
AgentRM: Enhancing Agent Generalization with Reward Modeling

Anonymous ACL submission

Abstract001

Existing LLM-based agents have achieved002
strong performance on held-in tasks, but their003
generalizability to unseen tasks remains poor.004
Hence, some recent work focus on fine-tuning005
the policy model with more diverse tasks to006
improve the generalizability. In this work, we007
find that finetuning a reward model to guide the008
policy model is more robust than directly fine-009
tuning the policy model. Based on this finding,010
we propose AgentRM, a generalizable reward011
model, to guide the policy model for effective012
test-time search. We comprehensively investi-013
gate three approaches to construct the reward014
model, including explicit reward modeling, im-015
plicit reward modeling and LLM-as-a-judge.016
We then use AgentRM to guide the answer gen-017
eration with Best-of-N sampling and step-level018
beam search. On nine agent tasks, AgentRM019
enhances the base policy model by 8.8 points020
on average, surpassing the top general agent by021
4.0 points. As for the specializability, Agen-022
tRM can also boost a finetuned policy model023
and outperform the top specialized agent by024
11.4 on held-in tasks. All the data and source025
codes will be released to facilitate the research026
in this area.027

1 Introduction028

Large language model (LLM)-based agents (Mi-029

alon et al., 2023; Sumers et al., 2023) have be-030

come a promising solution to complex interactive031

tasks (Xi et al., 2024) in recent years. While spe-032

cialized agents (Wang et al., 2024b; Qin et al.,033

2023) achieve strong performance on held-in tasks,034

their generalizability to unseen tasks is poor. To035

address this challenge, existing works focus on inte-036

grating more diverse agent tasks including human-037

crafted (Zeng et al., 2023; Chen et al., 2024a; Xi038

et al., 2024; Zhang et al., 2024b; Acikgoz et al.,039

2025) and LLM synthesized (Hu et al., 2024; Fu040

et al., 2025), to perform multi-task fine-tuning on041

the base LLM.042

0

50

100

Pr
og

re
ss

 R
at

eHeld-in tasks Held-out tasks
(a) Performance on 9 tasks

before finetuning
after finetuning

Web Alf Sci
Test

W
eb

Al
f

Sc
i

Tr
ai

n
3.57 -34.32 -44.44

-8.41 36.53 -33.18

-42.73 -35.07 20.87

(b) Finetuning policy model

Web Alf Sci
Test

Tr
ai

n

9.04 5.73 16.34

-2.14 6.98 -0.11

0.04 4.81 14.43

(c) Finetuning reward model

40

20

0

20

40

Im
pr

ov
em

en
t A

fte
r F

in
et

un
in

g

Figure 1: Finetuning the reward model is more robust
than finetuning the policy model for agent tasks. (a)
Finetuning the policy model leads to severe degradation
on held-out tasks. (b)(c) show the performance of Best-
of-5 with a reward model. Finetuning the policy model
on one task degrades on others while finetuning the
reward model mostly generalized to others.

Despite extensive efforts to scale task diversity 043

for training the base LLM, we find finetuning the 044

base LLM improves held-in task performance but 045

degrades held-out task performance (Figure 1(a)). 046

A potential explanation is that finetuning the base 047

LLM, which is used as the policy model for token- 048

by-token action generation, increases the likelihood 049

of seen action tokens while decreasing that of un- 050

seen actions. Rather than finetuning the policy 051

model directly, we hypothesize that finetuning a 052

reward model to guide the policy model is more 053

robust. Since the regression training objective of 054

the reward function is inherently less sensitive to 055

the specific distribution of action tokens. In our 056

preliminary experiment, we perform Best-of-5, i.e. 057

generating 5 candidate trajectories with the policy 058

model and selecting one using the reward model. 059

Figure 1(b)/(c) shows the improvement after fine- 060

tuning the policy/reward model respectively on in- 061

dividual tasks. In Figure 1(b), only the diagonal 062

values, i.e. performance of the held-in task which is 063

1



seen during training, are positive. Contrastly, Fig-064

ure 1(c) reveals predominantly positive values, indi-065

cating that finetuning the reward model on a single066

task can enhance the performance on unseen tasks.067

Inspired by this, we introduce AgentRM, a gener-068

alizable reward model, to guide the policy model069

for effective test-time search. Since the effective070

construction of the reward model for agent tasks071

remains an open question, we investigate three rep-072

resentative reward modeling approaches including073

(1) explicit reward modeling (Zhang et al., 2024a)074

which learns the step-level rewards annotated by075

tree search, (2) implicit reward modeling (Yuan076

et al., 2024) which derives the inherent step-level077

rewards by training on outcome rewards, and (3)078

LLM-as-a-judge (Zheng et al., 2023) which directly079

prompts an LLM to assess the agent trajectory. We080

then use AgentRM to guide the answer genera-081

tion in the Best-of-N sampling and step-level beam082

search.083

Experimental results on nine agent tasks show084

that the explicit modeling consistently achieves085

the best performance. Concretely, it surpasses the086

top general agent by 4 points with a non-finetuned087

policy model, and surpasses the top task-specific088

agent by 11.4 points with a task-specific finetuned089

policy model. Further analysis shows our general090

reward model trained on states sampled by LLaMA-091

3-8B can be directly applied to enhance stronger092

policy models such as LLaMA-3-70B.093

2 Task Formulation094

The agent task with environment feedback can be095

formalized as a partially observable Markov deci-096

sion process (U ,S,A,O, T ,R) with instruction097

space U , state space S , action space A, observation098

space O, state transition function T : S ×A → S ,099

and reward function R : S × A → [0, 1]. The100

initial state s1 = (u, o0) ∈ S consists of task in-101

struction u and the initial observation o0. At step102

t, conditioned on the current state st, the agent103

generates the next action at ∼ π(·|st) based on104

its policy π. Then, the agent receives the environ-105

ment observation ot ∈ O and the state transforms106

to st+1 = (st, at, ot) = (u, o0, a<t+1, o<t+1) ac-107

cording to transition function T . The agent contin-108

ues to interact with the environment until the task109

is finished or the maximum step is reached. The110

environment only provides the outcome reward at111

the final step rT (sT , aT ) ∈ R, where T denotes112

the total step number. As illustrated in Section 3.2,113

we train a process reward model that produces re- 114

wards for intermediate steps rt(st, at), t < T . We 115

discuss the training details in Section 3.2. 116

3 Methodology 117

The overview is depicted in Figure 2. Section 3.1 118

describes the behavior cloning through which we 119

derive a policy model with basic task ability on 120

held-in tasks. Section 3.2 elaborates on how we use 121

the derived policy model to build our generalizable 122

reward model. We systematically investigate three 123

different reward modelings. Section 3.3 explains 124

how we use our reward model to enhance the policy 125

model’s decision-making ability through test-time 126

search. 127

3.1 Behavior Cloning 128

To obtain an initial policy πinit with basic task abil- 129

ity, crucial for collecting high-quality states, we 130

split a portion of task instructions from the training 131

set, annotate them by an expert agent and conduct 132

supervised fine-tuning (SFT) on the expert trajecto- 133

ries Dexpert = {(ui, oi0, ait, oit)
Ti
t=1}Ni=1 as follows: 134

L(θ) = −
N∑
i=1

Ti∑
t=1

log πθ(a
i
t | ui, oi0, ai<t, o

i
<t)

(1) 135

where θ denotes the parameters of the policy model, 136

N denotes the number of trajectories in Dexpert, 137

Ti denotes the total step of the i-th trajectory. Note 138

that the data is formatted in ReAct-style (Yao et al., 139

2022), and we use a to denote the complete ReAct- 140

style response (containing both thought and action 141

tokens) generated by π for simplicity. 142

3.2 Reward Modeling 143

3.2.1 Explicit Reward Modeling 144

Given that agent tasks typically involve long-chain 145

reasoning and vast search space, we organize 146

the agent’s search trajectories into tree structures 147

and employ a Monte Carlo Tree Search (MCTS)- 148

inspired approach to make the search process ef- 149

ficient. This approach aims to avoid redundant 150

searches, encourage sampling diversity, and im- 151

prove search efficiency. 152

The search tree consists of nodes representing 153

states st and edges representing actions at. We 154

consider the initial state s1, which includes the 155

task instruction u and the initial observation o0, as 156

the root node. A search trajectory starting from 157

s1 is formalized as a branch extending from the 158

2



25%

75%
❶ SFT ❷ Explore

Dataset LLM

Environment

SFT Agent

s1

s2
1 s3

1 s4
1

s2
2

s3
2

s3
3 s4

3

10.8

0.5

0

1

0.5
0.5

1

000

Reward Annotation

❸ Reward
Model Training

Reward Model

{(s, r), …}

❹ Inference

Policy Model

Action 1

0.8

0.3

Action 2Webshop
Alfworld
Sciworld

Unseen Task

Figure 2: Overview. ❶ Deriving a supervised fine-tuned (SFT) agent on expert trajectories. ❷ Constructing search
trees by exploring the environment using the SFT agent. ❸ Training a generalizable reward model, on state-reward
pairs extracted from search trees. ❹ Enhancing the policy model, regardless of its initial strength, through test-time
search guided by our reward model for unseen tasks.

root node. Each node records information such159

as the state content (action at and corresponding160

observation ot), the number of visit N(st), and the161

expected future reward V (st) starting from state st.162

For each task instruction, we construct a search tree163

starting from the root node and expanding through164

repeating the following four stages for ω iterations:165

Selection aims to identify the most promising166

node to be expanded in the next iteration. Starting167

from the root node, it traverses the tree by selecting168

child nodes according to the Upper Confidence169

Bound (UCB) value until a leaf is reached:170

st = argmax
sj∈Children(st−1)

(
V (sj) + c ·

√
logN(st−1)

1 +N(sj)

)
,171

Expansion will be operated on the selected node172

st if it is not a terminal state exceeding the maxi-173

mum step or finishing reasoning. The agent sam-174

ples the next action at ∼ π(· | st) for k times175

with temperature τ based on its policy. Actions176

with identical action tokens are merged to lower177

the cost of repetitive search, resulting in k̂ next178

states {sit+1} = {(st, at, ot)i}, i = 1 . . . k̂.179

Simulation is used to estimate the initial value180

of the above expanded node st+1 by generating n181

complete trajectories from it to get the outcome182

reward returned by the environment and averaging183

their outcome rewards. To speed up the tree sear,184

we cache the rollout nodes for future expansion.185

Backpropagation is conducted once the values186

of the expanded nodes are determined. The value187

V (sit+1) is propagated back up the tree, updating188

each node’s visit count N and state value V :189

V (st)←
V (st) ·N(st) +

∑k̂
i=1 V (sit+1)

N(st) + k̂
,190

N(st)← N(st) + k̂191

Reward Model Training For each task instruc-192

tion in the held-in tasks i.e. Webshop, Alfworld,193

Sciworld, we construct a search tree and extract 194

state values V (st) to form the process reward 195

model training dataset. To ensure the quality of the 196

estimated value, we filter states whose visit count 197

is smaller than threshold λ. We train a language 198

model with a value head by minimizing the Mean 199

Squared Error (MSE) loss between the predicted 200

value V̂ (st) and the provided value V (st): 201

L(θ) = 1

N

N∑
t=1

(V̂ (st)− V (st))
2 (2) 202

3.2.2 Implicit Reward Modeling 203

Inspired by (Rafailov et al., 2024; Yuan et al., 204

2024), which derives a process reward model in- 205

herently from training on complete trajectories, we 206

also investigate implicit reward modeling without 207

annotating process reward. Specifically, the out- 208

come reward is parameterized as the log-likelihood 209

ratios of the policy and reference models, i.e. 210

rθ(sT , aT ) := β log πθ(sT ,aT )
πref (sT ,aT ) . It is proved that 211

the Q value qtθ(st, at) can be implicitly learned by 212

θ (mathematical induction can be found in (Yuan 213

et al., 2024)). The process reward rtθ can be derived 214

as follows: 215

rtθ := qtθ − qt−1
θ = β log

πθ(at | st)
πref(at | st)

(3) 216

where πθ, πref represent the policy and reference 217

model parameter respectively. 218

Reward Model Training For each task instruc- 219

tion in the held-in tasks, we sample 16 complete tra- 220

jectories (sT , aT ) with temperature τ to construct 221

the process reward model training dataset. We train 222

a language model θ with the MSE loss to integrate 223

the scalar reward (progress rate) provided by the 224

environment, unlike (Yuan et al., 2024) using the 225

cross-entropy loss for binary reward. 226

3



3.2.3 LLM-as-a-judge227

We do not prompt the LLM to output a discrete228

score for each trajectory since the score might be229

identical thus insufficient to select the best answer230

from a set of candidates (e.g., Best-of-N). Instead,231

we prompt the LLM to act as a selector with in-232

structions in Appendix D.1.233

3.3 Reward-Guided Search234

We boost the policy model at test time via search235

methods guided by our general reward model.236

Best-of-N samples N complete trajectories from237

the policy model and then selects the final answer238

according to the reward generated by the reward239

model.240

Beam Search searches over the policy model’s241

per-step prediction in the following steps:242

• Initial Sampling: Sample W1×W2 initial actions243

for the first step.244

• Scoring: Evaluate the new states using the re-245

ward model.246

• Filtering: Retain only the top W1 highest-247

scoring states.248

• Action Expansion: For each of the remaining249

states, sample W2 actions for the next step, gen-250

erating a total of W1 ×W2 new states.251

• Iteration: Repeat steps 2–4 until all maintained252

states terminate.253

4 Experiments254

4.1 Baselines255

Apart from comparing with original greedy search,256

we compare our method with task-specific agents257

and general agents. Task-specific agents include258

SPIN (Chen et al., 2024b), NAT (Wang et al.,259

2024b), ETO (Song et al., 2024), StepAgent (Deng260

et al., 2024b), QLASS (Lin et al., 2025) and Agent-261

R (Yuan et al., 2025). General agents include262

Agent-FLAN (Chen et al., 2024a), AgentGym (Xi263

et al., 2024), AgentGen (Hu et al., 2024), Agen-264

tRefine (Fu et al., 2025). We also compare with265

close-sourced agent based on gpt-4o for reference.266

More details can be found in Appendix C.267

4.2 Experimental Settings268

Datasets We adopt the three agent tasks from269

ETO (Song et al., 2024) as our held-in tasks: Web-270

shop for web navigation, Alfworld for embodied271

house holding, and Sciworld for embodied science272

experiments. We adopt agent tasks from Agent- 273

Board (Ma et al., 2024) and AgentGym (Xi et al., 274

2024) as held-out tasks. Note that there are two 275

sources of Alfworld and Sciworld. In order to 276

align with the setting of previous works, we use 277

he former to train the RM and evaluate in Sec- 278

tion 4.3.2, while the latter is used for evaluation in 279

Section 4.3.1. Details can be found in Appendix D. 280

Evaluation Metrics We use Success Rate which 281

indicates whether a task is successfully completed, 282

Progress Rate which is a scalar signal measuring 283

the completion percentage of a task, and the aver- 284

age reward as the evaluation metrics. 285

Implementation Details We adopt the LLaMA3- 286

8B-Instruct series model as our policy model. More 287

details can be found in Appendix B. We divide 288

1/4 of the expert trajectories for SFT, i.e. 1938, 289

830, 370 for Webshop, Alfworld, Sciworld. The 290

remaining 3/4 instruction is used to train reward 291

model without expert annotation. 292

4.3 Results 293

4.3.1 Comparison with General Agents 294

In this setting, we compare our method with meth- 295

ods that aim to train a single unified agent for vari- 296

ous tasks. To make a fair comparison, we use the 297

original non-finetuned model as the policy model 298

since fine-tuning leads to performance degradation 299

on held-out tasks, and guide its generation with our 300

AgentRM. From Table 1 we can observe that: (1) 301

Existing general agents exhibit severe overfitting 302

in held-in tasks, as their overall performance fail 303

to substantially surpass those of the greedy search 304

baseline. While AgentGym achieves a high score, 305

it is primarily because most of the task environ- 306

ments are seen during training. This advantage, 307

however, is offset by its notably weak performance 308

on held-out tasks i.e. only 12.9 on Jericho and 309

16.6 on Pddl. (2) Three types of AgentRM bring 310

varying degrees of improvement over the baseline. 311

Among them, Explicit RM proves to be the most 312

effective, enhancing the greedy search baseline by 313

8.8 on average. (3) On the Babyai task, which 314

shares similarities with the held-in tasks Alfworld 315

and Sciworld, the explicit RM exhibits significant 316

positive transfer. Conversely, we observe that a pol- 317

icy model trained on Sciworld but not on Babyai 318

tends to overfit to the action space of Sciworld. 319

This phenomenon, generating actions not provided 320

in the task instruction, is termed "action halluci- 321

nation" in Chen et al. (2024a). (4) Best-of-5 with 322

4



Method Web Embodied Text Game Tool Overall
Webshop Alfworld† Sciworld† Babyai Jericho Pddl Maze ToolQuery ToolOperation

gpt-4o 57.7 79.9 76.9 64.1 34.0 69.8 76.0 61.8 37.6 65.9
Agent-FLAN 61.3* 79.7* 10.9 35.3 10.1 25.5 44.0 45.7 26.8 47.1
AgentGym 68.5* 76.9* 47.3* 61.4* 12.9 16.6 56.0* 69.7* 40.2* 59.3*

AgentGen 53.9 47.6 13.9 39.4 10.8 36.4 44.0 57.6 25.1 42.0
AgentRefine - 63.8 42.6 50.4 32.3 37.8 - - - -

Greedy Search 57.8 51.1 48.5 52.1 22.5 37.7 52.0 76.1 41.6 52.7

Best-of-5

LLM-as-a-judge 55.6 59.0 29.3 58.3 20.3 22.9 72.0 83.1 41.9 52.1
Explicit RM 62.4 67.7 50.1 70.6 30.0 33.3 80.0 82.1 43.9 61.5
Implicit RM 60.5 61.8 35.4 58.2 23.3 26.0 68.0 81.2 38.8 54.7

Beam Search (W1 = 5,W2 = 5)

Explicit RM 64.4 72.4 51.7 71.2 29.1 41.4 72.0 79.3 40.6 63.3

Table 1: Performance comparison with general agents.* indicates the task is seen during policy training and treated
as held-in evaluation. †means the sources of Alfworld and Sciworld differ from those in Table 2 to align with
previous works, detailed in Appendix D. Overall performance is averaged across tasks, weighted by test set sizes.

Method Webshop Alfworld Sciworld

Greedy Search 61.4 71.6 66.6
SPIN 65.4 71.9 60.3
NAT 63.2 68.3 55.6
ETO 65.7 73.4 62.5
StepAgent 67.6 76.1 64.1
QLASS 70.3 82.8 66.4
Agent-R 63.9 - 70.2
gpt-4o 57.7 66.4 66.6

Best-of-5

LLM-as-a-judge 60.5 64.9 62.3
Explicit RM 71.0 94.8 76.1
ImplicitPRM 66.4 94.8 70.6

Beam Search (W1 = 5,W2 = 5)

Explicit RM 75.3 96.3 82.6

Table 2: Comparison with task-specific agents.

LLM-as-a-judge shows a 0.6 decline on overall per-323

formance compared to greedy search. Among all324

tasks, it performs relatively better on tool-related325

tasks, suggesting that LLM-as-a-judge is more ef-326

fective on tasks with less complexity and smaller327

search space, while being less effective on complex328

tasks.329

4.3.2 Comparison with Task-specific Agents330

In this setting, we compare our method with meth-331

ods that aim to train a specialized agent for each332

task. Instead of training task-specific policy mod-333

els, we find a single policy model simultaneously334

trained on three tasks capable of mastering each335

task without compromising performance on any.336

Out of the same reason, we use the general RM337

same as Section 4.3.1 without task-specific fine-338

tuning. From the results in Table 2, Best-of-5 with339

Explicit RM enhances the policy model by 9.6, 23.2 340

and 9.5 on three held-in tasks respectively. It out- 341

performs top specialized agents including Agent- 342

R and QLASS across all tasks, showing potential 343

in more practical scenarios where an agent is re- 344

quired to be proficient in more than one task (Acik- 345

goz et al., 2025). Further improvements can be 346

achieved through beam search. 347

5 Analysis 348

In the following analysis, unless otherwise stated, 349

we report the results of explicit RM with Best-of-5 350

inference, as it outperforms the other two reward 351

models notably. 352

5.1 Robustness against Perturbation 353

To test the extent of overfitting on the held-in tasks, 354

we perform 5 types of perturbations on the held-in 355

task. Specifically, we perturb available actions in 356

the task instruction of Alfworld, which belongs to 357

the held-in tasks for AgentGym and Agent-FLAN. 358

See Appendix A for details of perturbation rules. 359

From Table 3 we can see that, simple data 360

perturbation leads to a significant performance 361

drop on the held-in task. In terms of the average 362

score, AgentGym’s success rate decreases by 25.6, 363

whereas Agent-FLAN shows a more significant 364

performance drop of 30.3. This suggests that they 365

might simply be memorizing the correlations be- 366

tween instructions/observations and corresponding 367

actions from the training data, rather than learning 368

to respond to the given instructions and observa- 369

tions. Our method achieves the highest average 370

5



4k 48k 196k 353k
Number of states for RM training

58

60

Pe
rfo

rm
an

ce

Figure 3: Scaling trend of training data.

25

50

75

Webshop Alfworld Sciworld

25

50

75

Babyai Jericho Pddl

25

50

75

Maze Toolquery Tooloperation

Pe
rfo

rm
an

ce

Figure 4: Performance of task-specific RM on 9 tasks.
The red/orange/blue bar denotes RM trained on Web-
shop/Alfworld/Sciworld respectively. The dashed line
denotes the performance of the general RM.

score with the lowest standard deviation, indicat-371

ing that it develops the ability to make informed372

decisions, rather than memorizing patterns.373

5.2 Scaling Trend of Generalization374

We analyze the relationship between the training375

data size of the reward model and overall perfor-376

mance, with the results shown in Figure 3. The377

results demonstrate that even a relatively small378

dataset of 4k states is able to elicit significant re-379

ward modeling capabilities (57.6) for agent tasks,380

compared to the prompt-based training-free LLM-381

as-a-judge (52.1). This underscores the effective-382

ness of our approach in data-constrained scenarios.383

As the volume of training data increases, the per-384

formance exhibits a persistent log-linear growth385

without showing signs of saturation. The observed386

trend leaves room for continued performance opti-387

mization with expanded datasets.388

5.3 Generalization of Task-specific RM389

We examine the generalization of task-specific RM390

trained on each held-in task (Figure 4). The re-391

sults reveal that, for most tasks, the general RM392

(dashed line) outperforms task-specific RMs, veri-393

fying the importance of task diversity in enhancing394

RM generalization. Besides, the task-specific RM 395

trained on Alfworld exhibits comparatively weaker 396

performance, which may be attributed to the use of 397

success rate rather than the progress rate, which is 398

a denser signal, as the outcome supervision when 399

constructing RM training data. 400

5.4 Generalization to Other Policy Model 401

It is commonly thought that broad training data 402

coverage is a requirement to ensure a good balance 403

between adaptability to different policy distribution 404

(Cui et al., 2025). We find that our RM can be ef- 405

fectively applied to states sampled by other LLM 406

agents and enhance their performance. To verify 407

it, we directly apply our RM, which is trained on 408

states sampled by the LLaMA-3-8B agent, to a 409

stronger one (LLaMA-3-70B) and a weaker one 410

(AgentGen). From Table 4 we can see that our RM 411

adapts well to different policy models and consis- 412

tently improves the performance. Specifically, it 413

improves the LLaMA-3-70B-based agent by 12.6 414

and AgentGen by 5.9, demonstrating more pro- 415

nounced advantages for models that possess greater 416

scale and potential. These encouraging results indi- 417

cate that the trial-and-error task experience derived 418

from a weaker yet more efficient agent can enhance 419

the performance of stronger and more costly agents. 420

421

5.5 State Representation of Reward Modeling 422

As stated in Section 3.2, the input of our RM con- 423

sists of thought tokens, action tokens, and observa- 424

tion tokens (except those of the last action). This 425

section examines their respective contributions to 426

the overall performance. Results are shown in Ta- 427

ble 5. Explicit RM w/ last_observation means 428

adding the observation of the last action to the 429

state representation during both training and in- 430

ference. It can be seen that the determination of 431

state rewards for different tasks has varying degrees 432

of reliance on the outcomes of actions. Overall, 433

augmenting the action with its outcome does not 434

bring significant improvement, suggesting that the 435

RM might possess the ability to infer the outcome 436

autonomously. Results w/o observation and w/o 437

thought show that the individual removal of thought 438

and observation has a negligible impact on the mod- 439

eling. Results w/o thought & observation show that 440

removing them simultaneously results in a drop 441

of 3.2 points, indicating that thought and observa- 442

tion tokens provide complementary information to 443

each other. In conclusion, the modeling primarily 444

6



Method Original Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Average(↑) Std(↓)

Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog.
AgentGym 61.9* 76.9* 29.1 59.2 49.2 65.3 32.8 53.9 38.8 48.2 5.9 28.7 36.3 55.4 20.0 16.7
Agent-FLAN 67.2* 79.7* 21.6 58.8 51.4 71.3 27.6 53.5 52.2 67.9 1.5 19.7 36.9 58.5 22.0 22.5
AgentRefine 44.8 63.8 50.0 66.5 51.5 66.7 54.5 70.0 45.5 60.6 44.8 63.8 48.5 65.2 4.1 3.2
Ours 54.5 67.7 54.5 68.6 53.0 70.2 48.5 63.6 49.3 63.9 54.5 67.7 52.4 66.9 2.7 2.6

Table 3: Performance of Alfworld under different perturbation rules. Succ./Prog. denote Success/Progress Rate
respectively. ∗ indicates the task is seen during training and treated as held-in evaluation.

Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall

LLaMA-3-70B

Greedy Search (w/o RM) 63.4 63.4 51.1 62.6 31.7 64.1 76.0 81.9 44.9 62.4
BestofN@5 (w/ RM) 69.5 86.9 78.8 72.0 43.0 67.9 96.0 84.6 45.9 74.9
∆ 6.1 23.5 27.7 9.4 11.3 3.9 20.0 2.7 1.0 12.6

AgentGen

Greedy Search (w/o RM) 53.9 29.1 13.9 39.4 10.8 36.4 44.0 57.6 25.1 38.6
BestofN@5 (w/ RM) 58.7 45.0 10.6 44.6 14.7 42.9 44.0 62.8 30.2 44.4
∆ 4.7 15.9 -3.3 5.1 4.0 6.5 0.0 5.2 5.1 5.9

Table 4: Enhancement of our AgentRM to other policy models.

relies on action tokens. Utilizing only action to-445

kens for modeling does not significantly impact the446

effectiveness and can accelerate the training and447

inference of the reward model.448

5.6 Scaling Trend of Best-of-N449

We select Pddl task to explore the potential gains450

from further increasing the number of candidates451

in the Best-of-N sampling using different reward452

modelings. The oracle result is obtained by select-453

ing the best candidate based on the ground-truth454

label, which is not feasible in practice. We report455

it as an upper bound of performance. As shown456

in Figure 5, explicit RM yields consistent perfor-457

mance gains as the test-time compute increases.458

When the number of candidates increases to a cer-459

tain extent, the implicit RM may become confused460

by the excessive number of candidates, leading to461

a degradation in performance. The effectiveness of462

using LLM-as-a-judge for scaling is limited. One463

reason is that as N increases, a growing number464

of tokens exceeding the maximum token limit of465

the model will be truncated. The findings indicate466

that additional research is necessary to establish467

robust test-time scaling laws with Implicit RM and468

LLM-as-a-judge, which we leave for future work.469

5.7 Generalization to General Reasoning Task470

The relationship between agent tasks and general471

reasoning tasks remains unclear. In this section,472

we explore the impact of our RM, merely trained473

on agent tasks, on the general reasoning tasks. We474

23 24 25 26 27

Number of candidates in Best-of-N

0

20

40

60

Pe
rfo

rm
an

ce

Explicit RM
LLM-as-a-judge

Implicit RM
Oracle

Figure 5: Scaling trend of Best-of-N.

directly apply our RM on several general reasoning 475

benchmarks including GSM8k (Cobbe et al., 2021), 476

MATH (Hendrycks et al., 2021) and codecontests 477

(Li et al., 2022). We prompt the policy model to 478

solve mathematical problems using a Python inter- 479

preter. Table 6 shows that, our RM trained on agent 480

tasks has a negligible impact on general reasoning 481

tasks, indicating the RM has acquired reasoning 482

abilities common to general reasoning tasks, rather 483

than merely fitting the patterns of agent tasks. Nev- 484

ertheless, the results show the potential of our RM 485

to serve as a general-purpose RM, which can be de- 486

ployed across a wide range of applications without 487

significant performance degradation. 488

6 Related Work 489

6.1 LLM-based Agent 490

Language agents have shown initial success in han- 491

dling complex interactive tasks. Early works fo- 492

cus on building frameworks around prompt-based 493

7



Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall

Explicit RM 62.4 67.7 50.1 70.6 30.0 33.3 80.0 82.1 43.9 61.5
w/ last_observation 62.4 66.7 52.2 73.3 30.6 32.2 80.0 82.2 43.9 62.0
w/o observation 63.7 68.0 43.4 71.3 23.4 31.0 88.0 83.0 43.9 61.2
w/o thought 62.0 66.5 48.7 71.1 32.1 30.2 84.0 82.9 44.9 61.1
w/o thought & observation 62.4 66.0 45.7 69.1 22.1 25.4 44.0 83.2 39.4 58.3

Table 5: Ablation on state representation of Explicit RM.

Method GSM8k MATH500 Codecontests

Greedy Search 81.1 48.4 13.3
BestofN@5 79.1 49.2 13.9

Table 6: Performance on general reasoning tasks.

learning (Yao et al., 2022; Shinn et al., 2024). Re-494

cently, great efforts have been made to enhance the495

agent capability of open-sourced LLMs via finetun-496

ing (Chen et al., 2023; Yin et al., 2024). Qin et al.497

(2023); Deng et al. (2024a) imitate trajectories from498

expert agents (e.g., GPT-4 (Achiam et al., 2023))499

for specialized ability such as tool-using or web500

navigation. Beyond imitation, self-improvement501

emerges as a promising solution to enhance perfor-502

mance without extensive expert annotation (Huang503

et al., 2023). Most works finetune models on self-504

generated trajectories following the self-training505

paradigm (Wang et al., 2024b; Chen et al., 2024b;506

Song et al., 2024; Xiong et al., 2024). Lately, in-507

creasing attention has been devoted to test-time508

self-improvement via scaling computation, e.g.,509

generating multiple candidates and selecting the510

optimal one using techniques like reward models511

(Wang et al., 2024a; Zhai et al., 2024; Lin et al.,512

2025). We provide a comparison between their513

approach and our method in Section 6.2.514

While effective for tasks seen during training, the515

above methods inherently compromise the agent’s516

generalization capabilities for unseen tasks. To517

enhance agent generalizability, existing works inte-518

grate more diverse agent tasks for multi-task train-519

ing either by human-crafted (Zeng et al., 2023;520

Chen et al., 2024a; Xi et al., 2024; Zhang et al.,521

2024b) or by LLM-sythesized (Hu et al., 2024; Fu522

et al., 2025). Although they alleviate overfitting to523

some extent, it can be observed in Table 1 that their524

performance on respective held-out tasks is either525

similar or inferior to that of the original backbone526

model. We are the first to propose a generalizable527

reward model and enhance the agent generalizabil-528

ity from the aspect of test-time search. Also, our529

method is orthogonal to theirs and can be applied530

to enhance their performance seamlessly, as shown531

in Section 5.4. 532

6.2 Reward Modeling for LLM 533

Recent advancements in reward modeling for 534

LLMs mainly focus on general reasoning tasks 535

such as maths and code (Uesato et al., 2022; Light- 536

man et al., 2023; Wang et al., 2023; Zhang et al., 537

2024a). Different from those tasks, agent tasks 538

typically possess a larger search space due to long- 539

chain reasoning and environment dynamics. Data 540

scarcity is also a challenge pronounced in agent 541

tasks (Ma et al., 2024), making it impractical to 542

develop task-specific reward models. Existing 543

works (Wang et al., 2024a; Zhai et al., 2024; Putta 544

et al., 2024; Lin et al., 2025) focus on training task- 545

specific process reward models by Monte Carlo 546

Tree Search based methods. We are the first to in- 547

vestigate the feasibility of a generalizable reward 548

model, promoting the usage of reward models in 549

agent tasks. Besides, we investigate 2 additional re- 550

ward modelings and validate them on 6 additional 551

complex agent tasks with larger search space. 552

7 Conclusion 553

we introduce AgentRM, a generalizable reward 554

model, to enhance both the specializability and gen- 555

eralizability of language agents via test-time search. 556

We comprehensively investigate three reward mod- 557

elings with two inference methods, i.e. Best-of-N 558

sampling and beam search. Among them, explicit 559

reward modeling achieves consistently the best per- 560

formance on all tasks. Guiding the base policy 561

model with AgentRM surpasses top general agents 562

on six held-out tasks. As for the performance on 563

specific tasks, AgentRM can also boost a finetuned 564

policy model and outperform specialized agents 565

on three held-in tasks. Further analysis shows 566

our general reward model trained on states sam- 567

pled by LLaMA-3-8B can be directly transferred 568

to stronger policy models. This work sheds lights 569

on test-time scaling for agent systems. 570

Limitations 571

We conclude the limitations of this work as follows: 572

8



• Due to the significant efforts required to im-573

plement additional agent interactive environ-574

ments, we only include three agent tasks as575

held-in tasks. According to the scaling trend576

of training data in Section 5.2, incorporating577

more tasks could further enhance the perfor-578

mance.579

• Due to the resource constraints, we set the580

maximum iteration and number of simulations581

in MCTS as 40 and 1. Increasing these pa-582

rameters could lead to more precise process583

reward estimations which we leave for further584

work.585

• We do not explore the potential of equipping586

our policy model with prompt engineering587

designed for agent such as Reflexion (Shinn588

et al., 2024).589

Acknowledgments590

References591

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama592
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,593
Diogo Almeida, Janko Altenschmidt, Sam Altman,594
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.595
arXiv preprint arXiv:2303.08774.596

Emre Can Acikgoz, Jeremiah Greer, Akul Datta,597
Ze Yang, William Zeng, Oussama Elachqar, Em-598
manouil Koukoumidis, Dilek Hakkani-Tür, and599
Gokhan Tur. 2025. Can a single model master both600
multi-turn conversations and tool use? calm: A uni-601
fied conversational agentic language model. Preprint,602
arXiv:2502.08820.603

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,604
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:605
Toward language agent fine-tuning. arXiv preprint606
arXiv:2310.05915.607

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei608
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and609
Feng Zhao. 2024a. Agent-flan: Designing data and610
methods of effective agent tuning for large language611
models. arXiv preprint arXiv:2403.12881.612

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,613
and Quanquan Gu. 2024b. Self-play fine-tuning con-614
verts weak language models to strong language mod-615
els. arXiv preprint arXiv:2401.01335.616

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,617
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias618
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro619
Nakano, Christopher Hesse, and John Schulman.620
2021. Training verifiers to solve math word prob-621
lems. arXiv preprint arXiv:2110.14168.622

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, 623
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, 624
Qixin Xu, Weize Chen, et al. 2025. Process rein- 625
forcement through implicit rewards. arXiv preprint 626
arXiv:2502.01456. 627

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam 628
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024a. 629
Mind2web: Towards a generalist agent for the web. 630
Advances in Neural Information Processing Systems, 631
36. 632

Zhirui Deng, Zhicheng Dou, Yutao Zhu, Ji-Rong Wen, 633
Ruibin Xiong, Mang Wang, and Weipeng Chen. 634
2024b. From novice to expert: Llm agent policy 635
optimization via step-wise reinforcement learning. 636
arXiv preprint arXiv:2411.03817. 637

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, 638
Zhuoma Gongque, Weihao Zeng, Wei Wang, Jin- 639
gang Wang, Xunliang Cai, and Weiran Xu. 2025. 640
Agentrefine: Enhancing agent generalization through 641
refinement tuning. Preprint, arXiv:2501.01702. 642

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 643
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 644
cob Steinhardt. 2021. Measuring mathematical prob- 645
lem solving with the math dataset. arXiv preprint 646
arXiv:2103.03874. 647

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian- 648
guang Lou, Qingwei Lin, Ping Luo, Saravan Rajmo- 649
han, and Dongmei Zhang. 2024. Agentgen: Enhanc- 650
ing planning abilities for large language model based 651
agent via environment and task generation. arXiv 652
preprint arXiv:2408.00764. 653

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi 654
Wang, Hongkun Yu, and Jiawei Han. 2023. Large 655
language models can self-improve. In Proceedings 656
of the 2023 Conference on Empirical Methods in Nat- 657
ural Language Processing, pages 1051–1068, Singa- 658
pore. Association for Computational Linguistics. 659

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 660
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 661
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 662
memory management for large language model serv- 663
ing with pagedattention. In Proceedings of the 29th 664
Symposium on Operating Systems Principles, pages 665
611–626. 666

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 667
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 668
James Keeling, Felix Gimeno, Agustin Dal Lago, 669
et al. 2022. Competition-level code generation with 670
alphacode. Science, 378(6624):1092–1097. 671

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 672
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 673
John Schulman, Ilya Sutskever, and Karl Cobbe. 674
2023. Let’s verify step by step. arXiv preprint 675
arXiv:2305.20050. 676

Zongyu Lin, Yao Tang, Xingcheng Yao, Da Yin, Ziniu 677
Hu, Yizhou Sun, and Kai-Wei Chang. 2025. Qlass: 678

9

https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2502.08820
https://arxiv.org/abs/2501.01702
https://arxiv.org/abs/2501.01702
https://arxiv.org/abs/2501.01702
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584


Boosting language agent inference via q-guided step-679
wise search. Preprint, arXiv:2502.02584.680

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,681
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng682
Kong, and Junxian He. 2024. Agentboard: An analyt-683
ical evaluation board of multi-turn llm agents. arXiv684
preprint arXiv:2401.13178.685

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-686
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,687
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,688
Asli Celikyilmaz, et al. 2023. Augmented language689
models: a survey. arXiv preprint arXiv:2302.07842.690

Pranav Putta, Edmund Mills, Naman Garg, Sumeet691
Motwani, Chelsea Finn, Divyansh Garg, and Rafael692
Rafailov. 2024. Agent q: Advanced reasoning and693
learning for autonomous ai agents. arXiv preprint694
arXiv:2408.07199.695

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan696
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,697
Bill Qian, et al. 2023. Toolllm: Facilitating large698
language models to master 16000+ real-world apis.699
arXiv preprint arXiv:2307.16789.700

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano701
Ermon, Christopher D. Manning, and Chelsea Finn.702
2024. Direct preference optimization: Your lan-703
guage model is secretly a reward model. Preprint,704
arXiv:2305.18290.705

Noah Shinn, Federico Cassano, Ashwin Gopinath,706
Karthik Narasimhan, and Shunyu Yao. 2024. Re-707
flexion: Language agents with verbal reinforcement708
learning. Advances in Neural Information Process-709
ing Systems, 36.710

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian711
Li, and Bill Yuchen Lin. 2024. Trial and error:712
Exploration-based trajectory optimization for llm713
agents. arXiv preprint arXiv:2403.02502.714

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,715
and Thomas L Griffiths. 2023. Cognitive ar-716
chitectures for language agents. arXiv preprint717
arXiv:2309.02427.718

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-719
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,720
Geoffrey Irving, and Irina Higgins. 2022. Solv-721
ing math word problems with process-and outcome-722
based feedback. arXiv preprint arXiv:2211.14275.723

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng,724
Jujie He, Shuicheng Yan, and Bo An. 2024a. Q*:725
Improving multi-step reasoning for llms with deliber-726
ative planning. arXiv preprint arXiv:2406.14283.727

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,728
Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 2023.729
Math-shepherd: A label-free step-by-step verifier730
for llms in mathematical reasoning. arXiv preprint731
arXiv:2312.08935.732

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang, 733
and Timothy Baldwin. 2024b. Learning from fail- 734
ure: Integrating negative examples when fine-tuning 735
large language models as agents. arXiv preprint 736
arXiv:2402.11651. 737

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang 738
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang, 739
Chenyang Liao, Xin Guo, Wei He, et al. 2024. 740
Agentgym: Evolving large language model-based 741
agents across diverse environments. arXiv preprint 742
arXiv:2406.04151. 743

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, 744
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su- 745
jian Li. 2024. Watch every step! llm agent learning 746
via iterative step-level process refinement. arXiv 747
preprint arXiv:2406.11176. 748

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 749
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 750
React: Synergizing reasoning and acting in language 751
models. arXiv preprint arXiv:2210.03629. 752

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy- 753
athi Chandu, Kai-Wei Chang, Yejin Choi, and 754
Bill Yuchen Lin. 2024. Agent lumos: Unified and 755
modular training for open-source language agents. 756
In Proceedings of the 62nd Annual Meeting of the 757
Association for Computational Linguistics (Volume 758
1: Long Papers), pages 12380–12403. 759

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning 760
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu, 761
and Hao Peng. 2024. Free process rewards without 762
process labels. Preprint, arXiv:2412.01981. 763

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, 764
Zhengyin Du, and Jiecao Chen. 2025. Agent-r: Train- 765
ing language model agents to reflect via iterative self- 766
training. arXiv preprint arXiv:2501.11425. 767

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao 768
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning: 769
Enabling generalized agent abilities for llms. arXiv 770
preprint arXiv:2310.12823. 771

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Feng Dawei, 772
Cheng Yang, Bo Ding, and Huaimin Wang. 2024. 773
Enhancing decision-making for llm agents via step- 774
level q-value models. Preprint, arXiv:2409.09345. 775

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 776
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm 777
self-training via process reward guided tree search. 778
arXiv preprint arXiv:2406.03816. 779

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, 780
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang, 781
Yihao Feng, Zuxin Liu, et al. 2024b. Agentohana: 782
Design unified data and training pipeline for effective 783
agent learning. arXiv preprint arXiv:2402.15506. 784

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 785
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 786
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 787

10

https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2502.02584
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2409.09345
https://arxiv.org/abs/2409.09345
https://arxiv.org/abs/2409.09345


Judging llm-as-a-judge with mt-bench and chatbot788
arena. Advances in Neural Information Processing789
Systems, 36:46595–46623.790

A Perturbation Details791

We modify the available actions in Alfworld to792

ensure that the changes consist of different tokens793

(or token order) while conveying the same semantic794

information. We revise the environment and the795

examples in the prompt accordingly.796

• Perturbation 1: change clean {obj} with797

{recep}, cool {obj} with {recep}, heat798

{obj} with {recep} to clean {obj} using799

{recep}, cool {obj} using {recep}, heat800

{obj} using {recep} in the instruction801

• Perturbation 2: change go to {recep} to move802

to {recep} in the instruction803

• Perturbation 3: change take {obj} from804

{recep} to from {recep} take {obj} in the805

instruction806

• Perturbation 4: delete all space between item807

name and item number in the instruction808

• Perturbation 5: remove all alfworld data in the809

training set and retrain the model810

B Implementation Details811

Hyperparameters are listed in Table 7. The SFT812

data is obtained by randomly selecting 1/4 expert813

trajectories from the training set. The remaining814

3/4 of the data is reserved for constructing RM815

training data. In the explicit reward data construc-816

tion stage, we set the iteration number ω as 40, the817

exploration constant c in UCB as 0.5, the filter-818

ing threshold λ as 3, the number of the rollout in819

simulation n as 1, the rollout policy as greedy, the820

expansion width k as 5. We leverage the AdamW821

optimizer. All experiments are carried out on 8822

NVIDIA A100 80G GPUs. We use vLLM (Kwon823

et al., 2023) to implement both the policy model824

and reward model during inference.825

C Baselines826

C.0.1 General Agents827

Agent-FLAN (Chen et al., 2024a) is an im-828

provement of AgentTunning focusing on training829

"thought" in ReAct. AgentGym (Xi et al., 2024)830

uses various environments to ensure generalization831

and conducts both SFT and DPO. AgentGen (Hu832

Stage SFT Explicit RM
Training

Implicit RM
Training

Learning Rate 2e-5 1e-5 5e-7

Cosine Scheduler
Warm Up 0.1 0.03 5e-7

Batch Size 64 96 64
Weight Decay 0.0 0.0 0.0

Epoch 3 2 1
β - - 0.05

Table 7: Training hyper-parameters of different stages.

et al., 2024) uses LIMA to synthesize diversified 833

agent-tuning data. AgentRefine (Fu et al., 2025) 834

propose an agent synthesis framework to encom- 835

pass diverse environments and construct a dataset 836

by prompting a strong LLM to refine its error ac- 837

tion according to the environment feedback. For a 838

fair comparison, all general agents receive the task 839

instruction and one successful trajectory as input 840

and respond in ReAct-style. For a fair compari- 841

son, we reproduce Agent-FLAN, AgentGym and 842

AgentGen based on LLaMA-3-8B-Instruct. Since 843

AgentRefine has not open sourced, we only report 844

the results on five tasks in (Fu et al., 2025) with 845

LLaMA-3-8B-Instruct backbone. 846

C.0.2 Task-specific Agents 847

SPIN (Chen et al., 2024b) augments the expert 848

trajectory dataset with the agent’s successful tra- 849

jectories. NAT (Wang et al., 2024b) and ETO 850

(Song et al., 2024) incorporate failed trajectories 851

into the training process, allowing the agent to learn 852

from its failure experiences. StepAgent (Deng 853

et al., 2024b) utilizes step-wise reward to opti- 854

mize the agent’s reinforcement learning process. 855

QLASS (Lin et al., 2025) guides stepwise search 856

with trained task-specific Q-value models. Agent- 857

R (Yuan et al., 2025) leverages MCTS to construct 858

training samples that recover correct trajectories 859

from erroneous ones. Results of SPIN, NAT, ETO, 860

StepAgent are taken from (Deng et al., 2024b) with 861

LLaMA-3-8B-Instruct backbone. Since QLASS 862

has not open sourced, we report the results in (Lin 863

et al., 2025) with LLaMA-2-chat backbone. 864

D Task Statistics 865

Table 8 presents the statistics of both held-in 866

and held-out tasks. We adopt agent tasks from 867

AgentBoard (Ma et al., 2024) and AgentGym (Xi 868

et al., 2024) as held-out tasks: Alfworld, Sciworld, 869

Babyai for embodied house holding, Jericho and 870

11



Pddl and Maze for text game, ToolQuery and871

ToolOperation for tool using. Results of Sec-872

tion 4.3.1/Section 4.3.2 are conducted on Alfworld873

and Sciworld implemented by AgentBoard (Ma874

et al., 2024)/ETO (Song et al., 2024) respectively to875

align with previous works. They have slight differ-876

ences in action space and test set number. Only Alf-877

world and Sciworld from ETO (Song et al., 2024)878

provide training data, hence we collect RM training879

data from the ETO environment.880

D.1 LLM-as-a-judge prompt881

We list the prompt of the LLM-as-a-judge method882

as follows:883
884

1 You are trajectory reward model , an885
expert in defining which trajectory886
is better and closer to solving the887
task. Here is the task description:888

2 *******************************889
3 task description: {task_description}890
4 task goal: {task_goal}891
5 *******************************892
6 Here are several candidates. They are893

all trying to solve the task. Their894
trajectories are as follows.895

7 *******************************896
8 CANDIDATE1:897
9 {candidate_1}898

10 *******************************899
11 CANDIDATE2:900
12 {candidate_2}901
13 *******************************902
14 CANIDATE3:903
15 {candidate_3}904
16 *******************************905
17 CANIDATE4:906
18 {candidate_4}907
19 *******************************908
20 CANIDATE5:909
21 {candidate_5}910
22 *******************************911912

We force the LLM to call the following function to913

give the answer:914
915

1 [{916
2 "type": "function",917
3 "function": {918
4 "name": "choose_preferred_answer",919
5 "description": "Choose␣the␣preferred␣920

answer␣for␣the␣task␣within␣all␣given921
␣answers.",922

6 "parameters": {923
7 "type": "object",924
8 "properties": {925
9 "preference": {926

10 "type": "number",927
11 "enum": [1, 2, 3, 4, 5],928
12 "description": "The␣index␣of␣the␣929

preferred␣answer␣in␣all␣given␣930
answers␣(ranging␣from␣1␣to␣5)."931

13 },932
14 },933
15 }934
16 }935

17 }] 936937

D.2 Preference Accuracy of RM 938

We evaluate the quality of our RM estimated step 939

reward by assessing its ability to determine prefer- 940

ences between state pairs. AgentBoard (Ma et al., 941

2024) offers a method to compute the progress rate 942

for each state by annotating subgoals for every task. 943

We create state pairs with a progress rate difference 944

exceeding a threshold of 0.3. Then, we calculate 945

the accuracy of our RM in predicting preferences 946

(Table 9). Despite predicting reward for each state 947

independently, Explicit RM still demonstrates bet- 948

ter preference judgment accuracy on most tasks 949

compared to LLM-as-a-judge which sees pairwise 950

states during inference. 951

12



task Webshop Alfworld Sciworld Babyai Jericho PDDL Maze Toolquery Tooloperation

# Train 10426 3321 1483 - - - - - -
# SFT 1938 830 370 - - - - - -

# RM Training 8488 2491 1113 - - - - - -
# Test 200 134(ETO)/134(AgentBoard) 211(ETO)/90(AgentBoard) 112 20 60 25 60 40

Reward Type scalar binary scalar scalar scalar scalar binary scalar scalar
Avg. Turn 3 6 15 10 20 20 4.3 5 6
Max. Turn 10 20/30 [15, 120]/30 30 30 30 30 30 30

Action Space 2 10/13 19/21 8 150 8 4 15 16

Table 8: Statistics of held-in and held-out tasks.

Method Babyai Jericho Pddl Maze Toolquery Tooloperation

LLM-as-a-judge 65.7 46.0 70.7 65.8 81.4 42.1
Explicit RM 77.0 64.9 65.4 94.7 72.9 57.9

Table 9: The accuracy of judging relative step reward.

13


	Introduction
	Task Formulation
	Methodology
	Behavior Cloning
	Reward Modeling
	Explicit Reward Modeling
	Implicit Reward Modeling
	LLM-as-a-judge

	Reward-Guided Search

	Experiments
	Baselines
	Experimental Settings
	Results
	Comparison with General Agents
	Comparison with Task-specific Agents


	Analysis
	Robustness against Perturbation
	Scaling Trend of Generalization
	Generalization of Task-specific RM
	Generalization to Other Policy Model
	State Representation of Reward Modeling
	Scaling Trend of Best-of-N
	Generalization to General Reasoning Task

	Related Work
	LLM-based Agent
	Reward Modeling for LLM

	Conclusion
	Perturbation Details
	Implementation Details
	Baselines
	General Agents
	Task-specific Agents


	Task Statistics
	LLM-as-a-judge prompt
	Preference Accuracy of RM


