Attention Rewriting Let WK ,WV ∈ Rd×d be the original Key and Value projection
matrices. Apply:

W ′
K = PWK , W ′

V = PWV (10)
This ensures that the attention mechanism no longer attends to the erased concept subspace, while
reinforcing semantically coherent neighbor features.

4.2 Stage 2: Attention-Guided Spatial Gating

While Stage 1 neutralizes target semantics, some residual influence may persist in the network’s
attention flow. Stage 2 introduces a spatial attention gate to locate and suppress these signals. In
detail, This stage modifies the model’s cross-attention layers using a two-pass mechanism for each
denoising timestep t.

Attention Map Extraction at First Pass. We run a dry forward pass using the modified embeddings
and extract attention maps Aℓ

t(x, y, j) from the DownBlock-2 of the UNet, where each Aℓ
t reflects

the attention at pixel (x, y) to token j at timestep t.

Residual Influence Detection. For each token xj , we compute its activation under the erased concept
subspace:

sj = ∥PFxj∥2 (11)

Then we build the Live-token Set Flive as follows:

{j | sj > δtoken} (12)

Gate Map Construction. We derive a spatial gate Gt(x, y) by summing attention over live target
tokens:

Gt(x, y) =
∑

j∈Flive

Aℓ
t(x, y, j) (13)

This gate identifies the pixels where the residual presence of the target concept is detected.

Attention Suppression at the Second Pass. For each layer ℓ, we apply:

Aℓ(x, y, j)← (1− St(x, y)) ·Aℓ(x, y, j), if j ∈ Flive (14)

This suppresses target concept attention in gated spatial regions while preserving unaffected ones.

4.3 Stage 3: Gated Feature Clean-up

In the final stage of LACE, we remove any residual traces of the target concept that persist despite
earlier representation-space and attention-level modifications. This stage acts only on pixels identified
by the attention gate as retaining residual target activation and is completely bypassed otherwise,
ensuring minimal interference.

Step 3.1 Gate Upsampling and Mask Generation
Let St ∈ R32×32 be the spatial attention gate derived from Stage 2, indicating the cumulative
attention mass over target tokens in DownBlock-2. For each scrubbed UNet layer ℓ operating at
spatial resolution Hℓ ×Wℓ, we first upsample the gate using bilinear interpolation:

Gℓ
t = Upsample(Gt) ∈ RHℓ×Wℓ (15)

We then compute a binary mask:

1ℓ
t(x, y) =

{
1, if Gℓ

t(x, y) ≥ δscrub

0, otherwise
(16)
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Table 1: Quantitative Comparison on Oxford Flowers Dataset.

Camellia Anthurium Alpine Sea Holly
Acct
(↓)

Accr
(↑)

Hcc
(↑)

CLIP
(↑)

KID
(↓)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

CLIP
(↑)

KID
(↓)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

CLIP
(↑)

KID
(↓)

SD 100.00 100.00 0.00 32.55 - 100.00 100.00 0.00 32.56 - 100.00 100.00 0.00 32.52 -

UCE 34.78 63.58 64.39 31.56 0.62 0.00 61.27 75.98 31.75 0.53 0.00 66.84 80.12 32.00 0.47

RECE 0.00 76.69 86.81 31.77 0.10 0.00 64.59 78.49 31.98 0.15 0.00 70.39 82.62 31.25 0.14

GLoCE 100.00 85.83 0.00 32.17 0.17 83.33 85.15 27.88 32.22 0.17 44.44 85.66 67.40 32.17 0.22

Ours 4.35 95.36 95.50 32.41 0.07 16.67 83.69 83.51 32.68 0.08 0.00 87.11 93.11 32.55 0.11

Table 2: Quantitative Comparison on Stanford Dogs Dataset: Concept Erasure for Different Dog
Types

Bluetick Chesapeake Bay Retriever
Acct (↓) Accr (↑) Hcc (↑) CLIP (↑) KID (↓) Acct (↓) Accr (↑) Hcc (↑) CLIP (↑) KID (↓)

SD 100.00 100.00 0.00 34.98 - 100.00 100.00 0.00 34.97 -

UCE 0.00 59.57 74.66 34.57 0.14 4.00 51.81 67.30 34.14 0.30

RECE 0.00 77.11 87.08 34.51 0.04 0.00 64.84 78.67 34.40 0.11

GLoCE 38.89 77.39 68.29 34.39 0.172 84.00 78.58 26.59 34.10 0.17

Ours 16.67 78.43 80.81 34.70 0.06 16.00 79.13 81.49 34.70 0.07

where δscrub ∈ [0, 1] is a fixed threshold. In practice, we activate Stage 3 only when any location in
the gate satisfies 1ℓt(x, y) = 1, indicating strong target presence.

Step 3.2 Hard Scrubbing of Gated Regions
At each activated scrub layer ℓ, we directly zero out the latent features at gated positions. Let
hℓ
t(x, y) ∈ Rd be the feature at position (x, y) and timestep t. We apply the following update:

hℓ
t(x, y)←

{
0, if 1ℓt(x, y) = 1

hℓ
t(x, y), otherwise

(17)

This aggressive hard scrubber ensures that residual activations corresponding to the target concept
are completely eliminated in identified regions. Unlike projection-based soft suppression, zeroing is
non-reversible, and used only when prior stages are insufficient.

5 Experiments

5.1 Experimental Setup

Dataset: (1) fine-grained datasets including Oxford Flowers Nilsback and Zisserman [2008] and
Stanford Dogs Khosla et al. [2011] to assess concept erasure in high-similarity settings by removing
one class and measuring retention on others; (2) localized erasure using the Celebrity dataset from
GLoCE Lee et al. [2025], to evaluates fine-grained, identity-specific erasure while preserving co-
occurring concepts.

Metrics: Our evaluation focuses on two main objectives: (i) effectively removing target concept and
preserve retain concept, and (ii) preserving the model’s ability to generate high-quality images for
unrelated prompts.

To measure erasure, we use (1) Target Accuracy (Acct): the percentage of generated images that
still contain the target concept after unlearning. Lower Acct indicates better forgetting. (2) Retain
Accuracy (Accr): the percentage of unrelated or neighbor prompts that produce semantically correct
outputs, Higher Accr indicates better retention. (3) Harmonic mean of (1− Acct) and Accr (Hcc),
following Lu et al. [2024], defined as:

Hcc = 2× (1−Acct)×Accr
(1−Acct) +Accr

For generation quality, we use (1) CLIP: between the generated image and the input prompt, and (2)
Kernel Inception Distance (KID) Bińkowski et al. [2018] over outputs from retained prompts to
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Figure 3: Qualitative comparison results on (a) Oxford Flowers (Removing Alpine Sea Holly Flower),
(b) Stanford Dogs (Removing Chesapeake Bay Retriever).

evaluate visual fidelity after unlearning. KID computes the squared Maximum Mean Discrepancy
(MMD) between feature representations of generated images by both original and unlearned model:

MMD(p, q) = Ex,x′∼p [K(x, x′)] + Ey,y′∼q [K(y, y′)]

− 2Ex∼p,y∼q [K(x, y′)] , (18)

Baselines: We evaluate our method against a selected set of state-of-the-art unlearning approaches,
including UCE Gandikota et al. [2024], RECE Gong et al. [2024], and GLoCE Lee et al. [2025].
These baselines are chosen because they represent the most recent and effective strategies designed
for concept erasure. In particular, GLoCE is the current SOTA for localized concept erasure, while
UCE and RECE are among the strongest methods for non-localized erasure. We do not include older
baselines, as our focus is on benchmarking against the most competitive and relevant methods in their
respective settings.

The detail of Environmental Setup and Hyper Parameters is provided in Appendix A.

5.2 Results on Oxford Flowers

We first perform targeted unlearning of three flower types: Camellia, Anthurium, and Alpine Sea
Holly, with results in Table 1 and Figure 3a. While UCE and RECE achieve low target class accuracy
(Acct), they markedly degrade non-target accuracy (Accr). In contrast, our method attains similarly
low Acct while preserving much higher Accr, yielding the highest Hcc scores across all flowers
and demonstrating a superior balance between erasure and retention. It also consistently achieves
the highest CLIP and lowest KID scores, showing that erased samples remain photorealistic and
semantically aligned with their prompts.

5.3 Results on Stanford Dog

We also evaluate on Stanford Dogs, a fine-grained benchmark with high intra-class variability. As
shown in Table 2 and Figure 3b, RECE attains the lowest Acct for single-concept removal, but
our method offers a better balance between Acct and Accr, achieving competitive erasure while
preserving generalization. In terms of quality, our approach ranks among the best across breeds
and often surpasses others. Although GLoCE yields strong CLIP and KID scores, it fails to erase
effectively, as indicated by high Acct.

5.4 Results on Localized Celebrity Erasure

We evaluate localized concept erasure using the GLoCE benchmark Lee et al. [2025], which measures
the ability to remove a target individual while preserving co-occurring identities. The benchmark
covers four celebrities—Anna Kendrick, Elon Musk, Anne Hathaway, and Bill Clinton—with
prompts in the form “an image of [target] and [retained]” (e.g., “an image of Elon Musk and Amanda
Seyfried”). Accuracy is computed via a pretrained celebrity classifier Hasty et al. [2024]. Using
the same dataset and prompt structure as GLoCE ensures direct comparability and highlights our
method’s precision in identity-specific erasure. Qualitative results are shown in Figure 4, where each
row corresponds to a target concept to be unlearned (e.g., Bill Clinton in the first row, Elon Musk in
the second), with quantitative results in Table.6 in Appendix B.
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Table 3: Multiple Concept Erasure on Oxford Flowers and Stanford Dog

Method
10 Flowers 10 Dogs

Acct (↓) Accr (↑) Hcc (↑) CLIP (↑) KID (↓) Acct (↓) Accr (↑) Hcc (↑) CLIP (↑) KID (↓)
SD 100.00 100.00 0.00 32.70 - 100.00 100.00 0.00 34.99 -

UCE 11.35 25.50 39.61 29.45 1.39 3.75 10.81 19.44 26.74 5.31

RECE 2.18 12.39 21.99 26.17 3.40 2.08 20.61 34.05 30.05 2.37

GLoCE 87.34 86.52 22.09 32.27 0.08 81.25 82.70 30.57 34.54 0.04
Ours 2.18 53.73 69.36 31.89 0.43 32.92 72.00 69.45 34.24 0.17

Original UCE RECE GLoCE LACE (Ours)

Prompt: An image capturing Bill Clinton and Gillian Anderson at a public event.

Prompt: A portrait of Elon Musk and Amanda Seyfried.

Figure 4: Qualitative Comparison on Celebrity.

Table 4: Ablation Study on Oxford Flowers

Variant Acct (↓) Accr (↑) Hcc (↑)
Stage 1 28.08 91.94 77.76
Stage 1 + 2 23.91 91.94 81.62
Stage 1 + 2 + 3 7.01 88.72 90.71

5.5 Results on Multiple Concepts

We evaluate our method in the setting of multiple concept erasure by removing ten categories of
flowers or dogs simultaneously. As shown in Table 3, our approach achieves effective erasure (low
Acct) while preserving high Accr, Hcc, and CLIP scores, indicating strong retention and generation
quality. These results highlight the robustness and scalability of our method compared to existing
baselines. Although GLoCE achieves the lowest KID, this is mainly because it does not effectively
erase the target concepts. In contrast, our method achieves good performance in both single and
multiple concepts.

5.6 Ablation Study

We conduct ablation study on the Oxford Flowers dataset by incrementally adding each component
of our framework and measuring its impact on unlearning and retention performance. Stage 1
corresponds to textual embedding projection, Stage 2 introduces attention suppression, and Stage
3 applies hard scrubbing at feature level. As shown in Table 4, the full model (Stage 1 + 2 +
3) significantly enhances unlearning performance and achieves the highest Hcc, indicating a best
trade-off between erasure and preservation.

6 Conclusion

In this work, we introduce LACE, a training-free framework for localized concept erasure in text-
to-image diffusion models. By combining projection-based representation editing, attention-guided
spatial localization, and gated feature clean-up, LACE effectively suppresses targeted concepts while
preserving semantically adjacent content and maintaining high visual fidelity. Extensive experiments
across various datasets, prompts, and erasure settings demonstrate that LACE achieves precise and
robust concept forgetting without retraining or compromising the model’s generative capacity.
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A Environmental Setup and Hyperparameters.

All experiments were implemented using PyTorch and based on the Stable Diffusion v1.4 architecture.
Training and evaluation were performed on high-performance NVIDIA A100 GPUs with 80 GB of
memory, running on a Linux-based system.

To define the neighborhood projection PN , we selected the top 10 nearest neighbor concepts in the
embedding space. For the neighbor attention regularization term, we set αneighbor = 100.

Unless stated otherwise, we fixed the main regularization hyperparameters to β = γ = 1.0, which
control the trade-off between forgetting the target concept and retaining unrelated content. These
hyperparameters directly influence the optimization objective by adjusting the relative importance of
target concept suppression (β) and retention of non-target concepts (γ).

To evaluate the sensitivity of our method to these hyperparameters, we performed ablation studies
by varying β and γ on the Celebrity dataset. The following table reports the mean target and retain
accuracies averaged over four identities.

Table 5: Mean Target and Retain Accuracy of Four Celebrities under Different β and γ Values
β γ Mean Acct Mean Accr

0.75 1.25 28.33 71.68
0.80 1.20 11.84 81.34
0.90 1.10 8.34 88.51
1.00 1.00 0.67 91.35

As shown in Table 5, the combination of β = γ = 1.0 achieves best balance between minimizing
target accuracy and maximizing retain accuracy (preserving unrelated concepts).

B Quantitative Results on the Celebrity Dataset.

Table 6: Quantitative Comparison on Celebrity Dataset
Anna Kendrick Elon Musk Anne Hathaway Bill Clinton Mean

Acct
(↓)

Accr
(↑)

Hcc
(↑)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

Acct
(↓)

Accr
(↑)

Hcc
(↑)

UCE 0.00 58.00 73.42 2.00 56.67 71.81 0.00 64.00 78.05 0.00 58.67 73.95 0.50 59.83 74.31

RECE 0.00 46.67 63.64 0.67 24.67 39.52 0.00 34.00 50.75 0.00 20.00 33.33 0.17 31.83 46.81

GLoCE 1.34 94.64 96.61 0.67 93.33 96.24 2.00 96.67 97.33 0.00 95.33 97.61 1.00 94.99 96.95
Ours 0.00 88.00 93.62 0.00 90.67 95.11 0.67 95.33 97.30 2.00 91.34 94.55 0.67 91.35 95.17

In this section, we present a detailed comparison of our method against prior approaches on the
Celebrity dataset. This benchmark consists of prompts that mention both a target identity (to be
erased) and a retain identity (to be preserved), allowing for evaluation of both aspects simultaneously.
We adopt the evaluation pipeline introduced by GLoCE. In this pipeline Giphy pretrained celebrity
classifier is used to analyze the generated images and determine whether each identity (target or
retained) is detected. The goal is to minimize the appearance of the target while maximizing the
retention of unrelated identities.

Table 6 shows that while UCE and RECE achieve the lowest target accuracies (i.e., strongest
forgetting), they suffer from significantly degraded retain accuracy, indicating poor preservation of
non-target concepts. In contrast, both our method and GLoCE demonstrate strong overall performance
by balancing effective concept forgetting with high retain accuracy. Notably, our method achieves
lower average target accuracy in compare with GLoCE indicating superior erasure performance,
while maintaining competitive retain accuracy.

It is important to note that we do not report CLIP score or KID for this dataset. Since each prompt
contains both a target and a retained identity, global metrics like CLIP and KID, which measure
overall semantic alignment or image quality, are not suitable for isolating the effect of targeted
concept erasure.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim our methods could remove targeted concepts, preserves semantically
related neighbors and and maintains overall image composition
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In experiments, we show that erasing the target concept and preserving adjacent
concepts are greatly affected by parameters, which is a trade-off.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The answer NA means that the paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In our experiment and appendix, we provide implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We plan to open source the code after paper get accepted
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss those in the experiment session.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow the standard protocol and only report the averaged results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe those in the appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed social impact in the introduction and related work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: the paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[NA]
Justification: core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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