AgentRM: Enhancing Agent Generalization with Reward Modeling

Anonymous ACL submission

Abstract

Existing LLM-based agents have achieved
strong performance on held-in tasks, but their
generalizability to unseen tasks remains poor.
Hence, some recent work focus on fine-tuning
the policy model with more diverse tasks to
improve the generalizability. In this work, we
find that finetuning a reward model to guide the
policy model is more robust than directly fine-
tuning the policy model. Based on this finding,
we propose AgentRM, a generalizable reward
model, to guide the policy model for effective
test-time search. We comprehensively investi-
gate three approaches to construct the reward
model, including explicit reward modeling, im-
plicit reward modeling and LL.M-as-a-judge.
We then use AgentRM to guide the answer gen-
eration with Best-of-N sampling and step-level
beam search. On nine agent tasks, AgentRM
enhances the base policy model by 8.8 points
on average, surpassing the top general agent by
4.0 points. As for the specializability, Agen-
tRM can also boost a finetuned policy model
and outperform the top specialized agent by
11.4 on held-in tasks. All the data and source
codes will be released to facilitate the research
in this area.

1 Introduction

Large language model (LLM)-based agents (Mi-
alon et al., 2023; Sumers et al., 2023) have be-
come a promising solution to complex interactive
tasks (Xi et al., 2024) in recent years. While spe-
cialized agents (Wang et al., 2024b; Qin et al.,
2023) achieve strong performance on held-in tasks,
their generalizability to unseen tasks is poor. To
address this challenge, existing works focus on inte-
grating more diverse agent tasks including human-
crafted (Zeng et al., 2023; Chen et al., 2024a; Xi
et al., 2024; Zhang et al., 2024b; Acikgoz et al.,
2025) and LLM synthesized (Hu et al., 2024; Fu
et al., 2025), to perform multi-task fine-tuning on
the base LLM.

(a) Performance on 9 tasks

100

Held-in tasks Held-out tasks mm before finetuning %
H after finetuning ﬁ
F50 @
<)
o
&
Lo
(b) Finetuning policy model (c) Finetuning reward model o
c
g
3.57 [-34.32 {904 573 1634 |[ta0 2
=
20 %+
c c g
® -8.41 36.53 -33.18 © 2.14 6.98 0.11 0 <
= = o
—_ [
20 g
20.87 1 004 481 14.43 -40 3
s
T T T T £
Web Alf Sci Web Alf Sci =

Test Test

Figure 1: Finetuning the reward model is more robust
than finetuning the policy model for agent tasks. (a)
Finetuning the policy model leads to severe degradation
on held-out tasks. (b)(c) show the performance of Best-
of-5 with a reward model. Finetuning the policy model
on one task degrades on others while finetuning the
reward model mostly generalized to others.

Despite extensive efforts to scale task diversity
for training the base LLM, we find finetuning the
base LLM improves held-in task performance but
degrades held-out task performance (Figure 1(a)).
A potential explanation is that finetuning the base
LLM, which is used as the policy model for token-
by-token action generation, increases the likelihood
of seen action tokens while decreasing that of un-
seen actions. Rather than finetuning the policy
model directly, we hypothesize that finetuning a
reward model to guide the policy model is more
robust. Since the regression training objective of
the reward function is inherently less sensitive to
the specific distribution of action tokens. In our
preliminary experiment, we perform Best-of-5, i.e.
generating 5 candidate trajectories with the policy
model and selecting one using the reward model.
Figure 1(b)/(c) shows the improvement after fine-
tuning the policy/reward model respectively on in-
dividual tasks. In Figure 1(b), only the diagonal
values, i.e. performance of the held-in task which is

seen during training, are positive. Contrastly, Fig-
ure 1(c) reveals predominantly positive values, indi-
cating that finetuning the reward model on a single
task can enhance the performance on unseen tasks.
Inspired by this, we introduce AgentRM, a gener-
alizable reward model, to guide the policy model
for effective test-time search. Since the effective
construction of the reward model for agent tasks
remains an open question, we investigate three rep-
resentative reward modeling approaches including
(1) explicit reward modeling (Zhang et al., 2024a)
which learns the step-level rewards annotated by
tree search, (2) implicit reward modeling (Yuan
et al., 2024) which derives the inherent step-level
rewards by training on outcome rewards, and (3)
LLM-as-a-judge (Zheng et al., 2023) which directly
prompts an LLM to assess the agent trajectory. We
then use AgentRM to guide the answer genera-
tion in the Best-of-N sampling and step-level beam
search.

Experimental results on nine agent tasks show
that the explicit modeling consistently achieves
the best performance. Concretely, it surpasses the
top general agent by 4 points with a non-finetuned
policy model, and surpasses the top task-specific
agent by 11.4 points with a task-specific finetuned
policy model. Further analysis shows our general
reward model trained on states sampled by LLaMA-
3-8B can be directly applied to enhance stronger
policy models such as LLaMA-3-70B.

2 Task Formulation

The agent task with environment feedback can be
formalized as a partially observable Markov deci-
sion process (U, S, A,O,T,R) with instruction
space U, state space S, action space A, observation
space O, state transition function 7 : S x A — S,
and reward function R : S x A — [0,1]. The
initial state s; = (u,009) € S consists of task in-
struction u and the initial observation op. At step
t, conditioned on the current state s;, the agent
generates the next action a; ~ w(-|s;) based on
its policy 7. Then, the agent receives the environ-
ment observation o; € O and the state transforms
to s¢11 = (s¢,a4,04) = (u,00,a<t41,0<¢11) aC-
cording to transition function 7. The agent contin-
ues to interact with the environment until the task
is finished or the maximum step is reached. The
environment only provides the outcome reward at
the final step rr(sp,ar) € R, where T' denotes
the total step number. As illustrated in Section 3.2,

we train a process reward model that produces re-
wards for intermediate steps 7¢(s¢, at), t < T. We
discuss the training details in Section 3.2.

3 Methodology

The overview is depicted in Figure 2. Section 3.1
describes the behavior cloning through which we
derive a policy model with basic task ability on
held-in tasks. Section 3.2 elaborates on how we use
the derived policy model to build our generalizable
reward model. We systematically investigate three
different reward modelings. Section 3.3 explains
how we use our reward model to enhance the policy
model’s decision-making ability through test-time
search.

3.1 Behavior Cloning

To obtain an initial policy 7;,;; with basic task abil-
ity, crucial for collecting high-quality states, we
split a portion of task instructions from the training
set, annotate them by an expert agent and conduct
supervised fine-tuning (SFT) on the expert trajecto-
ries Degpert = {(u', 0}, a, oé)fil}fil as follows:

N T;
E(G) = - 2 Z log 779((12 | uiv 067 ai<t’ 0i<t>
i=1 t=1
ey
where 6 denotes the parameters of the policy model,
N denotes the number of trajectories in Degpert,
T; denotes the total step of the i-th trajectory. Note
that the data is formatted in ReAct-style (Yao et al.,
2022), and we use a to denote the complete ReAct-
style response (containing both thought and action
tokens) generated by 7 for simplicity.

3.2 Reward Modeling
3.2.1 Explicit Reward Modeling

Given that agent tasks typically involve long-chain
reasoning and vast search space, we organize
the agent’s search trajectories into tree structures
and employ a Monte Carlo Tree Search (MCTS)-
inspired approach to make the search process ef-
ficient. This approach aims to avoid redundant
searches, encourage sampling diversity, and im-
prove search efficiency.

The search tree consists of nodes representing
states s; and edges representing actions a;. We
consider the initial state s;, which includes the
task instruction u and the initial observation og, as
the root node. A search trajectory starting from
s1 is formalized as a branch extending from the

@ SFT
75% |

25%
4
o

Dataset LLM

: © Reward : O Inference

| Model Training | m

l l :‘ ot
| | ~Action 1 :
|

Figure 2: Overview. @ Deriving a supervised fine-tuned (SFT) agent on expert trajectories. ® Constructing search
trees by exploring the environment using the SFT agent. ® Training a generalizable reward model, on state-reward
pairs extracted from search trees. @ Enhancing the policy model, regardless of its initial strength, through test-time

search guided by our reward model for unseen tasks.

root node. Each node records information such
as the state content (action a; and corresponding
observation o), the number of visit N (s;), and the
expected future reward V' (s;) starting from state s;.
For each task instruction, we construct a search tree
starting from the root node and expanding through
repeating the following four stages for w iterations:

Selection aims to identify the most promising
node to be expanded in the next iteration. Starting
from the root node, it traverses the tree by selecting
child nodes according to the Upper Confidence
Bound (UCB) value until a leaf is reached:

logN(st,1)>
1+ N(s;))’

St = arg max

s;j€Children(s¢—1)

(V(sj) te-

Expansion will be operated on the selected node
s¢ if it is not a terminal state exceeding the maxi-
mum step or finishing reasoning. The agent sam-
ples the next action a; ~ 7(- | s;) for k times
with temperature 7 based on its policy. Actions
with identical action tokens are merged to lower
the cost of repetitive search, resulting in k next
states {s}_ 1} = {(st,as,0¢)'}, i =1... k.

Simulation is used to estimate the initial value
of the above expanded node s, by generating n
complete trajectories from it to get the outcome
reward returned by the environment and averaging
their outcome rewards. To speed up the tree sear,
we cache the rollout nodes for future expansion.

Backpropagation is conducted once the values
of the expanded nodes are determined. The value
V(s +1) is propagated back up the tree, updating
each node’s visit count NV and state value V:

V(se) - N(si) + 30 Vi(siva)

Vis) N(s:)+ k

N(St) < N(Sf)"—k

Reward Model Training For each task instruc-
tion in the held-in tasks i.e. Webshop, Alfworld,

Sciworld, we construct a search tree and extract
state values V'(s;) to form the process reward
model training dataset. To ensure the quality of the
estimated value, we filter states whose visit count
is smaller than threshold A\. We train a language
model with a value head by minimizing the Mean
Squared Error (MSE) loss between the predicted
value V (s;) and the provided value V (s;):

N

(V(se) = V(s0)?)

=1

1

L) =~

3.2.2 Implicit Reward Modeling

Inspired by (Rafailov et al., 2024; Yuan et al.,
2024), which derives a process reward model in-
herently from training on complete trajectories, we
also investigate implicit reward modeling without
annotating process reward. Specifically, the out-
come reward is parameterized as the log-likelihood
ratios of the policy and reference models, i.e.
ro(sT,ar) := Blog % It is proved that
the Q value g} (s¢, a;) can be implicitly learned by
f (mathematical induction can be found in (Yuan
et al., 2024)). The process reward ré can be derived
as follows:

o (as | st)
Tref (@t | St)

ro:=dqy —dy = plog 3)
where 7y, m.or represent the policy and reference
model parameter respectively.

Reward Model Training For each task instruc-
tion in the held-in tasks, we sample 16 complete tra-
jectories (s7, ar) with temperature 7 to construct
the process reward model training dataset. We train
a language model 6 with the MSE loss to integrate
the scalar reward (progress rate) provided by the
environment, unlike (Yuan et al., 2024) using the
cross-entropy loss for binary reward.

3.2.3 LLM-as-a-judge

We do not prompt the LLM to output a discrete
score for each trajectory since the score might be
identical thus insufficient to select the best answer
from a set of candidates (e.g., Best-of-N). Instead,
we prompt the LLM to act as a selector with in-
structions in Appendix D.1.

3.3 Reward-Guided Search

We boost the policy model at test time via search
methods guided by our general reward model.

Best-of-N samples [V complete trajectories from
the policy model and then selects the final answer
according to the reward generated by the reward
model.

Beam Search searches over the policy model’s
per-step prediction in the following steps:

* Initial Sampling: Sample W7 x W5 initial actions
for the first step.

* Scoring: Evaluate the new states using the re-
ward model.

* Filtering: Retain only the top Wj highest-
scoring states.

* Action Expansion: For each of the remaining
states, sample W5 actions for the next step, gen-
erating a total of W x Wj new states.

* Iteration: Repeat steps 2—4 until all maintained
states terminate.

4 Experiments

4.1 Baselines

Apart from comparing with original greedy search,
we compare our method with task-specific agents
and general agents. Task-specific agents include
SPIN (Chen et al., 2024b), NAT (Wang et al.,
2024b), ETO (Song et al., 2024), StepAgent (Deng
et al., 2024b), QLASS (Lin et al., 2025) and Agent-
R (Yuan et al., 2025). General agents include
Agent-FLAN (Chen et al., 2024a), AgentGym (Xi
et al., 2024), AgentGen (Hu et al., 2024), Agen-
tRefine (Fu et al., 2025). We also compare with
close-sourced agent based on gpt-4o for reference.
More details can be found in Appendix C.

4.2 Experimental Settings

Datasets We adopt the three agent tasks from
ETO (Song et al., 2024) as our held-in tasks: Web-
shop for web navigation, Alfworld for embodied
house holding, and Sciworld for embodied science

experiments. We adopt agent tasks from Agent-
Board (Ma et al., 2024) and AgentGym (Xi et al.,
2024) as held-out tasks. Note that there are two
sources of Alfworld and Sciworld. In order to
align with the setting of previous works, we use
he former to train the RM and evaluate in Sec-
tion 4.3.2, while the latter is used for evaluation in
Section 4.3.1. Details can be found in Appendix D.

Evaluation Metrics We use Success Rate which
indicates whether a task is successfully completed,
Progress Rate which is a scalar signal measuring
the completion percentage of a task, and the aver-
age reward as the evaluation metrics.

Implementation Details We adopt the LLaMA3-
8B-Instruct series model as our policy model. More
details can be found in Appendix B. We divide
1/4 of the expert trajectories for SFT, i.e. 1938,
830, 370 for Webshop, Alfworld, Sciworld. The
remaining 3/4 instruction is used to train reward
model without expert annotation.

4.3 Results
4.3.1 Comparison with General Agents

In this setting, we compare our method with meth-
ods that aim to train a single unified agent for vari-
ous tasks. To make a fair comparison, we use the
original non-finetuned model as the policy model
since fine-tuning leads to performance degradation
on held-out tasks, and guide its generation with our
AgentRM. From Table 1 we can observe that: (1)
Existing general agents exhibit severe overfitting
in held-in tasks, as their overall performance fail
to substantially surpass those of the greedy search
baseline. While AgentGym achieves a high score,
it is primarily because most of the task environ-
ments are seen during training. This advantage,
however, is offset by its notably weak performance
on held-out tasks i.e. only 12.9 on Jericho and
16.6 on Pddl. (2) Three types of AgentRM bring
varying degrees of improvement over the baseline.
Among them, Explicit RM proves to be the most
effective, enhancing the greedy search baseline by
8.8 on average. (3) On the Babyai task, which
shares similarities with the held-in tasks Alfworld
and Sciworld, the explicit RM exhibits significant
positive transfer. Conversely, we observe that a pol-
icy model trained on Sciworld but not on Babyai
tends to overfit to the action space of Sciworld.
This phenomenon, generating actions not provided
in the task instruction, is termed "action halluci-
nation" in Chen et al. (2024a). (4) Best-of-5 with

Web Embodied

Text Game Tool

Method Overall
Webshop Alfworldf Sciworldf Babyai Jericho Pddl Maze ToolQuery ToolOperation
gpt-40 57.7 79.9 76.9 64.1 340 69.8 76.0 61.8 37.6 65.9
Agent-FLAN 61.3f 79.7f 10.9 353 10.1 25.5 44.0 457 26.8 47.1
AgentGym 68.5" 76.9° 473" 614" 129 166 56.0° 69.7° 40.2° 59.3"
AgentGen 53.9 47.6 13.9 394 10.8 364 440 57.6 25.1 42.0
AgentRefine - 63.8 42.6 504 323 37.8 - - - -
Greedy Search 57.8 51.1 48.5 52.1 22.5 37.7 520 76.1 41.6 52.7
Best-of-5
LLM-as-a-judge 55.6 59.0 29.3 583 203 229 720 831 41.9 52.1
Explicit RM 62.4 67.7 50.1 70.6 30.0 33.3 80.0 82.1 43.9 61.5
Implicit RM 60.5 61.8 354 582 233 26.0 68.0 81.2 38.8 54.7
Beam Search (W7 = 5, Wa = 5)
Explicit RM 64.4 72.4 51.7 71.2 20.1 414 720 793 40.6 63.3

Table 1: Performance comparison with general agents.” indicates the task is seen during policy training and treated
as held-in evaluation. fmeans the sources of Alfworld and Sciworld differ from those in Table 2 to align with
previous works, detailed in Appendix D. Overall performance is averaged across tasks, weighted by test set sizes.

Method Webshop Alfworld Sciworld
Greedy Search 61.4 71.6 66.6
SPIN 65.4 71.9 60.3
NAT 63.2 68.3 55.6
ETO 65.7 734 62.5
StepAgent 67.6 76.1 64.1
QLASS 70.3 82.8 66.4
Agent-R 63.9 - 70.2
gpt-4o 57.7 66.4 66.6
Best-of-5
LLM-as-a-judge 60.5 64.9 62.3
Explicit RM 71.0 94.8 76.1
ImplicitPRM 66.4 94.8 70.6
Beam Search (W, = 5, Wy = 5)
Explicit RM 75.3 96.3 82.6

Table 2: Comparison with task-specific agents.

LLM-as-a-judge shows a 0.6 decline on overall per-
formance compared to greedy search. Among all
tasks, it performs relatively better on tool-related
tasks, suggesting that LL.M-as-a-judge is more ef-
fective on tasks with less complexity and smaller
search space, while being less effective on complex
tasks.

4.3.2 Comparison with Task-specific Agents

In this setting, we compare our method with meth-
ods that aim to train a specialized agent for each
task. Instead of training task-specific policy mod-
els, we find a single policy model simultaneously
trained on three tasks capable of mastering each
task without compromising performance on any.
Out of the same reason, we use the general RM
same as Section 4.3.1 without task-specific fine-
tuning. From the results in Table 2, Best-of-5 with

Explicit RM enhances the policy model by 9.6, 23.2
and 9.5 on three held-in tasks respectively. It out-
performs top specialized agents including Agent-
R and QLASS across all tasks, showing potential
in more practical scenarios where an agent is re-
quired to be proficient in more than one task (Acik-
goz et al., 2025). Further improvements can be
achieved through beam search.

S Analysis

In the following analysis, unless otherwise stated,
we report the results of explicit RM with Best-of-5
inference, as it outperforms the other two reward
models notably.

5.1 Robustness against Perturbation

To test the extent of overfitting on the held-in tasks,
we perform 5 types of perturbations on the held-in
task. Specifically, we perturb available actions in
the task instruction of Alfworld, which belongs to
the held-in tasks for AgentGym and Agent-FLAN.
See Appendix A for details of perturbation rules.
From Table 3 we can see that, simple data
perturbation leads to a significant performance
drop on the held-in task. In terms of the average
score, AgentGym’s success rate decreases by 25.6,
whereas Agent-FLAN shows a more significant
performance drop of 30.3. This suggests that they
might simply be memorizing the correlations be-
tween instructions/observations and corresponding
actions from the training data, rather than learning
to respond to the given instructions and observa-
tions. Our method achieves the highest average

Performance

4k 48k 196k 353k
Number of states for RM training

Figure 3: Scaling trend of training data.

Webshop Alfworld Sciworld

75 A

75 A

50 E E
. | S ——— |)

Performance

Figure 4: Performance of task-specific RM on 9 tasks.
The red/orange/blue bar denotes RM trained on Web-
shop/Alfworld/Sciworld respectively. The dashed line
denotes the performance of the general RM.

score with the lowest standard deviation, indicat-
ing that it develops the ability to make informed
decisions, rather than memorizing patterns.

5.2 Scaling Trend of Generalization

We analyze the relationship between the training
data size of the reward model and overall perfor-
mance, with the results shown in Figure 3. The
results demonstrate that even a relatively small
dataset of 4k states is able to elicit significant re-
ward modeling capabilities (57.6) for agent tasks,
compared to the prompt-based training-free LLM-
as-a-judge (52.1). This underscores the effective-
ness of our approach in data-constrained scenarios.
As the volume of training data increases, the per-
formance exhibits a persistent log-linear growth
without showing signs of saturation. The observed
trend leaves room for continued performance opti-
mization with expanded datasets.

5.3 Generalization of Task-specific RM

We examine the generalization of task-specific RM
trained on each held-in task (Figure 4). The re-
sults reveal that, for most tasks, the general RM
(dashed line) outperforms task-specific RMs, veri-
fying the importance of task diversity in enhancing

RM generalization. Besides, the task-specific RM
trained on Alfworld exhibits comparatively weaker
performance, which may be attributed to the use of
success rate rather than the progress rate, which is
a denser signal, as the outcome supervision when
constructing RM training data.

5.4 Generalization to Other Policy Model

It is commonly thought that broad training data
coverage is a requirement to ensure a good balance
between adaptability to different policy distribution
(Cui et al., 2025). We find that our RM can be ef-
fectively applied to states sampled by other LLM
agents and enhance their performance. To verify
it, we directly apply our RM, which is trained on
states sampled by the LLaMA-3-8B agent, to a
stronger one (LLaMA-3-70B) and a weaker one
(AgentGen). From Table 4 we can see that our RM
adapts well to different policy models and consis-
tently improves the performance. Specifically, it
improves the LLaMA-3-70B-based agent by 12.6
and AgentGen by 5.9, demonstrating more pro-
nounced advantages for models that possess greater
scale and potential. These encouraging results indi-
cate that the trial-and-error task experience derived
from a weaker yet more efficient agent can enhance
the performance of stronger and more costly agents.

5.5 State Representation of Reward Modeling

As stated in Section 3.2, the input of our RM con-
sists of thought tokens, action tokens, and observa-
tion tokens (except those of the last action). This
section examines their respective contributions to
the overall performance. Results are shown in Ta-
ble 5. Explicit RM w/ last_observation means
adding the observation of the last action to the
state representation during both training and in-
ference. It can be seen that the determination of
state rewards for different tasks has varying degrees
of reliance on the outcomes of actions. Overall,
augmenting the action with its outcome does not
bring significant improvement, suggesting that the
RM might possess the ability to infer the outcome
autonomously. Results w/o observation and w/o
thought show that the individual removal of thought
and observation has a negligible impact on the mod-
eling. Results w/o thought & observation show that
removing them simultaneously results in a drop
of 3.2 points, indicating that thought and observa-
tion tokens provide complementary information to
each other. In conclusion, the modeling primarily

Method Original Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Average(?) Std({)
Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog.
AgentGym 619" 76.9" 29.1 59.2 49.2 653 32.8 539 388 482 59 287 363 554 20.0 16.7
Agent-FLAN 67.2° 79.7° 21.6 58.8 514 713 27.6 535 522 679 1.5 19.7 369 585 220 225
AgentRefine 44.8 63.8 50.0 66.5 51.5 66.7 545 70.0 455 60.6 44.8 63.8 485 652 41 32
Ours 545 6777 545 68.6 53.0 70.2 485 63.6 493 639 545 677 524 669 2.7 2.6

Table 3: Performance of Alfworld under different perturbation rules. Succ./Prog. denote Success/Progress Rate
respectively. * indicates the task is seen during training and treated as held-in evaluation.

Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall
LLaMA-3-70B
Greedy Search (w/o RM) 63.4 63.4 51.1 62.6 317 64.1 76.0 81.9 44.9 62.4
BestofN@5 (w/ RM) 69.5 86.9 78.8 720 43.0 679 96.0 84.6 45.9 74.9
A 6.1 235 27.7 9.4 11.3 39 20.0 2.7 1.0 12.6
AgentGen
Greedy Search (w/o RM) 53.9 29.1 13.9 394 108 364 440 576 25.1 38.6
BestofN@5 (w/ RM) 58.7 45.0 10.6 446 147 429 440 628 30.2 444
A 4.7 15.9 -3.3 5.1 40 65 00 52 5.1 59

Table 4: Enhancement of our AgentRM to other policy models.

relies on action tokens. Utilizing only action to-
kens for modeling does not significantly impact the
effectiveness and can accelerate the training and
inference of the reward model.

5.6 Scaling Trend of Best-of-N

We select Pddl task to explore the potential gains
from further increasing the number of candidates
in the Best-of-N sampling using different reward
modelings. The oracle result is obtained by select-
ing the best candidate based on the ground-truth
label, which is not feasible in practice. We report
it as an upper bound of performance. As shown
in Figure 5, explicit RM yields consistent perfor-
mance gains as the test-time compute increases.
When the number of candidates increases to a cer-
tain extent, the implicit RM may become confused
by the excessive number of candidates, leading to
a degradation in performance. The effectiveness of
using LL.M-as-a-judge for scaling is limited. One
reason is that as N increases, a growing number
of tokens exceeding the maximum token limit of
the model will be truncated. The findings indicate
that additional research is necessary to establish
robust test-time scaling laws with Implicit RM and
LLM-as-a-judge, which we leave for future work.

5.7 Generalization to General Reasoning Task

The relationship between agent tasks and general
reasoning tasks remains unclear. In this section,
we explore the impact of our RM, merely trained
on agent tasks, on the general reasoning tasks. We

60 -

40 1

;2;&/

—@— Explicit RM —@— Implicit RM
—@— LLM-as-a-judge = Oracle

Performance

20 A

0 T T T T T
23 24 25 26 27
Number of candidates in Best-of-N

Figure 5: Scaling trend of Best-of-N.

directly apply our RM on several general reasoning
benchmarks including GSM8k (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021) and codecontests
(Li et al., 2022). We prompt the policy model to
solve mathematical problems using a Python inter-
preter. Table 6 shows that, our RM trained on agent
tasks has a negligible impact on general reasoning
tasks, indicating the RM has acquired reasoning
abilities common to general reasoning tasks, rather
than merely fitting the patterns of agent tasks. Nev-
ertheless, the results show the potential of our RM
to serve as a general-purpose RM, which can be de-
ployed across a wide range of applications without
significant performance degradation.

6 Related Work
6.1 LLM-based Agent

Language agents have shown initial success in han-
dling complex interactive tasks. Early works fo-
cus on building frameworks around prompt-based

Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall
Explicit RM 62.4 67.7 50.1 70.6 30.0 333 80.0 82.1 439 61.5
w/ last_observation 62.4 66.7 52.2 733 30.6 32.2 80.0 82.2 439 62.0
w/o observation 63.7 68.0 434 71.3 234 31.0 88.0 83.0 439 61.2
w/o thought 62.0 66.5 48.7 71.1 321 30.2 84.0 82.9 44.9 61.1
w/o thought & observation 62.4 66.0 45.7 69.1 22.1 254 440 83.2 394 58.3

Table 5: Ablation on state representation of Explicit RM.

Method GSM8k MATHS500 Codecontests
Greedy Search 81.1 48.4 13.3
BestofN@5 79.1 49.2 13.9

in Section 5.4.

6.2 Reward Modeling for LLM

Table 6: Performance on general reasoning tasks.

learning (Yao et al., 2022; Shinn et al., 2024). Re-
cently, great efforts have been made to enhance the
agent capability of open-sourced LLMs via finetun-
ing (Chen et al., 2023; Yin et al., 2024). Qin et al.
(2023); Deng et al. (2024a) imitate trajectories from
expert agents (e.g., GPT-4 (Achiam et al., 2023))
for specialized ability such as tool-using or web
navigation. Beyond imitation, self-improvement
emerges as a promising solution to enhance perfor-
mance without extensive expert annotation (Huang
et al., 2023). Most works finetune models on self-
generated trajectories following the self-training
paradigm (Wang et al., 2024b; Chen et al., 2024b;
Song et al., 2024; Xiong et al., 2024). Lately, in-
creasing attention has been devoted to test-time
self-improvement via scaling computation, e.g.,
generating multiple candidates and selecting the
optimal one using techniques like reward models
(Wang et al., 2024a; Zhai et al., 2024; Lin et al.,
2025). We provide a comparison between their
approach and our method in Section 6.2.

While effective for tasks seen during training, the
above methods inherently compromise the agent’s
generalization capabilities for unseen tasks. To
enhance agent generalizability, existing works inte-
grate more diverse agent tasks for multi-task train-
ing either by human-crafted (Zeng et al., 2023;
Chen et al., 2024a; Xi et al., 2024; Zhang et al.,
2024b) or by LLM-sythesized (Hu et al., 2024; Fu
et al., 2025). Although they alleviate overfitting to
some extent, it can be observed in Table 1 that their
performance on respective held-out tasks is either
similar or inferior to that of the original backbone
model. We are the first to propose a generalizable
reward model and enhance the agent generalizabil-
ity from the aspect of test-time search. Also, our
method is orthogonal to theirs and can be applied
to enhance their performance seamlessly, as shown

Recent advancements in reward modeling for
LLMs mainly focus on general reasoning tasks
such as maths and code (Uesato et al., 2022; Light-
man et al., 2023; Wang et al., 2023; Zhang et al.,
2024a). Different from those tasks, agent tasks
typically possess a larger search space due to long-
chain reasoning and environment dynamics. Data
scarcity is also a challenge pronounced in agent
tasks (Ma et al., 2024), making it impractical to
develop task-specific reward models. Existing
works (Wang et al., 2024a; Zhai et al., 2024; Putta
et al., 2024; Lin et al., 2025) focus on training task-
specific process reward models by Monte Carlo
Tree Search based methods. We are the first to in-
vestigate the feasibility of a generalizable reward
model, promoting the usage of reward models in
agent tasks. Besides, we investigate 2 additional re-
ward modelings and validate them on 6 additional
complex agent tasks with larger search space.

7 Conclusion

we introduce AgentRM, a generalizable reward
model, to enhance both the specializability and gen-
eralizability of language agents via test-time search.
We comprehensively investigate three reward mod-
elings with two inference methods, i.e. Best-of-N
sampling and beam search. Among them, explicit
reward modeling achieves consistently the best per-
formance on all tasks. Guiding the base policy
model with AgentRM surpasses top general agents
on six held-out tasks. As for the performance on
specific tasks, AgentRM can also boost a finetuned
policy model and outperform specialized agents
on three held-in tasks. Further analysis shows
our general reward model trained on states sam-
pled by LLaMA-3-8B can be directly transferred
to stronger policy models. This work sheds lights
on test-time scaling for agent systems.

Limitations

We conclude the limitations of this work as follows:

* Due to the significant efforts required to im-
plement additional agent interactive environ-
ments, we only include three agent tasks as
held-in tasks. According to the scaling trend
of training data in Section 5.2, incorporating
more tasks could further enhance the perfor-
mance.

¢ Due to the resource constraints, we set the
maximum iteration and number of simulations
in MCTS as 40 and 1. Increasing these pa-
rameters could lead to more precise process
reward estimations which we leave for further
work.

* We do not explore the potential of equipping
our policy model with prompt engineering
designed for agent such as Reflexion (Shinn
et al., 2024).

Acknowledgments

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Emre Can Acikgoz, Jeremiah Greer, Akul Datta,
Ze Yang, William Zeng, Oussama Elachqar, Em-
manouil Koukoumidis, Dilek Hakkani-Tiir, and
Gokhan Tur. 2025. Can a single model master both
multi-turn conversations and tool use? calm: A uni-
fied conversational agentic language model. Preprint,
arXiv:2502.08820.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024a. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024b. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, et al. 2025. Process rein-
forcement through implicit rewards. arXiv preprint
arXiv:2502.01456.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024a.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,

36.

Zhirui Deng, Zhicheng Dou, Yutao Zhu, Ji-Rong Wen,
Ruibin Xiong, Mang Wang, and Weipeng Chen.
2024b. From novice to expert: Llm agent policy
optimization via step-wise reinforcement learning.
arXiv preprint arXiv:2411.03817.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong,
Zhuoma Gongque, Weihao Zeng, Wei Wang, Jin-
gang Wang, Xunliang Cai, and Weiran Xu. 2025.
Agentrefine: Enhancing agent generalization through
refinement tuning. Preprint, arXiv:2501.01702.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-
guang Lou, Qingwei Lin, Ping Luo, Saravan Rajmo-
han, and Dongmei Zhang. 2024. Agentgen: Enhanc-
ing planning abilities for large language model based
agent via environment and task generation. arXiv
preprint arXiv:2408.00764.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1051-1068, Singa-
pore. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Zongyu Lin, Yao Tang, Xingcheng Yao, Da Yin, Ziniu
Hu, Yizhou Sun, and Kai-Wei Chang. 2025. Qlass:

https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2501.01702
https://arxiv.org/abs/2501.01702
https://arxiv.org/abs/2501.01702
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584

Boosting language agent inference via q-guided step-
wise search. Preprint, arXiv:2502.02584.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn 1lm agents. arXiv
preprint arXiv:2401.13178.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. 2024. Agent q: Advanced reasoning and
learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for llm
agents. arXiv preprint arXiv:2403.02502.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng,
Jujie He, Shuicheng Yan, and Bo An. 2024a. Q%*:
Improving multi-step reasoning for llms with deliber-
ative planning. arXiv preprint arXiv:2406.14283.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,
Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 2023.
Math-shepherd: A label-free step-by-step verifier
for llms in mathematical reasoning. arXiv preprint
arXiv:2312.08935.

10

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024b. Learning from fail-
ure: Integrating negative examples when fine-tuning
large language models as agents. arXiv preprint
arXiv:2402.11651.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, et al. 2024.
Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint
arXiv:2406.04151.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Watch every step! 1lm agent learning
via iterative step-level process refinement. arXiv
preprint arXiv:2406.11176.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 12380-12403.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without
process labels. Preprint, arXiv:2412.01981.

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye,
Zhengyin Du, and Jiecao Chen. 2025. Agent-r: Train-
ing language model agents to reflect via iterative self-
training. arXiv preprint arXiv:2501.11425.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Feng Dawei,
Cheng Yang, Bo Ding, and Huaimin Wang. 2024.
Enhancing decision-making for 1lm agents via step-
level g-value models. Preprint, arXiv:2409.09345.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024b. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.

https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2409.09345
https://arxiv.org/abs/2409.09345
https://arxiv.org/abs/2409.09345

Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

A Perturbation Details

We modify the available actions in Alfworld to
ensure that the changes consist of different tokens
(or token order) while conveying the same semantic
information. We revise the environment and the
examples in the prompt accordingly.

* Perturbation 1: change clean {obj} with
{recep}, cool {obj} with {recep}, heat
{obj} with {recep} to clean {obj} using
{recep}, cool {obj} using {recep}, heat
{obj} using {recep} in the instruction

* Perturbation 2: change go to {recep} to move
to {recep} in the instruction

* Perturbation 3: change take {obj} from
{recep} to from {recep} take {obj} in the
instruction

* Perturbation 4: delete all space between item
name and item number in the instruction

e Perturbation 5: remove all alfworld data in the
training set and retrain the model

B Implementation Details

Hyperparameters are listed in Table 7. The SFT
data is obtained by randomly selecting 1/4 expert
trajectories from the training set. The remaining
3/4 of the data is reserved for constructing RM
training data. In the explicit reward data construc-
tion stage, we set the iteration number w as 40, the
exploration constant ¢ in UCB as 0.5, the filter-
ing threshold A as 3, the number of the rollout in
simulation n as 1, the rollout policy as greedy, the
expansion width k as 5. We leverage the AdamW
optimizer. All experiments are carried out on 8
NVIDIA A100 80G GPUs. We use vLLM (Kwon
et al., 2023) to implement both the policy model
and reward model during inference.

C Baselines

C.0.1 General Agents

Agent-FLAN (Chen et al., 2024a) is an im-
provement of AgentTunning focusing on training
"thought" in ReAct. AgentGym (Xi et al., 2024)
uses various environments to ensure generalization
and conducts both SFT and DPO. AgentGen (Hu

11

Stage SET E)E[PII.CIF RM Impll.aF RM
raining Training
Learning Rate 2e-5 le-5 Se-7
Cosine Scheduler
Warm Up 0.1 0.03 Se-7
Batch Size 64 96 64
Weight Decay 0.0 0.0 0.0
Epoch 3 2 1
B8 - - 0.05

Table 7: Training hyper-parameters of different stages.

et al., 2024) uses LIMA to synthesize diversified
agent-tuning data. AgentRefine (Fu et al., 2025)
propose an agent synthesis framework to encom-
pass diverse environments and construct a dataset
by prompting a strong LLM to refine its error ac-
tion according to the environment feedback. For a
fair comparison, all general agents receive the task
instruction and one successful trajectory as input
and respond in ReAct-style. For a fair compari-
son, we reproduce Agent-FLAN, AgentGym and
AgentGen based on LLaMA-3-8B-Instruct. Since
AgentRefine has not open sourced, we only report
the results on five tasks in (Fu et al., 2025) with
LLaMA-3-8B-Instruct backbone.

C.0.2 Task-specific Agents

SPIN (Chen et al., 2024b) augments the expert
trajectory dataset with the agent’s successful tra-
jectories. NAT (Wang et al., 2024b) and ETO
(Song et al., 2024) incorporate failed trajectories
into the training process, allowing the agent to learn
from its failure experiences. StepAgent (Deng
et al., 2024b) utilizes step-wise reward to opti-
mize the agent’s reinforcement learning process.
QLASS (Lin et al., 2025) guides stepwise search
with trained task-specific Q-value models. Agent-
R (Yuan et al., 2025) leverages MCTS to construct
training samples that recover correct trajectories
from erroneous ones. Results of SPIN, NAT, ETO,
StepAgent are taken from (Deng et al., 2024b) with
LLaMA-3-8B-Instruct backbone. Since QLASS
has not open sourced, we report the results in (Lin
et al., 2025) with LLaMA-2-chat backbone.

D Task Statistics

Table 8 presents the statistics of both held-in
and held-out tasks. We adopt agent tasks from
AgentBoard (Ma et al., 2024) and AgentGym (Xi
et al., 2024) as held-out tasks: Alfworld, Sciworld,
Babyai for embodied house holding, Jericho and

VRN

16

15

16

Pddl and Maze for text game, ToolQuery and s ‘ }]

ToolOperation for tool using. Results of Sec-
tion 4.3.1/Section 4.3.2 are conducted on Alfworld
and Sciworld implemented by AgentBoard (Ma
etal., 2024)/ETO (Song et al., 2024) respectively to
align with previous works. They have slight differ-
ences in action space and test set number. Only Alf-
world and Sciworld from ETO (Song et al., 2024)
provide training data, hence we collect RM training
data from the ETO environment.

D.1 LLM-as-a-judge prompt

We list the prompt of the LLM-as-a-judge method
as follows:

You are trajectory reward model, an
expert in defining which trajectory
is better and closer to solving the
task. Here is the task description:

KKXKKAAKRKAAXRKRAAXA Rk AAA XKk Ak kkkk kix%k%k

task description: {task_description}

task goal: {task_goal}

ER R R b b S I e R e b S b S S S 4

Here are several candidates. They are
all trying to solve the task. Their
trajectories are as follows.

R I R b b S e e S b b S S 4

CANDIDATET:

{candidate_1}

AKKXKKAAKRKEAAXRKRKAAXAKRKRAA XK A XXk k ik %k%k

CANDIDATE?2:

{candidate_2}

ER R b b S b e i e Y

CANIDATES3:

{candidate_3}

R R R R b b b S b S e S e A S b b b b b S S S S S 4

CANIDATE4:

{candidate_4}

R I b I S e I b S b I e

CANIDATES:

{candidate_5}
R R R R R R b b b b S b S R e b b b b b S S S S S 4

We force the LLM to call the following function to
give the answer:

[{
"type"”: "function”,
"function”": {

"name": "choose_preferred_answer”,

"description”: "Choose_the_preferred._
answer _for_the_task_within_all_given

_answers."”,
"parameters”: {
"type": "object”,
"properties”: {
"preference"”: {
"type": "number",
"enum": [1, 2, 3, 4, 5],

"description”: "The_index_of_the_
preferred_answer_in_all_given_
answers_(ranging._from_1_to_5)."

[SSS RN

12

D.2 Preference Accuracy of RM

We evaluate the quality of our RM estimated step
reward by assessing its ability to determine prefer-
ences between state pairs. AgentBoard (Ma et al.,
2024) offers a method to compute the progress rate
for each state by annotating subgoals for every task.
We create state pairs with a progress rate difference
exceeding a threshold of 0.3. Then, we calculate
the accuracy of our RM in predicting preferences
(Table 9). Despite predicting reward for each state
independently, Explicit RM still demonstrates bet-
ter preference judgment accuracy on most tasks
compared to LLLM-as-a-judge which sees pairwise
states during inference.

task Webshop Alfworld Sciworld Babyai Jericho PDDL Maze Toolquery Tooloperation

Train 10426 3321 1483 - - - - - -
SFT 1938 830 370 - - - - - -
#RM Training 8488 2491 1113 - - - - - -

Test 200 134(ETO)/134(AgentBoard) 211(ETO)/90(AgentBoard) 112 20 60 25 60 40
Reward Type scalar binary scalar scalar scalar scalar binary scalar scalar
Avg. Turn 3 6 15 10 20 20 43 5 6
Max. Turn 10 20/30 [15,120]/30 30 30 30 30 30 30
Action Space 2 10/13 19/21 8 150 8 4 15 16

Table 8: Statistics of held-in and held-out tasks.

Method Babyai Jericho Pdd]l Maze Toolquery Tooloperation
LLM-as-a-judge 65.7 46.0 70.7 65.8 814 42.1
Explicit RM 77.0 649 654 947 729 57.9

Table 9: The accuracy of judging relative step reward.

13

	Introduction
	Task Formulation
	Methodology
	Behavior Cloning
	Reward Modeling
	Explicit Reward Modeling
	Implicit Reward Modeling
	LLM-as-a-judge

	Reward-Guided Search

	Experiments
	Baselines
	Experimental Settings
	Results
	Comparison with General Agents
	Comparison with Task-specific Agents

	Analysis
	Robustness against Perturbation
	Scaling Trend of Generalization
	Generalization of Task-specific RM
	Generalization to Other Policy Model
	State Representation of Reward Modeling
	Scaling Trend of Best-of-N
	Generalization to General Reasoning Task

	Related Work
	LLM-based Agent
	Reward Modeling for LLM

	Conclusion
	Perturbation Details
	Implementation Details
	Baselines
	General Agents
	Task-specific Agents

	Task Statistics
	LLM-as-a-judge prompt
	Preference Accuracy of RM

