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ABSTRACT

Dense associative memories (DAMs) store and retrieve patterns via energy-
functional fixed points, but existing models are limited to vector representations.
We extend DAMs to probability distributions equipped with the 2-Wasserstein
distance, focusing mainly on the Bures–Wasserstein class of Gaussian densities.
Our framework defines a log-sum-exp energy over stored distributions and a re-
trieval dynamics aggregating optimal transport maps in a Gibbs-weighted manner.
Stationary points correspond to self-consistent Wasserstein barycenters, general-
izing classical DAM fixed points. We prove exponential storage capacity, provide
quantitative retrieval guarantees under Wasserstein perturbations, and validate the
model on synthetic and real-world distributional tasks. This work elevates asso-
ciative memory from vectors to full distributions, bridging classical DAMs with
modern generative modeling and enabling distributional storage and retrieval in
memory-augmented learning.

1 INTRODUCTION

Associative memories are a foundational paradigm for robust storage and retrieval of structured
information. Classical models, such as the Hopfield network (Hopfield, 1982a) and its modern
high-capacity extensions (Krotov & Hopfield, 2016; Ramsauer et al., 2020), demonstrate that high-
dimensional patterns can be stored in distributed representations and retrieved accurately under par-
tial or corrupted queries. These models formalize the principle that memory retrieval can be framed
as a dynamical system evolving toward energy minima corresponding to stored patterns.

While most prior work on associative memory has focused on vector-valued data, many modern
applications involve probability distributions as the fundamental objects. In representation learning,
embeddings are increasingly modeled as distributions to capture uncertainty and multi-modality,
requiring retrieval and manipulation at the distributional level rather than through point estimates.
Gaussian embeddings in particular provide a versatile framework, beginning with Vilnis & Mc-
Callum (2014), who modeled words as multivariate Gaussians to encode semantic uncertainty and
asymmetry. This paradigm has since been extended to networks and graphs via Graph2Gauss (Bo-
jchevski & Günnemann, 2018), to documents in both unsupervised settings (Banerjee et al., 2017)
and linked-document frameworks like GELD (He et al., 2020), and to richer semantic represen-
tations such as Wasserstein Gaussian embeddings (Athiwaratkun et al., 2018), Gaussian mixture
embeddings (Athiwaratkun et al., 2018), and conceptualized Gaussian embeddings (Wang et al.,
2021). Recent advances also include Gaussian graph neural networks for large ontologies (Wang
et al., 2025) and sentence embeddings as Gaussian distributions (Yoda et al., 2024). Across these
domains, Gaussian representations unify uncertainty, hierarchical structure, and distributional simi-
larity, underscoring their versatility for modern machine learning.

More generally, in uncertainty-aware generative modeling, where probabilistic generative models
such as variational autoencoders (Kingma & Welling, 2013), normalizing flows (Rezende & Mo-
hamed, 2015), and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) learn distributions
over complex modalities including images, text, and 3D point-clouds. Similarly, in Bayesian infer-
ence, posterior beliefs about latent variables are encoded as probability densities (often Gaussian
or Gaussian mixtures) where updating or recalling these beliefs corresponds to operations directly
on distributions (Bernardo & Smith, 2009; Khan & Rue, 2023). In these contexts, it is natural to
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treat entire distributions, rather than individual samples, as primary computational units. These
considerations motivate the following question:

Can associative memories be generalized to store and retrieve probability
distributions, rather than deterministic vectors?

We address this question in the setting of Gaussian distributions. Let N (µi,Σi), i = 1, . . . , N ,
be the target distributions. Endowed with the Bures–Wasserstein geometry (Asuka, 2011; Lambert
et al., 2022; Diao et al., 2023), Gaussians inherit a Riemannian structure from the Wasserstein-2
distance that captures both mean and covariance, providing a natural notion of similarity. Our goal
is to design a dense associative memory (DAM) that robustly stores {N (µi,Σi)}Ni=1 and retrieves
the correct distribution from noisy or partial queries, thus extending classical DAMs from Rd to
the non-Euclidean space of probability measures while retaining high capacity and robust retrieval.
Towards that, we make the following contributions in this work:

1. Wasserstein LSE energy functional. We propose a novel energy formulation defined directly on
the (Bures)-Wasserstein space, generalizing classical DAM energies to probability densities (see
Section 2).

2. Exponential storage capacity. We prove that our model achieves storage capacity exponential in the
dimensionality of the ambient space, extending classical vectorial results to the Gaussian distribution
setting (see Theorem 1).

3. Retrieval guarantees. We establish bounds on the fidelity of retrieval under noisy query distri-
butions, providing explicit dependence on the Wasserstein distance between stored and perturbed
densities (see Section 3.2).

4. Empirical validation. Through experiments on synthetic Gaussian datasets and real-data experi-
ments on probabilistic word embeddings, we demonstrate that the proposed model achieves accurate
retrieval and exhibits robustness predicted by our theoretical analysis. (see Section 4)

By extending dense associative memories from vectors to probability densities, our work lays a
foundation for distributional memory architectures in generative AI. Such memories can store, re-
call, and manipulate probabilistic objects, enabling memory-augmented probabilistic reasoning and
uncertainty-aware generative computation.

Notation and definitions. For a positive integer N , let [N ] := {1, 2, . . . , N}. We write ∥ · ∥ for
the Euclidean norm and ⟨·, ·⟩L2 for the L2 inner product between probability measures. Throughout,
we work in the space P2(Rd) of probability measures with finite second moment, equipped with the
2-Wasserstein distance W2(µ, ν) = infγ∈Γ(µ,ν)

∫
Rd×Rd ∥x − y∥2 dγ(x, y), where Γ(µ, ν) is the

set of couplings with marginals µ, ν. For a functional F : P2(Rd) → R, its first variation at µ is
δµF(µ)(x), defined via d

dεF(µ+ε(µ′−µ))
∣∣
ε=0

=
∫
δµF(µ)(x) (µ′−µ)(x) dx. The Wasserstein

gradient is ∇WF(µ)(x) := ∇xδµF(x, µ), and the associated (negative) gradient flow is the conti-
nuity equation ∂tµt +∇· (µtvt) = 0, vt(x) = −∇WF(µt)(x), often written µ̇t = −∇WF(µt).
For a measurable T : X → Y and µ on X , the push-forward is T#µ(B) := µ(T−1(B)) for
measurable B ⊆ Y .

The squared Wasserstein distance betwen two Gaussians is given by the Bures metric
W 2

2(N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥2 + Tr(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2). The Bures–

Wasserstein gradient at N (µ,Σ) becomes the projection of the Wasserstein gradient to the tangent
space at N (µ,Σ) (Lambert et al., 2022, page 22) and it further reduces to finite-dimensional gra-
dients: ∇WF(m,Σ) =

(
∇mF(m,Σ), ∇ΣF(m,Σ)

)
. Moreover, if X ∼ N (m0,Σ0) and Y ∼

N (m1,Σ1) with Σ0,Σ1 ∈ Sd++, the unique optimal transport map T : Rd → Rd pushing X to Y

under quadratic cost is affine: T (x) = m1+A(x−m0), where A = Σ
−1/2
0

(
Σ

1/2
0 Σ1Σ

1/2
0

)1/2
Σ

−1/2
0 .

See Ambrosio et al. (2005); Asuka (2011); Lambert et al. (2022) for additional details.

2 ENERGY FUNCTIONALS IN THE WASSERSTEIN SPACE

The key design choice in associative memories lies in specifying the energy function that drives
retrieval dynamics. Classical Hopfield networks use a quadratic energy, yielding only O(d) storage
capacity in dimension d. By contrast, the log-sum-exp (LSE) energy of Krotov & Hopfield (2016)
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(a) β = 0.1 (b) β = 1 (c) β = 10

(d) β = 200 (e) β = 600 (f) β = 1000

Figure 1: Energy landscape E(ξ) (Equation 1) for query one-dimensional Gaussians ξ = N (µ, σ2)
evaluated on a 200×200 grid with µ uniformly spaced in [−4, 4] and σ uniformly spaced in [0.01, 2].
Red dots indicate N = 5 one-dimensional Gaussian measures Xi sampled uniformly at random
with means in the interval [−3, 3] and standard deviations in [0.2, 1.0]. The temperature parameter
β varies from 0.1 to 1000 across subfigures.

introduces a sharper nonlinearity and dramatically improves efficiency. For a query ξ ∈ Rd and
stored patterns {Xi}Ni=1, the energy is E(ξ) = −β−1 log(

∑N
i=1 exp(−β∥Xi − ξ∥2)), with tem-

perature parameter β > 0. As β → ∞, this approaches the negative maximum similarity, yielding
a smooth approximation to hard maximum retrieval. The induced energy landscape produces well-
separated attractor basins, supports exponential storage capacity, and admits a probabilistic view
where retrieval corresponds to Gibbs-type aggregation with weights exponentially concentrated on
the nearest stored pattern.

Extending associative memory to probability distributions requires replacing Euclidean distance
with a suitable similarity measure. We work in the Wasserstein space (P2(Rd),W2) and define the
Log-Sum-Exp (LSE) energy for stored patterns X1, . . . , XN ∈ P2(Rd) and query ξ ∈ P2(Rd) as

E(ξ) := − 1
β log

( N∑
i=1

exp
(
− βW 2

2 (Xi, ξ)
))

. (1)

As β → ∞, this reduces to the negative minimum Wasserstein distance, implementing a soft-min
retrieval rule with a clear probabilistic interpretation: stored distributions are weighted by their
Wasserstein proximity to the query. Importantly, this extension preserves the exponential storage
capacity of the vector case while operating in a non-Euclidean probability space, making the LSE
energy a natural choice for distributional associative memory. Figure 1 shows the log-sum-exp
energy equation 1 for five one-dimensional Gaussian measures {Xi}5i=1. As β increases from 0.1
to 1000, the landscape evolves from nearly flat with overlapping basins to sharp, well-separated
minima. For small β, discrimination between {Xi}5i=1 is weak, while large β yields pronounced
attractors. Thus, E induces a multi-modal structure in the Bures–Wasserstein geometry, with each
Xi serving as an attractor, which is central to our definition of storage in Section 3.

The variational structure of our model is encoded through the Wasserstein gradient of the energy
functional E. By direct differentiation, one obtains

∇WE(ξ) = 2

N∑
i=1

wi(ξ) (Ti − Id) , (2)
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where Ti denotes the optimal transport map from ξ to the stored distribution Xi, and

wi(ξ) :=
exp
(
−βW 2

2 (Xi, ξ)
)∑N

j=1 exp(−βW 2
2 (Xj , ξ))

. (3)

The weights wi(ξ) define a Gibbs-type distribution that assigns higher influence to memories closer
to ξ in Wasserstein distance. Thus, the gradient aggregates transport directions from ξ to all stored
distributions, with distant contributions exponentially suppressed. The log-sum-exp weighting in-
troduces a smooth competitive mechanism, ensuring both robustness of recall and sensitivity to the
underlying geometry of the memory ensemble. This formulation directly extends the classical log-
sum-exp energy functions of dense associative memories from vectors to the Wasserstein space of
probability measures.

The retrieval mechanism corresponds to finding stationary points of the energy functional E in the
Wasserstein geometry. Setting ∇WE(ξ∗) = 0 yields

∑N
i=1 wi(ξ∗)(Ti − Id) = 0 or equivalently∑N

i=1 wi(ξ∗)Ti = Id. In other words, the stationary condition can be written as(
N∑
i=1

wi(ξ∗)Ti

)
#

ξ∗ = ξ∗ , (4)

showing that ξ∗ is invariant under the weighted barycentric transport determined by the stored mem-
ories. Defining the operator Φ : P2(Rd)→ P2(Rd) by

Φ(ξ) :=

(
N∑
i=1

wi(ξ)Ti

)
#

ξ , (5)

retrieval is characterized by the fixed points of Φ. In this way, memory recall is expressed as the
self-consistency condition Φ(ξ∗) = ξ∗, which generalizes fixed-point equations from classical asso-
ciative memories to Wasserstein spaces.

Figure 2 illustrates the Φ operator in equation 5. Panel (a) and (b) shows W2(ξ,Φ(ξ)) as a heatmap:
dark regions near the means of the five Gaussians mark fixed-point neighborhoods, while bright
regions indicate strong transformations. Panels (c) and (d) depict the weight functions wi(ξ), with
bright regions where a Gaussian Xi dominates (wi(ξ) ≈ 1) and dark regions where other patterns are
closer (wi(ξ) ≈ 0). Equation 4 has a clear geometric meaning: stationary distributions are precisely
those invariant under the weighted barycentric transport field of the stored memories. The fixed
point ξ∗ is a Wasserstein barycenter with self-consistent weights wi(ξ∗), ensuring retrieval identifies
a distribution that balances the geometric pull of all memories. This implicit barycentric structure
directly connects to generative modeling: as in energy-based models, convergence proceeds by
descending an energy landscape, but here in Wasserstein space, where attractors are full probability
laws satisfying barycentric invariance. Retrieval thus becomes a generative mechanism synthesizing
distributions consistent with the stored ensemble, elevating associative memory from pointwise to
distributional recall and aligning it with modern generative AI.

3 DAM IN BURES-WASSERSTEIN SPACE: STORAGE AND RETRIEVAL

We now specialize our framework to Gaussian distributions, a natural and tractable family for dis-
tributional associative memories. Gaussians admit a closed-form expression for the 2-Wasserstein
distance (Lemma 1), affine optimal transport maps, and broad applicability in machine learning
(Section 1). A key challenge is controlling mean and covariance errors (Lemma 3); to obtain sharp
convergence guarantees, we restrict to the case where covariance matrices commute pairwise, en-
suring a common eigenbasis and simplifying transport geometry. We further assume eigenvalues lie
in [λmin, λmax], enabling precise quantification of separation between patterns.

3.1 STORAGE CAPACITY

First, we prove that exponentially many Gaussian measures can be stored, with high probability,
when they are sampled from a Wasserstein sphere SR of radius R. Let S be the set of Gaussian
measures in Rd whose covariance matrices commute pairwise. The sphere SR is defined as:

SR := {N (µ,Σ) ∈ S : W2(δ0 , N (µ,Σ)) = R, λmin ≤ (λi)
d
i=1 = Eigenvalues(Σ) ≤ λmax, ∀i},

4
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(a) β = 0.1: Diffused retrieval (b) β = 1: Sharp retrieval

(c) w1(ξ) through w5(ξ) for β = 0.1

(d) w1(ξ) through w5(ξ) for β = 1

Figure 2: Visualization of the Φ operator and weight functions for two values of the temperature
parameter β. (a,b) Heatmaps show W2(ξ,Φ(ξ)) computed on a 20 × 20 grid and interpolated for
smooth visualization. Blue arrows indicate mean displacement vectors from ξ to Φ(ξ), displayed at
every second grid point. Contour lines represent level curves of constant W2(ξ,Φ(ξ)). Red ellipses
show 2σ contours of stored patterns X1, . . . , X5 with means at (0, 0), (±2,±2) and anisotropic
covariances. (c,d) Weight functions wi(ξ) showing the influence of each stored pattern across the
space, evaluated on the same 20× 20 grid. Query distributions have fixed covariance 0.5I . Param-
eters: N = 5, with β = 0.1 (diffused retrieval) and β = 1 (sharp retrieval).

where 0 < λmin < λmax < ∞. We provide a practical method to perform random sampling of
Gaussian measures from SR in Algorithm 3, which is introduced in the proof of Theorem 1.

Definition 1 (Storage of a Gaussian measure). Assume that around every pattern Xi, a Wasserstein
ball Bi is given. The pattern Xi is stored if there exists a unique fixed point X∗

i to which all ξ ∈ Bi

converge and Bi ∩Bj = ∅ for all i ̸= j.

Assumption 1 (Separation condition and beta constraint). Let Xi = N (µi,Σi), for i ∈ [N ], be
d-dimensional Gaussian measures and suppose the eigenvalues of Σi lie in the bounded interval
[λmin, λmax]. Define MW := maxi∈[N ]W2(δ0, Xi) where δ0 is the delta measure at the origin.
Suppose β is the temperature parameter from the definition of the energy functional in equation 1.

1. Assume the separation between Gaussian measures {Xi}Ni=1 satisfies
minj ̸=i(− log⟨Xi, Xj⟩L2) ≥ d

2 log(4πλmax)+
1

βλmin
log(N3β(4M2

W+2d(λmax+λmin))).

2. Assume β satisfies the constraint β > e2

(4M2
W+2d(λmax+λmin))N3

.

Theorem 1. Let 0 < p < 1 and let 0 < λmin < λmax < ∞. Define γ := λmax/λmin , α :=

1− 2 log(γ) , R :=
√
d(λmax + λmin). Assume γ <

√
e. Then, there exists d0 ∈ N such that for all

5
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Algorithm 1 One step of DAM update (Φ operator)

Require: Current state ξ = N (m,Ω), stored patterns {Xi}Ni=1, temperature parameter β
Ensure: Updated state ξ′ = Φ(ξ) = N (m′,Ω′)

1: Step 1: Compute Wasserstein distances to all stored patterns
2: for i = 1 to N do
3: Di ← ∥µi −m∥2 + tr(Σi +Ω− 2(Σ

1/2
i ΩΣ

1/2
i )1/2)

4: end for
5: Step 2: Compute softmax weights
6: for i = 1 to N do
7: wi ← exp(−βDi)∑N

j=1 exp(−βDj)

8: end for
9: Step 3: Compute transport map coefficients

10: for i = 1 to N do
11: Ai ← Σ

1/2
i (Σ

1/2
i ΩΣ

1/2
i )−1/2Σ

1/2
i

12: end for
13: Step 4: Update means and covariances
14: m′ ←

∑N
i=1 wiµi

15: Ã←
∑N

i=1 wiAi

16: Ω′ ← ÃΩÃT

17:
18: return ξ′ = N (m′,Ω′)

d > d0, we can randomly sample N =
⌊√

p
2 exp

(
dα2

16

)⌋
Gaussian measures from the Wasserstein

sphere SR using Algorithm 3 and condition (1) in Assumption 1 is satisfied. Furthermore, if β >
3α/λmin and d > d0 then condition (2) in Assumption 1 is satisfied. Consequently, the energy
functional equation 1 has storage capacity at least Ω(N) with probability at least 1− p.

Theorem 1 extends the exponential storage capacity results of Ramsauer et al. (2020)[Theorem 3]
from the Euclidean space to the far more intricate Bures–Wasserstein space of Gaussian measures.
While the order of the radius of the Wasserstein sphere R remains Θ(

√
d), the underlying analysis is

considerably more delicate. In the Euclidean setting, separation can be quantified directly via inner
products of vectors, i.e., ∆i := x⊤

i xi − maxj ̸=ix
⊤
i xj , and independence of the coordinates makes

concentration relatively straightforward. By contrast, in the Wasserstein setting we must characterize
separation through the L2 inner product between Gaussian measures, which depends nonlinearly
on both means and covariance spectra. Establishing high-probability separation therefore requires
controlling random eigenvalues of covariance matrices, which are exchangeable but not independent,
and necessitates careful use of concentration inequalities in high dimensions. Moreover, unlike the
Euclidean case where exponential storage capacity was proved only for a fixed β (β = 1), our
analysis establishes exponential capacity uniformly over a range of β values, further complicating
the proof. Finally, the technical constraint γ <

√
e arises solely from bounding the joint distribution

of eigenvalues, and we conjecture it can be removed with sharper concentration tools. However, we
also emphasize that this conditions ensures that we dealing with actual high-dimensional Gaussian
(with concentrated spectrum) rather than spectrum with decaying properties which may implicitly be
lower-dimensional. Together, these challenges highlight that the extension to the Bures–Wasserstein
geometry is highly non-trivial, requiring using probabilistic techniques and leveraging the geometric
structure of the space more than in the Euclidean case.

3.2 RETRIEVAL GUARANTEES

We now focus on retrieval and introduce Algorithm 1 which can be used iteratively to retrieve the
stored Gaussian distribution given a query Gaussian distribution within a Wasserstein ball around
the stored Gaussian distribution.

Algorithm 1 operationalizes the Wasserstein dense associative memory update rule through a se-
quence of structured steps. First, it computes the pairwise Wasserstein distances between the query
measure and each stored Gaussian using the Bures–Wasserstein metric. These distances are then

6
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used to construct softmax weights that quantify the influence of each stored pattern. Next, the algo-
rithm determines the optimal transport maps for the covariance matrices, represented by the matrices
Ai, which specify the linear transformation required to align each stored covariance with the query.
Finally, both the mean and covariance of the query measure are updated via a weighted combination
of these transport maps, effectively performing a single-step retrieval towards the attractor associated
with the most relevant stored pattern.

This procedure can be viewed as a natural generalization of the simple weighted averaging used
in the Euclidean dense associative memory case, extended to a transport-based aggregation that
respects the geometry of probability distributions. Concretely, the energy functional E in equation 1
induces the following Wasserstein gradient at a Gaussian measure µ ∈ P2(Rd):

∇WE(ξ)(x) = 2

N∑
i=1

wi(ξ)
(
Ti(x)− x

)
= 2

N∑
i=1

wi(ξ)
(
µi +Ai(x−m)− x

)
,

where Ai = Σ
1/2
i (Σ

1/2
i ΩΣ

1/2
i )−1/2Σ

1/2
i and the weights wi(ξ) are as in equation 3 which has

an explicit form due to closed form availability of the Wasserstein-2 metric between Gaussians.
Furthermore, as the Bures-Wasserstein gradient is the projection of the Wasserstein gradient to the
tangent space at µ, we can simply set the Wasserstein gradient to zero. Rather than explicitly sim-
ulating the Wasserstein gradient flow d

dtµt = −∇WE(µt), Algorithm 1 solves the implicit fixed-

point equation ξnew = Φ(ξ) with Φ(ξ) =
(∑N

i=1 wi(ξ)Ti

)
#
ξ. This approach is motivated by

efficiency and stability: solving the implicit equation directly moves the query measure closer to a
stationary point of E in a single step, effectively “jumping” to the basin of attraction of the most
relevant stored pattern. By contrast, an explicit discretization of the Wasserstein gradient flow may
require many small steps and careful tuning of step sizes, while still potentially under-shooting or
oscillating around the fixed point.

Next, we prove the rate of convergence in 2-Wasserstein distance of a query measure in the basin of
attraction of a stored Gaussian measure to the fixed point in the same basin of attraction.
Theorem 2. Let {Xi = (µi,Σi)}Ni=1 be Gaussian measures such that the eigenvalues of Σi lie in a
bounded interval [λmin, λmax] and ΣiΣj = ΣjΣi for all i, j ∈ [N ]. Define MW := maxiW2(Xi, δ0)
where δ0 is the delta measure at the origin. Suppose that the Assumption 1 holds. Let r = 1/

√
βN ,

Bi = {ν ∈ P2(Rd) : W2(ν,Xi < r)}, and suppose ξ = N (m,Ω) be a query measure such that
W2(Xi, ξ) < r and ΣiΩ = ΩΣi for all i ∈ [N ]. Then (1) There exists a unique fixed point X∗

i ∈ Bi

and (2) For any fixed ε < r we have

W2(Φ
n(ξ), X∗

i ) < ε for all n ≥

 log
(
ε
2

√
βN
)

log
(

144βM2
W

N

)
 .

Corollary 1. By Theorem 1 exponentially (in d) many Gaussian measures N can be stored on a
Wasserstein sphere with high probability. Hence, for any fixed ε < r and large enough dimension d,
we can sample sufficiently large number of Gaussian measures N such that W2(Φ(ξ), X

∗
i ) < ε. In

other words, Algorithm 1 converges to the fixed point X∗
i , starting from ξ, in one step.

The next theorem obtains a quantitative bound on the one-step retrieval error.
Theorem 3. Let {Xi}Ni=1 be Gaussian measures sampled using Algorithm 3 and ξ = N (m,Ω) be a
query measure such that W2(Xi, ξ) < r. Let r = 1/

√
βN , Bi = {ν ∈ P2(Rd) : W2(ν,Xi < r)}.

Under the assumptions of Lemma 3 and 5, we obtain W2(Φ(ξ), Xi) ≤ 3/
√
βN .

Corollary 2. By Theorem 1 exponentially (in dimension d) many Gaussian measures N can be
stored on a Wasserstein sphere with high probability. Hence, the retrieval error in one step is
exponentially small in dimension d.

In the Euclidean setting, Ramsauer et al. (2020)[Theorems A8, A9] show that both convergence rate
and retrieval error decay exponentially with the separation parameter ∆i. Our Theorems 2 and 3
establish analogous results in the Wasserstein setting through a simplified analysis: when storing
N = Ω(ed) Gaussian measures, both the convergence rate and retrieval error decay exponentially
in the dimension d. This demonstrates that the favorable scaling properties of dense associative
memories extend naturally to distributional representations.
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(a) (b)

(c) (d)

Figure 3: Convergence of retrieval dynamics (Algorithm 1) for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter β and perturbation radius r. (a) β = 1, r = 1/

√
βN , (b) β = 1, r = 100/

√
βN ,

(c) β = 0.1, r = 1/
√
βN , (d) β = 0.1, r = 100/

√
βN . Averages computed over 7500 per-

turbed measures from N = 10000 sampled Gaussians in dimension 50 with eigen-value bounds
λmin = 1, λmax = 1.1. The dotted red horizontal line indicates the convergence threshold at 2-
Wasserstein distance of 10−6.

4 NUMERICAL EXPERIMENTS

4.1 SYNTHETIC DATA

Figure 3 (and Figure 6 in Appendix Section 7.2.2) illustrates the convergence of our retrieval dy-
namics under multiple iterations of Algorithm 1, showing the average 2-Wasserstein distance to the
original stored patterns. We sample N = 10000 Gaussian patterns on a Wasserstein sphere of radius
R = d(λmax+λmin) with d = 50, λmin = 1, λmax = 1.1, using a common eigen-basis and bounded
eigenvalues (sampled using Algorithm 2 in Section 7.2.1). Retrieval starts from 0.75N randomly
perturbed patterns at 2-Wasserstein distance r from their originals.

The parameter β critically affects retrieval: for β = 1, the dynamics converge to stored patterns, ex-
hibiting associative memory behavior, while for β = 0.1, convergence fails as the weighted barycen-
tric transport nearly equally averages all patterns. We test two perturbation radii: r = 1/

√
βN ,

which aligns with the contraction guarantee from Lemma 5, and a 100-fold larger radius. For β = 1,
retrieval succeeds even at the larger radius, suggesting the theoretical bound is conservative; for
β = 0.1, retrieval fails at both radii. Results with non-commuting covariances are in Section 7.2.3.

4.1.1 REAL-WORLD DATA

To evaluate our distributional associative memory on real-world data, we employ Gaussian word
embeddings learned from natural language text (Vilnis & McCallum, 2014), which represents
words as multivariate Gaussian distributions. We train embeddings on the Text8 corpus, a stan-
dard benchmark containing 17 million tokens of cleaned Wikipedia text. From this corpus, we
construct a vocabulary of N = 10000 most frequent words. The Gaussian embeddings are trained
in d = 50 dimensions using spherical covariances (i.e., the covariance matrix Σ = σ2I for some
σ), where each word is represented as N (µ, σ2I) with µ ∈ R50, σ ∈ R+. Training in Vilnis
& McCallum (2014) employs a 5-epoch schedule using KL divergence as the energy function.

8
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(a) β = 10 (b) β = 50

Figure 5: Convergence of retrieval dynamics (Algorithm 1) for perturbed Gaussian measures with
different temperature parameters. Average 2-Wasserstein distance to original measures over itera-
tions. Averages computed over 3750 perturbed measures from N = 10000 Gaussian measures in
dimension 50. The shaded regions represent ±1 standard deviation. (a) β = 10: no convergence (b)
β = 50: convergence with less variance.

Figure 4: Retrieval success rate vs β for Gaus-
sian word embeddings. The plot shows the per-
centage of correctly retrieved words after 10 itera-
tions of Algorithm 1, with initial perturbations as
2-Wasserstein distance of 1/

√
βN from original

embeddings. Parameters: N = 10000, d = 50,
spherical covariances.

To test retrieval dynamics, we randomly se-
lect 5 words from N = 10000 words. For
each selected word with Gaussian representa-
tionN (µi, σ

2
i I), we generate a perturbed query

by changing both mean and variance to achieve
a 2-Wasserstein distance of 1/

√
βN from the

original, where β is the temperature parameter.
We then apply Algorithm 1 iteratively, track-
ing the 2-Wasserstein distance to the original
word’s embedding and the nearest word in the
vocabulary according to the 2-Wasserstein dis-
tance.

Figures 4 and 5 illustrate the critical role of
the temperature parameter β in retrieval con-
vergence for real-world Gaussian word embed-
dings. At β = 10 (Figure 5a), the dynamics
fail to converge, exhibiting high variance across
word samples, whereas at β = 50 (Figure 5b),
the system converges rapidly in a single step
with minimal variance. Figure 4 further reveals
a sharp phase transition in retrieval success: for β < 10, retrieval is almost entirely unsuccess-
ful, while around β ≈ 15, the success rate rapidly increases from 0% to 100%, achieving perfect
retrieval for β > 30. This behavior confirms our theoretical prediction that sufficiently large β is
necessary to create sharp energy basins, satisfy the separation condition in Assumption 1, and ensure
contractivity of the Φ operator. We provide additional results in Section 7.2.4.

5 CONCLUSION

In this work, we extended dense associative memories from Euclidean space to the Bures–
Wasserstein manifold of Gaussian measures. We proposed a Wasserstein-energy-based memory,
derived explicit retrieval maps, and established theoretical guarantees including high-probability re-
trieval bounds, and exponential storage capacity. Empirically, our Gaussian DAM achieves robust
retrieval under perturbations, demonstrating the utility of transport-based aggregation. Conceptually,
this framework enables principled reasoning over distributions rather than point estimates, bridging
classical associative memories with modern distributional representations. Future directions include
extending to broader distribution families (in particular point-cloud data represented as empirical
measures), developing particle-based retrieval algorithms, and exploring applications in generative
modeling and probabilistic reasoning.

9
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6 REPRODUCIBILITY STATEMENT

The Appendix contains all theoretical results, and the supplementary material provides code to re-
produce our experiments. LLM was used only to polish the writing.
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Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Now Publishers, 2019.
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7 APPENDIX

7.1 RELATED WORK

The study of associative memory begins with Hopfield’s seminal model (Hopfield, 1982b) which
framed memory recall as gradient descent on a quadratic energy landscape . While conceptually
foundational, the quadratic Hopfield energy yields only linear storage capacity in the ambient di-
mension and suffers from spurious attractors at scale. Recent work revived and substantially ex-
tended this line of research by introducing highly nonlinear energy functions that dramatically in-
crease capacity. In particular (Krotov & Hopfield, 2016) proposed log-sum-exp style energies and
showed that dense associative memories (DAMs) can realize exponentially many stable patterns
relative to dimension. Subsequent developments formalized the exponential capacity rigorously
and established connections between modern attention/associative recall mechanisms and Hopfield-
style energy landscapes (see, for e.g., Demircigil et al. (2017); Ramsauer et al. (2020); Lucibello &
Mézard (2024)), showing both practical and theoretical equivalences between attention-like updates
and energy-based recall. We also refer the interested reader to recent works (Krotov & Hopfield,
2018; Krotov, 2021; dos Santos et al., 2024; Hoover et al., 2024b; Hu et al., 2023; Hoover et al.,
2024a; Wu et al., 2024; Hoover et al., 2025), including the survey by Krotov et al. (2025) for the
state-of-the-art on modern associative memories.

Optimal transport, Wasserstein geometry and barycenters. Optimal transport has emerged as a cen-
tral tool to compare and interpolate probability measures; the Wasserstein-2 metric in particular
induces a rich geometric structure that is especially well behaved on Gaussian families (the so-
called Bures–Wasserstein geometry). The mathematical theory of Wasserstein barycenters and their
computation was significantly advanced by Agueh and Carlier (Agueh & Carlier, 2011), and effi-
cient numerical algorithms, including entropic regularization approaches, have been developed by
Cuturi and Doucet (Cuturi & Doucet, 2014) and others. The computational and theoretical foun-
dations of optimal transport are now well-summarized in recent treatments (Peyré & Cuturi, 2019).
Our work leverages these results: stationary points of our distributional log-sum-exp energy are self-
consistent barycenters in Wasserstein space, and we exploit closed-form formulas and fixed-point
iterations available for Gaussian barycenters to derive concrete retrieval dynamics and guarantees.

Very recently, the generative modeling community has increasingly focused on models and archi-
tectures that operate over probability distributions. Rectified Point Flow learns continuous velocity
fields for point-cloud registration and assembly (Sun et al., 2025), Wasserstein Flow Matching gen-
eralizes flow matching to families of distributions via optimal transport geometry (Haviv et al.,
2025), and Bonet et al. (2025) propose flowing measures for distributional generation tasks. These
approaches emphasize generative modeling or alignment, whereas our work develops a dense asso-
ciative memory over probability measures with rigorous capacity and retrieval guarantees, thereby
complementing flow-based paradigms. Our approach can be seen as an energy-based generative
mechanism in the space of probability measures: fixed points of our Wasserstein log-sum-exp energy
yield full probability laws that serve as generative attractors. This perspective unifies associative
memory and generative modeling, and suggests novel ways to incorporate memory into uncertainty-
aware generative pipelines.

7.2 ADDITIONAL EXPERIMENTAL RESULTS

7.2.1 SAMPLING EIGENVALUES

First, we present Algorithm 2, which is a minor modification of Algorithm 3 and makes sampling of
eigenvalues computationally faster.

7.2.2 ADDITIONAL NUMERICAL EXPERIMENTS WITH COMMUTING COVARIANCE

Figure 6 demonstrates the robustness of our retrieval dynamics across different problem scales.
While maintaining the same simulation protocol as Figure 3 and parameter settings (β ∈
{1, 0.1} , r ∈ {1/

√
βN, 100/

√
βN}), we test with N = 5000 Gaussian measures in dimension

d = 25, compared to N = 10000, d = 50 in Figure 3. The consistent convergence behavior
across different scales validates that our theoretical results hold for varying dimensions and measure
counts.
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Algorithm 2 Sampling from commuting Gaussian measures on Wasserstein sphere

Require: R > 0 (sphere radius), N ∈ N (number of samples), λmin, λmax > 0 (eigenvalue bounds
with λmin ≤ λmax), d ∈ N (dimension)

Ensure: {X1, . . . , XN} where Xi ∼ N (µi,Σi) on SR
1: Initialize: Fix an orthogonal matrix U ∈ Rd×d

2: Set target sum S = R2

2 = d(λmin+λmax)
2

3: for i = 1 to N do
4: repeat
5: Sample λ

(i)
1 , . . . , λ

(i)
d−1 ∼ Uniform[λmin, λmax]

6: Compute λ
(i)
d = S −

∑d−1
k=1 λ

(i)
k

7: until λ(i)
d ∈ [λmin, λmax]

8: Randomly permute (λ
(i)
1 , . . . , λ

(i)
d ) to avoid bias

9: Construct covariance matrix: Σi ← U · diag(λ(i)
1 , . . . , λ

(i)
d ) · UT

10: Sample mean vector: µi ∼ Uniform
({

µ ∈ Rd : ∥µ∥2 = R√
2

})
11: Set Xi ← N (µi,Σi)
12: end for
13: return {X1, . . . , XN}

(a) (b)

(c) (d)

Figure 6: Convergence of retrieval dynamics (Algorithm 1) for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter β and perturbation radius r. (a) β = 1, r = 1/

√
βN , (b) β = 1, r = 100/

√
βN ,

(c) β = 0.1, r = 1/
√
βN , (d) β = 0.1, r = 100/

√
βN . Averages computed over 3750 per-

turbed measures from N = 5000 sampled Gaussians in dimension 25 with eigen-value bounds
λmin = 1, λmax = 1.1. The dotted red horizontal line indicates the convergence threshold at 2-
Wasserstein distance of 10−6.

The one step convergence observed for β = 1 in Figures 3 and 6 makes the visualization of contours
along retrieval dynamics unnecessary as the retrieved and original Gaussian measures essentially
overlap. In contrast, the case β = 0.1 in Figures 3 and 6 exhibits different behavior, with the retrieval
dynamics failing to converge to the original pattern. Figure 7 provides a detailed visualization,
showing the evolution of one perturbed Gaussian measure through five iterations of Algorithm 1.
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Figure 7: Evolution of a perturbed Gaussian measure over 5 iterations of Algorithm 1 (first 2 dimen-
sions). Green dashed contours represent the original Gaussian measure, while blue solid contours
show the current state after each iteration. The Wasserstein distance W2 to the original pattern is
displayed above each panel. Stars indicate the mean vectors (green: original, blue: current). The
parameter values are N = 5000, d = 25, β = 0.1, λmin = 1, λmax = 1.1.

The plot reveals that the retrieved distribution diverges from the original Gaussian distribution both
in mean and covariance structure.

7.2.3 NON-COMMUTING COVARIANCE SIMULATION

To evaluate the retrieval dynamics of Algorithm 1 in the general non-commuting covariance ma-
trices case, we sampled N = 1000 Gaussian distributions Xi = N (µi,Σi), for i ∈ [N ], from a
Wasserstein sphere of radius R =

√
2d in dimension d = 10. Following the approach used for

commuting covariances, we allocated the total Wasserstein budget R2 = 2d equally between the
mean and covariance components, setting ∥µi∥2 = R2/2 = tr(Σi) for all i ∈ [N ].

For each Gaussian measure Xi, the mean vector was sampled uniformly from the sphere of radius
R/
√
2. The covariance matrix was constructed by first generating a matrix W ∈ RR2/2×R2/2 with

i.i.d. standard Gaussian entries, forming the initial positive semi-definite matrix WWT . To ensure
numerical stability in subsequent computations, we added a regularization terms 0.01I to WWT .
The resultant matrix was then scaled by an appropriate factor to achieve a trace of R2/2. This
sampling procedure generates diverse eigenvalues and eigenvectors without imposing a commuting
covariance structure.

To test the retrieval dynamics, we randomly selected 750 Gaussian measures (75% of the total) and
perturbed each by a Wasserstein distance of r = 1/

√
βN . The perturbation was implemented by

a split-budget approach, allocating r2/2 to the perturbation of the mean and r2/2 to the covari-
ance perturbation. For the covariance perturbation, we generated a random positive semi-definite
perturbation direction and used binary search to find the scaling parameter that achieves the target
covariance perturbation. This approach ensures that each perturbed Gaussian measures lies at a
2-Wasserstein distance of r from the original Gaussian measure.

Figure 8 demonstrates the convergence behavior with the above experimental setup. Panels (a), (b)
show convergence in one step at β = 1 similar to the commuting covariance matrices case. However,
this convergence has higher variance than in the commuting case and reaches a threshold level of
10−3 rather than the 10−6 achieved in the commuting case. Panels (c), (d) show non-convergence
at β = 0.1, consistent with our earlier findings for commuting covariance matrices.

7.2.4 ADDITIONAL REAL-DATA EXPERIMENTS

Figure 9 demonstrates the retrieval dynamics of Algorithm 1 of our distributional associative mem-
ory on Gaussian word embeddings learned from the Text8 corpus. The temperature parameter β
critically determines retrieval success: at β = 1, the dynamics fail to converge to their original
embeddings; at β = 10, the dynamics preserve the word for 1-3 iterations with the word dynamics
diverging from their original in subsequent iterations; and at β = 50, retrieval achieves convergence
to the original word in a single iteration. The bottom panels reveal the word-level evolution during
retrieval, where perturbed embeddings initially map to the same word and the dynamics of Algo-
rithm 1 preserve the original word for sufficiently large β. This behavior aligns with our theoretical
predictions, where higher β values create sharper energy basins that facilitate more robust retrieval,
while low β values result in overly smooth energy landscapes that prevent proper pattern separation.
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(a) (b)

(c) (d)

Figure 8: Convergence of retrieval dynamics (Algorithm 1) for perturbed Gaussian measures. Av-
erage 2-Wasserstein distance to original measures over iterations for different values of temperature
parameter β and perturbation radius r. (a) β = 1, r = 1/

√
βN , (b) β = 1, r = 100/

√
βN , (c)

β = 0.1, r = 1/
√
βN , (d) β = 0.1, r = 100/

√
βN . Averages computed over 750 perturbed mea-

sures from N = 1000 sampled Gaussians in dimension 10. The dotted red horizontal line indicates
the convergence threshold at 2-Wasserstein distance of 10−6.

7.3 PRELIMINARY RESULTS

In this section, we establish the following three fundamental results which are crucial to prove our
results on storage capacity and retrieval rates:

1. The operator Φ defined by weighted transport maps in equation 5 preserves Gaussian struc-
ture (Lemma 2).

2. For sufficiently separated patterns, Φ maps Wasserstein balls around patterns to themselves
(Lemma 3).

3. Within these balls, the operator Φ is a contraction, guaranteeing convergence to unique
fixed points (Lemma 5).

Lemma 1. Let X1 = N (µ1,Σ1) and X2 = N (µ2,Σ2). Then

W 2
2 (X1, X2) = ∥µ1 − µ2∥2 + tr(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2) .

Proof of Lemma 1. This is Lambert et al. (2022)[Equation 5].

Lemma 2. Let Xi = N (µi,Σi) for i = 1, 2, . . . , N be the stored patterns. If ξ = N (m,Σ0), then

Φ(ξ) = N (m′, ÃΣ0Ã
T ) ,

where m′ =
∑N

i=1 wi(ξ)µi and Ã :=
∑N

i=1 wi(ξ)Ai.

Proof of Lemma 2. By Asuka (2011)[Lemma 2.3], we have that the optimal transport map from ξ
to Xi is

Ti(x) = µi +Ai(x−m) ,
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(a) β = 1 (b) β = 10 (c) β = 50

(d) Word evolution at β = 1

(e) Word evolution at β = 10

(f) Word evolution at β = 50

Figure 9: Retrieval dynamics of perturbed Gaussian word embeddings for different temperature pa-
rameters. Top row: Average 2-Wasserstein distance to original embeddings over iterations. Bottom
rows: Evolution of retrieved words, showing convergence patterns. Initial perturbation achieves
W2 distance of 1/

√
βN from original embeddings. Results are for 5 randomly selected words from

N = 10000 vocabulary.

where Ai = Σ
1/2
i (Σ

1/2
i Σ0Σ

1/2
i )−1/2Σ

1/2
i . Therefore, the weighted sum of transport maps is:

N∑
i=1

wi(ξ)Ti(x) =

N∑
i=1

wi(ξ) (µi +Ai(x−m))

= m′ + Ã(x−m) ,

where Ã :=
∑N

i=1 wi(ξ)Ai and m′ :=
∑N

i=1 wi(ξ)µi. Thus, the weight sum of transport maps is
an affine map. From the definition of operator Φ in equation 5, we have

Φ(ξ) = S#ξ ,

17
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where S =
∑N

i=1 wi(ξ)Ti. If X ∼ ξ = N (m,Σ0), then S(X) = m′ + Ã(X − m). Hence,
E[S(X)] = m′ and Var(S(X)) = ÃCov(X)ÃT = ÃΣ0Ã

T and

Φ(ξ) = N (m′, ÃΣ0Ã
T ) ,

where m′ =
∑N

i=1 wi(ξ)µi and Ã :=
∑N

i=1 wi(ξ)Ai.

The idea is to apply Banach’s fixed point theorem to prove the existence of a unique fixed point
around each pattern. To that end, first we prove that Φ is a self-map in a neighborhood around each
pattern.

Lemma 3. Let Xi = N (µi,Σi) for i = 1, 2, . . . N be the given patterns, where µi ∈ Rd and
Σi ≻ 0. Define the Wasserstein ball Bi = {ν ∈ P2(Rd) : W2(Xi, ν) ≤ r} where r = 1√

βN
. Let

ξ = N (m,Ω) ∈ Bi with Ω ≻ 0 be the query measure. Assume that all the covariance matrices
commute pairwise: ΣiΣj = ΣjΣi for all i, j and ΣiΩ = ΩΣi for all i. Let the eigenvalues of all
Xi and ξ lie in a bounded interval [λmin, λmax]. Define the operator Φ : P2(Rd)→ P2(Rd) as:

Φ(ξ) :=

 N∑
j=1

wj(ξ)Tj


#

ξ ,

where Tj is the optimal transport map from ξ to Xj and the weights are

wj(ξ) =
exp(−βW 2

2 (Xj , ξ))∑N
k=1 exp(−βW 2

2 (Xk, ξ))
.

Define

1. MW := maxiW2(Xi, δ0) where δ0 is the delta measure at the origin

2. ∆i := minj ̸=i(− log⟨Xi, Xj⟩L2)

If the separation condition ∆i satisfies

∆i ≥
d

2
log(4πλmax) +

1

βλmin
log
(
N3β(4M2

W + 2d(λmax + λmin))
)
,

and
(
4M2

W + 2d(λmax + λmin)
)
N3β > e2, then

Φ(ξ) ∈ Bi .

Proof of Lemma 3. First, since Σi,Σj commute for all i, j and Σi commutes with Ω for all i, we
can diagonalize Σi,Ω in a common eigenbasis. In particular, there exists an orthogonal matrix U
such that

Σi = Udiag(λi,1, . . . , λi,d)U
T , Ω = Udiag(ω1, . . . , ωd)U

T ,

for all i ∈ [N ], where diag(λi,1, . . . , λi,d) and diag(ω1, . . . , ωd) are diagonal matrices containing
eigenvalues of Σi,Ω respectively.

Next, we relate the L2 inner product between X1, X2 to the 2-Wasserstein distance between them.
By definition of the L2 inner product and since Σi,Σj share a common eigenbasis U , we have

− log⟨Xi, Xj⟩L2 =
d

2
log(2π) +

1

2
log |Σi +Σj |+

1

2
(µi − µj)

T (Σ1 +Σ2)
−1(µi − µj)

=
d

2
log(2π) +

1

2

d∑
k=1

log(λi,k + λj,k) +
1

2
(µi − µj)

T diag

(
1

λi,1 + λj,1
, . . . ,

1

λi,d + λj,d

)
(µi − µj)

=
d

2
log(2π) +

1

2

d∑
k=1

log(λi,k + λj,k) +
1

2

d∑
k=1

[UT (µi − µj)]
2
k

λi,k + λj,k
.
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Since log(λi,k + λj,k) ≤ log(2λmax), and − log⟨Xi, Xj⟩L2 ≥ ∆i, we obtain

d∑
k=1

[UT (µi − µj)]
2
k

λi,k + λj,k
≥ 2

(
∆i −

d

2
log(2π)− d

2
log(2λmax)

)
.

Next, since λi,k + λj,k ≥ 2λmin, we get

∥µi − µj∥2 =

d∑
k=1

[UT (µi − µj)]
2
k ≥ 4λmin

(
∆i −

d

2
log(4πλmax)

)
=: D . (6)

Next, since the weight wi is given by

wi(ξ) =
exp

(
−βW 2

2 (Xi, ξ)
)∑N

j=1 exp (−βW 2
2 (Xj , ξ))

=
1

1 +
∑

j ̸=i exp (−β[W 2
2 (Xj , ξ)−W 2

2 (Xi, ξ)])
, (7)

we first show that wi(ξ) is large and wj(ξ), for all j ̸= i, is small by showing that W 2
2 (Xj , ξ) −

W 2
2 (Xi, ξ) is large for all j ̸= i. By the triangle inequality, the assumption ξ ∈ Bi, and from

equation 6, we get

W2(Xj , ξ) ≥W2(Xj , Xi)−W2(Xi, ξ) ≥W2(Xj , Xi)− r ≥
√
D − r .

By squaring both the sides of the above inequality and subtracting W 2
2 (Xi, ξ), we get:

W 2
2 (Xj , ξ)−W 2

2 (Xi, ξ) ≥ D − 2
√
Dr .

By plugging the above inequality into equation 7, we obtain:

wi(ξ) ≥
1

1 + (N − 1) exp(−β(D − 2
√
Dr))

.

By defining ε := (N − 1) exp(−β(D − 2
√
Dr)) and using 1

1+ε ≥ 1 − ε for all ε > 0, we get
wi(ξ) ≥ 1− ε.

Next, we find an upper bound on W2(Φ(ξ), Xi). By Lemma 1 and Lemma 2, we have

W 2
2 (Φ(ξ), Xi) = ∥m′ − µi∥2 + tr(ÃΩÃT +Σi − 2((ÃΩÃT )1/2Σi(ÃΩÃT )1/2) , (8)

where m′ =
∑N

i=1 wi(ξ)µi and Ã :=
∑N

i=1 wi(ξ)Ai. We refer to the above first term as the mean
error and the second term as the covariance error.

First, we bound the mean error. Using ∥µk∥ ≤ W2(Xk, δ0) ≤ MW for all k, wi(ξ) = 1 −∑
j ̸=i wj(ξ), and Jensen’s inequality, we get:

∥m′ − µi∥2 = ∥(wi(ξ)− 1)µi +
∑
j ̸=i

wj(ξ)µj∥2 = ∥
∑
j ̸=i

wj(ξ)(µj − µi)∥2 ≤
∑
j ̸=i

wj(ξ)∥µj − µi∥2 ≤ 4εM2
W .

(9)

Next, we bound the covariance error. To simplify notation in the next steps, we define:

CovErr(Σ1,Σ2) := tr(Σ1 +Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2) .

Using this notation, the covariance error in equation 8 is CovErr(ÃΩÃT ,Σi). By definition,

Ai = Σ
1/2
i (Σ

1/2
i ΩΣ

1/2
i )−1/2Σ

1/2
i ,

and since Σi,Ω commute for all i ∈ [N ], Σi = Udiag(λi,1, . . . , λi,d)U
T , and Ω =

Udiag(ω1, . . . , ωd)U
T , we have

Ai = Udiag

(√
λi,j

ωj

)d

j=1

UT .
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By plugging the above into the definition of Ã, we obtain

Ã =

N∑
i=1

wi(ξ)Ai = Udiag

(
N∑

k=1

wk(ξ)

√
λk,j

ωj

)d

j=1

UT .

Therefore,

ÃΩÃT = Udiag

( N∑
k=1

wk(ξ)
√
λk,j

)2
d

j=1

UT .

Since ÃΩÃT is diagonal in the basis U , we have

(ÃΩÃT )1/2 = Udiag

((
N∑

k=1

wk(ξ)
√
λk,j

))d

j=1

UT . (10)

From equation 10 and Σi = Udiag(λi,1, . . . , λi,d)U
T , we obtain:

(
(ÃΩÃT )1/2Σi(ÃΩÃT )1/2

)1/2
= Udiag

(√
λi,j

N∑
k=1

wk(ξ)
√
λk,j

)d

j=1

UT .

Applying the cyclic property of the trace to the above expression yields

tr

((
(ÃΩÃT )1/2Σi(ÃΩÃT )1/2

)1/2)
= tr

diag

(√
λi,j

N∑
k=1

wk(ξ)
√
λk,j

)d

j=1

 =

d∑
j=1

√
λi,j

N∑
k=1

wk(ξ)
√
λk,j .

Next, by plugging the above expression into the definition of CovErr(ÃΩÃT ,Σi), by using wi(ξ)−
1 = −

∑
k ̸=i wk(ξ), (a− b)2 ≤ 2(a2 + b2) and

∑
k ̸=i wk(ξ) = 1− wi(ξ) ≤ ε, we obtain

CovErr(ÃΩÃT ,Σi) =

d∑
j=1

(
N∑

k=1

wk(ξ)
√
λk,j

)2

+

d∑
j=1

λi,j − 2

d∑
j=1

√
λi,j

N∑
k=1

wk(ξ)
√
λk,j

=

d∑
j=1

(
N∑

k=1

wk(ξ)
√
λk,j −

√
λi,j

)2

=

d∑
j=1

(wi(ξ)− 1)
√
λi,j +

∑
k ̸=i

wk(ξ)
√

λk,j

2

=

d∑
j=1

−∑
k ̸=i

wk(ξ)
√

λi,j +
∑
k ̸=i

wk(ξ)
√
λk,j

2

=

d∑
j=1

∑
k ̸=i

wk(ξ)(
√

λk,j −
√
λi,j)

2

≤
d∑

j=1

(
√
λmax −

√
λmin)

2

∑
k ̸=i

wk(ξ)

2

≤ 2d(λmax + λmin)ε
2 . (11)

Therefore, by adding the bound on the mean error in equation 9 and the covariance error in equa-
tion 11, we get

W 2
2 (Φ(ξ), Xi) ≤

(
4M2

W + 2d(λmax + λmin)
)
ε2 = Cε2 ,
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where C := 4M2
W + 2d(λmax + λmin). The next steps show that Cε2 < r2, which would finish the

proof. Since

∆i ≥
d

2
log(4πλmax) +

1

βλmin
log
(
N3β(4M2

W + 2d(λmax + λmin))
)
,

we have by definition of D,

D = 4λmin

(
∆i −

d

2
log(4πλmax)

)
≥ 4

β
log
(
CN3β

)
= 8L , (12)

where L := 1
2β log(CN3β). Next, by definition of ε, we have ε < N2 exp(−2β(D − 2

√
Dr)).

Substituting r = 1√
βN

, we get Cε2 < CN2 exp(−2βD + 4
√

βD/N). To show that Cε2 < r2, it
suffices to prove

CN3β exp(−2βD) exp(4
√

βD/N) < 1 .

Taking logarithms, this is equivalent to log(CN3β)− 2βD + 4
√
βD/N < 0. From the definition

of L and dividing by 2β, this condition is equivalent to showing L − D + 2
√
D√
βN

< 0. Define

f(D) := L − D + 2
√
D√
βN

. We will show that f(D) < 0, which will finish the proof. Note that
f ′(D) < 0 if D > 1

βN . From equation 12 and the assumption CN3β > e2, we have

D ≥ 8L =
4

β
log(CN3β) ≥ 8

β
>

8

βN
.

Therefore, f(D) < f
(

8
βN

)
for D > 8

βN . Again using the assumption CN3β > e2 in the definition
of L, we obtain

f

(
8

βN

)
<

1

βN
− 8

βN
+ 2

2
√
2

βN
< 0 ,

and hence f(D) < 0, which finishes the proof.

The following lemma proves that the geodesic interpolation of two Gaussian measures with com-
muting covariance matrices also commutes with the two covariance matrices. Additionally, the
lemma finds all the eigenvalues of the covariance matrix of the geodesic interpolation in terms of
the eigenvalues of the two covariance matrices. This result is then used in Lemma 5 to prove that Φ
is a contraction mapping.
Lemma 4. Let ξ1 = N (m1,Ω1), ξ2 = N (m2,Ω2) be two normal distributions in Rd with Ω1,Ω2 ≻
0. Suppose Ω1,Ω2 commute. Let ξt = N (mt,Ωt) be the geodesic interpolation in Wasserstein
space from ξ1 to ξ2. Then

1. Ωt commutes with Ω1,Ω2 for all t ∈ [0, 1]

2. The i-th eigenvalue ωi(t) of Ωt is given by

ωi(t) =

(
(1− t) + t

√
ω2,i/ω1,i

)2

ω1,i ,

where ω1,i, ω2,i are the i-th eigenvalues of Ω1,Ω2 respectively.

Proof of Lemma 4. By Lemma 2, the optimal transport map from ξ1 to ξ2 has the form T (x) =

m2 + A(x − m1) with A = Ω
1/2
2 (Ω

1/2
2 Ω1Ω

1/2
2 )−1/2Ω

1/2
2 . Since Ω1,Ω2 commute, they can be

diagonalized by an orthogonal matrix U such that Ω1 = UΛ1U
T ,Ω2 = UΛ2U

T where Λ1,Λ2 are
diagonal matrices.

The commutativity of Ω1,Ω2 implies Ω1,Ω
1/2
2 also commute and so, (Ω

1/2
2 Ω1Ω

1/2
2 )−1/2 =

(Ω2Ω1)
−1/2. Hence, the matrix A simplifies to

A = Ω
1/2
2 (Ω

1/2
2 Ω1Ω

1/2
2 )−1/2Ω

1/2
2
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= UΛ
1/2
2 (Λ2Λ1)

−1/2Λ
1/2
2 UT = UΛ

1/2
2 Λ

−1/2
1 UT .

Next, note that the geodesic interpolation ξt = ((1− t)I + tT )#ξ1 is the pushforward of ξ1 via the
map St(x) = ((1 − t)I + tA)x + (tm2 − tAm1). Since the pushforward of a Gaussian N (m,Ω)
through an affine map x→ Cx+ d is N (Cm+ d,CΩCT ), we have ξt = N (mt,Ωt) where

mt = (1− t)m1 + tm2

Ωt = ((1− t)I + tA)Ω1((1− t)I + tA)T . (13)

Define B := (1− t)I + tA = (1− t)I + tUΛ
1/2
2 Λ

−1/2
1 UT . This means

BU = U((1− t)I + tΛ
1/2
2 Λ

−1/2
1 ) , (BU)T = ((1− t)I + tΛ

−1/2
1 Λ

1/2
2 )UT .

By plugging the above expressions for BU, (BU)T into equation 13, we get:

Ωt = BΩ1B
T = BUΛ1U

TBT = U((1− t)I + tΛ
1/2
2 Λ

−1/2
1 )Λ1((1− t)I + tΛ

−1/2
1 Λ

1/2
2 )UT .

This means Ωt = UΛtU
T where Λt := ((1 − t)I + tΛ

1/2
2 Λ

−1/2
1 )Λ1((1− t)I + tΛ

−1/2
1 Λ

1/2
2 ) and

Ωt can be diagonalized by the same matrix U that diagonalizes Ω1,Ω2. Therefore, Ωt commutes
with Ω1,Ω2 for all t ∈ [0, 1].

Next, by the above definition of Λt, note that

[Λt]ii = ((1− t) + t
√
ω2,i/ω1,i)ω1,i((1− t) + t

√
ω2,i/ωi,i) = ((1− t) + tτi)

2ω1,i ,

where ω1,i, ω2,i are the i-th eigenvalues of Ω1,Ω2 respectively and τi :=
√
ω2,i/ω1,i for i =

1, 2, . . . , d.

The next lemma proves that the operator Φ is a contraction mapping.
Lemma 5. Let Xi = N (µi,Σi) for i = 1, 2, . . . N be the given patterns, where µi ∈ Rd and
Σi ≻ 0. Define the Wasserstein ball Bi = {ν ∈ P2(Rd) : W2(Xi, ν) ≤ r} where r = 1√

βN
. Let

ξk = N (mk,Ωk) ∈ Bi with Ωk ≻ 0 be two query measures, where k ∈ {1, 2}. Assume that all
the covariance matrices commute pairwise: ΣiΣj = ΣjΣi for all i, j ∈ [N ] and ΣiΩk = ΩkΣi for
all i ∈ [N ], k ∈ {1, 2}. Let the eigenvalues of all Xi, ξ1, ξ2 lie in a bounded interval [λmin, λmax].
Define the operator Φ : P2(Rd)→ P2(Rd) as:

Φ(ξ) :=

 N∑
j=1

wj(ξ)Tj


#

ξ ,

where Tj is the optimal transport map from ξ to Xj and the weights are

wj(ξ) =
exp(−βW 2

2 (Xj , ξ))∑N
k=1 exp(−βW 2

2 (Xk, ξ))
.

Define

1. MW := maxiW2(Xi, δ0) where δ0 is the delta measure at the origin

2. ∆i := minj ̸=i(− log⟨Xi, Xj⟩L2)

Assume

1.

∆i ≥
d

2
log(4πλmax) +

1

βλmin
log
(
N3β(4M2

W + 2d(λmax + λmin))
)
.

(Assumption: Separation)

2.

β >
e2

(4M2
W + 2d(λmax + λmin))N3

. (Assumption: Constraint)
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If N > max

{
144βM2

W , 1

(4M2
W+2d(λmax+λmin))β

}
, then

W2(Φ(ξ1),Φ(ξ2)) ≤ κW2(ξ1, ξ2) ,

where 0 < κ =
144βM2

W

N < 1.

Proof of Lemma 5. Since all the covariance matrices commute, there exists an orthogonal matrix U
such that

Σi = Udiag(λi,1, . . . , λi,d)U
T , Ωk = Udiag(ωk,1, . . . , ωk,d)U

T ,

for all i ∈ [N ] and k ∈ {1, 2}. By Asuka (2011)[Lemma 2.3], we have that for Gaussian measures
ξk = N (mk,Ωk) and Xj = N (µj ,Σj), the optimal transport map from ξk to Xj is

T
(k)
j (x) = µj +A

(k)
j (x−mk) ,

where A
(k)
j := Σ

1/2
j (Σ

1/2
j ΩkΣ

1/2
j )−1/2Σ

1/2
j . Since Σj and Ωk commute and are diagonal in the

basis U :

(Σ
1/2
j ΩkΣ

1/2
j )−1/2 = Udiag

(
1√

λj,1ωk,1

, . . . ,
1√

λj,dωk,d

)
UT .

By plugging the above into the definition of A(k)
j , we get

A
(k)
j = Udiag

(√
λj,1
√
ωk,1

, . . . ,

√
λj,d
√
ωk,d

)
UT .

By Lemma 2, we have Φ(ξk) = N (m′
k, ÃΩkÃ

T ), where m′
k =

∑N
j=1 wj(ξk)µj and Ãk =∑N

j=1 wj(ξk)A
(k)
j . This means

ÃkΩkÃ
T
k = Udiag


 N∑
j=1

wj(ξk)
√
λj,ℓ

2


d

ℓ=1

UT . (14)

Additionally, note that if positive definite matrices P,Q commute, then

tr
(
P +Q− 2(P 1/2QP 1/2)1/2

)
= tr

(
P +Q− 2(PQ)1/2

)
=

d∑
ℓ=1

λℓ(P ) + λℓ(Q)− 2
√
λℓ(P )λℓ(Q)

=

d∑
ℓ=1

(√
λℓ(P )−

√
λℓ(Q)

)2
. (15)

Next, by Lemma 1, we have

W 2
2 (Φ(ξ1),Φ(ξ2)) = ∥m′

1 −m′
2∥2 + tr

(
Ã1Ω1Ã

T
1 + Ã2Ω2Ã

T
2 − 2

(
(Ã1Ω1Ã

T
1 )

1/2Ã2Ω2Ã
T
2 (Ã1Ω1Ã

T
1 )

1/2
)1/2)

.

(16)

The fact that Ω1,Ω2 commute means that Ã1Ω1Ã
T
1 commutes with Ã2Ω2Ã

T
2 because

Ã1Ω1Ã
T
1 , Ã2Ω2Ã

T
2 share the same eigenbasis U . By using this fact, along with plugging equa-

tion 14 and equation 15 into equation 16, and by the definition of m′
k, we obtain:

W 2
2 (Φ(ξ1),Φ(ξ2)) = ∥m′

1 −m′
2∥2 +

d∑
ℓ=1

 N∑
j=1

wj(ξ1)
√

λj,ℓ −
N∑
j=1

wj(ξ2)
√
λj,ℓ

2

=

∥∥∥∥ N∑
j=1

∆wjµj

∥∥∥∥2 + d∑
ℓ=1

 N∑
j=1

∆wj

√
λj,ℓ

2

, (17)
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where ∆wj := wj(ξ1)−wj(ξ2). The next steps of the proof obtain a bound on |∆wj | so that we can
obtain an upper bound for equation 17. Toward that end, we first obtain bounds on weights wk(ξ)
for all k ∈ [N ].

Since W2(Xi, Xj) ≥ ∥µi − µj∥, we get from equation 6 that W2(Xi, Xj) ≥
√
D, where D :=

4λmin

(
∆i − d

2 log(4πλmax)
)
. By the triangle inequality, W2(Xi, Xj) ≥

√
D, and W2(Xi, ξ) ≤ r,

we have
W2(Xj , ξ) ≥W2(Xj , Xi)−W2(Xi, ξ) ≥

√
D − r .

This means

W 2
2 (Xj , ξ)−W 2

2 (Xi, ξ) > D − 2
√
Dr . (18)

First, we obtain a lower bound on the weight wi(ξ). By the definition of the weights wi(ξ), using
equation 18 and 1

1+α > 1− α for all α > 0, and using equation Assumption: Separation, we get

wi(ξ) =
exp(−βW 2

2 (Xi, ξ))∑N
k=1 exp(−βW 2

2 (Xk, ξ))

=
1

1 +
∑

k ̸=i exp(−β(W 2
2 (Xj , ξ)−W 2

2 (Xi, ξ)))

≥ 1

1 + ε

≥ 1− ε , (19)

where

ε := (N − 1) exp
(
−β(D − 2

√
Dr)

)
. (20)

Now, we obtain an upper bound on the weight wj(ξ) for j ̸= i. By definition of wj(ξ) and again
using equation 18, we obtain

wj(ξ) =
exp(−βW 2

2 (Xj , ξ))∑N
k=1 exp(−βW 2

2 (Xk, ξ))
≤ exp(−βW 2

2 (Xj , ξ))

exp(−βW 2
2 (Xi, ξ))

≤ exp(−β(D − 2
√
Dr)) =

ε

N − 1
.

(21)

Define g(t) := e−βaj(t)∑N
k=1 e−βak(t) , where aj(t) := W 2

2 (Xj , ξt) and ξt = ((1 − t)Id + tT )#ξ1 be the
geodesic interpolation of ξ1, ξ2 in the Wasserstein space, where T is the optimal transport map from
ξ1 to ξ2. By the mean-value theorem, there exists a t∗ ∈ [0, 1] such that:

wj(ξ2)− wj(ξ1) = g(1)− g(0) = g′(t∗) . (22)

Note that

g′(t) = wj(ξt)β

[
N∑

k=1

wk(ξt)a
′
k(t)− a′j(t)

]

= wj(ξt)β

[
N∑

k=1

wk(ξt)(a
′
k(t)− a′j(t))

]
. (23)

Next, for Gaussian measures Xk = N (µk,Σk) and ξt = N (mt,Ωt), by Lemma 1, we have:

ak(t) = W 2
2 (Xk, ξt) = ∥µk −mt∥2 + CovErr(Σk,Ωt) .

So,

a′k(t) = 2⟨ d
dt

mt , mt − µk⟩+
d

dt
CovErr(Σk,Ωt) .

Since ξt is a geodesic between ξ1 and ξ2, we have mt = (1 − t)m1 + tm2 and therefore d
dtmt =

m2 −m1. Hence,

a′k(t) = 2⟨m2 −m1 , mt − µk⟩+
d

dt
CovErr(Σk,Ωt) ,
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and

a′k(t)− a′j(t) = 2⟨m2 −m1 , µj − µk⟩+
d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)] . (24)

By plugging equation 24 into the expression for g′(t) in equation 23, we obtain:

g′(t) = wj(ξt)β

N∑
k=1

wk(ξt)

[
2⟨m2 −m1 , µj − µk⟩+

d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)]

]

= 2wj(ξt)β⟨m2 −m1 , µj −
N∑

k=1

wk(ξt)µk⟩+ wj(ξt)β

N∑
k=1

wk(ξt)
d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)]

= 2wj(ξt)β⟨m2 −m1 , µj −m′
t⟩+ wj(ξt)β

N∑
k=1

wk(ξt)
d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)] ,

(25)

where m′
t =

∑N
k=1 wk(ξt)µk.

Next, since ξ1, ξ2 ∈ Bi, by geodesic convexity, ξt∗ ∈ Bi. This means by equation 19, equation 21,
we have that for j ̸= i:

wi(ξt∗) ≥ 1− ε , wj(ξt∗) ≤
ε

N − 1
, (26)

Therefore, from equation 25 and equation 26, we obtain the following bound on difference in
weights, for j ̸= i:

wj(ξ2)− wj(ξ1) = g′(t∗)

= 2wj(ξt∗)β⟨m2 −m1 , µj −m′
t∗⟩+ wj(ξt∗)β

N∑
k=1

wk(ξt∗)
d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)]

∣∣∣∣∣
t=t∗

≤ 2βε

N − 1
⟨m2 −m1 , µj −m′

t∗⟩+
ε2β

(N − 1)2

∑
k ̸=i

d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)]

∣∣∣∣∣
t=t∗

+
εβ

N − 1
wi(ξt∗)

d

dt
[CovErr(Σi,Ωt)− CovErr(Σj ,Ωt)]

∣∣∣∣∣
t=t∗

. (27)

Next, we prove upper bounds for each term in equation 27. By Cauchy-Schwarz inequality:

|⟨m2 −m1 , µj −m′
t∗⟩| ≤ ∥m2 −m1∥ · ∥µj −m′

t∗∥ . (28)

Next, by the definition of m′
t∗ and the bounds on weights in equation 26, we get:

∥µj −m′
t∗∥ =

∥∥µj − wi(ξt∗)µi −
∑
k ̸=i

wk(ξt∗)µk

∥∥
≤ ∥wi(ξt∗)(µj − µi)∥+

∥∥(1− wi(ξt∗))µj −
∑
k ̸=i

wk(ξt∗)µk

∥∥
≤ (1− ε)2MW + εMW + (N − 1) · ε

N − 1
MW

≤ 2MW . (29)

By plugging equation 29 into equation 28, we obtain:

|⟨m2 −m1 , µj −m′
t∗⟩| ≤ 2MW ∥m2 −m1∥ ≤ 2MWW2(ξ1, ξ2) . (30)

Next, we bound the second and third terms in equation 27. Since Σk,Ωt commute by Lemma
4, they share a common eigenbasis so let Σk = UΛΣk

UT and Ωt = UΛΩtU
T where ΛΣk

=
diag(σk,1, σk,2, . . . , σk,d) and ΛΩt = diag(ω1(t), ω2(t), . . . , ωd(t)). Therefore, from equation 15
and definition of CovErr, we obtain:

d

dt
CovErr(Σk,Ωt) =

d∑
i=1

2(
√
σk,i −

√
ωi(t)) ·

(
− 1

2
√

ωi(t)

)
ω′
i(t) ,
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and

d

dt
[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)] = −

d∑
i=1

√
σk,i −

√
σj,i√

ωi(t)
ω′
i(t) .

Next, by Cauchy-Schwarz inequality, the equation equation 15, by and the definition of MW , we
get:

∣∣∣ d
dt

[CovErr(Σk,Ωt)− CovErr(Σj ,Ωt)]
∣∣∣ ≤

√√√√ d∑
i=1

(
√
σk,i −

√
σj,i)2 ·

√√√√ d∑
i=1

ω′
i(t)

2

ωi(t)

=
√
CovErr(Σk,Σj) ·

√√√√ d∑
i=1

ω′
i(t)

2

ωi(t)

≤W2(Xk, Xj) ·

√√√√ d∑
i=1

ω′
i(t)

2

ωi(t)

≤ 2MW ·

√√√√ d∑
i=1

ω′
i(t)

2

ωi(t)
. (31)

By Lemma 4, we obtain
ω′
i(t) = 2((1− t) + tτi)(τi − 1)ω1,i ,

where τi =
√
ω2,i/ω1,i. By plugging the above in equation 31, we get:

d∑
i=1

ω′
i(t)

2

ωi(t)
=

4((1− t) + tτi)
2(τi − 1)2ω2

1,i

((1− t) + tτi)
2
ω1,i

=

d∑
i=1

4(τi − 1)2ω1,i

=

d∑
i=1

4(
√
ω2,i −

√
ω1,i)

2

= 4BW2(Ω1,Ω2)

≤ 4W 2
2 (ξ1, ξ2) . (32)

By plugging equation 32 into equation 31 yields:∣∣∣ d
dt

[BW2(Σk,Ωt)− BW2(Σj ,Ωt)]
∣∣∣ ≤ 4MWW2(ξ1, ξ2) .

Therefore, the second term in equation 27 is bounded by

ε2β

(N − 1)2

∣∣∣∣∣∑
k ̸=i

d

dt
[BW2(Σk,Ωt)− BW2(Σj ,Ωt)]

∣∣∣∣∣
t=t∗

∣∣∣∣∣ ≤ ε2β

N − 1
4MWW2(ξ1, ξ2) , (33)

and the third term in equation 27 is bounded by

εβ

N − 1
wi(ξt∗)

d

dt
[CovErr(Σi,Ωt)− CovErr(Σj ,Ωt)]

∣∣∣∣∣
t=t∗

≤ εβ

N − 1
4MWW2(ξ1, ξ2) . (34)

Next, we plug the bounds in equation 30, equation 33, equation 34 into equation 27 to obtain for
j ̸= i:

|wj(ξ1)− wj(ξ2)| ≤
2βε

N − 1
· 2MWW2(ξ1, ξ2) +

ε2β

N
4MWW2(ξ1, ξ2) +

εβ

N − 1
4MWW2(ξ1, ξ2)

=
4βεMW (2 + ε)W2(ξ1, ξ2)

N − 1
. (35)
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The final steps of the proof provide upper bounds for the two terms in equation 17 using the bound
on |∆wj | in equation 35 and, therefore, prove contraction. We start with the first term in equation 17.
By using ∥µj − µi∥ ≤ 2MW and the bound in equation 35, we get∥∥∥∥ N∑

j=1

∆wjµj

∥∥∥∥ =
∥∥∑

j ̸=i

(wj(ξ1)− wj(ξ2))(µj − µi)
∥∥

≤
∑
j ̸=i

|wj(ξ1)− wj(ξ2)|∥µj − µi∥

≤ 8βεM2
W (2 + ε)W2(ξ1, ξ2) . (36)

Next, we provide an upper bound on the second term in equation 17. Using λmin ≤ λj,ℓ ≤ λmax,
for all j, ℓ, and the bound in equation 35, we get

d∑
ℓ=1

 N∑
j=1

∆wj

√
λj,ℓ

2

=

d∑
ℓ=1

∑
j ̸=i

∆wj(
√
λj,ℓ −

√
λi,ℓ)

2

≤ d(
√
λmax −

√
λmin)

216β2ε2M2
W (2 + ε)2W 2

2 (ξ1, ξ2) . (37)

By plugging the bounds in equation 36 and equation 37 into equation 17, we obtain

W 2
2 (Φ(ξ1),Φ(ξ2)) ≤ 16β2ε2(2 + ε)2M2

W (4M2
W + d(

√
λmax −

√
λmin)

2)W 2
2 (ξ1, ξ2) . (38)

Next, we provide an upper bound for ε. From equation Assumption: Separation, the definition
D := 4λmin

(
∆i − d

2 log(4πλmax)
)
, and equation Assumption: Constraint, we get

D ≥ 4

β
log
((
4M2

W + 2d(λmax + λmin)
)
N3β

)
>

8

β
>

1

βN
, (39)

for all N ≥ 1. To simplify notation, define L := 1
2β log

((
4M2

W + 2d(λmax + λmin)
)
N3β

)
.

From equation 39, we have D ≥ 8L. Define h(x) := −x + 2
√
xr, where r := 1√

βN
. Note

that h′(x) < 0 when x > 1
βN . This means h(D) ≤ h(8L) for all D ≥ 8L. Next, we show

that h(8L) < L. Since h(8L) = −8L + 4
√
2L√
βN

, proving h(8L) < L is equivalent to show-

ing 4
√
2L√
βN

< 9L. By plugging in the value of L, the previous inequality is equivalent to showing
64
N < 81 log

((
4M2

W + 2d(λmax + λmin)
)
N3β

)
, which is true for all N ≥ 1 and equation Assump-

tion: Constraint.

Next, since h(8L) = −D + 2
√
Dr < L, by the definition of ε in equation 20, the definition of L in

the above paragraph, we obtain

ε = (N − 1) exp
(
−β(D − 2

√
Dr)

)
≤ (N − 1) exp(−βL)

= (N − 1) exp

(
− 1

2β
log
((
4M2

W + 2d(λmax + λmin)
)
N3β

))
<

N√
(4M2

W + 2d(λmax + λmin))N3β
. (40)

Define C :=
(
4M2

W + 2d(λmax + λmin)
)
. From equation 40, we have ε < 1 for N > 1

Cβ . By
using this fact, along with plugging equation 40 into equation 38, we obtain

W 2
2 (Φ(ξ1),Φ(ξ2)) <

144βM2
W

N
W 2

2 (ξ1, ξ2) . (41)

Finally, since N > 144βM2
W , we get W2(Φ(ξ1),Φ(ξ2)) < κW2(ξ1, ξ2), where κ =

144βM2
W

N ,
which finishes the proof of this lemma.

The next lemma uses Lemma 3 and 5 to apply Banach’s fixed point theorem and show the existence
of a unique fixed point in a neighborhood of each pattern.
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Lemma 6. Let Xi = N (µi,Σi) for i = 1, 2, . . . , N be the patterns, where µi ∈ Rd and Σi ≻ 0.
Define the Wasserstein ball Bi := {ν ∈ P2(Rd) , W2(Xi, ν) ≤ r}, where r = 1√

βN
. Under the

assumptions of Lemmas 3 and 5, the map Φ has a unique fixed point in Bi.

Proof of Lemma 6. First, we show that Bi is closed in (P2(Rd),W2). Let {νn}n≥1 be a sequence
of probability measures in Bi that converge to ν ∈ P2(Rd) in W2-distance. Since νn ∈ Bi for all
n, we have W2(Xi, νn) ≤ ri. For any n, by triangle inequality:

W2(Xi, νn) ≤W2(Xi, ν) +W2(ν, νn) .

Taking lim sup as n→∞ and using lim supn→∞ W2(ν, νn) = 0, we get

lim sup
n→∞

W2(Xi, νn) ≤W2(Xi, ν) . (42)

From another application of triangle inequality, we have W2(Xi, ν) −W2(ν, νn) ≤ W2(Xi, νn).
Taking lim inf as n→∞, we get:

lim inf
n→∞

W2(Xi, νn) ≥W2(Xi, ν) . (43)

Therefore, from equation 42 and equation 43, we obtain limn→∞ W2(Xi, νn) = W2(Xi, ν) and
that Bi is closed. Since (P2(Rd),W2) is a closed metric space and Bi is a closed subset of P2(Rd),
we have that (Bi,W2) is a complete metric space.

Finally, since (Bi,W2) is a complete metric space, Φ is a self-map in Bi from Lemma 3, and Φ is a
contraction mapping from Lemma 5, we get from Banach’s fixed point theorem that Φ has a unique
fixed point in Bi.

7.4 PROOF OF THEOREM 1

Proof of Theorem 1. First, we introduce Algorithm 3 which can be used to sample Gaussian mea-
sures from the Wasserstein sphere SR whose covariance matrices commute pairwise and whose
eigenvalues lie in a bounded interval [λmin, λmax].

Algorithm 3 Sampling from commuting Gaussian measures on Wasserstein sphere

Require: R > 0 (sphere radius), N ∈ N (number of samples), λmin, λmax > 0 (eigenvalue bounds
with λmin < λmax), d ∈ N (dimension)

Ensure: {X1, . . . , XN} where Xi ∼ N (µi,Σi) on SR
1: Initialize: Fix an orthogonal matrix U ∈ Rd×d

2: Define polytope P =
{
(λ1, . . . , λd) ∈ Rd :

∑d
k=1 λk = R2

2 , λmin ≤ λk ≤ λmax for all k
}

3: for i = 1 to N do
4: Sample (λ

(i)
1 , . . . , λ

(i)
d ) ∼ Uniform(P )

5: Construct covariance matrix: Σi ← U · diag(λ(i)
1 , . . . , λ

(i)
d ) · UT

6: Sample mean vector: µi ∼ Uniform
({

µ ∈ Rd : ∥µ∥2 = R√
2

})
7: Set Xi ← N (µi,Σi)
8: end for
9: return {X1, . . . , XN}

Next, note that the polytope P is non-empty with R =
√

d(λmax + λmin) since dλmin < R2

2 =
d(λmax+λmin)

2 < dλmax. Also, note that by definition of MW , we have MW = maxiW2(δ0, Xi) = R.

If Xi = N (µi,Σi), Xj = N (µj ,Σj), then by the definition of the L2 inner product, since Σi,Σj

share a common eigenbasis U , and because all the eigenvalues lie in the interval [λmin, λmax], we
have almost surely

− log⟨Xi, Xj⟩L2 =
d

2
log(2π) +

1

2

d∑
k=1

log(λi,k + λj,k) +
1

2

d∑
k=1

[UT (µi − µj)]
2
k

λi,k + λj,k
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≥ d

2
log(4πλmin) +

1

4λmax
∥µi − µj∥2 . (44)

From equation 44, we get that the separation condition in equation Assumption: Separation is satis-
fied if

d

2
log(4πλmin) + min

j ̸=i

1

4λmax
∥µi − µj∥2 ≥

d

2
log(4πλmax) +

1

βλmin
log
(
CN3β

)
, (45)

where C := 4M2
W + 2d(λmax + λmin). Since M2

W = R2 = d(λmax + λmin), we get C =
6d(λmax + λmin). The condition in equation 45 is equivalent to

min
j ̸=i
∥µi − µj∥2 ≥ 2dλmax log(γ) +

4γ

β
log(CN3β) =: T , (46)

where γ := λmax

λmin
. The next steps of the proof are to find the conditions under which equation 46

holds with high probability.

By Vershynin (2009)[Theorem 3.4.5], we have that for independent uniform random vectors u, v on
a unit sphere Sd−1 and t > 0:

P(⟨u, v⟩ > t) ≤ 2 exp(−t2d/2) . (47)

Since µi, µj are independent uniform random vectors on a sphere of radius R√
2
=
√

d(λmax+λmin)
2 ,

we have

∥µi − µj∥2 = R2 − 2⟨µ1, µ2⟩ = d(λmax + λmin)(1− ⟨u, v⟩) , (48)

where u, v are independent uniform random vectors on the unit sphere Sd−1. Therefore, from equa-
tion 47, equation 48, we get

P(∥µi − µj∥2 < T ) = P
(
⟨u, v⟩ > 1− T

dλmax

)
≤ 2 exp

(
−d

2

(
1− T

dλmax

)2
)

. (49)

By plugging in N =
√

p
2 exp

(
dα2

16

)
and using C = 6d(λmax + λmin), we get

4

dλminβ
log(CN3β) =

4

dλminβ
(3 logN + log β + logC)

=
4

dλminβ

(
3

2
log
(p
2

)
+

3dα2

16
+ log β + log(2d(3λmax + λmin))

)
=

3α2

4βλmin
+

6 log(p/2) + 4 log(β) + 4 log(6d(λmax + λmin))

dβλmin
. (50)

From the fact that α > 0 from the statement of the theorem, it follows that if β > 3α
λmin

, then the

first term in equation 50 satisfies 3α2

4βλmin
< α

4 , and there exists d(1)0 ∈ N such that the second term
in equation 50 can be bounded as

6 log(p/2) + 4 log(β) + 4 log(6d(λmax + λmin))

dβλmin
<

α

4
.

Therefore,
4

dλminβ
log(CN3β) <

α

2
. (51)

From equation 51 and the definition of T in equation 46, we obtain

T

dλmax
< 2 log(γ) +

α

2
= 1− α+

α

2
= 1− α

2
. (52)

By plugging equation 52 into equation 49, we get

P(∥µi − µj∥2 < T ) ≤ 2 exp

(
−dα2

8

)
(53)
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By applying union bound to all the pairs (i, j) in equation 53, and using the definition of N =√
p
2 exp

(
dα2

8

)
, we obtain

P
(
∃i, j such that ∥µi − µj∥2 < T

)
<

N2

2
· 2 exp

(
−dα2

8

)
=

p

2
< p . (54)

Finally,

P
(
min
j ̸=i
∥µi − µj∥2 < T

)
≤ P

(
∃i, j such that ∥µi − µj∥2 < T

)
< p ,

which means the condition in equation 46 holds with probability 1 − p and this finishes the proof
of the statement that we can sample N =

√
p
2 exp

(
dα2

16

)
patterns which are separated in L2-inner

product by the condition described in equation Assumption: Separation.

Since the separation condition in equation Assumption: Separation is satisfied for N =√
p
2 exp

(
dα2

16

)
random patterns with probability 1 − p for d > d

(1)
0 , because the constraint on

β in equation Assumption: Constraint is satisfied from the assumption of this theorem β > 3α
λmin

for

large enough d
(2)
0 , and because

N =

√
p

2
exp

(
dα2

16

)
> 144βM2

W = 144βR2 = 144β(λmin + λmax)

for large enough d
(3)
0 , it follows from Lemma 5 that Φ is a contractive mapping with probability

1 − p for N =
√

p
2 exp

(
dα2

16

)
random patterns and d > max{d(1)0 , d

(2)
0 , d

(3)
0 }. Finally, it follows

from Lemma 6 that if we define Bi = {ν ∈ P2(Rd) , W2(Xi, ν) < 1√
βN
}, then there exists a

unique fixed point in Bi for all i ∈ {1, 2, . . . , N}. Hence, from Definition 1, we get that N =√
p
2 exp

(
dα2

16

)
random patterns can be stored on a Wasserstein sphere with probability 1− p for all

p > 0.

7.5 PROOF OF THEOREM 2

Proof of Theorem 2. Since the assumptions of Lemma 3 and Lemma 5 hold, the existence of a
unique fixed point follows from Lemma 6. Next, by Lemma 5, we get W2(Φ(ξ), X

∗
i ) < κ be-

cause ξ,X∗
i ∈ Bi, where κ is the contraction coefficient from Lemma 5. Applying this inequality

iteratively, we obtain

W2(Φ
n(ξ), X∗

i ) ≤ κnW2(ξ,X
∗
i ) ≤ κn(2r) . (55)

By setting κn(2r) = ε, using the definition κ =
144βM2

W

N from Lemma 5, the definition r = 1√
βN

,
and noting that ε < r finishes the proof of this theorem.

7.6 PROOF OF THEOREM 3

Proof of Theorem 3. By triangle inequality, using the fact that the unique fixed point X∗
i ∈ Bi,

appealing to Φ(X∗
i ) = X∗

i since X∗
i is a fixed point, and applying Lemma 5, we obtain

W2(Φ(ξ), Xi) ≤W2(Φ(ξ), X
∗
i ) +W2(Xi, X

∗
i )

≤W2(Φ(ξ),Φ(X
∗
i )) +

1√
βN

≤W2(ξ,X
∗
i ) +

1√
βN

≤ 3√
βN

. (56)
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