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ABSTRACT

Learning conditional distributions π∗(·|x) is a central problem in machine learn-
ing, which is typically approached via supervised methods with paired data
(x, y) ∼ π∗. However, acquiring paired data samples is often challenging, espe-
cially in problems such as domain translation. This necessitates the development
of semi-supervised models that utilize both limited paired data and additional un-
paired i.i.d. samples x ∼ π∗

x and y ∼ π∗
y from the marginal distributions. The us-

age of such combined data is complex and often relies on heuristic approaches. To
tackle this issue, we propose a new learning paradigm that integrates both paired
and unpaired data seamlessly using data likelihood maximization techniques. We
demonstrate that our approach also connects intriguingly with inverse entropic op-
timal transport (OT). This finding allows us to apply recent advances in computa-
tional OT to establish an end-to-end learning algorithm to get π∗(·|x). In addition,
we derive the universal approximation property, demonstrating that our approach
can theoretically recover true conditional distributions with arbitrarily small error.
Finally, we demonstrate through empirical tests that our method effectively learns
conditional distributions using paired and unpaired data simultaneously.

1 INTRODUCTION

Recovering conditional distributions π∗(y|x) from data is one of the fundamental problems in ma-
chine learning, which appears both in predictive and generative modeling. In predictive modeling,
the standard examples of such tasks are the classification, where x ∈ RDx is a feature vector and
y ∈ {0, 1, . . . ,K} is a class label, and regression, in which case x is also a feature vector and y ∈ R
is a real number. In generative modeling, both x and y are feature vectors in RDx ,RDy , respectively,
representing complex objects, and the goal is to find a transformation between them.

In our paper, we focus on the setting where both x and y are multi-dimensional real-valued vectors,
and the true joint data distribution π∗(x, y) is continuous over the space RDx ×RDy . This excludes
scenarios where y is a discrete variable, e.g., a class label. Our focus is on multi-dimensional prob-
abilistic regression, often called domain translation, since x and y usually correspond to feature
vectors from different domains. The goal is to perform probabilistic prediction: given a new in-
put xnew from the source domain, we aim to predict the corresponding output ynew from the target
domain, according to the conditional distribution π∗(y|xnew).

It is natural to assume that learning the conditional distribution π∗(y|x) requires access to in-
put–target data pairs (x, y) ∼ π∗, where π∗ denotes the true joint distribution of the data. In such
cases, π∗(y|x) can be modeled using standard supervised learning approaches, ranging from simple
regression to conditional generative models (Mirza & Osindero, 2014; Winkler et al., 2019; Ardiz-
zone et al., 2019; Hagemann et al., 2024). However, acquiring paired data can be expensive or
impractical, whereas obtaining unpaired samples – x ∼ π∗

x or y ∼ π∗
y – from each domain sepa-

rately is often much easier and more cost-effective. This challenge has motivated the development
of unsupervised (or unpaired) learning methods (e.g., (Zhu et al., 2017)), which aim to recover the
dependency structure π∗(y|x) using unpaired data alone.

While both paired (supervised) and unpaired (unsupervised) domain translation approaches are be-
ing extremely well developed nowadays, surprisingly, the semi-supervised setup when both paired
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and unpaired data is available is much less explored. This is due to the challenge of designing learn-
ing objective (loss) which can simultaneously take into account both paired and unpaired data. A
common approach involves heuristically combining standard paired and unpaired losses (cf. (Tri-
pathy et al., 2019, M3.5), (Jin et al., 2019, M3.3), (Yang & Chen, 2020, MC), (Vasluianu et al., 2021,
M3), (Panda et al., 2023, Eq. 8), (Tang et al., 2024, Eq. 8), (Theodoropoulos et al., 2024, M3.2), (Gu
et al., 2023, M3)). However, as demonstrated in M5.1, these composite objectives fail to recover the
true conditional distribution even in simple cases Dx = Dy = 2. This raises the question: Can we
design a simple loss to learn π∗(y|x) that naturally integrates both paired and unpaired data?

In our paper, we positively answer the above-raised question. Our main contributions are:

1. We introduce a novel loss function designed to facilitate the learning of conditional distributions
π∗(·|x) using both paired and unpaired training samples drawn from π∗ (see M3.1). This loss
function is grounded in the well-established principle of likelihood maximization. A key advan-
tage of our approach is its ability to support end-to-end learning, thereby seamlessly integrating
both paired and unpaired data into the training process.

2. We demonstrate the theoretical equivalence between our proposed loss function and the inverse
entropic optimal transport problem (see M3.2). This finding enables us to leverage established
computational optimal transport methods to address challenges in semi-supervised learning.

3. Building upon recent advancements in the field of computational optimal transport, we provide
end-to-end algorithm exploiting the Gaussian mixture parameterization specifically tailored to
optimize our proposed likelihood-based loss function (see M3.3). For completeness, Appendix A
shows that our loss function is also applicable to a fully neural network parametrization.

4. We prove that our proposed parameterization satisfies the universal approximation property,
which theoretically allows our algorithm to recover π∗ arbitrarily well (see M3.4).

Our empirical validation in M5 demonstrates the impact of both unpaired and paired data on over-
all performance. In particular, our findings show that the conditional distributions π∗(·|x) can be
effectively learned even with a modest amount of paired data (x, y) ∼ π∗, provided that sufficient
auxiliary unpaired data x ∼ π∗

x and y ∼ π∗
y is available.

Notations. Throughout the paper, X and Y represent Euclidean spaces, equipped with the standard
norm ∥ · ∥, induced by the inner product ⟨·, ·⟩, i.e., X def

= RDx and Y def
= RDy . The set of absolutely

continuous probability distributions on X is denoted by Pac(X ). For simplicity, we use the same
notation for both the distributions and their corresponding probability density functions. The joint
probability distribution over X × Y is denoted by π with corresponding marginals πx and πy . The
set of joint distributions with given marginals α and β is represented by Π(α, β). We use π(·|x)
for the conditional distribution, while π(y|x) represents the conditional density at a specific point y.
The differential entropy is given by H(β) = −

∫
Y β(y) log β(y) dy.

2 BACKGROUND

First, we recall the formulation of the domain translation problem (M2.1). We remind the difference
between its paired, unpaired, and semi-supervised setups. Next, we recall the basic concepts of the
inverse entropic optimal transport, which are relevant to our paper (M2.2).

2.1 DOMAIN TRANSLATION PROBLEMS

The goal of domain translation task is to transform data samples from the source domain to the
target domain while maintaining the essential content or structure. This approach is widely used in
applications like computer vision (Zhu et al., 2017; Lin et al., 2018; Peng et al., 2023), natural lan-
guage processing (Jiang et al., 2021; Morishita et al., 2022), audio processing (Du et al., 2022), etc.
Domain translation task setups can be classified into supervised (paired), unsupervised (unpaired),
and semi-supervised approaches based on the data used for training (Figure 1).

Supervised domain translation relies on matched examples from both the source and target do-
mains, where each input corresponds to a specific output, enabling direct supervision during the
learning process. Formally, this setup assumes access to a set of P empirical pairs XYpaired

def
=

{(x1, y1), . . . , (xP , yP )} ∼ π∗ from some unknown joint distribution. The goal here is to recover
the conditional distributions π∗(·|x) to generate samples y|xnew for new inputs xnew that are not
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(a) Supervised (paired) domain
translation setup.

(b) Unsupervised (unpaired)
domain translation setup.

(c) Semi-supervised domain
translation setup (our focus).

Figure 1: Visualization of domain translation setups. Red and green colors indicated paired training
data XYpaired, while grey color indicates the unpaired training data Xunpaired, Yunpaired.

present in the training data. While this task is relatively straightforward to solve, obtaining such
paired training datasets can be challenging, as it often involves significant time, cost, and effort.

Unsupervised domain translation, in contrast, does not require direct correspondences between
the source and target domains (Zhu et al., 2017, Figure 2). Instead, it involves learning to trans-
late between domains using unpaired data, which offers greater flexibility but demands more
advanced techniques to achieve accurate translation. Formally, we are given Q unpaired sam-
ples Xunpaired

def
= {x1, . . . , xQ} ∼ π∗

x from the source distribution, and R unpaired samples
Yunpaired

def
= {y1, . . . , yR} ∼ π∗

y from the target distribution. Our objective is to learn the condi-
tional distributions π∗(·|x) of the unknown joint distribution π∗, whose marginals are π∗

x and π∗
y ,

respectively. The unsupersvised setup is inherently ill-posed, often yielding ambiguous solutions
(Moriakov et al., 2020). Accurate translation requires constraints and regularization (Yuan et al.,
2018). Still, it is highly relevant due to the prevalence of unpaired data in practice.

Semi-supervised domain translation integrates both paired and unpaired data to enhance the trans-
lation process (Tripathy et al., 2019; Jiang et al., 2023a). This approach leverages the precision of
paired data to guide the model while exploiting the abundance of unpaired data to improve perfor-
mance and generalization. Formally, the setup assumes access to paired data XYpaired ∼ π∗ as well
as additional unpaired samples Xunpaired ∼ π∗

x and Yunpaired ∼ π∗
y . Note that paired samples can also

be used in an unpaired manner. By convention, we assume P ≤ Q,R, where the first P unpaired
samples are identical to the paired ones. The goal remains to learn the true conditional mapping
π∗(·|x) using the available data. For extended discussion of real-world applications in which the
semi-supervised setting arises naturally, see Appendix B.4.

2.2 OPTIMAL TRANSPORT (OT)

The theoretical foundations of optimal transport are detailed in books (Villani et al., 2009; San-
tambrogio, 2015; Peyré et al., 2019). In what follows, we summarize the key concepts necessary
to understand the connection between our loss function (M3.1) and inverse entropic optimal trans-
port (Dupuy et al., 2019) established in M3.2. We emphasize that this section is intended solely to
clarify this connection; it is not required for following the loss derivation itself, which is presented
in a constructive manner to remain accessible to a broader audience. For a more detailed discussion
of entropic, weak and inverse optimal transport, see Appendix B.1.

Entropic OT (Genevay, 2019). Given source and target distributions α ∈ Pac(X ) and β ∈ Pac(Y),
and a cost function c∗ : X × Y → R, the entropic optimal transport (EOT) problem is defined as:

OTc∗,ε (α, β)
def
= min

π∈Π(α,β)
Ex,y∼π[c

∗(x, y)]− εEx∼αH(π(·|x)) , (1)

where ε > 0 is the regularization parameter; setting ε = 0 recovers the classic OT formulation
(Villani et al., 2009) originally proposed by (Kantorovich, 1942). Under mild assumptions, a unique
minimizer π∗ ∈ Π(α, β) exists and is known as the entropic optimal transport plan. We note that
in the literature, the entropy regularization term in (1) is typically written as either −εH(π) or
+εKL (π∥α⊗ β). These formulations are equivalent up to additive constants; see the discussion in
(Mokrov et al., 2024, M2) or (Gushchin et al., 2023b, M1). In this paper, we adopt the formulation
in (1), which is also known as the weak form of entropic OT; see (Gozlan et al., 2017; Backhoff-
Veraguas et al., 2019; Backhoff-Veraguas & Pammer, 2022).
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Semi-dual EOT. Under mild assumptions on c∗, α, β, the further semi-dual EOT formulation holds:

OTc∗,ε (α, β) = max
f

{
Ex∼αf

c∗(x) + Ey∼βf(y)
}
, (2)

where f ranges over a subset of continuous functions (dual potentials) subject to mild boundedness
conditions; see (Backhoff-Veraguas & Pammer, 2022, Eq. 3.3) for details. The term f c denotes the
so-called weak entropic c-transform of f , defined as:

f c∗(x)
def
= min

µ∈P(Y)

{
Ey∼µ[c

∗(x, y)]− εH(µ)− Ey∼µf(y)
}
. (3)

This transform admits a closed-form expression (Mokrov et al., 2024, Eq. 14):

f c(x) = −ε log
∫
Y
exp

(
f(y)− c(x, y)

ε

)
dy. (4)

Inverse EOT. The classical forward EOT problem (1) seeks an optimal transport plan π∗ between
two given marginal distributions α and β under a fixed cost function c∗. In contrast, the inverse EOT
problem considers the reverse setting (Chan et al., 2025, M5.1): given a joint distribution π∗ with
marginals π∗

x and π∗
y , the goal is to recover a cost function c∗ such that π∗ is the EOT plan for c∗.

This inverse formulation is not uniquely defined in the literature – each version is typically tailored to
specific applications (Stuart & Wolfram, 2020; Ma et al., 2020; Galichon & Salanié, 2022; Andrade
et al., 2023). In this work, we adopt a version that aligns with our learning objective described
in M3.1. This choice enables us, in M3.2, to formally relate our proposed loss to the inverse EOT
framework. We further conjecture that this connection could potentially enable the application of
advanced EOT solvers (e.g., diffusion Schrödinger bridges (Vargas et al., 2021; De Bortoli et al.,
2021; Gushchin et al., 2023a; Shi et al., 2024; Gushchin et al., 2024b)) to enhance performance in
semi-supervised learning scenarios, which we leave for future work.

With this motivation, we consider the inverse EOT problem as the following minimization problem:

c∗∈ argmin
c

[
Ex,y∼π∗ [c(x, y)]−

not depend on c︷ ︸︸ ︷
εEx∼π∗

x
H(π∗(·|x))︸ ︷︷ ︸

≥OTc,ε(π∗
x,π

∗
y)

−OTc,ε

(
π∗
x, π

∗
y

) ]
, (5)

where c : X × Y → R ranges over measurable cost functions. Consider the term OTc,ε(π
∗
x, π

∗
y):

due to entropic regularization, this expression admits a unique optimal transport plan π∗
c for every

quadruple (c, ε, π∗
x, π

∗
y). While π∗

c matches the marginals of π∗, its internal structure – i.e., the
conditional distributions – may differ. The term Ex,y∼π∗ [c(x, y)] − εEx∼π∗

x
H(π∗(·|x)) represents

the transportation cost of using c to transport mass according to π∗ (cf. the minimization objective
in (1)). If the ”inner” part of π⋆

c differs from that of π∗, this cost exceeds OTc,ε(π
∗
x, π

∗
y). Therefore,

the minimum of the full objective is achieved only when π∗ coincides with the optimal transport plan
for some cost c∗, in which case the objective value is zero. Notably, the term −εEx∼π∗

x
H(π∗(·|x))

is independent of c and can be omitted from the optimization. Additionally:
• Invariance to ε. Unlike the forward problem (1), the inverse problem is invariant to the entropic

regularization parameter ε > 0. For any ε′ > 0, the substitution c(x, y) = ε
ε′ c

′(x, y) rescales the
entire objective (5) by a constant, making solutions equivalent up to this change.

• Multiple solutions. The inverse problem (5) generally admits many valid cost functions. For
instance, c∗(x, y) = −ε log π∗(x, y) achieves the minimum by construction. More generally,
any function of the form c′(x, y) = −ε log π∗(x, y) + u(x) + v(y) is also valid, since additive
terms depending only on x or y do not affect the resulting OT plan. In particular, setting u(x) =
ε log π∗

x(x) and v(y) = 0 yields c∗(x, y) = −ε log π∗(y|x).
In practice, π∗ is known only through samples and not via its density. Therefore, closed-form
expressions like −ε log π∗(x, y) or −ε log π∗(y|x) cannot be computed directly. This necessitates
learning a parametric estimator πθ to approximate the unknown conditional distributions.

3 SEMI-SUPERVISED DOMAIN TRANSLATION VIA INVERSE EOT
In M3.1, we propose a novel loss function grounded in KL minimization. In M3.2, we demonstrate
that proposed loss is equivalent to solving the inverse EOT problem (5), thereby connecting optimal
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transport theory with our practical framework. To operationalize this approach, M3.3 introduces a
lightweight parametrization. We subsequently prove in M3.4 that this parametrization, when com-
bined with our loss minimization, guarantees arbitrarily accurate reconstruction of the true condi-
tional plan under mild assumptions. Appendix A demonstrates how our framework extends to fully
neural parametrization. All our proofs appear in Appendix E.

3.1 LOSS DERIVATION

Part I. Data likelihood maximization and its limitation. Our goal is to approximate the true
distribution π∗ by some parametric model πθ, where θ represents the parameters of the model. To
achieve this, we would like to employ the standard KL-divergence minimization framework, also
known as data likelihood maximization. Namely, we aim to minimize

KL
(
π∗∥πθ

)
= Ex,y∼π∗ log

π∗
x(x)π

∗(y|x)
πθ
x(x)π

θ(y|x)
= Ex∼π∗

x
log

π∗
x(x)

πθ
x(x)

+ Ex,y∼π∗ log
π∗(y|x)
πθ(y|x)

= (6)

KL
(
π∗
x∥πθ

x

)
+ Ex∼π∗

x
Ey∼π∗(·|x) log

π∗(y|x)
πθ(y|x)

= KL
(
π∗
x∥πθ

x

)︸ ︷︷ ︸
Marginal

+Ex∼π∗
x
KL
(
π∗(·|x)∥πθ(·|x)

)︸ ︷︷ ︸
Conditional

. (7)

It is clear that objective (7) splits into two independent components: the marginal and the conditional
matching terms. Our focus will be on the conditional component πθ(·|x), as it is the necessary part
for the domain translation. Note that the marginal part πθ

x is not actually needed. The conditional
part of (7) can further be divided into the following terms:

Ex∼π∗
x
Ey∼π∗(·|x)

[
log π∗(y|x)− log πθ(y|x)

]
= −Ex∼π∗

x
H(π∗(·|x))−Ex,y∼π∗ log πθ(y|x). (8)

The first term is independent of θ, so we obtain the following minimization objective:

L(θ) def
= −Ex,y∼π∗ log πθ(y|x). (9)

It is important to note that minimizing (9) is equivalent to maximizing the conditional likelihood, a
strategy utilized in conditional normalizing flows (Papamakarios et al., 2021, CondNF). However, a
major limitation of this approach is its reliance solely on paired data from π∗, which can be difficult
to obtain in real-world scenarios. In the following section, we modify this strategy to incorporate
available unpaired data within a semi-supervised learning setup (see M2.1). We note that

Part II. Solving the limitations via a tailored parameterization. To address the above-mentioned
issue and utilize unpaired data, we first use Gibbs-Boltzmann parametrization (LeCun et al., 2006):

πθ(y|x) def
=

exp
(
−Eθ(y|x)

)
Zθ(x)

, (10)

where Eθ(·|x) : Y → R is the Energy function, and Zθ(x)
def
=
∫
Y exp

(
−Eθ(y|x)

)
dy is the normal-

ization constant. Substituting (10) into (9), we obtain:

L(θ) = Ex,y∼π∗Eθ(y|x) + Ex∼π∗
x
logZθ(x). (11)

This objective already provides an opportunity to exploit the unpaired samples from the marginal
distribution π∗

x to learn the conditional distributions πθ(·|x) ≈ π∗(·|x). Namely, it helps to estimate
the part of the objective related to the normalization constant Zθ. To incorporate independent sam-
ples from the second marginal distribution π∗

y , it is crucial to adopt a parametrization that separates
the term in the energy function Eθ(y|x) that depends only on y. Thus, we propose:

Eθ(y|x) def
=

cθ(x, y)− fθ(y)

ε
. (12)

In fact, this parameterization allows us to decouple the cost function cθ(x, y) and the potential
function fθ(y). Specifically, changes in fθ(y) can be offset by corresponding changes in cθ(x, y),
resulting in the same energy function Eθ(y|x). For example, by setting fθ(y) ≡ 0 and ε = 1, the
parameterization of the energy function Eθ(y|x) remains consistent, as it can be exclusively derived
from cθ(x, y). Substituting (12) into the energy term of (11), and using the identity Ex,y∼π∗fθ(y) =
Ey∼π∗

y
fθ(y), yields our final objective, which integrates both paired and unpaired data:

L(θ) = ε−1Ex,y∼π∗ [cθ(x, y)]︸ ︷︷ ︸
Joint, requires pairs (x, y) ∼ π∗

− ε−1Ey∼π∗
y
fθ(y)︸ ︷︷ ︸

Marginal, requires y ∼ π∗
y

+ Ex∼π∗
x
logZθ(x)︸ ︷︷ ︸

Marginal, requires x ∼ π∗
x

→ min
θ

. (13)
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In Appendix E.1, we present a rigorous, step-by-step derivation starting from (6) and arriving at
(13), using only formal mathematical transitions. Throughout this derivation, we initially assume
that paired samples are drawn from the full joint distribution π∗. However, in practice the paired
data may be restricted to a subset of π∗, which we discuss in detail in Appendix B.3.

At this point, a reader may come up with 2 reasonable questions regarding (13):

1. How to perform the optimization of the proposed objective? This question is not straightforward
due to the existence of the (typically intractable) normalizing constant Zθ in the objective.

2. To which extent do the separate terms in (13) (paired, unpaired data) contribute to the objective,
and which type of data is the most important to get the correct solution?

We answer these questions in M3.3 and M5. Before doing that, we show a surprising finding that our
proposed objective actually solves the inverse entropic OT problem (5).

3.2 RELATION TO INVERSE EOT

We now show that (5) is equivalent to (13). Substituting the semi-dual formulation of EOT (2) into
(5) (while omitting the constant entropy term) and using the identity min(−g) = −max g gives:

min
c,f

{
Ex,y∼π∗ [c(x, y)]− Ex∼π∗

x
f c(x)− Ey∼π∗

y
f(y)

}
. (14)

Assume that both the cost function c and the potential function f are parameterized as cθ and fθ,
respectively, with a parameter θ. Using the definition from (4) and our energy function parame-
terization in (12), we can express (fθ)c

θ

(x) as (fθ)c
θ

(x) = −ε logZθ(x). This shows that the
expression in (14) is equivalent to our proposed likelihood-based loss in (13), scaled by ε.

This result shows that inverse entropic OT can be viewed as a likelihood maximization problem,
enabling the use of established techniques like ELBO and EM (Barber, 2012; Alemi et al., 2018;
Bishop & Bishop, 2023). It also reframes inverse EOT as a semi-supervised domain translation task.
Notably, prior work on inverse OT has largely focused on discrete, fully paired settings (see M4).

3.3 PRACTICAL PARAMETERIZATION

The most computationally intensive aspect of optimizing the loss function in (13) lies in calculating
the integral for the normalization constant Zθ. To tackle this challenge, we propose a lightweight pa-
rameterization that yields closed-form expressions for each term in the loss function. Our proposed
cost function parameterization cθ is based on the log-sum-exp function (Murphy, 2012, M3.5.3):

cθ(x, y) = −ε log
M∑

m=1

vθm(x) exp

(
⟨aθm(x), y⟩

ε

)
, (15)

where {vθm(x) : RDx → R+, a
θ
m(x) : RDx → RDy}Mm=1 are arbitrary parametric functions, e.g.,

neural networks, with learnable parameters denoted by θc. The parametric form of the cost is moti-
vated by (Korotin et al., 2024), from which we derived a more general functional form appropriate
for our setting. Therefore, we adopt a Gaussian mixture parameterization for the dual potential fθ:

fθ(y) = ε log

N∑
n=1

wθ
nN (y | bθn, εBθ

n), (16)

where θf
def
= {wθ

n, b
θ
n, B

θ
n}Nn=1 are learnable parameters of the potential, with wθ

n ≥ 0, bθn ∈ RDy ,
and Bθ

n ∈ RDy×Dy being a symmetric positive definite matrix. Thereby, our framework comprises
a total of θ def

= θf ∪ θc learnable parameters. For clarity and to avoid notation overload, we will omit
the superscript θ associated with learnable parameters and functions in the subsequent formulas.

Proposition 3.1 (Tractable normalization constant). Our parametrization of the cost function (15)
and dual potential (16) delivers Zθ(x)

def
=
∑M

m=1

∑N
n=1 zmn(x), where

zmn(x)
def
= wnvm(x) exp

(
a⊤m(x)Bnam(x) + 2b⊤n am(x)

2ε

)
.
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The proposition offers a closed-form expression for Zθ(x), which is essential for optimizing (13).
Furthermore, the following proposition provides a method for sampling y given a new sample xnew.
Proposition 3.2 (Tractable conditional distributions). From our parametrization of the cost function
(15) and dual potential (16) it follows that the πθ(·|x) are Gaussian mixtures:

πθ(y|x)= 1

Zθ(x)

M∑
m=1

N∑
n=1

zmn(x)N (y | dmn(x), εBn), (17)

where dmn(x)
def
= bn +Bnam(x) and zmn(x) defined in Proposition 3.1.

TRAINING. As stated in M2.1, since we only have access to samples from the distributions, we
minimize the empirical counterpart of (13) via the stochastic gradient descent w.r.t. θ:

L(θ) ≈ L̂(θ) def
= ε−1 1

P

P∑
p=1

cθ(xp, yp)− ε−1 1

R

R∑
r=1

fθ(yr) +
1

Q

Q∑
q=1

logZθ(xq). (18)

INFERENCE. According to our Proposition 3.2, the conditional distributions πθ(·|x) are Gaussian
mixtures (17). As a result, sampling y given x is fast and straightforward.

3.4 UNIVERSAL APPROXIMATION OF THE PROPOSED PARAMETRIZATION

One may naturally wonder how expressive is our proposed parametrization of πθ in M3.3. Below we
show that this parametrization allows approximating any distribution π∗ that satisfies mild assump-
tions on boundness and regularity assumptions, see the details in Appendix E.4.
Theorem 3.3 (Proposed parametrization guarantees universal conditional distributions). Under mild
assumptions on the joint distribution π∗, for all δ > 0 there exists (a) an integer N > 0 and a
Gaussian mixture fθ (16) with N components, (b) an integer M > 0 and cost cθ(15) defined by
fully-connected neural networks am : RDx → RDy , vm : RDx → R+ with ReLU activations such
that πθ defined by (10) and (12) satisfies KL

(
π∗∥πθ

)
< δ.

4 RELATED WORKS

In this section, we briefly summarize the most relevant prior work; a more detailed discussion ap-
pears in Appendix B.5. Existing semi-supervised domain-translation approaches typically combine
ad hoc objectives based on GAN losses and paired-data regularization (Chen et al., 2023; Panda
et al., 2023), or use keypoint-guided OT (Gu et al., 2022), later extended to diffusion-based models
(Gu et al., 2023; Theodoropoulos et al., 2024). Importantly, the paradigms outlined above do not of-
fer any theoretical guarantees for reconstructing the conditional distribution π∗(y|x), as they depend
on heuristic loss constructions. We show that such approaches actually fail to recover the true plan
even in toy 2-dimensional cases, refer to experiments in M5 for an illustrative example. Inverse OT
solvers: works (Dupuy et al., 2019; Stuart & Wolfram, 2020) focuses on reconstructing cost func-
tions (often in discrete settings), whereas our aim is to learn learn conditional distribution πθ(·|x).
Forward OT solvers: Building on (Mokrov et al., 2024) and Gaussian-mixture parameterizations
(Korotin et al., 2024; Gushchin et al., 2024a), our solver extends forward OT methods to general cost
functions (Eq. (15)) and incorporates paired data through likelihood-based cost learning. Full details
and additional discussion of metric-learning Cuturi & Avis (2014) provided in the Appendix B.5.

5 EXPERIMENTAL ILLUSTRATIONS

We evaluate our solver on synthetic data (M5.1), real-world data (M5.2), and on image-translation
task (M5.3). The code is written using the PyTorch framework and will be made publicly available.
It is provided in the supplemental materials. Experimental details are given in Appendix C and D.

5.1 GAUSSIAN TO SWISS ROLL MAPPING

Setup. For illustration, we adapt the experimental setup from (Korotin et al., 2024) to our purposes.
We consider the task of learning conditional distributions from a Gaussian distribution π∗

x to a Swiss
Roll distribution π∗

y (Figure 2a), guided by paired samples (Figure 2b) drawn from the ground-truth
plan π∗. The ground-truth plan π∗ is obtained from a mini-batch OT plan after solving the forward
OT problem with a specially designed cost that induces bi-modal conditionals π∗(· | x). Specifically,
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(a) Unpaired data. (b) Paired data. (c) Ground truth. (d) Our method. (e) CGMM (SS).

(f) Regression. (g) UGAN+ℓ2. (h) CGAN. (i) CondNF. (j) CondNF (SS).

(k) GNOT. (l) DCPEME. (m) parOT. (n) OTCS. (o) FSBM.

Figure 2: Learned mapping on the Gaussian→ Swiss Roll task for P = 128 and Q = R = 1024.

the cost matrix is defined as C = min(C+φ, C−φ), where C±φ contains pairwise ℓ2 distances
between x and−y±φ, with−y±φ denoting the vector−y rotated by an angle of φ = ±90◦. In other
words, each x ∼ π∗

x is mapped to a point y on the opposite side of the Swiss Roll, rotated either by
+φ or −φ (Figure 2c). Further details on the paired data generation are provided in Appendix D.1.
We evaluate each method’s ability to capture these multi-modal conditional plans. During training,
we use P = 128 paired and Q = R = 1024 unpaired samples, and in Appendix D.4 we analyze
how varying the proportions of paired and unpaired data affects our method’s performance.
Baselines. We evaluate our method against several baselines (see Appendix D.2 for details):
1. Semi-supervised log-likelihood methods: CondNF (SS) and CGMM (SS).
2. Semi-supervised methods: Neural OT with pair-guided cost (Asadulaev et al., 2024, GNOT, Ap-

pendix E), Differentiable Cost-Parameterized Entropic Mapping Estimator (Howard et al., 2024,
DCPEME), (Panda et al., 2023, parOT), (Gu et al., 2023, OTCS), Feedback Schrödinger Bridge
Matching (Theodoropoulos et al., 2024, FSBM).

3. Standard generative & predictive models: MLP regression with ℓ2 loss, Unconditional GAN with
ℓ2 loss supplement (Goodfellow et al., 2014, UGAN+ℓ2), Conditional GAN (Mirza & Osindero,
2014, CGAN), Conditional Normalizing Flow (Winkler et al., 2019, CondNF).

Note that some baselines can fully utilize both paired and unpaired data during training, while others
rely solely on paired data. Refer to Table 5 for specifics on data usage.
Discussion. The results of the aforementioned methods are depicted in Figure 2. Clearly, the Regres-
sion model simply predicts the conditional mean Ey∼π∗(·|x)y, failing to capture the full distribution.
The CGAN is unable to accurately learn the target distribution π∗

y , while the UGAN+ℓ2 fails to
capture the underlying conditional distribution, resulting in suboptimal performance. The CondNF
model suffers from overfitting, likely due to the limited availability of paired data XYpaired. Methods
GNOT, DCPEME, parOT learn deterministic mapping and therefore are unable to capture the con-
ditional distribution. Similar to parOT, both OTCS and FSBM build on the idea of key-points but
are designed for stochastic setup. However, these methods fail to capture bi-modal conditional map-
pings, presumably due to a biased objective introduced by the artificial cost function that enforces
alignment with key-points. The CondNF (SS) does not provide improvement compared to CondNF,
and CGMM (SS) model learns a degenerate solution, which is presumably due to the overfitting. As
a sanity check, we evaluate all baselines using a large amount of paired data. Details are given in
Appendix D.3. In fact, even in this case, almost all the methods fail to learn true π∗(·|x).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 WEATHER PREDICTION

Baseline Ours

# Paired
# Unpaired

0 5 10 50 100 250 500

5 diverged 9.4
±.1

14.2
±1.7

15.47
±.02

16.6
±.0

17.91
±.07

9.40
±.03

10
0.4
±.2

9.48
±.02

17.9
±.3

18.5
±.4

18.4
±.2

18.8
±.2

19.2
±.3

25
3.5
±.09

9.40
±.03

18.3
±.06

18.7
±.2

18.8
±.07

19.5
±.1

19.8
±.1

50
6.4
±.05

9.47
±.01

18.7
±.2

18.9
±.04

19.2
±.2

19.8
±.03

20.3
±.4

90
6.5
±.1

9.30
±.05

19
±.01

19.4
±.05

19.4
±.2

20.3
±.05

20.5
±.09

Table 1: The values of the test log-likelihood ↑ on the
weather prediction dataset obtained for a different number
of paired and unpaired training samples.

Here we aim to evaluate our pro-
posed approach on real-world data.
We consider the weather predic-
tion dataset (Malinin et al., 2021;
Rubachev et al., 2024). The data
is collected from weather stations
across the world and weather forecast
physical models. It consists of 94 me-
teorological features, e.g., pressure,
wind, humidity, etc., which are mea-
sured over a period of one year at dif-
ferent spatial locations.

Setup. Initially, the problem was formulated as the prediction and uncertainty estimation of the
air temperature at a specific time and location. We expand this task to the probabilistic prediction
of all meteorological features, thereby reducing reliance on measurement equipment in remote and
difficult-to-access locations, e.g. the Polar regions (see Appendix C.3).

Metrics and baselines. We evaluate the performance of our approach by calculating the log-
likelihood (LL) on the test target features. A natural baseline for this task is a probabilistic model
that maximizes the likelihood of the target data. Thus, we implement an MLP that learns to predict
the parameters of a mixture of Gaussians and is trained on the paired data only via the log-likelihood
optimization (9). We also compare with semi-supervised log-likelihood methods CGMM (SS) and
CondNF (SS). For completeness, we also add standard generative models. These models are trained
using the available paired and unpaired data. Note that GAN models do not provide the density esti-
mation and log-likelihood can not be computed for them. Therefore, we report Conditional Fréchet
Distance (CFD): for each test x, we compute the Fréchet distance (Heusel et al., 2017, Eq. 6)
between predicted and true features y, then average over all test inputs.

Ours CGAN UGAN+ℓ2 CondNF Regression CGMM (SS) CondNF (SS)

LL↑ 20.5
±.09 N/A N/A 1.29

±.03 N/A 0.32
±.03

0.52
±.02

CFD↓ 7.21
±.04

15.79
±1.11

15.44
±1.89

18.72
±.09

8.29
±.04

7.17
±.07

28.5
±.5

Table 2: The values of the test Log-Likelihood (LL) and Conditional
Fréchet distance (CFD) on the weather prediction dataset of our approach
and baselines (500 unpaired and 90 paired samples).

Discussion. Tables 1
and 2 summarize our
findings. From Table 1,
the main observation is
that even a small amount
of unpaired data leads to
substantial performance
gains, underscoring the
effectiveness of our semi-supervised formulation. Furthermore, Table 2 shows that our method
also yields samples that better match the true conditional distributions compared to competing ap-
proaches. For more detailed discussion regarding low-data regimes, see Appendix C.3.

5.3 IMAGE TRANSLATION VIA ALAE

Method FID ↓ SSIM ↑ LPIPS ↓
FSBM 10.2± 0.6 0.5237± 0.0005 0.5625± 0.0003
Ours 9.3± 0.1 0.5315± 0.0002 0.5531± 0.0006

Table 3: Metrics for Woman-to-Man translation described in M5.3.

Setup. In this section,
following the setup from
(Theodoropoulos et al.,
2024), we demonstrate
our method capabilities
for image translation in
latent space of dimension 512 of ALAE encoder (Pidhorskyi et al., 2020) for 1024×1024 FFHQ
dataset (Karras et al., 2019). Similarly, we generate 2K paired samples using (Korotin et al., 2024)
and performed semi-supervised Woman-to-Man translation.
Discussion. Visual results are shown in Figure 3, and quantitative test metrics computed against the
target domain, averaged over three trainings with different seeds and rounded to the first significant
digit (LPIPS (Zhang et al., 2018), FID (Heusel et al., 2017), SSIM (Wang et al., 2004)), are reported
in Table 3. Additional examples are provided in Appendix C.4 Our method achieves comparable
performance, while requiring only 3 minutes of training on an A100 GPU, compared to 5 hours for
FSBM on the same hardware. Implementation and experimental details, refer to Appendix C.4

9
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6 DISCUSSION

Contributions & Potential impact. Our framework offers a simple, non-minimax objective that
naturally integrates both paired and unpaired data. We expect that these advantages, together with
the connection to entropic optimal transport (EOT), will encourage adoption in more advanced semi-
supervised methods, including approaches based on diffusion Schrödinger bridges (Vargas et al.,
2021; De Bortoli et al., 2021; Shi et al., 2024) and flow matching (Chen et al., 2025; Balcerak
et al., 2025). Moreover, this paper aims to advance the field of semi-supervised learning for domain
translation, with a primary focus on the continuous target case y ∈ RDy . In Appendix B.2, we
discuss the potential extension of our loss to discrete targets y ∈ KDy , where K = {1, . . . ,K}
represents a set of categories – an interesting direction for future work.

Source Target FSBM Ours

Figure 3: Comparison of our method and FSBM on the
Woman-to-Man translation task described in M5.3.

Limitations & Future Work. A lim-
itation of our method is its reliance
on Gaussian Mixture parameteriza-
tion (M3.3), which may affect scala-
bility. To address this, we provide a
proof of concept for fully neural pa-
rameterizations of the cost and po-
tential functions below, with a more
detailed discussion in Appendix A.
These parameterizations can be inte-
grated into our loss via energy-based
modeling (EBM) (Song & Kingma,
2021) and could, in principle, scale
to large image domains (Schröder
et al., 2023; Yu et al., 2023; Zhu
et al., 2024). A full investigation
of such large-scale applications, how-
ever, lies beyond the scope of our
methodological work.
As we discussed in M3.3, a key advan-
tage of the proposed parametrization
is that the normalizing constant Zθ in
(13) is available in closed form. In
contrast, general parameterizations of
cθ and fθ lack this property, requiring
more advanced sampling techniques
(Andrieu et al., 2003). While the objective (13) itself may be intractable, we can derive its gradient,
which is essential for optimization. Proposition A.1 provides the gradient computation, enabling
practical gradient-based training This motivates the procedure outlined in Algorithm 1, where the
conditional distribution is modeled as πθ(y|x) ∝ exp

(
fθ(y)−cθ(x,y)

ε

)
.

Figure 4: Performance of our Algorithm 1 on the colored
MNIST (M6). Rows: source images, target images with
ground-truth colors, results for P = 10 and P = 200.

Experimental Setup. To illus-
trate the scalability of our approach,
we adapted an experiment from
(Mokrov et al., 2024) using the col-
ored MNIST dataset (Arjovsky et al.,
2019). While the original task in-
volved translating digit 2 into digit
3 using unpaired images, we mod-
ified the setup to demonstrate our
method’s ability to perform trans-
lations according to paired data.
Namely, we created pairs by shifting the hue (Joblove & Greenberg, 1978) of the source images
by 120◦. Specifically, for a source image with a hue h in the range 0◦ ≤ h < 360◦, the target
image’s hue was set to (h+ 120◦) mod 360◦. For implementation details, see Appendix A.3.
Results. The results of this experiment are shown in Figure 4. Notably, our method successfully
learned the color transformation using only 10 pairs (third row). Increasing the number of pairs to
200 further improved the quality of the translation (forth row).
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LLM Usage. Large Language Models (LLMs) were employed solely to help rephrase sentences
and enhance text clarity. All scientific content, results, and interpretations presented in this paper
were developed entirely by the authors.
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A NEURAL PARAMETERIZATION

Throughout the main text, we parameterized the cost cθ and potential fθ using log-sum-exp func-
tions and Gaussian mixtures (see M3.3). At this point, a reader may naturally wonder whether more
general parameterizations for cθ and fθ can be used in our method, such as directly parameterizing
both with neural networks. In this section, we affirmatively address this question by providing a
procedure to optimize our main objective L(θ) in (13) with general parameterizations for cθ and fθ.
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A.1 ALGORITHM DERIVATION

We note that a key advantage of our chosen parameterization (see M3.3) is that the normalizing
constant Zθ appearing in L(θ) is available in the closed form. Unfortunately, this is not the case
with general parameterizations of cθ and fθ, necessitating the use of more advanced optimization
techniques. While the objective L(θ) itself may be intractable, we can derive its gradient, which
is essential for optimization. The following proposition is derived in a manner similar to (Mokrov
et al., 2024), who proposed methods for solving forward entropic OT problems with neural nets.

Proposition A.1 (Gradient of our main loss (13)). It holds that

∂

∂θ
L(θ) = ε−1

{
Ex,y∼π∗

[
∂

∂θ
cθ(x, y)

]
−Ey∼π∗

y

[
∂

∂θ
fθ(y)

]
(19)

+Ex∼π∗
x
Ey∼πθ(y|x)

[
∂

∂θ

(
fθ(y)− cθ(x, y)

)]}
.

The gradient formula eliminates the need for the intractable normalizing constant Zθ, but computing
it still requires sampling from the current model y ∼ πθ(·|x). Unlike the Gaussian mixture case in
M3.3, we now only access the unnormalized density defined by cθ and fθ, which is not necessarily
a Gaussian mixture. To address this, we rely on standard methods for sampling from unnormalized
densities, such as Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003). This enables practical
gradient estimation and motivates the training procedure in Algorithm 1, where the conditional
distribution is modeled as πθ(y|x) ∝ exp

(
fθ(y)−cθ(x,y)

ε

)
, with energy ε−1(cθ(x, y)− fθ(y)).

Algorithm 1: Semi-supervised Learning via Energy-Based Modeling
Input : Paired samples XYpaired ∼ π∗; unpaired samples Xunpaired ∼ π∗

x, Yunpaired ∼ π∗
y ;

potential network fθ : RDy → R, cost network cθ(x, y) : RDx × RDy → R;
number of Langevin steps K > 0, Langevin discretization step size η > 0;
basic noise std σ0 > 0; batch sizes P̂ , Q̂, R̂ > 0.

Output: trained potential network fθ∗
and cost network cθ

∗
recovering πθ∗

(y|x) from (10).
for i = 1, 2, . . . do

Derive batches {x̂p, ŷp}P̂p=1 = XY ∼ π∗, {xn}Q̂q=1 = X ∼ π∗
x, {yr}R̂r=1 = Y ∼ π∗

y ;
Sample basic noise Y (0) ∼ N (0, σ0) of size Q̂;
for k = 1, 2, . . . ,K do

Sample Z(k) = {z(k)q }Q̂q=1, where z
(k)
q ∼ N (0, 1);

Obtain Y (k) = {y(k)q }Q̂q=1 with Langevin step:

y
(k)
q ← y

(k−1)
q + η

2ε · stop grad
(

∂
∂y

[
fθ(y)− cθ(xq, y)

] ∣∣
y=y

(k−1)
q

)
+
√
ηz

(k)
q

L̂ ← 1

P̂

[ ∑
xp,yp∈XY

cθ (xp, yp)

]
+

1

Q̂

[ ∑
y
(K)
q ∈Y (K)

fθ
(
y
(K)
q

)]
− 1

R̂

[ ∑
yr∈Y

fθ (yr)

]
;

Perform a gradient step over θ by using ∂L̂
∂θ ;

In Algorithm 1, we use the Unadjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996),
a standard MCMC method. For an in-depth discussion on EBM training methods, see the recent
surveys (Song & Kingma, 2021; Carbone, 2024).

Our proposed inverse OT algorithm is closely related to the forward OT framework in (Mokrov
et al., 2024, Algorithm 1), with key distinctions: (1) it learns the cost function cθ during training,
and (2) it leverages both paired and unpaired data.

Below, we demonstrate a proof-of-concept performance of Algorithm 1 on two setups: an illustrative
2D example.
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(a) Ground truth. (b) P = 128; Q = R = 1024 (c) P = 16K; Q = R = 16K

Figure 5: Performance of our Algorithm 1 in the Gaussian → Swiss Roll mapping task (M5.1). We
use MLPs to parametrize both the potential function fθ and the cost function cθ.

A.2 ILLUSTRATIVE EXAMPLE

Setup. We begin with a 2D example to showcase the capability of Algorithm 1 to learn conditional
plans using a fully neural network-based parametrization. Specifically, we conduct experiments
on the Gaussian→ Swiss Roll mapping problem (see M5.1) using two datasets: one containing 128
paired samples (described in M5.1) and another with 16K paired samples (detailed in Appendix D.3).

Discussion. It is worth noting that the model’s ability to fit the target distribution is influenced by
the amount of labeled data used during training. When working with partially labeled samples (as
shown in Figure 5b), the model’s fit to the target distribution is less accurate compared to using a
larger dataset. However, even with limited labeled data, the model still maintains good accuracy
in terms of the paired samples. On the other hand, when provided with fully labeled data (see
Figure 5c), the model generates more consistent results and achieves a better approximation of the
target distribution. A comparison of the results obtained using Algorithm 1 with neural network
parametrization and those achieved using Gaussian parametrization (Figure 2d) reveals that Algo-
rithm 1 exhibits greater instability. This observation aligns with the findings of (Mokrov et al., 2024,
Section 2.2), which emphasize the instability and mode collapse issues commonly encountered when
working with EBMs.

Implementation Details. We employ MLPs with hidden layer configurations of [128, 128] and
[256, 256, 256], using LeakyReLU(0.2) for the parametrization of the potential fθ and the cost cθ,
respectively. The learning rates are set to lrpaired = 5×10−4 and lrunpaired = 2×10−4. The sampling
parameters follow those specified in (Mokrov et al., 2024).

A.3 DETAILS ON COLORED IMAGES EXAMPLE

Implementation Details. We adopt the same parameters as in (Mokrov et al., 2024), except for the
cost function:

cθ(x, y) =
1

Dy
∥Uθ

net − y∥22.

Here, the dimensions of source and target spaces are Dx = Dy = 3 × 32 × 32 and Uθ
net : RDx →

RDy is a neural net function with U-Net architecture (Ronneberger et al., 2015) with 16 layers. The
first layer has 64 filters, and the number of filters doubles in each subsequent layer. The experiment
was run for 10,000 iterations on a 2080 Ti GPU, completing in approximately 40 minutes.

A.4 CONCLUSION

It is important to recognize that the field of Energy-Based Models has undergone significant ad-
vancements in recent years, with the development of numerous scalable approaches. For examples
of such progress, we refer readers to recent works by (Geng et al., 2024; Carbone et al., 2023;
Du et al., 2021; Gao et al., 2021) and other the references therein. Additionally, we recommend
the comprehensive tutorial by (Song & Kingma, 2021; Carbone, 2024) for an overview of train-
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ing methods for EBMs. Given these advancements, it is reasonable to expect that by incorporating
more sophisticated techniques into our basic Algorithm 1, it may be possible to scale the method to
handle high-dimensional setups, such as image data. However, exploring these scaling techniques
is beyond the scope of the current paper, which primarily focuses on the general methodology for
semi-supervised domain translation. The investigation of methods to further scale our approach as
a promising future research avenue.

B ADDITIONAL DISCUSSIONS

B.1 ENTROPIC/WEAK/INVERSE OPTIMAL TRANSPORT

In this section, we explain our motivation for adopting the entropic OT formulation rather than the
standard OT formulation (OT). Specifically, we focus on the weak semi-dual formulation of the en-
tropic OT problem (Mokrov et al., 2024, M3.1), as opposed to its standard semi-dual form (Genevay,
2019, M4.3), and highlight its connections to the existing inverse entropic optimal transport frame-
works in the literature.

Classic OT. Given source and target distributions α ∈ Pac(X ) and β ∈ Pac(Y), and a cost function
c∗ : X × Y → R, the primal optimal transport problem (Villani et al., 2009) is defined as:

OTc∗ (α, β)
def
= min

π∈Π(α,β)
Ex,y∼π[c

∗(x, y)]. (OT)

This formulation was originally introduced by Kantorovich (Kantorovich, 1942) as a relaxation of
Monge’s original problem (Monge, 1781), which is more restrictive because it does not allow mass
to be split, resulting in deterministic solutions called optimal transport maps. However, as is well-
known in optimal transport theory (see (Villani et al., 2009, M9)), solutions to problem (OT), called
optimal transport plans, can still be deterministic. For example, when the cost is quadratic and the
measures are absolutely continuous, Brenier’s theorem (Remark 2.24 in (Peyré et al., 2019)) guaran-
tees that the optimal transport plan is deterministic. Specifically, each x is mapped deterministically
to y = T ∗(x) for some optimal map T ∗, meaning that the conditional distribution π∗(y|x) collapses
to a single point mass δT∗(x).

Such deterministic plans, however, are unsuitable for our semi-supervised domain translation setup,
where a multimodal transport behavior of π∗(y|x) may be necessary. Our synthetic experiments
in M5.1 (Figure 2) illustrate these cases. To enforce mapping uniqueness while allowing stochastic
(i.e., non-deterministic) mappings, a common approach is to regularize (OT) with an entropy term,
which makes the objective strictly convex with respect to π, as discussed below.

Entropic OT. The work of (Cuturi, 2013) proposed regularizing (OT) with an entropy term, known
as entropic OT (EOT), to improve computational tractability of OT (Genevay, 2019). Moreover,
besides the computational advantages, the EOT problem has a connection to the Static Schrödinger
Bridge (SB) problem (Léonard, 2014):

π∗ = argmin
π∈Π(α,β)

KL
(
π∥πref) , (SB)

where the aim of the problem is to find the transport plan π ∈ Π(α, β) closest to πref in terms of the
Kullback-Leibler (KL) divergence. Observe that EOT and the static SB problem are equivalent:

min
π∈Π(α,β)

KL
(
π∥πref) = min

π∈Π(α,β)
Ex,y∼π log

π(x, y)

πref(x, y)
= (20)

min
π∈Π(α,β)

{
Ex,y∼π

[
− log πref(x, y)

]︸ ︷︷ ︸
def
=c∗(x,y)

−H(π)
}
= min

π∈Π(α,β)

{
Ex,y∼π[c

∗(x, y)]−H(π)
}
. (21)

Using the equivalence of the following formulations (see (Mokrov et al., 2024, Eq. 2–4) and
(Gushchin et al., 2023b, Eq. 3–5) for details):

EOT(1)
c∗,ε(α, β)

EOT(2)
c∗,ε(α, β)

EOTc∗,ε(α, β)

= min
π∈Π(α,β)

Ex,y∼π[c
∗(x, y)] +


+εKL (π∥α⊗ β) ,

−εH(π),

−εEx∼αH(π(·|x)),
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we conclude that equation (21) is equivalent to (1) for ε = 1.

From the equations (20)–(21), we see that the cost function c∗(x, y) defines a reference measure that
determines the mapping we aim to reconstruct in the forward problem (1). Furthermore, since KL
minimization is equivalent to maximum likelihood estimation, EOT is theoretically consistent with
standard probabilistic modeling principles.

Weak OT. Following (Mokrov et al., 2024), we provide more details regarding weak OT. For a more
rigorous treatment, see (Gozlan et al., 2017; Backhoff-Veraguas et al., 2019). Given a weak transport
cost C∗ : X × P(Y) → R, which penalizes the displacement of a point x ∈ X into a distribution
π(·|x) ∈ P(Y), the weak OT problem is defined as:

WOTC∗(α, β)
def
= min

π∈Π(α,β)
Ex∼αC

∗(x, π(·|x)). (p-WOT)

Just as in the classical OT problem (OT), the weak OT formulation (p-WOT) also enjoys strong
duality under mild assumptions (see (Gozlan et al., 2017, Theorem 9.5); (Backhoff-Veraguas &
Pammer, 2022, Theorem 3.3)). This means that the weak formulation (p-WOT) admits an equivalent
weak semi-dual representation:

WOTC∗ (α, β) = max
f∈C(Y)

{
Ex∼αf

C∗
(x) + Ey∼βf(y)

}
, (sd-WOT)

where C(Y) denotes the set of continuous functions over Y and fC so-called weak C-transform:

fC(x)
def.
= min

µ∈P(Y)
{C(x, µ)− Ey∼µf(y)} . (22)

Futhermore, note that the EOT formulation in (1) can be seen as a special case of the weak OT
problem (p-WOT), corresponding to the following weak transport cost C∗

EOT:

C∗
EOT(x, π(·|x))

def
= Ey∼π(·|x)[c

∗(x, y)]− εH(π(·|x)) . (23)

Substituting expression above into (22), we obtain equation (3) for the weak entropic c-transform:

f c∗(x) = min
µ∈P(Y)

{
Ey∼µ[c

∗(x, y)]− εH(µ)− Ey∼µf(y)
}
,

which admits a closed-form expression given in (Mokrov et al., 2024, Eq. 14), and which we use in
our work (4):

f c(x) = −ε log
∫
Y
exp

(
f(y)− c(x, y)

ε

)
dy.

Furthermore, Appendix A.1 of (Mokrov et al., 2024) provides a detailed discussion of the relation-
ship between the weak entropic c-transform and the so-called (c, ε)-transform (Genevay et al., 2019,
4.15), (Marino & Gerolin, 2020, Theorem 1.2):

vc,ε(x) = −ε logEy∼β

[
exp

(
v(y)− c(x, y)

ε

)]
, (24)

which is used in the semi-dual formulation of the EOT problem (Genevay, 2019, M4.3):

OTsemi-dual
c∗,ε (α, β) = max

v∈C(Y)

{
Ex∼αv

c∗,ε(x) + Ey∼βv(y)
}
. (sd-EOT)

As noted in (Mokrov et al., 2024), the main difference between (4) and (24) lies in the integration
measure: (24) integrates with respect to β, while (4) uses the standard Lebesgue measure.

For completeness, we present below the dual formulation of EOT with a slightly different regular-
ization term, +εKL (π∥α⊗ β). As noted above, this is equivalent to our choice of regularization,
but it is the version commonly used in inverse problems and will be discussed later:

OTdual
c∗,ε(α, β) = max

u∈C(X )
v∈C(Y)

{
Ex∼αu(x) + Ey∼βv(y)

− Ex,y∼α⊗β

[
exp

(
u(x) + v(y)− c(x, y)

ε

)]}
,

(d-EOT)
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where the optimization is performed over two Kantorovich potentials u and v, in contrast to the
single potential used in our formulation (13). With that said, we are ready to discuss the existing
formulations of inverse entropic optimal transport.

Inverse OT. The use of the entropic formulation for inverse optimal transport was first proposed in
(Du & Mordatch, 2019, Eq. 8). Their setup, identical to our formulation (5), restricted attention
to bilinear cost functions of the form cA(x, y) = x⊤Ay, (Eq. 5), with the goal of recovering the
matrix A in a discrete setting. A subsequent work (Ma et al., 2020, Eq. 21) extended this idea to
the continuous setting by introducing a loss function for learning cost functions, based on the dual
formulation (d-EOT) of the EOT problem. As shown in (Andrade et al., 2023, Appendix A.1), their
formulation and ours are equivalent, and both admit a maximum likelihood interpretation, consistent
with our derivation in M3.1.

The most directly related approach is that of (Andrade et al., 2025, Lemma 1), which addresses the
unbalanced OT framework (Chizat et al., 2018) while still relying on the dual formulation (d-EOT).
They employ a linearly parameterized cost function (Eq. 4), but their focus is on establishing bounds
for cost recovery, in contrast to our emphasis on semi-supervised domain translation.

For further formulations of inverse OT, we refer readers to the works cited in the introduction of
(Andrade et al., 2023).

B.2 DISCRETE SPACES EXTENSION

Our theoretical framework is not limited to continuous spaces X ,Y . For instance, if the target
space Y is discrete and takes values in a finite set K = {1, 2, . . . ,K}, such as a set of categories,
our method remains directly applicable. In this case, the dual potential fθ (16) can be represented
as a vector of length K, and the cost function cθ(x, y) (15) can be implemented with a standard
neural network. The partition function Zθ(x) can then be computed as a finite sum over the K
terms, making the implementation straightforward. Note that the input x can be either continuous
or discrete - it does not affect the formulation.

Challenges arise when y is a more complex discrete object, such as a structured output like a se-
quence of T tokens drawn from a dictionary of size K, i.e., KT . In such cases, parameterizing fθ,
computing Zθ, and sampling from the associated energy-based model become significantly more
difficult, requiring advanced inference and training techniques, see (Holderrieth et al., 2025) for
details.

Discrete domains (Austin et al., 2021; Campbell et al., 2022; Gat et al., 2024; Ksenofontov & Ko-
rotin, 2025) have received considerable attention recently, and extending our methodology to such
spaces represents a promising direction for future research.

B.3 PARTIALLY PAIRED DATA

A potential limitation of the formulation in equation (13) is that it implicitly relies on the paired data
having marginals matching the true distributions π∗

x and π∗
y . If the paired samples are artificially

selected, so that their empirical x- and y-marginals deviate from π∗
x and π∗

y—one might suspect that
the objective no longer corresponds to the KL functional in M3.1. In practice, however, this is not a
fundamental issue: the theoretical formulation remains valid, which we discuss below.

Assume that the observed pairs (x, y) come from a joint distribution π∗
subset supported on a limited

subset of the support of π∗, with x-marginal µx and conditional density π∗(y | x). In this setting,
the induced y-marginal is νy(y) = Ex∼µx

π∗(y|x) and the ground-truth joint density becomes

π∗
subset(x, y) = µx(x)π

∗(y|x).

Applying the same derivation as in M3.1, we obtain:

KL
(
π∗

subset∥πθ
)
= KL

(
µx∥πθ

x

)︸ ︷︷ ︸
Marginal

+Ex∼µx
KL
(
π∗(·|x)∥πθ(·|x)

)︸ ︷︷ ︸
Conditional

. (25)

Focusing on the conditional term:

Ex∼µxEy∼π∗(·|x)
[
log π∗(y|x)−log πθ(y|x)

]
=−Ex∼µxH(π∗(·|x))−Ex,y∼π∗

subset
log πθ(y|x). (26)
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Thus, we recover the same conditional log-likelihood structure as in (9). Substituting the EBM
parametrizations (10) and (12), we obtain

Ex,y∼π∗
subset

[c(x, y)]− Ey∼νyf(y) + Ex∼µx logZ
θ(x) = (27)

Ex,y∼π∗
subset

[c(x, y)]− Ey∼π∗
y

[
νy(y)

π∗
y(y)

f(y)

]
+ Ex∼π∗

x

[
µx(x)

π∗
x(x)

logZθ(x)

]
. (28)

Introducing the weights:

wx(x) =
µx(x)

π∗
x(x)

, wy(y) =
νy(y)

π∗
y(y)

, (29)

we obtain the corrected objective:

Lq(θ) = ε−1Ex,y∼π∗
subset

[cθ(x, y)]︸ ︷︷ ︸
Joint, requires pairs (x, y) ∼ π∗

subset

− ε−1Ey∼π∗
y
[wy(y)f

θ(y)]︸ ︷︷ ︸
Marginal, requires y ∼ π∗

y

+Ex∼π∗
x
[wx(x) logZ

θ(x)]︸ ︷︷ ︸
Marginal, requires x ∼ π∗

x

→ min
θ

.

(30)
A practical way to estimate the required ratios is classifier-based density ratio estimation, widely
used in covariate-shift adaptation (Gretton et al., 2009; Sugiyama et al., 2012). To estimate a
marginal ratio such as wx(x) = µx(x)/π

∗
x(x), we draw samples from the true marginal π∗

x and
the biased marginal µx, label them as target (1) and observed (0), and train a probabilistic classifier
sφ(x) = Prob(target | x). With balanced class priors, ŵx(x) =

sφ(x)
1−sφ(x) . The same holds for wy(y).

This method is requires no density estimation. For recent advancement in density ratio estimation,
please refer to (Nagumo & Fujisawa, 2024; Wang et al., 2025). Thus, even if the paired data are
artificially biased, the loss remains correct as long as the true marginals are known and appropriate
weights are applied.

B.4 EXAMPLES OF SEMI-SUPERVISED DOMAIN TRANSLATION SETUPS

In this section we outline some real-world scenarios, where semi-supervised setup are very natural.

• Image Harmonization in Photo Editing (Wang et al., 2023). Photo compositing often involves
placing a foreground object into a new background, but realistic blending (e.g., matching lighting
and color tone) is challenging. While only a small set of artist-labeled (paired) composites may
be available, large collections of unlabeled (unpaired) composites can be gathered from the web.

• Scene Stylization (e.g., Anime Rendering) (Jiang et al., 2023b). Transforming real-world photos
into anime-style renderings is popular in gaming and animation but is limited by the scarcity of
labeled real–anime image pairs.

• Image Enhancement for Outdoor Vision (Li et al., 2019a; Liu et al., 2024; Cui et al., 2024; Li
& Chang, 2025; Hou et al., 2025). Adverse weather and low-light conditions can compromise the
visual systems of autonomous vehicles, such as self-driving cars and UAVs, leading to challenges
in both decision-making and navigation. For a comprehensive overview of these scenarios and
existing semi-supervised approaches, see (Mo et al., 2025).

• Biomedical Image Registration (Microscopy) (Skibbe et al., 2021). In neuroscience research,
aligning images from different modalities (e.g., tracer vs. Nissl stain) is crucial but difficult due to
modality shifts. Only a limited number of images can be manually registered (paired data), while
many are unregistered (unpaired).

The examples above underscore the importance of developing methods for semi-supervised domain
translation, which have applications in rendering, image editing, design, computer graphics, and
autonomous driving, while also streamlining existing digital content creation pipelines. At the same
time, it is important to recognize that the rapid advancement of generative models may have unin-
tended consequences, potentially impacting certain jobs within these industries.

B.5 RELATED WORKS

This section provides the detailed discussion of related work and methods that were only briefly
summarized in M4, and includes additional coverage of metric learning.
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Semi-supervised models. As discussed in M1, many existing semi-supervised domain translation
methods combine paired and unpaired data by introducing multiple loss terms into ad hoc opti-
mization objectives. Several works, such as (Jin et al., 2019, M3.3), (Tripathy et al., 2019, M3.5),
(Oza et al., 2019, MC), (Paavilainen et al., 2021, M2), (Chen et al., 2023, M3.3), (Ren et al., 2023,
M3) and (Panda et al., 2023, Eq. 8), employ GAN-base objectives, which incorporate the GAN
losses (Goodfellow et al., 2014) augmented with specific regularization terms to utilize paired data.
Although most of these methods were initially designed for the image-to-image translation, their
dependence on GAN objectives enables their application to broader domain translation tasks. In
contrast, the approaches introduced by (Mustafa & Mantiuk, 2020, M3.2) and (Tang et al., 2024,
Eq. 8) employ loss functions specifically tailored for the image-to-image translation, making them
unsuitable for the general domain translation problem described in M2.1.

Another line of research explores methods based on key-point guided OT (Gu et al., 2022), which in-
tegrates paired data information into the discrete transport plan. Building on this concept, (Gu et al.,
2023) uses such transport plans as heuristics to train a conditional score-based model on unpaired or
semi-paired data. Furthermore, recent work (Theodoropoulos et al., 2024) heuristically incorporates
paired data into the cost function c(x, y) in (1) with corresponding dynamical formulation.

Importantly, the paradigms outlined above do not offer any theoretical guarantees for reconstructing
the conditional distribution π∗(y|x), as they depend on heuristic loss constructions. We show that
such approaches actually fail to recover the true plan even in toy 2-dimensional cases, refer to exper-
iments in M5 for an illustrative example. We also note that there exist works addressing the question
of incorporating unpaired data to the log-likelihood training (9) by adding an extra likelihood terms,
see (Atanov et al., 2019; Izmailov et al., 2020). However, they rely on x being a discrete object (e.g.,
a class label) and does not easily generalize to the continuous case, see Appendix D.2 for details.

Inverse OT solvers. As highlighted in M2.2, the task of inverse optimal transport (IOT) implies
learning the cost function from samples drawn from an optimal coupling π∗. Existing IOT solvers
(Dupuy et al., 2019; Li et al., 2019b; Stuart & Wolfram, 2020; Galichon & Salanié, 2022; Andrade
et al., 2025) focus on reconstructing cost functions primarily from discrete marginal distributions,
in particular, using the log-likelihood maximization techniques (Dupuy et al., 2019), see the intro-
duction of (Andrade et al., 2023) for a review. Additionally, the recent work by (Shi et al., 2023)
explores the IOT framework in the context of contrastive learning. In contrast, we develop a log-
likelihood based approach aimed at learning conditional distributions πθ(·|x) ≈ π∗(·|x) using both
paired and unpaired data but not the cost function itself.

Forward OT solvers. Our solver is based on the framework of (Mokrov et al., 2024), which pro-
posed a forward solver for unsupervised domain translation. In contrast, our approach integrates the
optimization of the cost function directly into the objective (equation (18)), allowing for effective
utilization of paired data. Additionally, we extend the Gaussian Mixture parameterization proposed
by (Korotin et al., 2024; Gushchin et al., 2024a), which was originally developed as a forward solver
for entropic OT with a quadratic cost function c∗(x, y) = 1

2∥x − y∥22. Our work generalizes this
solver to accommodate a wider variety of cost functions, as specified in equation (15). As a result,
our approach also functions as a novel forward solver for these generalized cost functions.

Recent work by (Howard et al., 2024) proposes a framework for learning cost functions to improve
the mapping between the domains. However, it is limited by the use of deterministic mappings, i.e.,
does not have the ability to model non-degenerate conditional distributions.

Another work by (Asadulaev et al., 2024) introduces a neural network-based OT framework for
semi-supervised scenarios, utilizing general cost functionals for OT. However, their method requires
manually constructing cost functions which can incorporate class labels or predefined pairs. In con-
trast, our method dynamically adjusts the cost function during training, offering a more flexibility.

Metric-learning and OT. In addition to purely inverse OT approaches, there is a line of work that
aims to learn the ground metric used by optimal transport. A seminal work (Cuturi & Avis, 2014)
introduced ground metric learning in a supervised setting, where they optimize over metric matrices
so that OT distances between labeled histograms better reflect the class structure. Building on this,
(Huizing et al., 2022) propose unsupervised ground metric learning via what they call Wasserstein
singular vectors. They jointly learn a ground metric on features and a distance between samples
by finding positive singular vectors of the mapping from metric matrices to OT distance matrices.
Their method uses stochastic approximation with entropic regularization and is scalable to high-
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dimensional data. More recently, the work (Auffenberg et al., 2025) analyze this fixed-point problem
more deeply: they prove convergence for a stochastic fixed-point iteration (even in scenarios where
classical contraction assumptions do not hold) and show that their framework naturally recovers
Mahalanobis-type metrics and graph-Laplacian parameterizations as special cases.

In another direction, (Scarvelis & Solomon, 2023) introduce a Riemannian metric-learning frame-
work: they parametrize a spatially-varying metric tensor as a neural network over a manifold, and
optimize it so that OT distances under this learned geometry better explain meaningful interpola-
tions, such as trajectories in scRNA data or bird migration. In graph-structured domains, (Heitz
et al., 2021) learn ground metrics constrained to be geodesic distances on a graph, allowing a struc-
tured and efficient metric learning aligned with the graph topology.

Moreover, (Jawanpuria et al., 2025) propose to learn a symmetric positive definite (SPD) ground
metric matrix by optimizing over the Riemannian manifold of SPD matrices, enabling the cost metric
to adapt flexibly to data while jointly optimizing the OT distance. Finally, in the context of domain
adaptation, (Kerdoncuff et al., 2020) present MLOT, which learns a global Mahalanobis metric that
improves the alignment of source and target distributions under OT.

While these metric-learning works learn a distance function (or cost metric) via OT, they typically
assume particular parametric forms (Mahalanobis, SPD matrices, or constructed on manifolds) and
focus on matching distributions or aligning domains. In contrast, our approach learns conditional
couplings πθ(·|x) (not just a ground cost), and integrates cost learning dynamically into a likelihood-
based solver over paired and unpaired data. Moreover, our cost parameterization extends beyond
classical metric forms, enabling more flexible and expressive cost functions (see Eq. (15)).

C GENERAL DETAILS OF EXPERIMENTS

C.1 GENERAL IMPLEMENTATION DETAILS

Parametrization. The depth and number of hidden layers vary depending on the experiment.

For fθ (16) we represent:

• wn as logwn,
• bn directly as a vector,
• the matrix Bn in diagonal form, with log(Bn)i,i on its diagonal. This choice not only

reduces the number of learnable parameters in θf but also enables efficient computation of
B−1

n with a time complexity of O(Dy).

For cθ (15), we represent:

• vm(x) as a multilayer perceptron (MLP) with ReLU activations (Agarap, 2018) and a Log-
SoftMax output layer,

• am(x) as an MLP with ReLU activations.

Optimizers. We employ two separate Adam optimizers (Kingma, 2014) with different step sizes
for paired and unpaired data to enhance convergence.

Initialization.

• logwn as log 1
n ,

• bn using random samples from π∗
y ,

• log(Bn)j,j with log(0.1),
• for the neural networks, we use the default PyTorch initialization (Ansel et al., 2024),
• ε = 1 for all experiments, since the solver is independent of ε, as discussed in M2.2.

C.2 GAUSSIAN TO SWISS ROLL MAPPING

Implementation Details. We choose the parameters as follows: N = 50, M = 25, with learning
rates lrpaired = 3×10−4 and lrunpaired = 0.001. We utilize a two-layer MLP network for the function
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am(x) and a single-layer MLP for vm(x). The experiments are executed in parallel on a 2080 Ti
GPU for a total of 25,000 iterations, taking approximately 20 minutes to complete.

C.3 WEATHER PREDICTION

We select two distinct months from the dataset (Malinin et al., 2021; Rubachev et al., 2024) and
translate the meteorological features from the source month (January) to the target month (June). To
operate at the monthly scale, we represent a source data point x ∈ R188 as the mean and standard
deviation of the features collected at a specific location over the source month. The targets y ∈ R94

correspond to individual measurements in the target month.

Pairs are constructed by aligning a source data point with the target measurements at the same lo-
cation. Consequently, multiple target data points y may correspond to a single source point x and
represent samples from conditional distributions π∗(y|x). The measurements from non-aligned lo-
cations are treated as unpaired. Such unpaired data naturally arise because stations may not provide
reliable measurements in both months, for example, due to maintenance, sensor failures, extreme
weather, or connectivity issues.

We obtain 500 unpaired and 192 paired data samples. For testing, 100 pairs are randomly selected.

Implementation Details. In general, we consider the same setting as in C.2. Specifically, we set
N = 10,M = 1 and the number of optimization steps to 30, 000. The baseline uses an MLP net-
work with the same number of parameters, predicting the parameters of a mixture of 10 Gaussians.

Extremely Low-Data Regimes Discussion. As it clear from Table 1, our method diverges when
trained on very few samples (e.g., 5 paired and no unpaired). This is not surprising given the high
dimensionality of the data (D = 94) and the number of learnable parameters (|θ| = 2668). In
such low-data regimes, the model likely overfits the cost function cθ to the small paired dataset,
which can cause instability. This issue could potentially be alleviated by simplifying the model, for
instance by using a shallow or even linear parameterization of cθ (Andrade et al., 2025). However,
for consistency and fairness, we kept the architecture fixed across all experiments in the table.

C.4 IMAGE TRANSLATION VIA ALAE

Finally, we review experiments on two types of image translation tasks: (i) Gender translation and
(ii) Age translation. Extended results for the Woman-to-Man task are shown in Figure 8, and for
Old-to-Young in Figure 9 and Table 4.

Setup. We follow the experimental setup of (Theodoropoulos et al., 2024), using the pre-trained
ALAE autoencoder (Pidhorskyi et al., 2020) on the 1024×1024 FFHQ dataset (Karras et al., 2019).
Translation is performed in the 512-dimensional latent space.

Baseline method. We used the publicly available FSBM (Theodoropoulos et al., 2024) implementa-
tion from GitHub1. However, due to reproducibility issues in the repository, we generated 2K paired
samples ourselves via the procedure described in Appendix C.3 of the original paper.

Metric computation. Metrics were computed using TorchMetrics (Falcon et al., 2020) with a
batch size of 128. All metrics measure similarity between the generated and target distributions and
are averaged across three independent runs with different seeds. Results are reported rounded to the
first significant digit.

Implementation Details. We largely follow the setup in Appendix C.2, setting N = 10, M = 1,
and using 10K optimization steps. Our method employs a single-layer MLP to predict the parameters
of a mixture of 10 Gaussians.

Method FID ↓ SSIM ↑ LPIPS ↓
FSBM 11.5± 0.6 0.5285± 0.0008 0.5628± 0.0004
Ours 9.4± 0.2 0.5361± 0.0004 0.5560± 0.0005

Table 4: Metrics for Old-to-Young translation .

1https://github.com/panostheo98/FSBM
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D GAUSSIAN TO SWISS ROLL MAPPING

D.1 PAIRED DATA GENERATION

Method Paired
(x, y) ∼ π∗

Unpaired
x ∼ π∗

x

Unpaired
y ∼ π∗

y

Regression ✓ ✗ ✗
UGAN + ℓ2 ✓ ✓ ✓

CGAN ✓ ✓ ✗
CondNF ✓ ✗ ✗

CondNF (SS) ✓ ✓ ✓
GNOT ✓ ✓ ✓

DCPEME ✓ ✓ ✓
parOT ✓ ✓ ✓
OTCS ✓ ✓ ✓
FSBM ✓ ✓ ✓

CGMM (SS) ✓ ✓ ✓
Our method ✓ ✓ ✓

Table 5: The ability to use paired/unpaired
data by various models.

Generation process. To create the ground truth plan
π∗, we utilize the following procedure: sample a
mini-batch of size 64 and then determine the optimal
mapping using the entropic Sinkhorn algorithm, as
outlined in (Cuturi, 2013) and implemented in (Fla-
mary et al., 2021). This process is repeated P times
to generate the required number of pairs.

Cost Matrix. Let x ∈ R2 and y ∈ R2 be points
from the source and target distributions, respectively.
Define the rotated vectors as

y±φ = R±φ(y) =

[
cos (±φ) − sin (±φ)
sin (±φ) cos (±φ)

] [
y1
y2

]
,

where φ is a given rotation angle, in our case, it’s
±90◦. The corresponding elements of mini-batch OT cost matrices are then

C+φ
ij = ∥xi − y+φ

j ∥2, C−φ
ij = ∥xi − y−φ

j ∥2,

and the final cost matrix is
Cij = min

(
C+φ

ij , C−φ
ij

)
, ∀i, j.

In other words, each xi ∼ π∗
x is mapped to a point yj on the opposite side of the Swiss Roll, rotated

either by +90◦ or −90◦, depending on which distance is smaller.

D.2 BASELINE DETAILS

This section details the loss functions employed by the baseline models, providing context and ex-
planation for the data usage summarized in Table 5. Furthermore, it explains a straightforward
adaptation of the log-likelihood loss function presented in (9) to accommodate unpaired data, offer-
ing a natural comparative approach to the method proposed in our work. Finally, it includes details
about our reproduction of other methods and their discussion.

1. Standard generative & predictive models:
• Regression Model (MLP) uses the following simple ℓ2 loss

min
θ

E(x,y)∼π∗ ||y −Gθ(x)||2,

where Gθ : X → Y is a generator MLP with trainable parameters θ. Clearly, such a model can
use only paired data. Furthermore, it is known that the optimal regressor G∗ coincides with
Ey∼π∗(·|x)y, i.e., predicts the conditional expectation. Therefore, such a model will never learn
the true data distribution unless all π∗(·|x) are degenerate.

• Conditional GAN uses the following minmax loss:

min
θ

max
ϕ

[
Ex,y∼π∗ log (Dϕ(y|x))︸ ︷︷ ︸
Joint, requires pairs (x, y) ∼ π∗

+Ex∼π∗
x
Ez∼pz(z) log (1−Dϕ(Gθ(z|x)|x)︸ ︷︷ ︸

Marginal, requires x ∼ π∗
x

]
,

where Gθ : Z × X → Y is the conditional generator with parameters θ, pz is a distribution
on latent space Z , and Dϕ : Y × X → (0, 1) is the conditional discriminator with parameters
ϕ. It is clear that the model can use not only paired data during the training, but also samples
from π∗

x. The minimum of this loss is achieved when Gθ(·|x) generates π∗(·|x) from pz .
• Unconditional GAN + ℓ2 loss optimizes the following minmax objective:

min
θ

max
ϕ

[
λE(x,y)∼π∗Ez∼pz ||y −Gθ(x, z)||2︸ ︷︷ ︸

Joint, requires pairs (x, y) ∼ π∗

+Ey∼π∗
y
log (Dϕ(y))︸ ︷︷ ︸

Marginal, requires y ∼ π∗
y

+Ex∼π∗
x
Ez∼pz log (1−Dϕ(Gθ(x, z))︸ ︷︷ ︸

Marginal, requires x ∼ π∗
x

]
,
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where λ > 0 is a hyperparameter and Gθ : X ×Z → Y is the stochastic generator. Compared
to the unconditional case, the main idea here is to use the unconditional disctiminator Dϕ :
Y → (0, 1). This allows using unpaired samples from π∗

y . However, using only GAN loss
would ignore the paired information in any form, this is why the supervised ℓ2 loss is added
(λ = 1).
We note that this model has a trade-off between the target matching loss (GAN loss) and
regression loss (which suffers from averaging). Hence, the model is unlikely to learn the true
paired data distribution and can be considered as a heuristic loss for using both paired and
unpaired data. Overall, we believe this baseline is representative of many existing GAN-based
solutions (Tripathy et al., 2019, M3.5), (Jin et al., 2019, M3.3), (Yang & Chen, 2020, MC),
(Vasluianu et al., 2021, M3), which use objectives that are ideologically similar to this one for
paired and unpaired data.

• Conditional Normalizing Flow (Winkler et al., 2019) learns an explicit density model

πθ(y|x) = pz(G
−1
θ (y|x))

∣∣∣∣∂G−1
θ (y|x)
∂y

∣∣∣∣
via optimizing log-likelihood (9) of the paired data. Here Gθ : Z × X → Y is the conditional
generator function. It is assumed that Z = Y and Gθ(·|x) is invertible and differentiable.
In the implementation, we use the well-celebrated RealNVP neural architecture (Dinh et al.,
2017). The optimal values are attained when the generator Gθ(·|x) indeed generates πθ(·|x) =
π∗(·|x).
The conditional flow is expected to accurately capture the true conditional distributions, pro-
vided that the neural architecture is sufficiently expressive and there is an adequate amount of
paired data available. However, as mentioned in M3.1, a significant challenge arises in integrat-
ing unpaired data into the learning process. For instance, approaches such as those proposed
by (Atanov et al., 2019; Izmailov et al., 2020) aim to extend normalizing flows to a semi-
supervised context. However, these methods primarily assume that the input conditions x are
discrete, making it difficult to directly apply their frameworks to our continuous case. For
completeness, below we discuss a variant of the log-likelihood loss (Atanov et al., 2019, Eq.
1) when both x, y are continuous.

2. Semi-supervised log-likelihood methods (Atanov et al., 2019; Izmailov et al., 2020):
• Semi-supervised Conditional Normalizing Flows. As noted by the the authors, a natural

strategy for log-likelihood semi-supervised training that leverages both paired and unpaired
data is to optimize the following loss:

max
θ

[
E(x,y)∼π∗ log πθ(y|x)︸ ︷︷ ︸

Joint, requires pairs (x, y) ∼ π∗

+ Ey∼π∗
y
log πθ(y)︸ ︷︷ ︸

Marginal, requires y ∼ π∗
y

]
. (31)

This straightforward approach involves adding the unpaired data component, Ey∼π∗
y
log πθ(y)

to the loss function alongside the standard paired data component (9). While loss (31) looks
natural, its optimization is highly non-trivial since the marginal log-likelihood log πθ(y) is not
directly available. In fact, (Atanov et al., 2019; Izmailov et al., 2020) use this loss exclusively
in the case when x is a discrete object, e.g., the class label x ∈ {1, 2, ...,K}. In this case
log πθ(y) can be analytically computed:

log πθ(y) = logEx∼π∗
x
πθ(y|x) = log

K∑
k=1

πθ(y|x = k)π∗
x(x = k),

and π∗(x = k) are known class probabilities. Unfortunately, in the continuous case π∗
x(x) is

typically not available explicitly, and one has to exploit approximations such as

log πθ(y) = logEx∼π∗
x
πθ(y|x) ≈ log

1

Q

Q∑
q=1

log πθ(y|xq),

where xq are train (unpaired) samples. However, such Monte-Carlo estimates are generally
biased (because of the logarithm) and do not lead to good results, especially in high dimen-
sions. Nevertheless, for completeness, we also test how this approach performs. In our 2D
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example (Figure 2j), we found there is no significant difference between this loss and the fully
supervised loss (9): both models incorrectly map to the target and fail to learn conditional
distributions.

• Semi-supervised Conditional Gaussian Mixture Model. Using the natural loss (31) for semi-
supervised learning, one could also consider a (conditional) Gaussian mixture parametrization
for πθ(y|x) instead of the normalizing flow. For completeness, we include this baseline for
comparison. Using the same Gaussian mixture parametrization (17) as in our method, we
observed that this loss quickly overfits and leads to degenerate solutions, see Figure 2e.

3. Semi-supervised Methods. These methods are designed to learn deterministic OT maps with
general cost functions and, as a result, cannot capture stochastic conditional distributions.

• Neural optimal transport with pair-guided cost functional (Asadulaev et al., 2024,
GNOT). This method employs a general cost function for the neural optimal transport ap-
proach, utilizing a neural network parametrization for the mapping function and potentials.
In our experiments, we focus on the paired cost function setup, enabling the use of both
paired and unpaired data. We use the publicly available implementation2, which has been
verified through toy experiments provided in the repository.

• Differentiable cost-parameterized entropic mapping estimator (Howard et al., 2024,
DCPEME). We obtained the implementation from the authors but were unable to achieve
satisfactory performance. This is likely due to the deterministic map produced by their
method based on the entropic map estimator from (Cuturi et al., 2023). In particular, sce-
narios where nearby or identical points are mapped to distant locations may introduce diffi-
culties, potentially leading to optimization stagnation during training.

• Parametric Pushforward Estimation With Map Constraints (Panda et al., 2023,
parOT)3. We evaluated this method using the ℓ2 cost function, where it performed as ex-
pected. However, on our setup, the method occurred unsuitable because it learns a fully
deterministic transport map, which lacks the flexibility needed to model stochastic multi-
modal mapping. This limitation is visually evident in Figure 6g.

• Optimal Transport-guided Conditional Score-based diffusion model (Gu et al., 2023,
OTCS). We evaluated this method on a two-dimensional example from their GitHub repos-
itory4, where it performed as expected. However, when applied to our setup (described
in M5.1), the method failed to yield satisfactory results, even when provided with a large
amount of training data (refer to Figure 6h and detailed in Appendix D.3).

• Feedback Schrödinger Bridge Matching (Theodoropoulos et al., 2024, FSBM). We first
tested the method on a two-dimensional example from their GitHub repository5, where it
performed as reported in the original paper. However, as shown in Figure 2o, the learned
target distribution is very noisy with a small amount of data. With more samples (Figure 6i),
the method approximates the target distribution better but still fails to capture the ground-
truth conditional distribution, presumably due to misleading guidance from the key-points.

D.3 BASELINES FOR SWISS ROLL WITH THE LARGE AMOUNT OF DATA (16K)

In this section, we show the results of training of the baselines on the large amount of both paired
(16K) and unpaired (16K) data (Figure 6). Recall that the ground truth π∗ is depicted in Figure 2c.

As expected, Regression fails to learn anything meaningful due to the averaging effect (Figure 6a).
In contrast, the unconditional GAN+ℓ2 (Figure 6b) nearly succeeds in generating the target data π∗

y ,
but the learned plan is still incorrect, also due to the averaging effect. Given a sufficient amount of
training data, Conditional GAN (Figure 6c) nearly succeeds in learning the true conditional distri-
butions π∗(·|x). The same applies to the conditional normalizing flow (Figure 6d), but its results are
slightly worse, presumably due to the limited expressiveness of invertible flow architecture.

Experiments using the natural semi-supervised loss function in (31) demonstrate that this loss func-
tion can reasonably recover the conditional mapping with both CondNF (Figure 6e) and CGMM

2https://github.com/machinestein/GNOT
3https://github.com/natalieklein229/uq4ml/tree/parot
4https://github.com/XJTU-XGU/OTCS/
5https://github.com/panostheo98/FSBM
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(a) Regression. (b) UGAN+ℓ2. (c) CGAN. (d) CondNF. (e) CondNF (SS).

(f) DCPEME. (g) parOT. (h) OTCS. (i) FSBM. (j) CGMM (SS).

(k) GNOT. (l) Unpaired data. (m) Paired data. (n) Ground truth. (o) Our method.

Figure 6: Comparison of the mapping learned by baselines on Gaussian → Swiss Roll task (M5.1).
We use P = 16K paired data, Q = R = 16K unpaired data for training.

(Figure 6j) parameterizations. However, it requires significantly more training data compared to our
proposed loss function (13). This conclusion is supported by the observation that the CGMM model
trained with (31) tends to overfit, as shown in Figure 2e. In contrast, our method, which uses the
objective (13), achieves strong results, as illustrated in Figure 2d.

Other methods, unfortunately, also struggle to handle this illustrative 2D task effectively, despite
their success in large-scale problems. This discrepancy raises questions about the theoretical jus-
tification and general applicability of these methods, particularly in scenarios where simpler tasks
reveal limitations not evident in more complex settings.

D.4 ABLATION STUDY

In this section, we conduct an ablation study to address the question posed in M3.1 regarding how
the number of source and target samples influences the quality of the learned mapping. The results,
shown in Figure 7, indicate that the quantity of target points R has a greater impact than the number
of source points Q (compare Figure 7c with Figure 7b). Additionally, it is evident that the inclusion
of unpaired data helps mitigate over-fitting, as demonstrated in Figure 7a.

E PROOFS

E.1 LOSS DERIVATION

Below, we present a step-by-step derivation of the mathematical transitions, allowing the reader to
follow and verify the validity of our approach. We denote as C1, C2 all terms that are not involved
in learning the conditional plan πθ(y|x), i.e., not dependent on θ or marginal distributions such as
π∗
x. Starting from (6), we deduce

KL
(
π∗∥πθ

)
= Ex,y∼π∗ log

π∗
x(x)π

∗(y|x)
πθ
x(x)π

θ(y|x)
= Ex∼π∗

x
log

π∗
x(x)

πθ
x(x)

+ Ex,y∼π∗ log
π∗(y|x)
πθ(y|x)

=
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(a) Q = 0, R = 0 (b) Q = 1024, R = 0 (c) Q = 0, R = 1024 (d) Q=1024, R=1024

Figure 7: Ablation study analyzing the impact of varying source and target data point quantities on
the learned mapping for the Gaussian→ Swiss Roll task (using P = 128 paired samples).

KL
(
π∗
x∥πθ

x

)
+ Ex∼π∗

x
Ey∼π∗(·|x) log

π∗(y|x)
πθ(y|x)

= KL
(
π∗
x∥πθ

x

)︸ ︷︷ ︸
Marginal

+Ex∼π∗
x
KL
(
π∗(·|x)∥πθ(·|x)

)︸ ︷︷ ︸
Conditional

=

C1 + Ex∼π∗
x
Ey∼π∗(·|x) log

π∗(y|x)
πθ(y|x)

= C + Ex∼π∗
x
Ey∼π∗(·|x)

[
log π∗(y|x)− log πθ(y|x)

]
=

C1 − Ex∼π∗
x
H(π∗(·|x))− Ex,y∼π∗ log πθ(y|x) = C2 − Ex,y∼π∗ log πθ(y|x) (10)

=

C2 − Ex,y∼π∗ log
exp

(
−Eθ(y|x)

)
Zθ(x)

= C2 + Ex,y∼π∗Eθ(y|x) + Ex,y∼π∗ logZθ(x)
(12)
=

C2 + Ex,y∼π∗
cθ(x, y)− fθ(y)

ε
+ Ex,y∼π∗ logZθ(x) =

C2 + ε−1Ex,y∼π∗ [cθ(x, y)]− ε−1Ex,y∼π∗fθ(y) + Ex,y∼π∗ logZθ(x) =

C2 + ε−1Ex,y∼π∗ [cθ(x, y)]− ε−1Ey∼π∗
y
Ex∼π∗(·|y)f

θ(y) + Ex∼π∗
x
Ey∼π∗(·|x) logZ

θ(x) =

C2 + ε−1Ex,y∼π∗ [cθ(x, y)]− ε−1Ey∼π∗
y
fθ(y)Ex∼π∗(·|y)1︸ ︷︷ ︸

=1

+Ex∼π∗
x
logZθ(x)Ey∼π∗(·|x)1︸ ︷︷ ︸

=1

=

C2 + ε−1Ex,y∼π∗ [cθ(x, y)]− ε−1Ey∼π∗
y
fθ(y) + Ex∼π∗

x
logZθ(x).

The mathematical derivation presented above demonstrates that our defined loss function (13) is
essentially a framework for minimizing KL-divergence. In other words, when the loss (13) equals
to −C2, it implies that we have successfully recovered the true conditional plan π∗ in the KL sense.

E.2 EXPRESSIONS FOR THE GAUSSIAN PARAMETRIZATION

Proof of Proposition 3.1. Our parametrization of the cost cθ (15) and the dual potential fθ (16)
gives:

exp

(
fθ(y)− cθ(x, y)

ε

)
= exp

(
log

N∑
n=1

wnN (y | bn, εBn) + log

M∑
m=1

vm(x) exp

(
⟨am(x), y⟩

ε

))

=

M∑
m=1

N∑
n=1

vm(x)wn√
det
(
2πε−1B−1

n

) exp(−1

2
(y − bn)

⊤B−1
n

ε
(y − bn) +

⟨am(x), y⟩
ε

)
We now rewrite the expression inside the exponent, scaled by −2ε, using the symmetry of Bn, to
cast it into a Gaussian mixture form:

(y − bn)
⊤B−1

n (y − bn)− 2⟨am(x), y⟩ = y⊤B−1
n y − 2b⊤nB

−1
n y + b⊤nB

−1
n bn − 2⟨am(x), y⟩ =

y⊤B−1
n y − 2 (bn +Bnam(x))⊤︸ ︷︷ ︸

def
=d⊤

mn(x)

B−1
n y + b⊤nB

−1
n bn =

(y − dmn(x))
⊤B−1

n (y − dmn(x)) + b⊤nB
−1
n bn − d⊤mn(x)B

−1
n dmn(x).
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Afterwards, we rewrite the last two terms:

b⊤nB
−1
n bn − d⊤mn(x)B

−1
n dmn(x) = b⊤nB

−1
n bn − (bn +Bnam(x))⊤B−1

n (bn +Bnam(x)) =

b⊤nB
−1
n bn − b⊤nB

−1
n bn︸ ︷︷ ︸

=0

−b⊤n B−1
n Bn︸ ︷︷ ︸
=I

am(x)− a⊤m(x)BnB
−1
n︸ ︷︷ ︸

=I

bn − a⊤m(x)BnB
−1
n︸ ︷︷ ︸

=I

Bnam(x) =

−a⊤m(x)Bnam(x)− 2b⊤n am(x).

Finally, we get

exp

(
fθ(y)− cθ(x, y)

ε

)
=

M∑
m=1

N∑
n=1

wnvm(x) exp

(
a⊤m(x)Bnam(x) + 2b⊤n am(x)

2ε

)
︸ ︷︷ ︸

def
=zmn(x)

· 1√
det
(
2πε−1B−1

n

) exp(−1

2
(y − dmn(x))

⊤B−1
n

ε
(y − dmn(x))

)
︸ ︷︷ ︸

=N (y | dmn(x),εBn)

,

and, since
∫
Y N (y | dmn(x), εBn)dy = 1, the normalization constant simplifies to the sum of

zmn(x):

Zθ(x) =

∫
Y
exp

(
fθ(y)− cθ(x, y)

ε

)
dy

=

∫
Y

M∑
m=1

N∑
n=1

zmn(x)N (y | dmn(x), εBn)dy =

M∑
m=1

N∑
n=1

zmn(x).

Proof of Proposition 3.2. Combining equations (10), (12) and derivation above, we seamlessly ob-
tain the expression (17) needed for Proposition 3.2.

E.3 GRADIENT OF OUR LOSS FOR ENERGY-BASED MODELING

Proof of Proposition A.1. Direct differentiation of (13) gives:

∂

∂θ
L(θ) = ε−1Ex,y∼π∗

[
∂

∂θ
cθ(x, y)

]
− ε−1Ey∼π∗

y

[
∂

∂θ
fθ(y)

]
+ Ex∼π∗

x

[
∂

∂θ
logZθ(x)

]
. (32)

Recalling expression for the normalization constant, the last term can be expressed as follows:

Ex∼π∗
x

[
1

Zθ(x)

∂

∂θ
Zθ(x)

]
= Ex∼π∗

x

[
1

Zθ(x)

∫
Y

∂

∂θ
exp

(
fθ(y)− cθ(x, y)

ε

)
dy

]
=

Ex∼π∗
x

[
1

Zθ(x)

∫
Y

∂
∂θ

(
fθ(y)− cθ(x, y)

)
ε

exp

(
fθ(y)− cθ(x, y)

ε

)
dy

]
=

ε−1Ex∼π∗
x


∫
Y

∂

∂θ

(
fθ(y)− cθ(x, y)

){ 1

Zθ(x)
exp

(
fθ(y)− cθ(x, y)

ε

)}
︸ ︷︷ ︸

πθ(y|x)

dy

 .

From equation above we obtain:

∂

∂θ
L(θ) = ε−1

{
Ex,y∼π∗

[
∂

∂θ
cθ(x, y)

]
− Ey∼π∗

y

[
∂

∂θ
fθ(y)

]

+ Ex∼π∗
x
Ey∼πθ(y|x)

[
∂

∂θ

(
fθ(y)− cθ(x, y)

)]}
,

which concludes the proof.
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E.4 UNIVERSAL APPROXIMATION

Our objective is to set up and use the very general universal approximation result in (Acciaio et al.,
2024, Theorem 3.8). Hereinafter, we use the following notation that slightly abuse notation from the
main text.

Intra-Section Notation. For any D ∈ N we denote the Lebesgue measure on RD by λD, sup-
pressing the subscript D whenever clear from its context, we use L1

+(RD) to denote the set of
Lebesgue integrable (equivalence class of) functions f : RD → R for which

∫
f(x)λ(dx) = 1

and f ≥ 0 λ-a.e; i.e. Lebesgue-densities of probability measures. We use P+
1 (RD) to denote the

space of all Borel probability measures on RD which are absolutely continuous with respect to
λ, metrized by the total variation distance dTV . For any D ∈ N, we denote the set of D × D
positive-definite matrices by PDD. Additionally, for any N ∈ N, we define the N -simplex by
∆N

def.
= {u ∈ [0, 1]N :

∑N
n=1 un = 1}. We also denote floor operation for any x ∈ R as

⌊x⌋ def.
= max{n ∈ Z|n ≤ x}.

Lemma E.1 (The Space (P+
1 (RD), dTV ) is quantizable by Gaussian Mixtures). For every N ∈ N,

let DN
def.
= N

2 ((D
2 + 3D + 2)) and define the map

GMMN : RDN = RN × RND × R
N
2 D(D+1)) → P+

1 (RD)(
w, {bn}Nn=1, {Bn}Nn=1

)
7→

N∑
n=1

Proj∆N
(w)n ν

(
bn, φ(Bn)

)
,

where Proj∆N
: RN 7→ ∆N is the ℓ2 orthogonal projection of RN onto the N -simplex ∆N and

ν(bn, φ(Bn)) is the Gaussian measure on RD with mean bn, and non-singular covariance matrix
given by φ(Bn) where φ : RD(D+1)/2 → PDD is given for each B ∈ RD(D+1)/2 by

φ(B)
def.
= exp




B1 B2 . . . BD

B2 B3 . . . B2D−1

...
. . .

...
BD B2D−1 . . . BD(D+1)/2


 , (33)

where exp is the matrix exponential on the space of D×D matrices. Then, the family (GMMn)
∞
n=1

is a quantization of (P+
1 (RD), dTV ) in the sense of (Acciaio et al., 2024, Definition 3.2).

Proof. As implied by (Arabpour et al., 2024, Equation (3.10) in Proposition 7) every Gaussian
measure N (m,Σ) := µ on RD with mean m ∈ RD, symmetric positive-definite covariance matrix
Σ can be represented as

µ = N (m,φ(X)) (34)

for some (unique) vector X ∈ RD(D+1)/2. Therefore, by definition of a quantization, see (Acciaio
et al., 2024, Definition 3.2), it suffices to show that the family of Gaussian mixtures is dense in
(P+

1 (RD), dTV ).

Now, let ν ∈ P+
1 (RD) be arbitrary. By definition of P+

1 (RD) the measure ν admits a Radon-
Nikodym derivative f

def.
= Dµ

Dλ , with respect to the D-dimensional Lebesgue measure λ. Moreover,
by the Radon-Nikodym theorem, f ∈ L1

µ(RD); and by since µ is a probability measure then ν ∈
L1
+(RD).

Since compactly-supported smooth functions are dense in L1
+(RD) then, for every ε > 0, there

exists some f̃ ∈ C∞
c (RD) with f̃ ≥ 0 such that

∥f − f̃∥L1(RD) <
ε

3
. (35)

Since C∞
c (RD) is dense in L1(RD) then we may without loss of generality re-normalize f̃ to ensure

that it integrates to 1.

Since f̃ is compactly supported and approximates f , then (if f is non-zero, which it cannot be as
it integrates to 1) then it cannot be analytic, and thus it is non-polynomial. For every δ > 0, let φδ
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denote the density of the D-dimensional Gaussian probability measure with mean 0 and isotropic
covariance δ ID (where ID is the D × D identity matrix). Therefore, the proof of (Pinkus, 1999,
Proposition 3.7) (or any standard mollification argument) shows that we can pick δ

def.
= δ(ε) > 0

small enough so that the convolution f̃ ⋆ φδ satisfies∥∥f̃ − f̃ ⋆ φδ

∥∥
L1(RD)

<
ε

3
. (36)

Note that f̃ ⋆ φδ is the density of probability measure on RD; namely, the law of a random variable
which is the sum of a Gaussian random variance with law N (0, δIN ) and a random variable with
law µ. That is, f̃ ⋆ φδλ ∈ L1

+(RD). Together (35) and (36) imply that∥∥f − f̃ ⋆ φδ

∥∥
L1(RD)

<
2ε

3
. (37)

Recall the definition of the convolution: for each x ∈ RD we have

f̃(x) ⋆ φδ
def.
=

∫
u∈RD

f̃(u)φδ(x− u)λ(du). (38)

Since f̃ , φδ ∈ C∞
c (RD) then Lebesgue integral of their product coincides with the Riemann integral

of their product; whence, there is an N
def.
= N(ε) ∈ N “large enough” so that∥∥∥∥ ∫

u∈RD

f̃(u)φδ(x− u)λ(du)−
N∑

n=1

f̃(un)φδ(x− un)λ(du)

∥∥∥∥
L1(RD)

<
ε

3
(39)

for some u1, . . . , uN ∈ N. Note that,
∑N

n=1 f̃(un)φδ(x − un) is the law of a Gaussian mixture.
Therefore, combining (37) and (39) implies that∥∥∥∥f − N∑

n=1

f̃(un)φδ(x− un)λ(du)

∥∥∥∥
L1(RD)

< ε. (40)

Finally, recalling that the total variation distance between two measures with integrable Lebesgue
density equals the L1(RD) norm of the difference of their densities; yields the conclusion; i.e.

dTV

(
ν, ν̂
)
=

∥∥∥∥f − N∑
n=1

f̃(un)φδ(x− un)λ(du)

∥∥∥∥
L1(RD)

< ε

where Dν̂
Dλ

def.
=
∑N

n=1 f̃(un)φδ(x− un)λ(du).

Lemma E.2 (The space (P+
1 (RD), dTV ) is Approximate Simplicial). Let Ŷ def.

=
⋃

N∈N ∆N ×
[P+

1 (RD)]N and define the map η : Ŷ 7→ P+
1 (RD) by

η(w, (rn)
N
n=1)

def.
=

N∑
n=1

wn rn.

Then, η is a mixing function, in the sense of (Acciaio et al., 2024, Definition 3.1). Consequentially,
(P+

1 (RD), η) is approximately simplicial.

Proof. LetM+(RD) denote the Banach space of all finite signed measures on RD with finite total
variation norm ∥ · ∥TV . Since ∥ · − · ∥TV = dTV when restricted to P+

1 (RD)×P+
1 (RD) and since

∥ · ∥TV is a norm, then the conclusion follows from (Acciaio et al., 2024, Example 5.1) and since
P+
1 (RD) is a convex subset ofM+(RD).

Together, Lemmata E.1 and E.2 imply that (P+
1 (RD), dTV , η,Q) is a QAS space in the sense of (Ac-

ciaio et al., 2024, Definition 3.4), where Q
def.
= (GMMM )M∈N. Consequently, the following is a

geometric attention mechanism in the sense of(Acciaio et al., 2024, Definition 3.5)

η̂ : ∪N∈N∆N × RN×DM → P+
1 (RD)(

w,
(
vm, (bmn)

N
n=1, (Bmn)

N
n=1

)M
m=1

)
7→

N∑
n=1

wn

M∑
m=1

Proj∆M
(vm)n ν

(
bmn, φ(Bmn)

)
.
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Before presenting our main theorem, we first introduce several definitions of activation functions
that will be used in the theorem. These definitions, which are essential for completeness, are taken
from (Acciaio et al., 2024, Definitions 2.2-2.4).
Definition E.3 (Trainable Activation Function: Singular-ReLU Type). A trainable activation func-
tion σ is of ReLU+Step type if

σα : R ∋ x 7→ α1 max{x, α2x}+ (1− α1)⌊x⌋ ∈ R
Definition E.4 (Trainable Activation Function: Smooth-ReLU Type). A trainable activation func-
tion σ is of smooth non-polynomial type if there is a non-polynomial σ⋆ ∈ C∞

c (R),for which

σα : R ∋ x 7→ α1 max{x, α2x}+ (1− α1)σ
⋆(x) ∈ R

Definition E.5 (Classical Activation Function). Let σ⋆ ∈ C∞
c (R) be non-affine and such that there

is some x ∈ R at which σ is differentiable and has non-zero derivative. Then σ is is a classical
regular activation function if,for every α ∈ R2, σα = σ⋆.

Further in the text, we assume that activation functions are applied element-wise to each vector
x ∈ RD. We are now ready to prove the first part of our approximation theorem.
Proposition E.6 (Deep Gaussian Mixtures are Universal Conditional Distributions in the TV Dis-
tance). Let π : (RD, ∥·∥2)→ (P+

1 (RD), dTV ) be Hölder. Then, for every compact subset K ⊆ RD,
every approximation error ε > 0 there exists M,N ∈ N and a MLP f̂ : RD 7→ RN×NDM with
activations as in Definitions E.3, E.4, E.5 such that the (non-degenerate) Gaussian-mixture valued
map

π̂(·|x) def.
= η̂ ◦ f̂(x)

satisfies the uniform estimate

max
x∈K

dTV

(
π̂(·|x)∥π(·|x)

)
< ε.

Proof. Since Lemmata E.2 and E.1 imply that (P+
1 (RD), dTV , η,Q), is a QAS space in the sense

of (Acciaio et al., 2024, Definition 3.4), then the conclusion follows directly from (Acciaio et al.,
2024, Theorem 3.8).

Since many of our results are formulated in the Kullback-Leibler divergence, then our desired guar-
antee is obtained only under some additional mild regularity requirements of the target conditional
distribution π̂ being approximated.
Assumption E.7 (Regularity of Conditional Distribution). Let π : (RD, ∥ · ∥2)→ (P+

1 (RD), dTV )
be Hölder and, for each x ∈ RD, π(·|x) is absolutely continuous with respect to the Lebesgue
measure λ on RD. Suppose that there exist some 0 < δ ≤ ∆ such that its conditional Lebesgue
density satisfies

δ ≤ dπ(·|x)
dλ

≤ ∆ for all x ∈ RD. (41)

Theorem E.8 (Deep Gaussian Mixtures are Universal Conditional Distributions). Suppose that π
satisfies Assumption E.7. Then, for every compact subset K ⊆ RDx , every approximation error
ε > 0 there exists M,N ∈ N such that: for each m = 1, . . . ,M and n = 1, . . . , N there exist
MLPs: am : RDx 7→ RDy , vm : RDx 7→ RM with ReLU activation functions and wn, Bn learnable
parameters such that the (non-degenerate) Gaussian-mixture valued map

π̂(·|x) def.
=

N∑
n=1

M∑
m=1

zmn(x) ν
(
dmn(x), φ(Dmn(x))

)
satisfies the uniform estimate

max
x∈K

dTV

(
π(·|x), π̂(·|x)

)
< ε. (42)

If, moreover, π̂ also satisfies (41) (with π̂ in place of π) then additionally

max
x∈K

KL
(
π(·|x), π̂(·|x)

)
∈ O(ε), (43)

where O hides a constant independent of ε and of the dimension D.
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The proof of Theorem E.8 makes use of the symmetrized Kullback-Leibler divergence KLsym

which is defined for any two α, β ∈ P(RD) by KLsym(µ, ν)
def.
= KL(α∥β) + KL(β∥α); note,

if KLsym(α, β) = 0 then KLsym(α∥β) = 0. We now prove our main approximation guarantee.

Proof of Theorem E.8. To simplify the explanation of our first claim, we provide the expression for
π̂(y|x) from (17):

π̂(y|x) =
N∑

n=1

wn

M∑
m=1

vm(x) exp

(
a⊤m(x)Bnam(x) + 2b⊤n am(x)

2ε

)
N (y | dmn(x), εBn)

Thanks to the wide variety of activation functions available from Definitions E.3, E.4, E.5, we can
construct the map f̂ and directly apply Proposition E.6. This completes the proof of the first claim.

Under Assumption E.7, π(·|x) and π̂(·|x) are equivalent to the D-dimensional Lebesgue measure λ.
Consequently, for all x ∈ RDx :

π(·|x)≪ π̂(·|x)

Therefore, the Radon-Nikodym derivative π̂(·|x)
π(·|x) is a well-defined element of L1(RDx), for each

x ∈ RDx ; furthermore, we have
π(·|x)
π̂(·|x)

=
π(·|x)
dλ

dλ

π̂(·|x)
. (44)

Again, leaning on Assumption (41) and the Hölder inequality, we deduce that

sup
a∈RD

∣∣∣π(·|x)
π̂(·|x)

(a)
∣∣∣ = sup

a∈RD

∣∣∣π(·|x)
dλ

(a)
dλ

π̂(·|x)
(a)
∣∣∣

≤ sup
a∈RD

∣∣∣π(·|x)
dλ

(a)
∣∣∣ sup
a∈RD

∣∣∣ dλ

π̂(·|x)
(a)
∣∣∣

≤ sup
a∈RD

∣∣∣π(·|x)
dλ

(a)
∣∣∣1
δ

≤ ∆

δ
(45)

where the final inequality under the assumption that π̂ also satisfies Assumption 41. Importantly,
we emphasize that the right-hand side of (45) holds independently of x ∈ RDx (“which we are
conditioning on”). A nearly identical estimate holds for the corresponding lower-bound. Therefore,
we may apply (Sason, 2015, Theorem 1) to deduce that: there exists a constant C > 0 (independent
of x ∈ RDx and depending only on the quantities ∆

δ and δ
∆ ; thus only on δ,∆) such that: for each

x ∈ RDx

KL
(
π(·|x), π̂(·|x)

)
≤ C dTV

(
π(·|x), π̂(·|x)

)
. (46)

The conclusion now follows, since the right-hand side of (46) was controllable by the first statement;
i.e. since (42) holds we have

KL
(
π(·|x), π̂(·|x)

)
≤ C dTV

(
π(·|x), π̂(·|x)

)
≤ Cε. (47)

A nearly identical derivation shows that

KL
(
π̂(·|x), π(·|x)

)
≤ Cε. (48)

Combining (47) and (48) yields the following bound

max
x∈K

KLsym

(
π(·|x), π̂(·|x)

)
∈ O(ε). (49)

Since KL(α∥β) ≤ KLsym(α, β) for every pair of Borel probability measures α and β on RDx

then (49) implies (43).
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Source Target FSBM Ours

Figure 8: Extended visual comparisons between the FSBM (Theodoropoulos et al., 2024) method
(3rd column) and our method (4th column) for Woman-to-Man translation are shown here. The task
is described in M5.3, with further implementation details in Appendix C.4. The first column shows
the source image and the second column the target image.
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Source Target FSBM Ours

Figure 9: Visual comparisons for the Old-to-Young translation task between the FSBM (Theodor-
opoulos et al., 2024) method (3rd column) and our method (4th column). The task is described in
Appendix C.4, which also provides additional implementation details. The first column displays the
source image, and the second column shows the target image.
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