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ABSTRACT

Dense associative memories (DAMs) store and retrieve patterns via energy-
functional fixed points, but existing models are limited to vector representations.
We extend DAMs to probability distributions equipped with the 2-Wasserstein
distance, focusing mainly on the Bures—Wasserstein class of Gaussian densities.
Our framework defines a log-sum-exp energy over stored distributions and a re-
trieval dynamics aggregating optimal transport maps in a Gibbs-weighted manner.
Stationary points correspond to self-consistent Wasserstein barycenters, general-
izing classical DAM fixed points. We prove exponential storage capacity, provide
quantitative retrieval guarantees under Wasserstein perturbations, and validate the
model on synthetic and real-world distributional tasks. This work elevates asso-
ciative memory from vectors to full distributions, bridging classical DAMs with
modern generative modeling and enabling distributional storage and retrieval in
memory-augmented learning.

1 INTRODUCTION

Associative memories are a foundational paradigm for robust storage and retrieval of structured
information. Classical models, such as the Hopfield network (Hopfield, |1982a)) and its modern
high-capacity extensions (Krotov & Hopfield, |2016; Ramsauer et al.,[2020), demonstrate that high-
dimensional patterns can be stored in distributed representations and retrieved accurately under par-
tial or corrupted queries. These models formalize the principle that memory retrieval can be framed
as a dynamical system evolving toward energy minima corresponding to stored patterns.

While most prior work on associative memory has focused on vector-valued data, many modern
applications involve probability distributions as the fundamental objects. In representation learning,
embeddings are increasingly modeled as distributions to capture uncertainty and multi-modality,
requiring retrieval and manipulation at the distributional level rather than through point estimates.
Gaussian embeddings in particular provide a versatile framework, beginning with Vilnis & Mc-
Callum| (2014)), who modeled words as multivariate Gaussians to encode semantic uncertainty and
asymmetry. This paradigm has since been extended to networks and graphs via Graph2Gauss (Bo-
jchevski & Gilinnemann, 2018)), to documents in both unsupervised settings (Banerjee et al., 2017)
and linked-document frameworks like GELD (He et al.l [2020), and to richer semantic represen-
tations such as Wasserstein Gaussian embeddings (Athiwaratkun et al.l |2018)), Gaussian mixture
embeddings (Athiwaratkun et al., [2018), and conceptualized Gaussian embeddings (Wang et al.,
2021). Recent advances also include Gaussian graph neural networks for large ontologies (Wang
et al., [2025) and sentence embeddings as Gaussian distributions (Yoda et al., [2024)). Across these
domains, Gaussian representations unify uncertainty, hierarchical structure, and distributional simi-
larity, underscoring their versatility for modern machine learning.

More generally, in uncertainty-aware generative modeling, where probabilistic generative models
such as variational autoencoders (Kingma & Welling) 2013)), normalizing flows (Rezende & Mo-
hamed, |2015J), and diffusion models (Sohl-Dickstein et al., 2015 Ho et al., 2020} learn distributions
over complex modalities including images, text, and 3D point-clouds. Similarly, in Bayesian infer-
ence, posterior beliefs about latent variables are encoded as probability densities (often Gaussian
or Gaussian mixtures) where updating or recalling these beliefs corresponds to operations directly
on distributions (Bernardo & Smith, 2009; [Khan & Ruel [2023)). In these contexts, it is natural to
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treat entire distributions, rather than individual samples, as primary computational units. These
considerations motivate the following question:

Can associative memories be generalized to store and retrieve probability
distributions, rather than deterministic vectors?

We address this question in the setting of Gaussian distributions. Let N (u;,%;), 4 = 1,..., N,
be the target distributions. Endowed with the Bures—Wasserstein geometry (Asukal [2011}; Lambert;
et al., 2022; |Diao et al.l [2023), Gaussians inherit a Riemannian structure from the Wasserstein-2
distance that captures both mean and covariance, providing a natural notion of similarity. Our goal
is to design a dense associative memory (DAM) that robustly stores {N(y;, ¥;)}, and retrieves
the correct distribution from noisy or partial queries, thus extending classical DAMs from R¢ to
the non-Euclidean space of probability measures while retaining high capacity and robust retrieval.
Towards that, we make the following contributions in this work:

. Wasserstein LSE energy functional. We propose a novel energy formulation defined directly on
the (Bures)-Wasserstein space, generalizing classical DAM energies to probability densities (see
Section [2)).

. Exponential storage capacity. We prove that our model achieves storage capacity exponential in the
dimensionality of the ambient space, extending classical vectorial results to the Gaussian distribution
setting (see Theorem|I).

. Retrieval guarantees. We establish bounds on the fidelity of retrieval under noisy query distri-
butions, providing explicit dependence on the Wasserstein distance between stored and perturbed
densities (see Section[3.2)).

. Empirical validation. Through experiments on synthetic Gaussian datasets and real-data experi-
ments on probabilistic word embeddings, we demonstrate that the proposed model achieves accurate
retrieval and exhibits robustness predicted by our theoretical analysis. (see Section [

By extending dense associative memories from vectors to probability densities, our work lays a
foundation for distributional memory architectures in generative Al. Such memories can store, re-
call, and manipulate probabilistic objects, enabling memory-augmented probabilistic reasoning and
uncertainty-aware generative computation.

Notation and definitions. For a positive integer N, let [N] := {1,2,..., N}. We write || - || for
the Euclidean norm and (-, -) > for the L? inner product between probability measures. Throughout,
we work in the space P, (R?) of probability measures with finite second moment, equipped with the
2-Wasserstein distance Wa (i1, v) = infyer(uu) Jayga |2 — ylI? dy(x,y), where I'(u, v) is the
set of couplings with marginals z, v. For a functional F : Py(R?) — R, its first variation at y is
0, F (1) (z), defined via d%]-'(qus(u’ — 1)) |€:O = [6,F(p)(z) (1 — p)(x) dz. The Wasserstein
gradient is VyyJF(u)(x) := V40, F (z, 1), and the associated (negative) gradient flow is the conti-
nuity equation Oy puy + V- (uevy) =0, v(x) = =V F(uy)(x), often written 1y, = —V iy F ().
For a measurable 7' : X — Y and p on X, the push-forward is Tuu(B) = p(T—(B)) for
measurable B C Y.

The squared Wasserstein distance betwen two Gaussians is given by the Bures metric
W3 (o1, 1) N (2, 9)) = [ — pa* + T(S) + T — 2(1/75,3,/%)!/?). The Bures-
Wasserstein gradient at A/ (11, 33) becomes the projection of the Wasserstein gradient to the tangent
space at N'(u,>) (Lambert et al 2022] page 22) and it further reduces to finite-dimensional gra-
dients: VyyF(m, %) = (V,,F(m, ), VsF(m,X)). Moreover, if X ~ N(mo, o) and Y ~
N(mq, %) with X9, % € Sjl_+, the unique optimal transport map 7' : R — R? pushing X to Y’
under quadratic cost is affine: T'(x) = my + A(x —myg), where A = 251/2(2(1]/2212(1)/2)1/2251/2.
See /Ambrosio et al.| (2005); |Asukal (2011)); [Lambert et al. (2022)) for additional details.

2 ENERGY FUNCTIONALS IN THE WASSERSTEIN SPACE

The key design choice in associative memories lies in specifying the energy function that drives
retrieval dynamics. Classical Hopfield networks use a quadratic energy, yielding only O(d) storage
capacity in dimension d. By contrast, the log-sum-exp (LSE) energy of |Krotov & Hopfield| (2016)
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Figure 1: Energy landscape E(&) (Equation for query one-dimensional Gaussians & = N (p1, 0°?)
evaluated on a 200 x 200 grid with g uniformly spaced in [—4, 4] and ¢ uniformly spaced in [0.01, 2].
Red dots indicate N = 5 one-dimensional Gaussian measures X; sampled uniformly at random
with means in the interval [—3, 3] and standard deviations in [0.2, 1.0]. The temperature parameter
[ varies from 0.1 to 1000 across subfigures.

introduces a sharper nonlinearity and dramatically improves efficiency. For a query ¢ € R? and
stored patterns {X,;}N |, the energy is E(€) = —B ' log(3 N, exp(—B]|X; — £]|?)), with tem-
perature parameter 5 > 0. As 3 — oo, this approaches the negative maximum similarity, yielding
a smooth approximation to hard maximum retrieval. The induced energy landscape produces well-
separated attractor basins, supports exponential storage capacity, and admits a probabilistic view
where retrieval corresponds to Gibbs-type aggregation with weights exponentially concentrated on
the nearest stored pattern.

Extending associative memory to probability distributions requires replacing Euclidean distance
with a suitable similarity measure. We work in the Wasserstein space (Pa(R%), W5) and define the
Log-Sum-Exp (LSE) energy for stored patterns X1, ..., Xy € Po(R?) and query ¢ € P2(R9) as

B(§) =~ Flog (Y exp(~ BW(X,,))). (M

As f — o0, this reduces to the negative minimum Wasserstein distance, implementing a soft-min
retrieval rule with a clear probabilistic interpretation: stored distributions are weighted by their
Wasserstein proximity to the query. Importantly, this extension preserves the exponential storage
capacity of the vector case while operating in a non-Euclidean probability space, making the LSE
energy a natural choice for distributional associative memory. Figure [I] shows the log-sum-exp
energy equation |1 for five one-dimensional Gaussian measures {X;}_,. As 3 increases from 0.1
to 1000, the landscape evolves from nearly flat with overlapping basins to sharp, well-separated
minima. For small 3, discrimination between {X;}>_, is weak, while large 3 yields pronounced
attractors. Thus, E induces a multi-modal structure in the Bures—Wasserstein geometry, with each
X serving as an attractor, which is central to our definition of storage in SectionEl

The variational structure of our model is encoded through the Wasserstein gradient of the energy
functional E. By direct differentiation, one obtains

N
VwE(€) =2 Zwi(f) (T; — 1d), @)
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where 7T; denotes the optimal transport map from & to the stored distribution X;, and

() e PEAWEX) )

i(§) = —x .
21 exp(=BWE(X;,6))

The weights w; (&) define a Gibbs-type distribution that assigns higher influence to memories closer
to & in Wasserstein distance. Thus, the gradient aggregates transport directions from & to all stored
distributions, with distant contributions exponentially suppressed. The log-sum-exp weighting in-
troduces a smooth competitive mechanism, ensuring both robustness of recall and sensitivity to the
underlying geometry of the memory ensemble. This formulation directly extends the classical log-
sum-exp energy functions of dense associative memories from vectors to the Wasserstein space of
probability measures.

The retrieval mechanism corresponds to finding stationary points of the energy functional E in the
Wasserstein geometry. Setting Vyy E(£,) = 0 yields Zf\il w;(&)(T; — 1d) = 0 or equivalently
SN wi(£.)T; = Id. In other words, the stationary condition can be written as

N
=1 #

showing that &, is invariant under the weighted barycentric transport determined by the stored mem-
ories. Defining the operator ® : Py(RY) — P2(RY) by

N
o(¢) = <Z m(&)ﬂ-) £, 5)
i=1 #

retrieval is characterized by the fixed points of ®. In this way, memory recall is expressed as the
self-consistency condition ® (£, ) = &, which generalizes fixed-point equations from classical asso-

ciative memories to Wasserstein spaces.

Figure 2illustrates the ® operator in equation[5] Panel (a) and (b) shows W>(&, ®()) as a heatmap:
dark regions near the means of the five Gaussians mark fixed-point neighborhoods, while bright
regions indicate strong transformations. Panels (c) and (d) depict the weight functions w;(§), with
bright regions where a Gaussian X; dominates (w;(§) = 1) and dark regions where other patterns are
closer (w;(§) = 0). Equationhas a clear geometric meaning: stationary distributions are precisely
those invariant under the weighted barycentric transport field of the stored memories. The fixed
point &, is a Wasserstein barycenter with self-consistent weights w; (£, ), ensuring retrieval identifies
a distribution that balances the geometric pull of all memories. This implicit barycentric structure
directly connects to generative modeling: as in energy-based models, convergence proceeds by
descending an energy landscape, but here in Wasserstein space, where attractors are full probability
laws satisfying barycentric invariance. Retrieval thus becomes a generative mechanism synthesizing
distributions consistent with the stored ensemble, elevating associative memory from pointwise to
distributional recall and aligning it with modern generative Al

3 DAM IN BURES-WASSERSTEIN SPACE: STORAGE AND RETRIEVAL

We now specialize our framework to Gaussian distributions, a natural and tractable family for dis-
tributional associative memories. Gaussians admit a closed-form expression for the 2-Wasserstein
distance (Lemma [I), affine optimal transport maps, and broad applicability in machine learning
(Section[I). A key challenge is controlling mean and covariance errors (Lemma 3)); to obtain sharp
convergence guarantees, we restrict to the case where covariance matrices commute pairwise, en-
suring a common eigenbasis and simplifying transport geometry. We further assume eigenvalues lie
in [Amin, Amax], enabling precise quantification of separation between patterns.

3.1 STORAGE CAPACITY

First, we prove that exponentially many Gaussian measures can be stored, with high probability,
when they are sampled from a Wasserstein sphere Si of radius R. Let .S be the set of Gaussian
measures in R? whose covariance matrices commute pairwise. The sphere Sy, is defined as:

Sk = {N(,X) €S : Wa(do, N(11,%)) = R, Amin < (N)_, = Eigenvalues(X) < Amax, Vil,
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Figure 2: Visualization of the ® operator and weight functions for two values of the temperature
parameter 3. (a,b) Heatmaps show W5 (&, ®(£)) computed on a 20 x 20 grid and interpolated for
smooth visualization. Blue arrows indicate mean displacement vectors from £ to ® (&), displayed at
every second grid point. Contour lines represent level curves of constant W5 (&, ®(€)). Red ellipses
show 20 contours of stored patterns X, ..., X5 with means at (0,0), (£2,+2) and anisotropic
covariances. (c,d) Weight functions w;(£) showing the influence of each stored pattern across the
space, evaluated on the same 20 x 20 grid. Query distributions have fixed covariance 0.51. Param-
eters: N = 5, with § = 0.1 (diffused retrieval) and 3 = 1 (sharp retrieval).

where 0 < Apin < Amax < 00. We provide a practical method to perform random sampling of
Gaussian measures from Sg, in Algorithm [3] which is introduced in the proof of Theorem T}

Definition 1 (Storage of a Gaussian measure). Assume that around every pattern X;, a Wasserstein
ball B; is given. The pattern X is stored if there exists a unique fixed point X to which all £ € B,
converge and B; N B; = 0 for all i # j.

Assumption 1 (Separation condition and beta constraint). Let X; = N(u;,3;), for i € [N], be
d-dimensional Gaussian measures and suppose the eigenvalues of ¥; lie in the bounded interval
[Amin, Amax). Define My, := max;eniWa(do, X;) where &g is the delta measure at the origin.
Suppose 3 is the temperature parameter from the definition of the energy functional in equation|]

1. Assume the  separation between  Gaussian —measures {X;}N,  satisfies
minz;(—10g(Xi, Xj)12) > § 108(4m Amax) + g 10g(N? B(4M, +2d(Amax+Amin)))-

€
AMZ,+2d(Amax+Amin) ) N3

2. Assume (3 satisfies the constraint 3 > (

Theorem 1. Let 0 < p < landlet 0 < Apin < Amax < 00. Define v := Amax/Amin, @ :=
1—2log(y), R := v/d(Amax + Amin). Assume «y < +/e. Then, there exists dy € N such that for all
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Algorithm 1 One step of DAM update ($ operator)

Require: Current state £ = N (m, Q), stored patterns {X;}¥ |, temperature parameter 3
Ensure: Updated state &' = ®(&) = N'(m/, Q')

1: Step 1: Compute Wasserstein distances to all stored patterns
2: fori =1to N do
3 Di < |l —m|? +tr(S + Q — 22 2axl/?)1/2)
4: end for
5: Step 2: Compute softmax weights
6. for; = 1t0CZ)\(7p(doﬁD)
W >, exp(—BD;)
8: end for
9: Step 3: Compute transport map coefficients
10: for: =1to [NV do
1 A« s3] Pan)/?)-enl/?
12: end for
13: Step 4: Update means and covariances
14: m' + Zil Wi g
15: A« Zf\il ’LUZAl
16: Q' «— AQAT
17:
18: return & = N(m/, Q)
d > doy, we can randomly sample N = \/g exp %)J Gaussian measures from the Wasserstein

sphere Sg using Algorithm 3| and condition (1) in Assumption|l|is satisfied. Furthermore, if >
3a/Amin and d > dy then condition (2) in Assumption |l|is satisfied. Consequently, the energy
functional equationhas storage capacity at least Q)(N) with probability at least 1 — p.

Theorem || extends the exponential storage capacity results of [Ramsauer et al.| (2020)[Theorem 3]
from the Euclidean space to the far more intricate Bures—Wasserstein space of Gaussian measures.
While the order of the radius of the Wasserstein sphere R remains @(\/g), the underlying analysis is
considerably more delicate. In the Euclidean setting, separation can be quantified directly via inner
products of vectors, i.e., A; := x:xl — max#ixiT;L'j, and independence of the coordinates makes
concentration relatively straightforward. By contrast, in the Wasserstein setting we must characterize
separation through the L? inner product between Gaussian measures, which depends nonlinearly
on both means and covariance spectra. Establishing high-probability separation therefore requires
controlling random eigenvalues of covariance matrices, which are exchangeable but not independent,
and necessitates careful use of concentration inequalities in high dimensions. Moreover, unlike the
Euclidean case where exponential storage capacity was proved only for a fixed 8 (8 = 1), our
analysis establishes exponential capacity uniformly over a range of /3 values, further complicating
the proof. Finally, the technical constraint v < /e arises solely from bounding the joint distribution
of eigenvalues, and we conjecture it can be removed with sharper concentration tools. However, we
also emphasize that this conditions ensures that we dealing with actual high-dimensional Gaussian
(with concentrated spectrum) rather than spectrum with decaying properties which may implicitly be
lower-dimensional. Together, these challenges highlight that the extension to the Bures—Wasserstein
geometry is highly non-trivial, requiring using probabilistic techniques and leveraging the geometric
structure of the space more than in the Euclidean case.

3.2 RETRIEVAL GUARANTEES

We now focus on retrieval and introduce Algorithm [T] which can be used iteratively to retrieve the
stored Gaussian distribution given a query Gaussian distribution within a Wasserstein ball around
the stored Gaussian distribution.

Algorithm [I] operationalizes the Wasserstein dense associative memory update rule through a se-
quence of structured steps. First, it computes the pairwise Wasserstein distances between the query
measure and each stored Gaussian using the Bures—Wasserstein metric. These distances are then
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used to construct softmax weights that quantify the influence of each stored pattern. Next, the algo-
rithm determines the optimal transport maps for the covariance matrices, represented by the matrices
A;, which specify the linear transformation required to align each stored covariance with the query.
Finally, both the mean and covariance of the query measure are updated via a weighted combination
of these transport maps, effectively performing a single-step retrieval towards the attractor associated
with the most relevant stored pattern.

This procedure can be viewed as a natural generalization of the simple weighted averaging used
in the Euclidean dense associative memory case, extended to a transport-based aggregation that
respects the geometry of probability distributions. Concretely, the energy functional E in equation I]
induces the following Wasserstein gradient at a Gaussian measure p1 € Po(R?):

N N
VwE(§)(z) = 22%’(5) (Ti(z) —z) = QZwi(f) (,Ui + Ai(x —m) — x) ;

where A; = E}/Q(Ei/ZQZ;/Z)*I/QEim and the weights w; (&) are as in equation [3| which has
an explicit form due to closed form availability of the Wasserstein-2 metric between Gaussians.
Furthermore, as the Bures-Wasserstein gradient is the projection of the Wasserstein gradient to the
tangent space at p, we can simply set the Wasserstein gradient to zero. Rather than explicitly sim-
ulating the Wasserstein gradient flow % we = —VwE(u:), Algorithm |1| solves the implicit fixed-

point equation £™V = ®(¢) with ®(¢§) = (Zf\;l w; (€ )E) #f . This approach is motivated by

efficiency and stability: solving the implicit equation directly moves the query measure closer to a
stationary point of E in a single step, effectively “jumping” to the basin of attraction of the most
relevant stored pattern. By contrast, an explicit discretization of the Wasserstein gradient flow may
require many small steps and careful tuning of step sizes, while still potentially under-shooting or
oscillating around the fixed point.

Next, we prove the rate of convergence in 2-Wasserstein distance of a query measure in the basin of
attraction of a stored Gaussian measure to the fixed point in the same basin of attraction.

Theorem 2. Let {X; = (i, %)} Y., be Gaussian measures such that the eigenvalues of ; lie in a
bounded interval [Amin, Amax) and ;3 ; = X;5; foralli, j € [N]. Define Myy := max;Wa(X;, do)
where § is the delta measure at the origin. Suppose that the Assumptionholds. Letr = 1/+/BN,
B; = {v € P2(R?) : Wa(v, X; < 1)}, and suppose & = N (m, Q) be a query measure such that
Wa (X, &) < rand 3,0 = QX; for all i € [N)]. Then (1) There exists a unique fixed point X; € B;
and (2) For any fixed ¢ < r we have

log (%\/ BN )
log (144/]3VM3V )
Corollary 1. By Theorem |l| exponentially (in d) many Gaussian measures N can be stored on a
Wasserstein sphere with high probability. Hence, for any fixed € < r and large enough dimension d,

we can sample sufficiently large number of Gaussian measures N such that Wo(®(€), X)) < e. In
other words, Algorithmconverges to the fixed point X, starting from &, in one step.

Wo(®"(€),X]) <e forall n>

The next theorem obtains a quantitative bound on the one-step retrieval error.

Theorem 3. Let {X;} | be Gaussian measures sampled using AlgorithmE]and E=N(m,Q)bea
query measure such that Wo(X;,€) < r. Letr = 1/y/BN, B; = {v € Po(R?) : Wy(v, X; <)}
Under the assumptions of Lemma 3| and[5| we obtain Wo(®(¢), X;) < 3/v/BN.

Corollary 2. By Theorem |I| exponentially (in dimension d) many Gaussian measures N can be
stored on a Wasserstein sphere with high probability. Hence, the retrieval error in one step is
exponentially small in dimension d.

In the Euclidean setting, Ramsauer et al.|(2020)[Theorems A8, A9] show that both convergence rate
and retrieval error decay exponentially with the separation parameter A;. Our Theorems [2] and [3]
establish analogous results in the Wasserstein setting through a simplified analysis: when storing
N = Q(e?) Gaussian measures, both the convergence rate and retrieval error decay exponentially
in the dimension d. This demonstrates that the favorable scaling properties of dense associative
memories extend naturally to distributional representations.
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Figure 3: Convergence of retrieval dynamics (Algorithm (1)) for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter 8 and perturbation radius r. (a) 8 = 1,7 = 1/y/8N, (b) 8 = 1, = 100/v/BN,
(©)p =01,r =1/4/BN, ) s = 0.1, = 100/\/BN. Averages computed over 7500 per-
turbed measures from N = 10000 sampled Gaussians in dimension 50 with eigen-value bounds
Amin = 1, Amax = 1.1. The dotted red horizontal line indicates the convergence threshold at 2-
Wasserstein distance of 1076,

4 NUMERICAL EXPERIMENTS

4.1 SYNTHETIC DATA

Figure [3] (and Figure [6]in Appendix Section [7.2.2) illustrates the convergence of our retrieval dy-
namics under multiple iterations of Algorithm |1} showing the average 2-Wasserstein distance to the
original stored patterns. We sample N = 10000 Gaussian patterns on a Wasserstein sphere of radius
R = d(Amax + Amin) With d = 50, Apin = 1, Amax = 1.1, using a common eigen-basis and bounded
eigenvalues (sampled using Algorithm [2]in Section [7.21)). Retrieval starts from 0.75N randomly
perturbed patterns at 2-Wasserstein distance 7 from their originals.

The parameter [ critically affects retrieval: for 5 = 1, the dynamics converge to stored patterns, ex-
hibiting associative memory behavior, while for 8 = 0.1, convergence fails as the weighted barycen-
tric transport nearly equally averages all patterns. We test two perturbation radii: » = 1/4/N,
which aligns with the contraction guarantee from Lemma|[3} and a 100-fold larger radius. For 3 = 1,
retrieval succeeds even at the larger radius, suggesting the theoretical bound is conservative; for
B = 0.1, retrieval fails at both radii. Results with non-commuting covariances are in Section [7.2.3]

4.1.1 REAL-WORLD DATA

To evaluate our distributional associative memory on real-world data, we employ Gaussian word
embeddings learned from natural language text (Vilnis & McCallum, 2014), which represents
words as multivariate Gaussian distributions. We train embeddings on the Text8 corpus, a stan-
dard benchmark containing 17 million tokens of cleaned Wikipedia text. From this corpus, we
construct a vocabulary of N = 10000 most frequent words. The Gaussian embeddings are trained
in d = 50 dimensions using spherical covariances (i.e., the covariance matrix ¥ = oI for some
o), where each word is represented as N'(u,0?I) with p € R, ¢ € R,. Training in |Vilnis
& McCallum| (2014) employs a 5-epoch schedule using KL divergence as the energy function.
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Figure 5: Convergence of retrieval dynamics (Algorithm 1)) for perturbed Gaussian measures with
different temperature parameters. Average 2-Wasserstein distance to original measures over itera-
tions. Averages computed over 3750 perturbed measures from N = 10000 Gaussian measures in
dimension 50. The shaded regions represent +1 standard deviation. (a) 5 = 10: no convergence (b)
B = 50: convergence with less variance.

To test retrieval dynamics, we randomly se-
lect 5 words from N = 10000 words. For
each selected word with Gaussian representa- o
tion N (15, 021), we generate a perturbed query
by changing both mean and variance to achieve
a 2-Wasserstein distance of 1/4/BN from the
original, where (3 is the temperature parameter. 3
We then apply Algorithm [I] iteratively, track-
ing the 2-Wasserstein distance to the original
word’s embedding and the nearest word in the
vocabulary according to the 2-Wasserstein dis- b
tance.

100% 50% retrieval

60%

0%

Figure 4: Retrieval success rate vs 3 for Gaus-
. ‘ sian word embeddings. The plot shows the per-
the temperature parameter 3 in retrieval con-  ceniase of correctly retrieved words after 10 itera-
vergence for real-world Gaussian word embed- ¢ of Algorithm T} with initial perturbations as
dings. At 5 = 10 (Figure Eh)’ the dynamics 5 wyasgerstein distance of 1 /+v/BN from original
fail to converge, exhibiting high variance across embeddings. Parameters: N = 10000, d = 50,
word samples, whereas at 3 = 50 (Figure [5b), spherical covariances.

the system converges rapidly in a single step

with minimal variance. Figure[d]further reveals

a sharp phase transition in retrieval success: for § < 10, retrieval is almost entirely unsuccess-
ful, while around 3 = 15, the success rate rapidly increases from 0% to 100%, achieving perfect
retrieval for 8 > 30. This behavior confirms our theoretical prediction that sufficiently large 5 is
necessary to create sharp energy basins, satisfy the separation condition in Assumption|[T} and ensure
contractivity of the ® operator. We provide additional results in Section[7.2.4]

Figures [ and [3] illustrate the critical role of

5 CONCLUSION

In this work, we extended dense associative memories from Euclidean space to the Bures—
Wasserstein manifold of Gaussian measures. We proposed a Wasserstein-energy-based memory,
derived explicit retrieval maps, and established theoretical guarantees including high-probability re-
trieval bounds, and exponential storage capacity. Empirically, our Gaussian DAM achieves robust
retrieval under perturbations, demonstrating the utility of transport-based aggregation. Conceptually,
this framework enables principled reasoning over distributions rather than point estimates, bridging
classical associative memories with modern distributional representations. Future directions include
extending to broader distribution families (in particular point-cloud data represented as empirical
measures), developing particle-based retrieval algorithms, and exploring applications in generative
modeling and probabilistic reasoning.
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6 REPRODUCIBILITY STATEMENT

The Appendix contains all theoretical results, and the supplementary material provides code to re-
produce our experiments. LLM was used only to polish the writing.
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7 APPENDIX

7.1 RELATED WORK

The study of associative memory begins with Hopfield’s seminal model (Hopfield, [1982b) which
framed memory recall as gradient descent on a quadratic energy landscape . While conceptually
foundational, the quadratic Hopfield energy yields only linear storage capacity in the ambient di-
mension and suffers from spurious attractors at scale. Recent work revived and substantially ex-
tended this line of research by introducing highly nonlinear energy functions that dramatically in-
crease capacity. In particular (Krotov & Hopfield, 2016) proposed log-sum-exp style energies and
showed that dense associative memories (DAMs) can realize exponentially many stable patterns
relative to dimension. Subsequent developments formalized the exponential capacity rigorously
and established connections between modern attention/associative recall mechanisms and Hopfield-
style energy landscapes (see, for e.g.,|Demircigil et al.|(2017); Ramsauer et al.| (2020); |Lucibello &
Meézard|(2024)), showing both practical and theoretical equivalences between attention-like updates
and energy-based recall. We also refer the interested reader to recent works (Krotov & Hopfield,
2018} [Krotov, 2021} |[dos Santos et al.l [2024; [Hoover et al.l 2024b; [Hu et al.| [2023; [Hoover et al.,
20244a; [Wu et al., 2024; [Hoover et al.l 2025), including the survey by [Krotov et al.| (2025) for the
state-of-the-art on modern associative memories.

Optimal transport, Wasserstein geometry and barycenters. Optimal transport has emerged as a cen-
tral tool to compare and interpolate probability measures; the Wasserstein-2 metric in particular
induces a rich geometric structure that is especially well behaved on Gaussian families (the so-
called Bures—Wasserstein geometry). The mathematical theory of Wasserstein barycenters and their
computation was significantly advanced by Agueh and Carlier (Agueh & Carlier, |2011)), and effi-
cient numerical algorithms, including entropic regularization approaches, have been developed by
Cuturi and Doucet (Cuturi & Doucet, 2014) and others. The computational and theoretical foun-
dations of optimal transport are now well-summarized in recent treatments (Peyré & Cuturi, [2019).
Our work leverages these results: stationary points of our distributional log-sum-exp energy are self-
consistent barycenters in Wasserstein space, and we exploit closed-form formulas and fixed-point
iterations available for Gaussian barycenters to derive concrete retrieval dynamics and guarantees.

Very recently, the generative modeling community has increasingly focused on models and archi-
tectures that operate over probability distributions. Rectified Point Flow learns continuous velocity
fields for point-cloud registration and assembly (Sun et al., |2025)), Wasserstein Flow Matching gen-
eralizes flow matching to families of distributions via optimal transport geometry (Haviv et al.,
2025)), and Bonet et al.| (2025)) propose flowing measures for distributional generation tasks. These
approaches emphasize generative modeling or alignment, whereas our work develops a dense asso-
ciative memory over probability measures with rigorous capacity and retrieval guarantees, thereby
complementing flow-based paradigms. Our approach can be seen as an energy-based generative
mechanism in the space of probability measures: fixed points of our Wasserstein log-sum-exp energy
yield full probability laws that serve as generative attractors. This perspective unifies associative
memory and generative modeling, and suggests novel ways to incorporate memory into uncertainty-
aware generative pipelines.

7.2 ADDITIONAL EXPERIMENTAL RESULTS

7.2.1 SAMPLING EIGENVALUES

First, we present Algorithm 2] which is a minor modification of Algorithm[3|and makes sampling of
eigenvalues computationally faster.

7.2.2 ADDITIONAL NUMERICAL EXPERIMENTS WITH COMMUTING COVARIANCE

Figure [6] demonstrates the robustness of our retrieval dynamics across different problem scales.
While maintaining the same simulation protocol as Figure [3| and parameter settings (8 €
{1,0.1}, r € {1/+/BN,100/\/BN}), we test with N = 5000 Gaussian measures in dimension
d = 25, compared to N = 10000, d = 50 in Figure The consistent convergence behavior
across different scales validates that our theoretical results hold for varying dimensions and measure
counts.
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Algorithm 2 Sampling from commuting Gaussian measures on Wasserstein sphere

Require: R > 0 (sphere radius), N € N (number of samples), Apin, Amax > 0 (eigenvalue bounds
with Apnin < Amax), d € N (dimension)
Ensure: {Xi,..., Xy} where X; ~ N (u;,Y;) on Sg
1: Initialize: Fix an orthogonal matrix U € R?*9
2: Set target sum .S = R; = M
3: for: =1to N do

4 repeat

5 Sample )\gi), el )‘5121 ~ Uniform[Amin, Amax]

6: Compute )\((ii) =5- Zz;l )\,(f)

7: until A € [Ain, Amax]

8:  Randomly permute (A(li), cee )\(di)) to avoid bias

9 Construct covariance matrix: >; < U - diag()\gi), e )\l(ii) Ut

)
10:  Sample mean vector: u; ~ Uniform ({u ERY: |ulle = % )
11: Set X; + N (i, %)
12: end for
13: return {X;,..., XN}
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2 3 2
Number of Iterations Number of Iterations
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Original Pattern
€ to Original Pattern

Average W; Distance to
Average W; Distanc
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(© ()

Figure 6: Convergence of retrieval dynamics (Algorithm for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter 3 and perturbation radius r. (a) 8 = 1,7 = 1/y/8N, (b) 8 = 1, = 100/+/BN,
(© B =01r =1//BN, ) s = 0.1, = 100/\/BN. Averages computed over 3750 per-
turbed measures from N = 5000 sampled Gaussians in dimension 25 with eigen-value bounds
Amin = 1, Amax = 1.1. The dotted red horizontal line indicates the convergence threshold at 2-
Wasserstein distance of 1076.

The one step convergence observed for 3 = 1 in Figures[3|and[|makes the visualization of contours
along retrieval dynamics unnecessary as the retrieved and original Gaussian measures essentially
overlap. In contrast, the case 5 = 0.1 in Figures and@exhibits different behavior, with the retrieval
dynamics failing to converge to the original pattern. Figure [7] provides a detailed visualization,
showing the evolution of one perturbed Gaussian measure through five iterations of Algorithm [I]
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Figure 7: Evolution of a perturbed Gaussian measure over 5 iterations of Algorithm (first 2 dimen-
sions). Green dashed contours represent the original Gaussian measure, while blue solid contours
show the current state after each iteration. The Wasserstein distance W5 to the original pattern is
displayed above each panel. Stars indicate the mean vectors (green: original, blue: current). The
parameter values are N = 5000,d = 25,8 = 0.1, Apin = 1, Amax = 1.1.

The plot reveals that the retrieved distribution diverges from the original Gaussian distribution both
in mean and covariance structure.

7.2.3 NON-COMMUTING COVARIANCE SIMULATION

To evaluate the retrieval dynamics of Algorithm [I]in the general non-commuting covariance ma-
trices case, we sampled N = 1000 Gaussian distributions X; = N '(u;, Y;), for i € [N], from a
Wasserstein sphere of radius R = v/2d in dimension d = 10. Following the approach used for
commuting covariances, we allocated the total Wasserstein budget R? = 2d equally between the
mean and covariance components, setting ||11;||? = R?/2 = tr(3;) for all i € [N].

For each Gaussian measure X;, the mean vector was sampled uniformly from the sphere of radius

R/+/2. The covariance matrix was constructed by first generating a matrix 1 & RE?/2XR*/2 with
i.i.d. standard Gaussian entries, forming the initial positive semi-definite matrix W . To ensure
numerical stability in subsequent computations, we added a regularization terms 0.017 to WWT .
The resultant matrix was then scaled by an appropriate factor to achieve a trace of R?/2. This
sampling procedure generates diverse eigenvalues and eigenvectors without imposing a commuting
covariance structure.

To test the retrieval dynamics, we randomly selected 750 Gaussian measures (75% of the total) and
perturbed each by a Wasserstein distance of » = 1/4/8N. The perturbation was implemented by
a split-budget approach, allocating r2/2 to the perturbation of the mean and 72 /2 to the covari-
ance perturbation. For the covariance perturbation, we generated a random positive semi-definite
perturbation direction and used binary search to find the scaling parameter that achieves the target
covariance perturbation. This approach ensures that each perturbed Gaussian measures lies at a
2-Wasserstein distance of r from the original Gaussian measure.

Figure [8| demonstrates the convergence behavior with the above experimental setup. Panels (a), (b)
show convergence in one step at S = 1 similar to the commuting covariance matrices case. However,
this convergence has higher variance than in the commuting case and reaches a threshold level of
10~ rather than the 10~° achieved in the commuting case. Panels (c), (d) show non-convergence
at 8 = 0.1, consistent with our earlier findings for commuting covariance matrices.

7.2.4 ADDITIONAL REAL-DATA EXPERIMENTS

Figure 0] demonstrates the retrieval dynamics of Algorithm [T]of our distributional associative mem-
ory on Gaussian word embeddings learned from the Text8 corpus. The temperature parameter [
critically determines retrieval success: at § = 1, the dynamics fail to converge to their original
embeddings; at 5 = 10, the dynamics preserve the word for 1-3 iterations with the word dynamics
diverging from their original in subsequent iterations; and at 8 = 50, retrieval achieves convergence
to the original word in a single iteration. The bottom panels reveal the word-level evolution during
retrieval, where perturbed embeddings initially map to the same word and the dynamics of Algo-
rithm T] preserve the original word for sufficiently large 3. This behavior aligns with our theoretical
predictions, where higher 3 values create sharper energy basins that facilitate more robust retrieval,
while low (8 values result in overly smooth energy landscapes that prevent proper pattern separation.
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Figure 8: Convergence of retrieval dynamics (Algorithm (1)) for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter 3 and perturbation radius r. (a) 5 = 1,7 = 1/4/BN, (b) 8 = 1,7 = 100/+/BN, (c)
B =0.1,r=1/y/BN, () S =0.1,r = 100/+/FN. Averages computed over 750 perturbed mea-
sures from N = 1000 sampled Gaussians in dimension 10. The dotted red horizontal line indicates
the convergence threshold at 2-Wasserstein distance of 1076,

7.3 PRELIMINARY RESULTS

In this section, we establish the following three fundamental results which are crucial to prove our
results on storage capacity and retrieval rates:

1. The operator  defined by weighted transport maps in equation [5]preserves Gaussian struc-
ture (Lemma 2)).

2. For sufficiently separated patterns, & maps Wasserstein balls around patterns to themselves
(Lemmal[3).

3. Within these balls, the operator ® is a contraction, guaranteeing convergence to unique
fixed points (Lemma 3).

Lemma 1. Ler X1 = N (u1,%1) and Xo = N (2, X2). Then

W2(X1, Xo) = [lp1 — pa|? + tr(S1 + B — 2(51/25,%1/%)12).

Proof of Lemmal[l] This is[Cambert et al.| 2022)[Equation 5]. [
Lemma 2. Let X; = N (p;,%;) fori = 1,2,..., N be the stored patterns. If ¢ = N'(m, %), then
D(&) = N(m/, AT AT),

where m/ = Zfil w; (&) s and A = Zivzl w;(§)A;.

Proof of Lemma[2] By [Asuka (2011)[Lemma 2.3], we have that the optimal transport map from &
to X; is
Ti(z) = pi + Ai(x —m),
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(f) Word evolution at 8 = 50

Figure 9: Retrieval dynamics of perturbed Gaussian word embeddings for different temperature pa-
rameters. Top row: Average 2-Wasserstein distance to original embeddings over iterations. Bottom
rows: Evolution of retrieved words, showing convergence patterns. Initial perturbation achieves
W, distance of 1/4/8N from original embeddings. Results are for 5 randomly selected words from

N = 10000 vocabulary.

where A; = 23/2(22/22023/2)_1/223/2. Therefore, the weighted sum of transport maps is:
N N
Z w;(§)Ti(x) = Zwi(f) (i + Ai(x —m))
i=1 i=1
=m' + Az —m),
where A := Zfil w;(§)A; and m’ = Zf\il w; (&) ;. Thus, the weight sum of transport maps is

an affine map. From the definition of operator ® in equation[5] we have

() = 5S¢,
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where S = Zf;lwz(g)TZ If X ~ &= N(m,%), then S(X) = m’ + A(X — m). Hence,
E[S(X)] = m’ and Var(S(X)) = ACov(X)AT = AX( AT and

®(&) = N(m', A% AT),

where m’ = Zf\;l w; (&) s and A := Zf\il w;(§)A;.
O

The idea is to apply Banach’s fixed point theorem to prove the existence of a unique fixed point
around each pattern. To that end, first we prove that ® is a self-map in a neighborhood around each
pattern.

Lemma 3. Let X; = N(u;,%;) fori = 1,2,... N be the given patterns, where y; € R% and
%, = 0. Define the Wasserstein ball B; = {I/ € Po(RY) : Wo(X;,v) < 1} wherer = ﬁ Let

&= N(m,Q) € B; with Q = 0 be the query measure. Assume that all the covariance matrices
commute pairwise: ¥;3; = 3;5; for all i, j and 3,80 = QX; for all i. Let the eigenvalues of all
X; and ¢ lie in a bounded interval [Amin, Amax). Define the operator ® : Py(RY) — Po(R?) as:

N
S w1 | €,
j=1 %

where T} is the optimal transport map from & to X; and the weights are

exp(-AW(X;,8)
SN exp(—BWE(X, £))

w;(§) =
Define

1. My := max;Wa(X;, do) where & is the delta measure at the origin
2. Al = mln]#(— 1Og<X1, Xj>L2)

If the separation condition A; satisfies

d
Ai 2 5 log(4mAmax) + log (N?B(4M; + 2d(Amax + Amin)))

1
/8>\rnin
and (4M5V + 2d(Amax + )\min)) N33 > €2, then

®(&) € B;.
Proof of Lemma[3] First, since 3;, ¥; commute for all 7, j and 3; commutes with 2 for all i, we
can diagonalize 33;, () in a common eigenbasis. In particular, there exists an orthogonal matrix U

such that
¥, = Udiag(\i 1, -+ \ia)UT, Q = Udiag(wy, - . . ,wa)UT,

for all ¢ € [IN], where diag(X;1,...,A\;,q) and diag(wi, . ..,wq) are diagonal matrices containing
eigenvalues of X3;, () respectively.

Next, we relate the L? inner product between X1, X to the 2-Wasserstein distance between them.
By definition of the L? inner product and since ¥;, 3, share a common eigenbasis U, we have

d 1 1 _
—log(Xi, X;) 2 = 5 log(2m) + 5 log [Zi + %] + 5 (i — pi) " (B0 4 B2) " (i — )

1 1
N N+ A

(1i — 1) " diag <A

N

d
d 1
=3 log(2m) + 3 Zlog(&,k +Nig)+

d

_d L~ 0T (i = )17
10 (2 log(Aix + A + = .
g(27) Z g (i k jk) 22:1 m+/\g,

18
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Since log(A; & + Aj k) <10g(2Amax), and —log(X;, X;) 2 > A;, we obtain

(U7 (i — )]
Xik + Aj ke

d d d
>2 (& - §log(2r) - log(2Anmd) )

o

=1
Next, since A; . + Aj i > 2Amin, We get

d

d
i — pi || = Z[UT(M — 1))z > 4Amin (Ai -3 log(47r)\max)> =:D. (6)
k=1

Next, since the weight w; is given by

exp (W3 (X;,6))

wile) = S exp (—AWE(X;,€)) T2, exp (“AIWE(XG,€) — WE(X:,8))

(7

we first show that w;(€) is large and w; (), for all j # i, is small by showing that WZ(X;,€) —
W2(X;,€) is large for all j # i. By the triangle inequality, the assumption ¢ € B;, and from
equation[6] we get

Wa(X;,8) > Wa(X;, Xi) — Wa(X;,€) > Wa(X;, Xi) — 7> VD —r.
By squaring both the sides of the above inequality and subtracting W3 (X, £), we get:
W3 (X;,6) = W3(X;,6) > D=2V Dr.

By plugging the above inequality into equation (/| we obtain:

1
©) 14+ (N — 1) exp(—=B(D — 2v/Dr))
By defining ¢ := (N — 1) exp(—f(D — 2v/Dr)) and using ﬁ >1—¢eforalle > 0, we get
wz(f) >1—e

Next, we find an upper bound on W (®(¢), X;). By Lemma[l]and Lemma 2] we have

W2(®(€), Xy) = ||m’ — p|)® + tr(AQAT + 2; — 2((AQAT)Y/ 2%, (AQAT)V/2) (8)

where m/ = Zfil w; (&) p; and A = Zf;l w; (&) A;. We refer to the above first term as the mean
error and the second term as the covariance error.

First, we bound the mean error. Using ||ug| < Wa(Xk,do) < My for all k, w;(§) = 1 —
> i wj(€), and Jensen’s inequality, we get:

I’ — gl = 1 wi(€) = Vi + 3w ©pg 1P = 1Y wi @y — )l < 3wy (€l — will® < 4eMiy
J#i J#i J#i
©))
Next, we bound the covariance error. To simplify notation in the next steps, we define:
CovErr(Xy, Xo) i= tr(Sy + 0y — 2(X1/25,n1/3)1/2)
Using this notation, the covariance error in equationis CovErr(AQAT  %2;). By definition,
A = DA Pasl/?)-12s]

and since X;,Q commute for all i € [N], ¥; = Udiag(\i1,...,\iq)UT, and Q =
Udiag(wi, . ..,wq)UT, we have

d
A; = Udiag Aij uT.
Wj =1
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By plugging the above into the definition of A, we obtain

Therefore,
2 d
AQAT = Udiag ((Z w (€ AkJ) ) ut.
j=1

Since AQAT is diagonal in the basis U, we have

d
(AQATY/? = Udlag<<2wk A,”>) ur. (10)
J

i1

From equationand ¥ = Udiag(A\i 1, ..., \i.a)UT , we obtain:

i1

d
L. . 1/2
((AQAT)l/QZi(AQAT)l/Q) = Udiag (N/”Zwk AM> ur.
J

Applying the cyclic property of the trace to the above expression yields

d
tr (((AQAT)UQZZ-(AQAT)U2> 1/2) =tr | diag <\/ i Zwk Alw) Z Vi Zwk VMg -
i=1

Next, by plugging the above expression into the definition of CovErr(AQAT %), by using w;(£) —
= =i wk(§), (@ = b)* <2(a® +0%) and 37, wi,(§) = 1 — wi(§) < &, we obtain

d N
CovErr(AQAT,Zi):Z(Zwk( A,”> +ZA,J 22\/”21% VAR

j=1 \k=

d

N
(Z W (&) Ak,j — /\m‘>
k=1

Jj=1

I
<M&

_ 2
)= DV + > wi(§) )\k]]

k#i

<
Il
-

—Zwk \/TJ—FZwk )\k]]

ki ki

-
I
-

|
_M&

[
M=~

1\ ki

<.
Il

> wi(€) (VA — N>)

SH

2_) (VAmax =V Amin)? (Z wk(@)

j=1 ki
< 2d(Amax + Amin)€> . (1n

Therefore, by adding the bound on the mean error in equation [9] and the covariance error in equa-
tion[TT] we get

W3(2(£), Xi) < (M7 + 2d(Amax + Amin)) €% = C?,

20



Under review as a conference paper at ICLR 2026

where C' := 4M3, 4 2d(Amax + Amin). The next steps show that Ce? < r2, which would finish the
proof. Since

d
Ai > 5 10g(4ﬂ')\max> + 10g (N3ﬁ(4M3V + 2d()\max + )\min))) )

1
6 )\min
we have by definition of D,

d 4
D = 4\pin (AT; -3 log(4ﬂ'/\max)) 22 log (CN38) = 8L, (12)

where L := 5 log(CN?3). Next, by definition of &, we have & < N2 exp(—25(D — 2v/Dr)).
Substituting 7 = ﬁ, we get Ce? < CN?exp(—28D + 4,\/BD/N). To show that Ce? < r2, it
suffices to prove

CN3Bexp(—26D) exp(4y/BD/N) < 1.
Taking logarithms, this is equivalent to log(CN33) — 28D + 4,/BD/N < 0. From the definition
of L and dividing by 2/, this condition is equivalent to showing L — D + 2-YD (. Define

VBN
f(D):=L-D+ 2\/‘C We will show that f(D) < 0, which will finish the proof. Note that
/(D) <0if D > 5N From equation|12|and the assumption C N33 > e2, we have

D>8L = 1og(CN35) 8.8
B 8 BT BN
Therefore, f(D) < f (%) for D > B ~ - Again using the assumption C' N 33 > €2 in the definition
of L, we obtain
8 1 2
fle) <= o+ 222
BN) = BN ﬁN BN

and hence f(D) < 0, which finishes the proof.
O

The following lemma proves that the geodesic interpolation of two Gaussian measures with com-
muting covariance matrices also commutes with the two covariance matrices. Additionally, the
lemma finds all the eigenvalues of the covariance matrix of the geodesic interpolation in terms of
the eigenvalues of the two covariance matrices. This result is then used in Lemma 5]to prove that ®
is a contraction mapping.

Lemmad. Let&; = N(mq,Q), & = N (ma, Qo) be two normal distributions in R% with Q1 , Qo =
0. Suppose Q1,2 commute. Let & = N(my, Q) be the geodesic interpolation in Wasserstein
space from &1 to £o. Then

1. Q; commutes with Q1, Qs for all t € [0,1]

2. The i-th eigenvalue w;(t) of Q. is given by

wi(t) = ((1 — )+ t,/wQ,i/wl,i>2wl,i7

where w ;,wa ; are the i-th eigenvalues of 11, (g respectively.

Proof of Lemmald] By Lemma [2| the optimal transport map from &; to & has the form T'(z) =
mo + A(x — my) with A = Q;/2(Q§/29195/2)’1/291/2. Since 1,y commute, they can be
diagonalized by an orthogonal matrix U such that Q; = UA,UT,Qy = UA,UT where Ay, A, are
diagonal matrices.

The commutativity of €,{s implies 91,95/2 also commute and so, (Q;/2919;/2)—1/2
(22€1)~ /2. Hence, the matrix A simplifies to

A0yl 00y )
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= UAY (A1) V2AYPUT = UNY?AT VU7

Next, note that the geodesic interpolation & = ((1 — t)I + tT")4&; is the pushforward of &; via the
map S;(z) = (1 — )1 + tA)x + (¢m2 — tAm;q). Since the pushforward of a Gaussian A (m, )
through an affine map x — Cx + d is N (Cm + d,CQCT), we have &, = N (my, Q) where

me = (1 —t)mq + tma
Q= (1= +tA)Q (1 - ) +tA)T. (13)
Define B := (1 —t)] +tA= (1 —t)I + tUAé/zAl_l/zUT. This means
BU = U((1 — )] +tAY2ATY?) (BU)T = (1 — )T + tA]2AY 2 UT .
By plugging the above expressions for BU, (BU)” into equation we get:
Q, = By BT = BUMUTBT = U((1 — ) + tAY ATV )AL (1= )1 + tAT2AY 2 UT

This means Q; = UAUT where A; := ((1 —t)I + tAé/2A;1/2)A1((1 —t)I + tA;l/QA;/Q) and
), can be diagonalized by the same matrix U that diagonalizes (21, {25. Therefore, {2; commutes
with Q4, Q9 forall ¢ € [0, 1].

Next, by the above definition of A4, note that

[Adi = (1= 1) + 8y feon i foon o a(1 = 1) + g fon i fwn) = (1= &) + #7) i,

where wy ;,ws; are the i-th eigenvalues of €y, respectively and 7; = \/wo,;/wy,; for i =
1,2,...,d. O

The next lemma proves that the operator ® is a contraction mapping.

Lemma 5. Let X; = N(u;, %) fori = 1,2,... N be the given patterns, where p; € R? and
¥; = 0. Define the Wasserstein ball B; = {v € Po(R?) : Wa(X;,v) < r} where r = ﬁ Let

& = N(mg, Qi) € B; with Qi > 0 be two query measures, where k € {1,2}. Assume that all
the covariance matrices commute pairwise: £;%; = 3;%; for all i, j € [N] and £,Q, = Qi %, for
all i € [N),k € {1,2}. Let the eigenvalues of all X;,&1, &z lie in a bounded interval [Amin, Amax)-
Define the operator ® : Py(R?) — Py(R?) as:

N
() = | D_wi(OT; | &,
Jj=1 #
where T is the optimal transport map from & to X; and the weights are

exp(—BW3 (X;,§))

wilt) = Sy exp(— AW (X, €))

Define
1. My := max;Wa(X;, §o) where 0y is the delta measure at the origin

2. Ai = minj#(— 1Og<Xi; Xj>L2)

Assume
1.
d 1 3 9
A > 3 log (47 Amax) + . log (N BAMG, + 2d(Amax + )\min))) .

(Assumption: Separation)

2.
2
£ > (Assumption: Constraint)

(4M1%V + 2d(/\max + )\min)) NS .
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2 1
IfN > max {144BMW " (4MZ,+2d(AmaxH Amin) ) B } then

W2((D(£1)7 @(52)) S KW2(§17£2)7
where 0 < Kk = % < 1.

Proof of Lemmal3] Since all the covariance matrices commute, there exists an orthogonal matrix U
such that

¥, = Udiag i1y -+, Mia)UT, Qp = Udiag(wias - - wi.a)UT
forall i € [N] and k € {1,2}. By Asuka| (201 1)[Lemma 2.3], we have that for Gaussian measures
& = N (my, Qi) and X; = N (u;, X;), the optimal transport map from &, to X is

k k
T (2) =y + A (2 — i),

where A;k) = E}/Q(E;/QQkE}m)’1/22;/2. Since X; and £2;, commute and are diagonal in the
basis U: ‘

(2120, 31/%) 72 = Udiag

1 1 T
\//\j,lbUk,l T \/ )\j7dwk,d '
By plugging the above into the definition of Agk), we get
VA VA
AW = Udiag | V2L, YR T
Wk 1 VWk,d
By Lemma we have ®(&,) = N(m}, AQ,LAT), where m) = Zjvzl w;i(&)p; and Ay =
Z;\/:l wj(fk.)A;k). This means
o\ d
) ) N
A AL = Udiag ij(gk)wuj,g ur. (14)
j=1

=1
Additionally, note that if positive definite matrices P, () commute, then

tr (P +Q-— 2(P1/2QP1/2)1/2) —tr (P +Q- Q(PQ)I/Q)

[
M=~

Ae(P) + Ae(Q) — 24/ Ae(P)Ae(Q)

~
Il
—_

[
M=~

(\/)\e(P) - \/)\Z(Q))2 - 15)

~
Il
—_

Next, by Lemma([I] we have

- - - - - - - - - - 1/2
W3 (®(&1),9(&2)) = [[mh — mbl|* + tr <A191A1T + A AT — 2 ((A1Q1A1T)1/2A292A2T(A191A{)1/2) ) :
(16)

The fact that €, commute means that fLQlff{ commutes with [12(22,45 because

A1 AT AyQy AT share the same eigenbasis U. By using this fact, along with plugging equa-
tion (14{and equation into equation and by the definition of mj,, we obtain:

2

d N N
W3(®(&), D(&)) = [|m) —mb|* + Z ij(&)\/ Ajo — ij(éz)\/ Aje
=1 \j=1 j=1
N 2 d N 2
=1 Al 30 Awjy/Ae | (17)
=1 =1 \j=1
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where Aw; 1= w;(&1) —w;(&2). The next steps of the proof obtain a bound on |Awj| so that we can
obtain an upper bound for equation Toward that end, we first obtain bounds on weights wy (&)
forall k € [N].

Since Wa(X;, X;) > ||ni — 15, we get from equation|§|that Wa(Xi, Xj) > /D, where D :=

AAmin (A; — 2 log(4mAmax) ). By the triangle inequality, W2 (X;, X;) > VD, and Wo(X;, &) <r,
we have

Wo(X;,€) > Wa(Xj, Xi) — Wa(X,,€) > VD — 7.
This means
W3(X;,6) — W3(X;,€) > D —2vVDr. (18)

First, we obtain a lower bound on the weight w;(£). By the definition of the weights w; (), using
equation and 1%} > 1 — «a for all @ > 0, and using equation |Assumption: Separation|, we get

exp(fBWQQ(XZ—, £))

i(§) =
wile) Sy exp(—BWE (X, €))
1
C 14 Y exp(=BWE (X, €) — WE(X5,6)))
N 1
“1+e
>1-—¢, (19)
where
e:=(N—1)exp (—B(D - 2@7«)) . (20)

Now, we obtain an upper bound on the weight w; (&) for j # 4. By definition of w;(§) and again
using equation [I8] we obtain

) _ eXp(_/BWQQ(Xj7€)) exp(_/BW22(XJ7£)) —B(D —2vD _ €
W)= N e WE X6 e CAWAX, )  OPCIP P =
(21)
Define g(t) := % where a;(t) := W2(X;,&) and & = ((1 — t)Id + tT) & be the

geodesic interpolation of &7, &5 in the Wasserstein space, where T’ is the optimal transport map from
&1 to &3. By the mean-value theorem, there exists a t* € [0, 1] such that:

w;(&2) —w;i(&) = g(1) — g(0) = ¢'(t") . (22)
Note that

N
g'(t) = w;(§)B [Z wi(§e)ay (t) — aj (t)]

k=1

=w;(&)B

N
> w(&)(ak(t) — (t))] : (23)

k=1

Next, for Gaussian measures X = N (ug, Xx) and & = N (my, Q;), by Lemma we have:
ar(t) = W3 (Xk, &) = |l — me||* + CovErr(S, ).

So,

d d
ap(t) = 2<$mt . My — ) + %CovErr(Ek, ).

Since &; is a geodesic between &; and &, we have my = (1 — t)my + tms and therefore %mt =
mo — my. Hence,

!

d
ay(t) = 2(ma —my, my — pi) + ﬁCovErr(Ek7 ),
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and

!/

d
ap(t) — aj(t) = 2(mg — my, py — pr) + a[CovErr(El€7 Q) — CovErr(3;, Q)] (24)

By plugging equationinto the expression for ¢/(¢) in equation we obtain:

N
g'(t) =w;(&)B Y wi(&) [2<m2 —ma, gy — pk) + %[COVE"(Zk»Qt) — CovErr(3;, Q)]
k=1

N
= 2w;(&)B(ma —ma, py = Y wi(Epn) +w;(6)B

k=1

(ft) [CovErr(Ek,Qt) CovErr(Z;, Q)]

-

&‘Q‘

N
= 2w;(&)B(ma —ma, pj —my) + wj(ft)BZwk(ft) [CovErr(Zy, Q) — CovErr(Z;, Q)]
k=1

(25)

where m;} = Zszl wi (&) k-
Next, since &1, &2 € B;, by geodesic convexity, &~ € B;. This means by equation 19} equation 21}
we have that for j # q:

5
(&) > 1 —e, wi(&e) < :
w(ft)_ € wj(gt)_N—l

Therefore, from equation [25] and equation [26] we obtain the following bound on difference in
weights, for j # i:

w;i(§2) —w;(&1) = g'(t")

(26)

N
= 2w; (&) B(ma —my, pj —my.) + wj(gt*)ﬂzwk(gt*)%[CovErr(E;€7 Q) — CovErr(X;, Q)]
k=1

t=t*

28e g2
< NB— T (ma —ma, ptj —Mp) + ——— = B E Z pr [CovErr(Xy, Q) — CovErr(3;, )]
k#i t=t*
+ Neﬁ (ft*) [CovErr(El,Q ) — CovErr(2;, Q)] . (27)

t=t*
Next, we prove upper bounds for each term in equation 27} By Cauchy-Schwarz inequality:

[(m2 —ma, gy —mi)| < [lma —mal| - ||y — mi. (28)
Next, by the definition of m}. and the bounds on weights in equation we get:
[ — mi* = ||Mj —wi(§er )i — Zwk(ft*)ﬂkH
k#i
< sz(gt*)( — )|l + H (1 —w;(&~)) Zwk §tr Nk”
k#i
< (1-e)2My +eMy + (N —1) - N€ My
< 2Myy . (29)
By plugging equation 29]into equation 28] we obtain:
[(ma —ma, pj —my.)| < 2Mw|[mo — m1H < 2MwWs (&1, &2) - (30)

Next, we bound the second and third terms in equation Since Y, 2; commute by Lemma
they share a common eigenbasis so let X = UAgkU and ; = UAq,UT where Ay, =
diag(ok,1,0k2, - .,0k,q) and Ag, = diag(w1(t),wa(t),...,wq(t)). Therefore, from equation
and definition of CovErr, we obtain:

d
ﬁCovErr(Ek,Q) ; (VOki — Vwi(t)) - <w1(t)>w;(t)’
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and

d
d VOki —\/%5i ,
—[CovErr(Xg, Q) — CovErr(X;, )] E i i YNt
dt i=1 \/7)

Next, by Cauchy-Schwarz inequality, the equation equation [T3] by and the definition of My, we
get:

[CovErr(Ek, t) — CovErr(Z],Qt)]‘_

€2y

By Lemmafd] we obtain
wg(t) = 2((1 - t) + tTi)(Ti - 1)&]171‘ R

where 7; = \/ws /w1 ;. By plugging the above in equation , we get:

d 2 2 2
wi(t)? - 41 —t) +tri)* (1 — 1)wi,
D R s v

= 4BW?(Q1,Qy)
<AWZ (&1, &) (32)
By plugging equation [32]into equation [31] yields:

d
| S [BW? (S0, 20) — BWA(S;, Q)| < AMuwWa(61,&2)
Therefore, the second term in equation [27]is bounded by
_&B
(N —1)

2
< sy ee), 63

> SIBWA (S, 0) — BWH (35,

t=t*

and the third term in equation[27]is bounded by

ep

& < B
N-1

SN

t=t*

wi(ft*)%[CovErr(Ei, Q) — CovErr(X;, Q)]

14MWW2(§17§2)~ (34)

Next, we plug the bounds in equation [30] equation [33] equation 34]into equation 27] to obtain for

J#

iy (6) — 0y (€)] € oo - 2M Wallr, &) + SOAMw W61, 62) + 5o A Wa(6s, &)
_ 45€Mw(2 + €)W2(£1,£2) ) (35)

N -1
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The final steps of the proof provide upper bounds for the two terms in equation[I7|using the bound
on |Aw;| in equation and, therefore, prove contraction. We start with the first term in equation
By using ||p; — pi]] < 2Myw and the bound in equation we get

N
D Awjuy|| = 3w (€1) —wj(€))(ny — wi) |
j=1 Jj#i
< Z |w; (1) — wj(§2)[llpes — pall
JFi
< 8BeMiy (2 + e)Wa (&1, &2) - (36)

Next, we provide an upper bound on the second term in equation Using Amin < Aje < Amax
for all j, £, and the bound in equation [35] we get

2 2
N d

d
Z Z Awj/ Ao | = Z Z Aw;(\/Aje =/ Aie)
=1 \j=1 =1 \ j#i
< d( V >\max Y/ >\min)21652€2M3V(2 + 5)2W22 (513 52) . (37)
By plugging the bounds in equation [36|and equation [37]into equation[T7] we obtain

W22((I)(£1)’ (I)(§2)) < 16ﬁ2€2(2 + 5)2M3V(4MI%V + d( V )\max Y /\min)z)W22(517€2) . (38)

Next, we provide an upper bound for €. From equation [Assumption: Separation| the definition
D = 4pin (A; — £1og(4mAmax) ). and equation|Assumption: Constraint, we get
4 8 1
D > —log ((4M2, + 2d(Amax + Amin)) N38) > = > — | (39)
for all N > 1. To simplify notation, define L := % log ((4ME, 4 2d(Amax + Amin)) N38).
From equation we have D > 8L. Define h(z) := —x + 24/ar, where r := ﬁ Note

that #'(z) < 0 when z > ﬂ% This means h(D) < h(8L) for all D > 8L. Next, we show

that h(8L) < L. Since h(8L) = —8L + 4%, proving h(8L) < L is equivalent to show-
4v2L

ing NV 9L. By plugging in the value of L, the previous inequality is equivalent to showing

Gﬁ < 81log ! :4M§V + 2d(Amax + )\min)) NSﬁ), which is true for all N > 1 and equation

Next, since h(8L) = —D + 2v/Dr < L, by the definition of ¢ in equation the definition of L in
the above paragraph, we obtain

e=(N—-1)exp (—B(D - 2\/57"))
< (N —1)exp(—pL)
= (N —1)exp (—2; log ((4M7 + 2d(Amax + Amin)) N%))
< N (40)

\/(4M5V + 2d(>‘max + )‘min)) N33 .

Define C' := (4M3, + 2d(Amax + Amin)). From equation , we have ¢ < 1 for N > Ciﬂ By
using this fact, along with plugging equation [40|into equation[38] we obtain
1448M?2
W3 (®(&1), ®(&2)) < N W3 (&1, &) (41)
Finally, since N > 1448M3%,, we get Wo(®(&1), ®(&2)) < £Wa(€1,&2), where k = %,
which finishes the proof of this lemma. O

The next lemma uses Lemma 3| and 5] to apply Banach’s fixed point theorem and show the existence
of a unique fixed point in a neighborhood of each pattern.
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Lemma 6. Let X; = N(u;,%;) fori = 1,2,..., N be the patterns, where y; € R? and ¥; = 0.

Define the Wasserstein ball B; := {v € Pa(R%), Wo(X;,v) < 7}, where r = ﬁ Under the

assumptions of Lemmas [3|and 5] the map ® has a unique fixed point in B;.

Proof of Lemmal6] First, we show that B; is closed in (P2 (R%), W2). Let {v;,},,>1 be a sequence
of probability measures in B; that converge to v € Py (Rd) in Ws-distance. Since v,, € B; for all
n, we have Ws (X, v,) < r;. For any n, by triangle inequality:

Wo (X, vn) < Wo(Xi,v) + Wa(v,vy) .
Taking lim sup as n — oo and using limsup,,_, ., Wa(v,v,,) = 0, we get

lim sup Wa (X, v,) < Wa(X;,v). (42)
n—roo
From another application of triangle inequality, we have Wa(X;,v) — Wa(v,vy,) < Wa (X, vp).
Taking lim inf as n — co, we get:
lim inf Wg(Xi,Vn) Z WQ(Xi,Z/) . (43)
n—roo
Therefore, from equation and equation . we obtain lim,,_, o WQ(X“ vp) = Wa(X;,v) and

that B; is closed. Since (P2 (IRY), W) is a closed metric space and B; is a closed subset of Py (R9),
we have that (B;, W5) is a complete metric space.

Finally, since (B;, W) is a complete metric space, ® is a self-map in B; from Lemma|[3] and ® is a
contraction mapping from Lemma[5] we get from Banach’s fixed point theorem that ¢ has a unique
fixed point in B;. O

7.4 PROOF OF THEOREM/[I]

Proof of Theorem|[I} First, we introduce Algorithm [3] which can be used to sample Gaussian mea-
sures from the Wasserstein sphere Sp whose covariance matrices commute pairwise and whose
eigenvalues lie in a bounded interval [Amin, Amax)-

Algorithm 3 Sampling from commuting Gaussian measures on Wasserstein sphere

Require: R > 0 (sphere radius), N € N (number of samples), A\pin, Amax > 0 (eigenvalue bounds
with Apnin < Amax), d € N (dimension)
Ensure: {Xi,..., Xy} where X; ~ N (u;,3;) on Sg

- Initialize: Fix an orthogonal matrix U € R%*¢
2

1
2: Define polytope P = {()\1, .oy A) ERY: ZZ:1 A = %, Amin < Ak < Amax for all k}
3: for:=1to N do )

4: Sample (A" ..., A%) ~ Uniform(P)

5. Construct covariance matrix: ¥; < U - diag(Al"”, . .. ) vt
6:  Sample mean vector: p; ~ Uniform ({,u €RY: Hu||2 = % )
7 Set X; <_N(,Ui721')

8: end for

9: return {Xq,..., Xy}

Next, note that the polytope P is non-empty with R = \/d(Amax + Amin) since dAmin < %2 =
w < dAmax- Also, note that by definition of My, we have My, = max; W2 (dg, X;) = R.
If X; = N(pi, 25), X; = N(uj, X;), then by the definition of the L? inner product, since ¥;, ;

share a common eigenbasis U, and because all the eigenvalues lie in the interval [Amin, Amax], We
have almost surely

1)1

d
d 1
_10g<X1‘,X]‘>L2 = log 27T Zlog Zk+>\jk +§ZT/\J;€

1
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>

N

1
log (47 Amin) + Il — p51* (44)
4 Amax

From equation[#4] we get that the separation condition in equation[Assumption: Separationis satis-
fied if

d
log(4ﬂ'/\mm) + min —— log (CN?B) , (45)

1
J#i 4/\ BAmin

where C' := 4MZ, + 2d(Amax + Amin). Since M3, = R? = d(Amax + Amin), We get C =
6d(Amax + Amin)- The condition in equationis equivalent to

d
”Nz jH2 > 5 log (47 Amax) +

. 4
min [la; = 15| > 2d7maxlog(3) + 5 log(CN?6) =: T, (46)
where v := /\m—ax The next steps of the proof are to find the conditions under which equation

holds with high probability.

By |Vershynin|(2009)[Theorem 3.4.5], we have that for independent uniform random vectors u, v on
a unit sphere S*~! and ¢ > 0:

P((u,v) > t) < 2exp(—t2d/2). (47)

Since i, (+; are independent uniform random vectors on a sphere of radius % = d(’\%%\m‘“),
we have

”,ui - /'LjH2 = R2 - 2<M1a ,u2> = d()‘max + /\min)(l - <U,U>) ) (48)

where u, v are independent uniform random vectors on the unit sphere S?~!. Therefore, from equa-

tion[47} equation 48] we get

T d T\
P Py =P 1-— <2 (1= : 4
(lps = psll* < T) <<u,v> > d}\ma) < eXP< 2 ( dAmax> ) @)

By plugging in N = fexp ( ) and using C' = 6d(Amax + Amin ), We get

4 4
log(CN? log N +1 1
D 0g(CN”°p) = T (3log N +log § + log C)
4 3 P 3da?
lo 2d )\max >\min
= Do ( 2 (5) 1 (2(3Amax + ))>

_ 3a? . 810g(p/2) + 4log(B) + 410g(6d(Amax + Amin)) (50)
B 46)\min dﬁ)\min .

From the fact that o > 0 from the statement of the theorem, it follows that if 5 > =%, then the

< <, and there exists d( ) € N such that the second term

first term in equation [SOf satisfies [3 W

in equation [50]can be bounded as
6log(p/2) + 4log(B) + 41og(6d(Amax + Amin))
dﬂAmin

<

B~ e

Therefore,

4 3 o
Doid log(CN°B) < 5" (1)

From equation [5T]and the definition of 7" in equation 46} we obtain

<210g('y)+%:1704+g:17%. (52)

T
dAmax 2

By plugging equation [52]into equation 49} we get

da?
Pl — sl < 7) < 2exp (-5 ) 53)
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By applying union bound to all the pairs (4,j) in equation and using the definition of N =
\/g exp (%) , We obtain

N? da?
P (3i,j such that ||p; — py|* < T) < - - 2exp (g) = g <p. (54)

Finally,
P (m;n s — 51> < T) < P (3,j suchthat ||p; — ;| <T) <p,
j#i

which means the condition in equation [46] holds with probability 1 — p and this finishes the proof
of the statement that we can sample N = \/g exp (‘%2) patterns which are separated in L?-inner

product by the condition described in equation|Assumption: Separation|

Since the separation condition in equation [Assumption: Separation| is satisfied for N =

\/g exp (%) random patterns with probability 1 — p for d > dél), because the constraint on

3o
Amin

for

# in equation|Assumption: Constraintis satisfied from the assumption of this theorem 3 >

large enough d((f), and because

d 2
N = gexp <f’é) > 1448M2, = 1448R? = 1448(Amin + Amax)
for large enough d(S), it follows from Lemma [5| that ® is a contractive mapping with probability
1—pfor N = \/g exp (%) random patterns and d > max{d(()l), déQ), dgs)}. Finally, it follows
from Lemma [6] that if we define B; = {v € Py(R?), Wa(X;,v) < ﬁ}, then there exists a
unique fixed point in B; for all ¢ € {1,2,..., N}. Hence, from Definition [I} we get that N =
\/g exp (%) random patterns can be stored on a Wasserstein sphere with probability 1 — p for all
p > 0. O]

7.5 PROOF OF THEOREM[2|

Proof of Theorem[Z] Since the assumptions of Lemma [3| and Lemma [5] hold, the existence of a
unique fixed point follows from Lemmalf] Next, by Lemma 5, we get Wa(®(€), X;) < & be-
cause £, X € B;, where & is the contraction coefficient from Lemma@ Applying this inequality
iteratively, we obtain

Wo(@"(§), X7) < k"Wa(§, X7) < K"(2r). (55)
By setting k™ (2r) = ¢, using the definition k = % from Lemma the definition r = ﬁ,
and noting that € < r finishes the proof of this theorem. O

7.6 PROOF OF THEOREM 3]

Proof of Theorem 3] By triangle inequality, using the fact that the unique fixed point X € B,
appealing to ®(X;) = X since X} is a fixed point, and applying Lemma([5] we obtain

< Wa(®(6), 2(X]) +
1

SW2(§7X§*)+\/W

< (56)

3
2.
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