

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INVERSE ENTROPIC OPTIMAL TRANSPORT SOLVES SEMI-SUPERVISED LEARNING VIA DATA LIKELIHOOD MAXIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning conditional distributions $\pi^*(\cdot|x)$ is a central problem in machine learning, which is typically approached via supervised methods with paired data $(x, y) \sim \pi^*$. However, acquiring paired data samples is often challenging, especially in problems such as domain translation. This necessitates the development of *semi-supervised* models that utilize both limited paired data and additional unpaired i.i.d. samples $x \sim \pi_x^*$ and $y \sim \pi_y^*$ from the marginal distributions. The usage of such combined data is complex and often relies on heuristic approaches. To tackle this issue, we propose a new learning paradigm that integrates both paired and unpaired data seamlessly using data likelihood maximization techniques. We demonstrate that our approach also connects intriguingly with inverse entropic optimal transport (OT). This finding allows us to apply recent advances in computational OT to establish an *end-to-end* learning algorithm to get $\pi^*(\cdot|x)$. In addition, we derive the universal approximation property, demonstrating that our approach can theoretically recover true conditional distributions with arbitrarily small error. Finally, we demonstrate through empirical tests that our method effectively learns conditional distributions using paired and unpaired data simultaneously.

1 INTRODUCTION

Recovering conditional distributions $\pi^*(y|x)$ from data is one of the fundamental problems in machine learning, which appears both in predictive and generative modeling. In predictive modeling, the standard examples of such tasks are the classification, where $x \in \mathbb{R}^{D_x}$ is a feature vector and $y \in \{0, 1, \dots, K\}$ is a class label, and regression, in which case x is also a feature vector and $y \in \mathbb{R}$ is a real number. In generative modeling, both x and y are feature vectors in $\mathbb{R}^{D_x}, \mathbb{R}^{D_y}$, respectively, representing complex objects, and the goal is to find a transformation between them.

In our paper, we focus on the setting where both x and y are multi-dimensional real-valued vectors, and the true joint data distribution $\pi^*(x, y)$ is continuous over the space $\mathbb{R}^{D_x} \times \mathbb{R}^{D_y}$. This excludes scenarios where y is a discrete variable, e.g., a class label. Our focus is on multi-dimensional probabilistic regression, often called *domain translation*, since x and y usually correspond to feature vectors from different domains. The goal is to perform probabilistic prediction: given a new input x_{new} from the source domain, we aim to predict the corresponding output y_{new} from the target domain, according to the conditional distribution $\pi^*(y|x_{\text{new}})$.

It is natural to assume that learning the conditional distribution $\pi^*(y|x)$ requires access to input-target data pairs $(x, y) \sim \pi^*$, where π^* denotes the true joint distribution of the data. In such cases, $\pi^*(y|x)$ can be modeled using standard supervised learning approaches, ranging from simple regression to conditional generative models (Mirza & Osindero, 2014; Winkler et al., 2019; Ardizzone et al., 2019; Hagemann et al., 2024). However, acquiring paired data can be expensive or impractical, whereas obtaining unpaired samples – $x \sim \pi_x^*$ or $y \sim \pi_y^*$ – from each domain separately is often much easier and more cost-effective. This challenge has motivated the development of unsupervised (or unpaired) learning methods (e.g., (Zhu et al., 2017)), which aim to recover the dependency structure $\pi^*(y|x)$ using unpaired data alone.

While both paired (supervised) and unpaired (unsupervised) domain translation approaches are being extremely well developed nowadays, surprisingly, the semi-supervised setup when both paired

and unpaired data is available is much less explored. This is due to the challenge of designing learning objective (loss) which can simultaneously take into account both paired and unpaired data. A common approach involves heuristically combining standard paired and unpaired losses (cf. (Tripathy et al., 2019, §3.5), (Jin et al., 2019, §3.3), (Yang & Chen, 2020, §C), (Vasluianu et al., 2021, §3), (Panda et al., 2023, Eq. 8), (Tang et al., 2024, Eq. 8), (Theodoropoulos et al., 2024, §3.2), (Gu et al., 2023, §3)). However, as demonstrated in §5.1, these composite objectives fail to recover the true conditional distribution even in simple cases $D_x = D_y = 2$. This raises the question: *Can we design a simple loss to learn $\pi^*(y|x)$ that naturally integrates both paired and unpaired data?*

In our paper, we positively answer the above-raised question. Our **main contributions** are:

1. We introduce a novel loss function designed to facilitate the learning of conditional distributions $\pi^*(\cdot|x)$ using both paired and unpaired training samples drawn from π^* (see §3.1). This loss function is grounded in the well-established principle of likelihood maximization. A key advantage of our approach is its ability to support end-to-end learning, thereby *seamlessly* integrating both paired and unpaired data into the training process.
2. We demonstrate the theoretical equivalence between our proposed loss function and the inverse entropic optimal transport problem (see §3.2). This finding enables us to leverage established computational optimal transport methods to address challenges in semi-supervised learning.
3. Building upon recent advancements in the field of computational optimal transport, we provide *end-to-end* algorithm exploiting the Gaussian mixture parameterization specifically tailored to optimize our proposed likelihood-based loss function (see §3.3). For completeness, Appendix A shows that our loss function is also applicable to a fully neural network parametrization.
4. We prove that our proposed parameterization satisfies the universal approximation property, which theoretically allows our algorithm to recover π^* arbitrarily well (see §3.4).

Our empirical validation in §5 demonstrates the impact of both unpaired and paired data on overall performance. In particular, our findings show that the conditional distributions $\pi^*(\cdot|x)$ can be effectively learned even with a modest amount of paired data $(x, y) \sim \pi^*$, provided that sufficient auxiliary unpaired data $x \sim \pi_x^*$ and $y \sim \pi_y^*$ is available.

Notations. Throughout the paper, \mathcal{X} and \mathcal{Y} represent Euclidean spaces, equipped with the standard norm $\|\cdot\|$, induced by the inner product $\langle \cdot, \cdot \rangle$, i.e., $\mathcal{X} \stackrel{\text{def}}{=} \mathbb{R}^{D_x}$ and $\mathcal{Y} \stackrel{\text{def}}{=} \mathbb{R}^{D_y}$. The set of absolutely continuous probability distributions on \mathcal{X} is denoted by $\mathcal{P}_{\text{ac}}(\mathcal{X})$. For simplicity, we use the same notation for both the distributions and their corresponding probability density functions. The joint probability distribution over $\mathcal{X} \times \mathcal{Y}$ is denoted by π with corresponding marginals π_x and π_y . The set of joint distributions with given marginals α and β is represented by $\Pi(\alpha, \beta)$. We use $\pi(\cdot|x)$ for the conditional distribution, while $\pi(y|x)$ represents the conditional density at a specific point y . The differential entropy is given by $H(\beta) = - \int_{\mathcal{Y}} \beta(y) \log \beta(y) dy$.

2 BACKGROUND

First, we recall the formulation of the domain translation problem (§2.1). We remind the difference between its paired, unpaired, and semi-supervised setups. Next, we recall the basic concepts of the inverse entropic optimal transport, which are relevant to our paper (§2.2).

2.1 DOMAIN TRANSLATION PROBLEMS

The goal of *domain translation* task is to transform data samples from the source domain to the target domain while maintaining the essential content or structure. This approach is widely used in applications like computer vision (Zhu et al., 2017; Lin et al., 2018; Peng et al., 2023), natural language processing (Jiang et al., 2021; Morishita et al., 2022), audio processing (Du et al., 2022), etc. Domain translation task setups can be classified into supervised (paired), unsupervised (unpaired), and semi-supervised approaches based on the data used for training (Figure 1).

Supervised domain translation relies on matched examples from both the source and target domains, where each input corresponds to a specific output, enabling direct supervision during the learning process. Formally, this setup assumes access to a set of P empirical pairs $XY_{\text{paired}} \stackrel{\text{def}}{=} \{(x_1, y_1), \dots, (x_P, y_P)\} \sim \pi^*$ from some unknown joint distribution. The goal here is to recover the conditional distributions $\pi^*(\cdot|x)$ to generate samples $y|x_{\text{new}}$ for new inputs x_{new} that are not

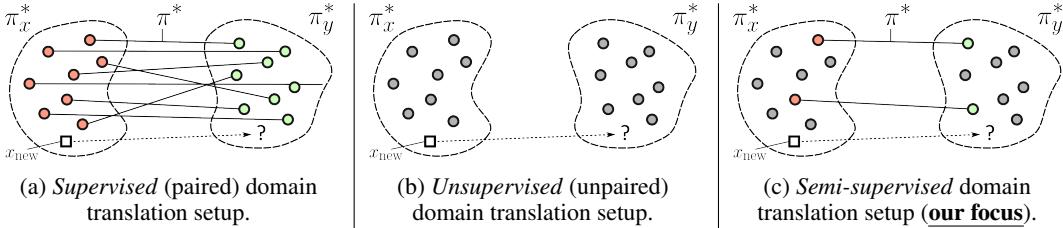


Figure 1: Visualization of domain translation setups. Red and green colors indicated paired training data XY_{paired} , while grey color indicates the unpaired training data $X_{\text{unpaired}}, Y_{\text{unpaired}}$.

present in the training data. While this task is relatively straightforward to solve, obtaining such paired training datasets can be challenging, as it often involves significant time, cost, and effort.

Unsupervised domain translation, in contrast, does not require direct correspondences between the source and target domains (Zhu et al., 2017, Figure 2). Instead, it involves learning to translate between domains using unpaired data, which offers greater flexibility but demands more advanced techniques to achieve accurate translation. Formally, we are given Q unpaired samples $X_{\text{unpaired}} \stackrel{\text{def}}{=} \{x_1, \dots, x_Q\} \sim \pi_x^*$ from the source distribution, and R unpaired samples $Y_{\text{unpaired}} \stackrel{\text{def}}{=} \{y_1, \dots, y_R\} \sim \pi_y^*$ from the target distribution. Our objective is to learn the conditional distributions $\pi^*(\cdot|x)$ of the unknown joint distribution π^* , whose marginals are π_x^* and π_y^* , respectively. The unsupervised setup is inherently ill-posed, often yielding ambiguous solutions (Moriakov et al., 2020). Accurate translation requires constraints and regularization (Yuan et al., 2018). Still, it is highly relevant due to the prevalence of unpaired data in practice.

Semi-supervised domain translation integrates both paired and unpaired data to enhance the translation process (Tripathy et al., 2019; Jiang et al., 2023a). This approach leverages the precision of paired data to guide the model while exploiting the abundance of unpaired data to improve performance and generalization. Formally, the setup assumes access to paired data $XY_{\text{paired}} \sim \pi^*$ as well as additional unpaired samples $X_{\text{unpaired}} \sim \pi_x^*$ and $Y_{\text{unpaired}} \sim \pi_y^*$. Note that paired samples can also be used in an unpaired manner. By convention, we assume $P \leq Q, R$, where the first P unpaired samples are identical to the paired ones. The goal remains to learn the true conditional mapping $\pi^*(\cdot|x)$ using the available data. For extended discussion of real-world applications in which the semi-supervised setting arises naturally, see Appendix B.4.

2.2 OPTIMAL TRANSPORT (OT)

The theoretical foundations of optimal transport are detailed in books (Villani et al., 2009; Santambrogio, 2015; Peyré et al., 2019). In what follows, we summarize the key concepts necessary to understand the connection between our loss function (§3.1) and inverse entropic optimal transport (Dupuy et al., 2019) established in §3.2. We emphasize that this section is intended solely to clarify this connection; it is not required for following the loss derivation itself, which is presented in a constructive manner to remain accessible to a broader audience. For a more detailed discussion of entropic, weak and inverse optimal transport, see Appendix B.1.

Entropic OT (Genevay, 2019). Given source and target distributions $\alpha \in \mathcal{P}_{\text{ac}}(\mathcal{X})$ and $\beta \in \mathcal{P}_{\text{ac}}(\mathcal{Y})$, and a cost function $c^* : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, the *entropic* optimal transport (EOT) problem is defined as:

$$\text{OT}_{c^*, \varepsilon}(\alpha, \beta) \stackrel{\text{def}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \mathbb{E}_{x, y \sim \pi} [c^*(x, y)] - \varepsilon \mathbb{E}_{x \sim \alpha} H(\pi(\cdot|x)), \quad (1)$$

where $\varepsilon > 0$ is the regularization parameter; setting $\varepsilon = 0$ recovers the classic OT formulation (Villani et al., 2009) originally proposed by (Kantorovich, 1942). Under mild assumptions, a unique minimizer $\pi^* \in \Pi(\alpha, \beta)$ exists and is known as the *entropic optimal transport plan*. We note that in the literature, the entropy regularization term in (1) is typically written as either $-\varepsilon H(\pi)$ or $+\varepsilon \text{KL}(\pi \parallel \alpha \otimes \beta)$. These formulations are equivalent up to additive constants; see the discussion in (Mokrov et al., 2024, §2) or (Gushchin et al., 2023b, §1). In this paper, we adopt the formulation in (1), which is also known as the *weak* form of entropic OT; see (Gozlan et al., 2017; Backhoff-Veraguas et al., 2019; Backhoff-Veraguas & Pammer, 2022).

162 **Semi-dual EOT.** Under mild assumptions on c^* , α , β , the further semi-dual EOT formulation holds:
 163

$$164 \quad \text{OT}_{c^*, \varepsilon}(\alpha, \beta) = \max_f \left\{ \mathbb{E}_{x \sim \alpha} f^{c^*}(x) + \mathbb{E}_{y \sim \beta} f(y) \right\}, \quad (2)$$

166 where f ranges over a subset of continuous functions (dual potentials) subject to mild boundedness
 167 conditions; see (Backhoff-Veraguas & Pammer, 2022, Eq. 3.3) for details. The term f^c denotes the
 168 so-called *weak entropic c-transform* of f , defined as:

$$169 \quad f^{c^*}(x) \stackrel{\text{def}}{=} \min_{\mu \in \mathcal{P}(\mathcal{Y})} \left\{ \mathbb{E}_{y \sim \mu} [c^*(x, y)] - \varepsilon H(\mu) - \mathbb{E}_{y \sim \mu} f(y) \right\}. \quad (3)$$

171 This transform admits a closed-form expression (Mokrov et al., 2024, Eq. 14):
 172

$$173 \quad f^c(x) = -\varepsilon \log \int_y \exp \left(\frac{f(y) - c(x, y)}{\varepsilon} \right) dy. \quad (4)$$

175 **Inverse EOT.** The classical forward EOT problem (1) seeks an optimal transport plan π^* between
 176 two given marginal distributions α and β under a fixed cost function c^* . In contrast, the *inverse* EOT
 177 problem considers the reverse setting (Chan et al., 2025, §5.1): given a joint distribution π^* with
 178 marginals π_x^* and π_y^* , the goal is to recover a cost function c^* such that π^* is the EOT plan for c^* .
 179

180 This inverse formulation is not uniquely defined in the literature – each version is typically tailored to
 181 specific applications (Stuart & Wolfram, 2020; Ma et al., 2020; Galichon & Salanié, 2022; Andrade
 182 et al., 2023). In this work, we adopt a version that aligns with our learning objective described
 183 in §3.1. This choice enables us, in §3.2, to formally relate our proposed loss to the inverse EOT
 184 framework. We further conjecture that this connection could potentially enable the application of
 185 advanced EOT solvers (e.g., diffusion Schrödinger bridges (Vargas et al., 2021; De Bortoli et al.,
 186 2021; Gushchin et al., 2023a; Shi et al., 2024; Gushchin et al., 2024b)) to enhance performance in
 187 semi-supervised learning scenarios, which we leave for future work.

188 With this motivation, we consider the *inverse* EOT problem as the following minimization problem:
 189

$$190 \quad c^* \in \arg \min_c \left[\underbrace{\mathbb{E}_{x, y \sim \pi^*} [c(x, y)] - \varepsilon \mathbb{E}_{x \sim \pi_x^*} H(\pi^*(\cdot | x))}_{\geq \text{OT}_{c, \varepsilon}(\pi_x^*, \pi_y^*)} \underbrace{- \text{OT}_{c, \varepsilon}(\pi_x^*, \pi_y^*)}_{\text{not depend on } c} \right], \quad (5)$$

193 where $c : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ ranges over measurable cost functions. Consider the term $\text{OT}_{c, \varepsilon}(\pi_x^*, \pi_y^*)$:
 194 due to entropic regularization, this expression admits a unique optimal transport plan π_c^* for every
 195 quadruple $(c, \varepsilon, \pi_x^*, \pi_y^*)$. While π_c^* matches the marginals of π^* , its internal structure – i.e., the
 196 conditional distributions – may differ. The term $\mathbb{E}_{x, y \sim \pi^*} [c(x, y)] - \varepsilon \mathbb{E}_{x \sim \pi_x^*} H(\pi^*(\cdot | x))$ represents
 197 the *transportation cost* of using c to transport mass according to π^* (cf. the minimization objective
 198 in (1)). If the “inner” part of π_c^* differs from that of π^* , this cost exceeds $\text{OT}_{c, \varepsilon}(\pi_x^*, \pi_y^*)$. Therefore,
 199 the minimum of the full objective is achieved only when π^* coincides with the optimal transport plan
 200 for some cost c^* , in which case the objective value is zero. Notably, the term $-\varepsilon \mathbb{E}_{x \sim \pi_x^*} H(\pi^*(\cdot | x))$
 201 is independent of c and can be omitted from the optimization. Additionally:

- 202 **Invariance to ε .** Unlike the forward problem (1), the inverse problem is invariant to the entropic
 203 regularization parameter $\varepsilon > 0$. For any $\varepsilon' > 0$, the substitution $c(x, y) = \frac{\varepsilon}{\varepsilon'} c'(x, y)$ rescales the
 204 entire objective (5) by a constant, making solutions equivalent up to this change.
- 205 **Multiple solutions.** The inverse problem (5) generally admits *many* valid cost functions. For
 206 instance, $c^*(x, y) = -\varepsilon \log \pi^*(x, y)$ achieves the minimum by construction. More generally,
 207 any function of the form $c'(x, y) = -\varepsilon \log \pi^*(x, y) + u(x) + v(y)$ is also valid, since additive
 208 terms depending only on x or y do not affect the resulting OT plan. In particular, setting $u(x) =$
 209 $\varepsilon \log \pi_x^*(x)$ and $v(y) = 0$ yields $c^*(x, y) = -\varepsilon \log \pi^*(y | x)$.

210 In practice, π^* is known only through samples and not via its density. Therefore, closed-form
 211 expressions like $-\varepsilon \log \pi^*(x, y)$ or $-\varepsilon \log \pi^*(y | x)$ cannot be computed directly. This necessitates
 212 learning a parametric estimator π^θ to approximate the unknown conditional distributions.

213 3 SEMI-SUPERVISED DOMAIN TRANSLATION VIA INVERSE EOT

215 In §3.1, we propose a novel loss function grounded in KL minimization. In §3.2, we demonstrate
 216 that proposed loss is equivalent to solving the inverse EOT problem (5), thereby connecting optimal

transport theory with our practical framework. To operationalize this approach, §3.3 introduces a lightweight parametrization. We subsequently prove in §3.4 that this parametrization, when combined with our loss minimization, guarantees arbitrarily accurate reconstruction of the true conditional plan under mild assumptions. Appendix A demonstrates how our framework extends to fully neural parametrization. All our proofs appear in Appendix E.

3.1 LOSS DERIVATION

Part I. Data likelihood maximization and its limitation. Our goal is to approximate the true distribution π^* by some parametric model π^θ , where θ represents the parameters of the model. To achieve this, we would like to employ the standard KL-divergence minimization framework, also known as data likelihood maximization. Namely, we aim to minimize

$$\text{KL}(\pi^* \parallel \pi^\theta) = \mathbb{E}_{x,y \sim \pi^*} \log \frac{\pi_x^*(x)\pi^*(y|x)}{\pi_x^\theta(x)\pi^\theta(y|x)} = \mathbb{E}_{x \sim \pi_x^*} \log \frac{\pi_x^*(x)}{\pi_x^\theta(x)} + \mathbb{E}_{x,y \sim \pi^*} \log \frac{\pi^*(y|x)}{\pi^\theta(y|x)} = \quad (6)$$

$$\text{KL}(\pi_x^* \parallel \pi_x^\theta) + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} \log \frac{\pi^*(y|x)}{\pi^\theta(y|x)} = \underbrace{\text{KL}(\pi_x^* \parallel \pi_x^\theta)}_{\text{Marginal}} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} \text{KL}(\pi^*(\cdot|x) \parallel \pi^\theta(\cdot|x))}_{\text{Conditional}}. \quad (7)$$

It is clear that objective (7) splits into two **independent** components: the *marginal* and the *conditional* matching terms. Our focus will be on the conditional component $\pi^\theta(\cdot|x)$, as it is the necessary part for the domain translation. Note that the marginal part π_x^θ is not actually needed. The conditional part of (7) can further be divided into the following terms:

$$\mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} [\log \pi^*(y|x) - \log \pi^\theta(y|x)] = -\mathbb{E}_{x \sim \pi_x^*} H(\pi^*(\cdot|x)) - \mathbb{E}_{x,y \sim \pi^*} \log \pi^\theta(y|x). \quad (8)$$

The first term is independent of θ , so we obtain the following minimization objective:

$$\mathcal{L}(\theta) \stackrel{\text{def}}{=} -\mathbb{E}_{x,y \sim \pi^*} \log \pi^\theta(y|x). \quad (9)$$

It is important to note that minimizing (9) is equivalent to maximizing the conditional likelihood, a strategy utilized in conditional normalizing flows (Papamakarios et al., 2021, CondNF). However, a major limitation of this approach is its reliance solely on paired data from π^* , which can be difficult to obtain in real-world scenarios. In the following section, we modify this strategy to incorporate available unpaired data within a semi-supervised learning setup (see §2.1). We note that

Part II. Solving the limitations via a tailored parameterization. To address the above-mentioned issue and utilize unpaired data, we first use Gibbs-Boltzmann parametrization (LeCun et al., 2006):

$$\pi^\theta(y|x) \stackrel{\text{def}}{=} \frac{\exp(-E^\theta(y|x))}{Z^\theta(x)}, \quad (10)$$

where $E^\theta(\cdot|x) : \mathcal{Y} \rightarrow \mathbb{R}$ is the *Energy function*, and $Z^\theta(x) \stackrel{\text{def}}{=} \int_{\mathcal{Y}} \exp(-E^\theta(y|x)) dy$ is the normalization constant. Substituting (10) into (9), we obtain:

$$\mathcal{L}(\theta) = \mathbb{E}_{x,y \sim \pi^*} E^\theta(y|x) + \mathbb{E}_{x \sim \pi_x^*} \log Z^\theta(x). \quad (11)$$

This objective already provides an opportunity to exploit the unpaired samples from the marginal distribution π_x^* to learn the conditional distributions $\pi^\theta(\cdot|x) \approx \pi^*(\cdot|x)$. Namely, it helps to estimate the part of the objective related to the normalization constant Z^θ . To incorporate independent samples from the second marginal distribution π_y^* , it is crucial to adopt a parametrization that separates the term in the energy function $E^\theta(y|x)$ that depends only on y . Thus, we propose:

$$E^\theta(y|x) \stackrel{\text{def}}{=} \frac{c^\theta(x,y) - f^\theta(y)}{\varepsilon}. \quad (12)$$

In fact, this parameterization allows us to decouple the cost function $c^\theta(x,y)$ and the potential function $f^\theta(y)$. Specifically, changes in $f^\theta(y)$ can be offset by corresponding changes in $c^\theta(x,y)$, resulting in the same energy function $E^\theta(y|x)$. For example, by setting $f^\theta(y) \equiv 0$ and $\varepsilon = 1$, the parameterization of the energy function $E^\theta(y|x)$ remains consistent, as it can be exclusively derived from $c^\theta(x,y)$. Substituting (12) into the energy term of (11), and using the identity $\mathbb{E}_{x,y \sim \pi^*} f^\theta(y) = \mathbb{E}_{y \sim \pi_y^*} f^\theta(y)$, yields *our final objective*, which integrates both paired and unpaired data:

$$\mathcal{L}(\theta) = \underbrace{\varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} [c^\theta(x,y)]}_{\text{Joint, requires pairs } (x,y) \sim \pi^*} - \underbrace{\varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} f^\theta(y)}_{\text{Marginal, requires } y \sim \pi_y^*} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} \log Z^\theta(x)}_{\text{Marginal, requires } x \sim \pi_x^*} \rightarrow \min_{\theta}. \quad (13)$$

270 In Appendix E.1, we present a rigorous, step-by-step derivation starting from (6) and arriving at
 271 (13), using only *formal mathematical* transitions. Throughout this derivation, we initially assume
 272 that paired samples are drawn from the full joint distribution π^* . However, in practice the paired
 273 data may be restricted to a subset of π^* , which we discuss in detail in Appendix B.3.

274 At this point, a reader may come up with 2 reasonable questions regarding (13):
 275

1. How to perform the optimization of the proposed objective? This question is not straightforward
 due to the existence of the (typically intractable) normalizing constant Z_θ in the objective.
2. To which extent do the separate terms in (13) (paired, unpaired data) contribute to the objective,
 and which type of data is the most important to get the correct solution?

280 We answer these questions in §3.3 and §5. Before doing that, we show a surprising finding that our
 281 proposed objective actually solves the inverse entropic OT problem (5).
 282

283 3.2 RELATION TO INVERSE EOT

285 We now show that (5) is equivalent to (13). Substituting the semi-dual formulation of EOT (2) into
 286 (5) (while omitting the constant entropy term) and using the identity $\min(-g) = -\max g$ gives:

$$287 \min_{c,f} \left\{ \mathbb{E}_{x,y \sim \pi^*} [c(x,y)] - \mathbb{E}_{x \sim \pi_x^*} f^c(x) - \mathbb{E}_{y \sim \pi_y^*} f(y) \right\}. \quad (14)$$

290 Assume that both the cost function c and the potential function f are parameterized as c^θ and f^θ ,
 291 respectively, with a parameter θ . Using the definition from (4) and our energy function parame-
 292 terization in (12), we can express $(f^\theta)^{c^\theta}(x)$ as $(f^\theta)^{c^\theta}(x) = -\varepsilon \log Z^\theta(x)$. This shows that the
 293 expression in (14) is equivalent to our proposed likelihood-based loss in (13), scaled by ε .

294 This result shows that *inverse entropic OT can be viewed as a likelihood maximization problem*,
 295 enabling the use of established techniques like ELBO and EM (Barber, 2012; Alemi et al., 2018;
 296 Bishop & Bishop, 2023). It also reframes inverse EOT as a semi-supervised domain translation task.
 297 Notably, prior work on inverse OT has largely focused on discrete, fully paired settings (see §4).

298 3.3 PRACTICAL PARAMETERIZATION

300 The most computationally intensive aspect of optimizing the loss function in (13) lies in calculating
 301 the integral for the normalization constant Z^θ . To tackle this challenge, we propose a lightweight pa-
 302 rameterization that yields closed-form expressions for each term in the loss function. Our proposed
 303 cost function parameterization c^θ is based on the log-sum-exp function (Murphy, 2012, §3.5.3):

$$304 c^\theta(x, y) = -\varepsilon \log \sum_{m=1}^M v_m^\theta(x) \exp \left(\frac{\langle a_m^\theta(x), y \rangle}{\varepsilon} \right), \quad (15)$$

308 where $\{v_m^\theta(x) : \mathbb{R}^{D_x} \rightarrow \mathbb{R}_+, a_m^\theta(x) : \mathbb{R}^{D_x} \rightarrow \mathbb{R}^{D_y}\}_{m=1}^M$ are arbitrary parametric functions, e.g.,
 309 *neural networks*, with learnable parameters denoted by θ_c . The parametric form of the cost is moti-
 310 vated by (Korotin et al., 2024), from which we derived a more general functional form appropriate
 311 for our setting. Therefore, we adopt a Gaussian mixture parameterization for the dual potential f^θ :

$$312 f^\theta(y) = \varepsilon \log \sum_{n=1}^N w_n^\theta \mathcal{N}(y | b_n^\theta, \varepsilon B_n^\theta), \quad (16)$$

315 where $\theta_f \stackrel{\text{def}}{=} \{w_n^\theta, b_n^\theta, B_n^\theta\}_{n=1}^N$ are learnable parameters of the potential, with $w_n^\theta \geq 0$, $b_n^\theta \in \mathbb{R}^{D_y}$,
 316 and $B_n^\theta \in \mathbb{R}^{D_y \times D_y}$ being a symmetric positive definite matrix. Thereby, our framework comprises
 317 a total of $\theta \stackrel{\text{def}}{=} \theta_f \cup \theta_c$ learnable parameters. For clarity and to avoid notation overload, we will omit
 318 the superscript θ associated with learnable parameters and functions in the subsequent formulas.

320 **Proposition 3.1** (Tractable normalization constant). *Our parameterization of the cost function (15)*
 321 *and dual potential (16) delivers $Z^\theta(x) \stackrel{\text{def}}{=} \sum_{m=1}^M \sum_{n=1}^N z_{mn}(x)$, where*

$$323 z_{mn}(x) \stackrel{\text{def}}{=} w_n v_m(x) \exp \left(\frac{a_m^\top(x) B_n a_m(x) + 2b_n^\top a_m(x)}{2\varepsilon} \right).$$

324 The proposition offers a closed-form expression for $Z^\theta(x)$, which is essential for optimizing (13).
 325 Furthermore, the following proposition provides a method for sampling y given a new sample x_{new} .
 326

327 **Proposition 3.2** (Tractable conditional distributions). *From our parametrization of the cost function*
 328 *(15) and dual potential (16) it follows that the $\pi^\theta(\cdot|x)$ are Gaussian mixtures:*

$$329 \quad \pi^\theta(y|x) = \frac{1}{Z^\theta(x)} \sum_{m=1}^M \sum_{n=1}^N z_{mn}(x) \mathcal{N}(y | d_{mn}(x), \varepsilon B_n), \quad (17)$$

332 where $d_{mn}(x) \stackrel{\text{def}}{=} b_n + B_n a_m(x)$ and $z_{mn}(x)$ defined in Proposition 3.1.
 333

334 TRAINING. As stated in §2.1, since we only have access to samples from the distributions, we
 335 minimize the empirical counterpart of (13) via the stochastic gradient descent w.r.t. θ :
 336

$$337 \quad \mathcal{L}(\theta) \approx \widehat{\mathcal{L}}(\theta) \stackrel{\text{def}}{=} \varepsilon^{-1} \frac{1}{P} \sum_{p=1}^P c^\theta(x_p, y_p) - \varepsilon^{-1} \frac{1}{R} \sum_{r=1}^R f^\theta(y_r) + \frac{1}{Q} \sum_{q=1}^Q \log Z^\theta(x_q). \quad (18)$$

340 INFERENCE. According to our Proposition 3.2, the conditional distributions $\pi^\theta(\cdot|x)$ are Gaussian
 341 mixtures (17). As a result, sampling y given x is fast and straightforward.
 342

3.4 UNIVERSAL APPROXIMATION OF THE PROPOSED PARAMETRIZATION

344 One may naturally wonder how expressive is our proposed parametrization of π_θ in §3.3. Below we
 345 show that this parametrization allows approximating any distribution π^* that satisfies mild assump-
 346 tions on boundness and regularity assumptions, see the [details](#) in Appendix E.4.

347 **Theorem 3.3** (Proposed parametrization guarantees universal conditional distributions). *Under mild*
 348 *assumptions on the joint distribution π^* , for all $\delta > 0$ there exists (a) an integer $N > 0$ and a*
 349 *Gaussian mixture f^θ (16) with N components, (b) an integer $M > 0$ and cost c^θ (15) defined by*
 350 *fully-connected neural networks $a_m : \mathbb{R}^{D_x} \rightarrow \mathbb{R}^{D_y}$, $v_m : \mathbb{R}^{D_x} \rightarrow \mathbb{R}_+$ with ReLU activations such*
 351 *that π^θ defined by (10) and (12) satisfies $\text{KL}(\pi^* \parallel \pi^\theta) < \delta$.*

4 RELATED WORKS

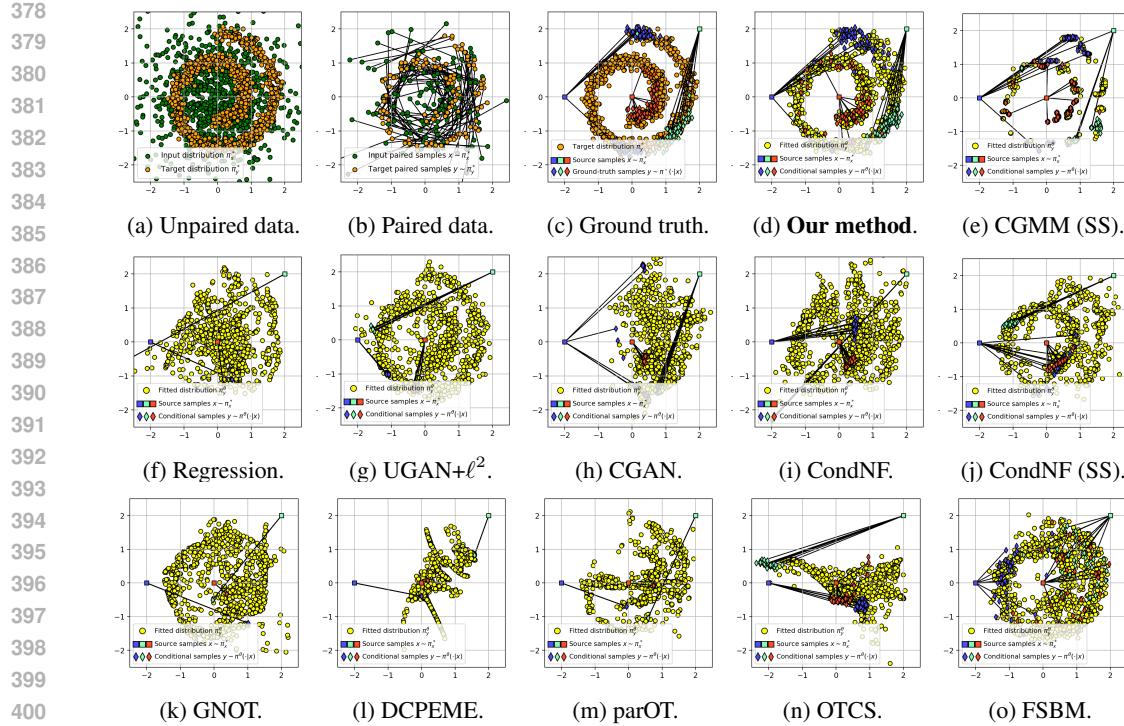
354 In this section, we briefly summarize the most relevant prior work; a more detailed discussion ap-
 355 pears in Appendix B.5. Existing semi-supervised domain-translation approaches typically combine
 356 ad hoc objectives based on GAN losses and paired-data regularization (Chen et al., 2023; Panda
 357 et al., 2023), or use *keypoint-guided OT* (Gu et al., 2022), later extended to diffusion-based models
 358 (Gu et al., 2023; Theodoropoulos et al., 2024). Importantly, the paradigms outlined above do not of-
 359 fer any theoretical guarantees for reconstructing the conditional distribution $\pi^*(y|x)$, as they depend
 360 on heuristic loss constructions. We show that such approaches actually fail to recover the true plan
 361 even in toy 2-dimensional cases, refer to experiments in §5 for an illustrative example. **Inverse OT**
 362 **solvers:** works (Dupuy et al., 2019; Stuart & Wolfram, 2020) focuses on reconstructing cost func-
 363 tions (often in discrete settings), whereas our aim is to learn learn conditional distribution $\pi^\theta(\cdot|x)$.
 364 **Forward OT solvers:** Building on (Mokrov et al., 2024) and Gaussian-mixture parameterizations
 365 (Korotin et al., 2024; Gushchin et al., 2024a), our solver extends forward OT methods to general cost
 366 functions (Eq. (15)) and incorporates paired data through likelihood-based cost learning. Full details
 367 and additional discussion of **metric-learning** Cuturi & Avis (2014) provided in the Appendix B.5.

5 EXPERIMENTAL ILLUSTRATIONS

369 We evaluate our solver on synthetic data (§5.1), real-world data (§5.2), and on image-translation
 370 task (§5.3). The code is written using the PyTorch framework and will be made publicly available.
 371 It is provided in the supplemental materials. [Experimental details](#) are given in Appendix C and D.

5.1 GAUSSIAN TO SWISS ROLL MAPPING

374 **Setup.** For illustration, we adapt the experimental setup from (Korotin et al., 2024) to our purposes.
 375 We consider the task of learning conditional distributions from a Gaussian distribution π_x^* to a Swiss
 376 Roll distribution π_y^* (Figure 2a), guided by paired samples (Figure 2b) drawn from the ground-truth
 377 plan π^* . The ground-truth plan π^* is obtained from a mini-batch OT plan after solving the *forward*
 378 OT problem with a specially designed cost that induces bi-modal conditionals $\pi^*(\cdot | x)$. Specifically,

Figure 2: Learned mapping on the *Gaussian → Swiss Roll* task for $P = 128$ and $Q = R = 1024$.

the cost matrix is defined as $C = \min(C^{+\varphi}, C^{-\varphi})$, where $C^{\pm\varphi}$ contains pairwise ℓ_2 distances between x and $-y^{\pm\varphi}$, with $-y^{\pm\varphi}$ denoting the vector $-y$ rotated by an angle of $\varphi = \pm 90^\circ$. In other words, each $x \sim \pi_x^*$ is mapped to a point y on the opposite side of the Swiss Roll, rotated either by $+\varphi$ or $-\varphi$ (Figure 2c). Further details on the paired data generation are provided in Appendix D.1. We evaluate each method’s ability to capture these multi-modal conditional plans. During training, we use $P = 128$ paired and $Q = R = 1024$ unpaired samples, and in Appendix D.4 we analyze how varying the proportions of paired and unpaired data affects our method’s performance.

Baselines. We evaluate our method against several baselines (see Appendix D.2 for details):

1. *Semi-supervised log-likelihood methods*: CondNF (SS) and CGMM (SS).
2. *Semi-supervised methods*: Neural OT with pair-guided cost (Asadulaev et al., 2024, GNOT, Appendix E), Differentiable Cost-Parameterized Entropic Mapping Estimator (Howard et al., 2024, DCPEME), (Panda et al., 2023, parOT), (Gu et al., 2023, OTCS), Feedback Schrödinger Bridge Matching (Theodoropoulos et al., 2024, FSBM).
3. *Standard generative & predictive models*: MLP regression with ℓ^2 loss, Unconditional GAN with ℓ^2 loss supplement (Goodfellow et al., 2014, UGAN+ ℓ^2), Conditional GAN (Mirza & Osindero, 2014, CGAN), Conditional Normalizing Flow (Winkler et al., 2019, CondNF).

Note that some baselines can fully utilize both paired and unpaired data during training, while others rely solely on paired data. Refer to Table 5 for specifics on data usage.

Discussion. The results of the aforementioned methods are depicted in Figure 2. Clearly, the Regression model simply predicts the conditional mean $\mathbb{E}_{y \sim \pi^*(\cdot|x)} y$, failing to capture the full distribution. The CGAN is unable to accurately learn the target distribution π_y^* , while the UGAN+ ℓ^2 fails to capture the underlying conditional distribution, resulting in suboptimal performance. The CondNF model suffers from overfitting, likely due to the limited availability of paired data XY_{paired} . Methods GNOT, DCPEME, parOT learn deterministic mapping and therefore are unable to capture the conditional distribution. Similar to parOT, both OTCS and FSBM build on the idea of key-points but are designed for stochastic setup. However, these methods fail to capture bi-modal conditional mappings, presumably due to a biased objective introduced by the artificial cost function that enforces alignment with key-points. The CondNF (SS) does not provide improvement compared to CondNF, and CGMM (SS) model learns a degenerate solution, which is presumably due to the overfitting. As a sanity check, we evaluate all baselines using a large amount of paired data. Details are given in Appendix D.3. In fact, even in this case, almost all the methods fail to learn true $\pi^*(\cdot|x)$.

432 5.2 WEATHER PREDICTION
433

434 Here we aim to evaluate our pro-
435 posed approach on real-world data.
436 We consider the *weather prediction*
437 dataset (Malinin et al., 2021; Rubachev
438 et al., 2024). The data is collected from
439 weather stations **across the world** and weather
440 forecast physical models. It consists of 94 me-
441 teorological features, e.g., pressure,
442 wind, humidity, etc., which are mea-
443 sured over a period of one year at dif-
444 ferent spatial locations.

# Paired	# Unpaired	Baseline	Ours					
		0	5	10	50	100	250	500
5	diverged	9.4 ±.1	14.2 ±1.7	15.47 ±.02	16.6 ±.0	17.91 ±.07	9.40 ±.03	
10		0.4 ±.2	9.48 ±.02	17.9 ±.3	18.5 ±.4	18.4 ±.2	18.8 ±.2	19.2 ±.3
25		3.5 ±.09	9.40 ±.03	18.3 ±.06	18.7 ±.2	18.8 ±.07	19.5 ±.1	19.8 ±.1
50		6.4 ±.05	9.47 ±.01	18.7 ±.2	18.9 ±.04	19.2 ±.2	19.8 ±.03	20.3 ±.4
90		6.5 ±.1	9.30 ±.05	19 ±.01	19.4 ±.05	19.4 ±.2	20.3 ±.05	20.5 ±.09

Table 1: The values of the test *log-likelihood* \uparrow on the *weather prediction* dataset obtained for a different number of paired and unpaired training samples.

445 **Setup.** Initially, the problem was formulated as the prediction and uncertainty estimation of the
446 air temperature at a specific time and location. We expand this task to the probabilistic prediction
447 of all meteorological features, thereby reducing reliance on measurement equipment in remote and
448 difficult-to-access locations, e.g. the Polar regions (see Appendix C.3).

449 **Metrics and baselines.** We evaluate the performance of our approach by calculating the *log-likelihood* (LL)
450 on the test target features. A natural baseline for this task is a probabilistic model
451 that maximizes the likelihood of the target data. Thus, we implement an MLP that learns to predict
452 the parameters of a mixture of Gaussians and is trained on the paired data only via the log-likelihood
453 optimization (9). We also compare with semi-supervised log-likelihood methods CGMM (SS) and
454 CondNF (SS). For completeness, we also add standard generative models. These models are trained
455 using the available paired and unpaired data. Note that GAN models do not provide the density esti-
456 mation and log-likelihood can not be computed for them. Therefore, we report Conditional Fréchet
457 Distance (CFD): for each test x , we compute the Fréchet distance (Heusel et al., 2017, Eq. 6)
458 between predicted and true features y , then average over all test inputs.

	Ours	CGAN	UGAN+ ℓ^2	CondNF	Regression	CGMM (SS)	CondNF (SS)
LL \uparrow	20.5 ±.09	N/A	N/A	1.29 ±.03	N/A	0.32 ±.03	0.52 ±.02
CFD \downarrow	7.21 ±.04	15.79 ±1.11	15.44 ±1.89	18.72 ±.09	8.29 ±.04	7.17 ±.07	28.5 ±.5

Table 2: The values of the test *Log-Likelihood* (LL) and *Conditional Fréchet distance* (CFD) on the *weather prediction* dataset of our approach and baselines (500 unpaired and 90 paired samples).

459 **Discussion.** Tables 1
460 and 2 summarize our
461 findings. From Table 1,
462 the main observation is
463 that even a small amount
464 of unpaired data leads to
465 substantial performance
466 gains, underscoring the
467 effectiveness of our semi-supervised formulation. Furthermore, Table 2 shows that our method
468 also yields samples that better match the true conditional distributions compared to competing ap-
469 proaches. For more detailed discussion regarding low-data regimes, see Appendix C.3.

470 5.3 IMAGE TRANSLATION VIA ALAE
471

472 **Setup.** In this section,
473 following the setup from
474 (Theodoropoulos et al.,
475 2024), we demonstrate
476 our method capabilities
477 for image translation in
478 latent space of dimension 512 of ALAE encoder (Pidhorskyi et al., 2020) for 1024×1024 FFHQ
479 dataset (Karras et al., 2019). Similarly, we generate 2K paired samples using (Korotin et al., 2024)
480 and performed semi-supervised Woman-to-Man translation.

Method	FID \downarrow	SSIM \uparrow	LPIPS \downarrow
FSBM	10.2 ± 0.6	0.5237 ± 0.0005	0.5625 ± 0.0003
Ours	9.3 ± 0.1	0.5315 ± 0.0002	0.5531 ± 0.0006

Table 3: Metrics for Woman-to-Man translation described in §5.3.

481 Visual results are shown in Figure 3, and quantitative test metrics computed against the
482 target domain, averaged over three trainings with different seeds and rounded to the first significant
483 digit (LPIPS (Zhang et al., 2018), FID (Heusel et al., 2017), SSIM (Wang et al., 2004)), are reported
484 in Table 3. Additional examples are provided in Appendix C.4 Our method achieves comparable
485 performance, while requiring only 3 minutes of training on an A100 GPU, compared to 5 hours for
486 FSBM on the same hardware. Implementation and experimental details, refer to Appendix C.4

486 6 DISCUSSION

488 **Contributions & Potential impact.** Our framework offers a simple, non-minimax objective that
 489 naturally integrates both paired and unpaired data. We expect that these advantages, together with
 490 the connection to entropic optimal transport (EOT), will encourage adoption in more advanced semi-
 491 supervised methods, including approaches based on diffusion Schrödinger bridges (Vargas et al.,
 492 2021; De Bortoli et al., 2021; Shi et al., 2024) and flow matching (Chen et al., 2025; Balcerak
 493 et al., 2025). Moreover, this paper aims to advance the field of semi-supervised learning for domain
 494 translation, with a primary focus on the continuous target case $y \in \mathbb{R}^{D_y}$. In Appendix B.2, we
 495 discuss the potential extension of our loss to discrete targets $y \in \mathbb{K}^{D_y}$, where $\mathbb{K} = \{1, \dots, K\}$
 496 represents a set of categories – an interesting direction for future work.

497 **Limitations & Future Work.** A limitation of our method is its reliance
 498 on Gaussian Mixture parameterization (§3.3), which may affect scal-
 499 ability. To address this, we provide a
 500 proof of concept for fully neural
 501 parameterizations of the cost and
 502 potential functions below, with a more
 503 detailed discussion in Appendix A.
 504 These parameterizations can be
 505 integrated into our loss via energy-based
 506 modeling (EBM) (Song & Kingma,
 507 2021) and could, in principle, scale
 508 to large image domains (Schröder
 509 et al., 2023; Yu et al., 2023; Zhu
 510 et al., 2024). A full investigation
 511 of such large-scale applications, how-
 512 ever, lies beyond the scope of our
 513 methodological work.

514 As we discussed in §3.3, a key advan-
 515 tage of the proposed parametrization
 516 is that the normalizing constant Z_θ in
 517 (13) is available in closed form. In
 518 contrast, general parameterizations of
 519 c^θ and f^θ lack this property, requiring
 520 more advanced sampling techniques
 521 (Andrieu et al., 2003). While the objective
 522 (13) itself may be intractable, we can derive its gradient,
 523 which is essential for optimization. Proposition A.1 provides the gradient computation, enabling
 524 practical gradient-based training. This motivates the procedure outlined in Algorithm 1, where the
 525 conditional distribution is modeled as $\pi^\theta(y|x) \propto \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right)$.

526 **Experimental Setup.** To illus-
 527 trate the scalability of our approach,
 528 we adapted an experiment from
 529 (Mokrov et al., 2024) using the col-
 530 ored MNIST dataset (Arjovsky et al.,
 531 2019). While the original task in-
 532 volved translating digit 2 into digit
 533 3 using unpaired images, we mod-
 534 ified the setup to demonstrate our
 535 method’s ability to perform trans-
 536 lations according to paired data.
 537

538 Namely, we created pairs by shifting the hue (Joblove & Greenberg, 1978) of the source images
 539 by 120° . Specifically, for a source image with a hue h in the range $0^\circ \leq h < 360^\circ$, the target
 540 image’s hue was set to $(h + 120^\circ) \bmod 360^\circ$. For implementation details, see Appendix A.3.

541 **Results.** The results of this experiment are shown in Figure 4. Notably, our method successfully
 542 learned the color transformation using only 10 pairs (third row). Increasing the number of pairs to
 543 200 further improved the quality of the translation (forth row).

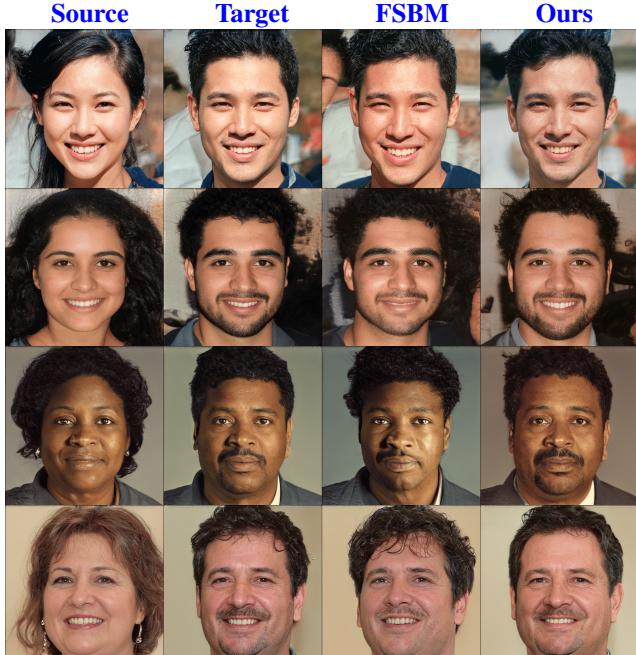


Figure 3: Comparison of our method and FSBM on the Woman-to-Man translation task described in §5.3.

544 The objective (13) itself may be intractable, we can derive its gradient,
 545 which is essential for optimization. Proposition A.1 provides the gradient computation, enabling
 546 practical gradient-based training. This motivates the procedure outlined in Algorithm 1, where the
 547 conditional distribution is modeled as $\pi^\theta(y|x) \propto \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right)$.

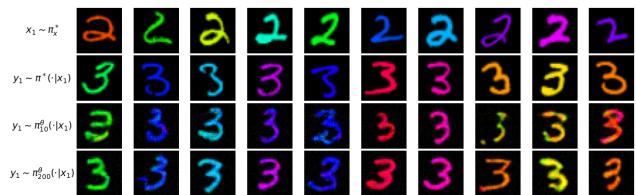


Figure 4: Performance of our Algorithm 1 on the colored MNIST (§6). Rows: source images, target images with ground-truth colors, results for $P = 10$ and $P = 200$.

540
 541 **LLM Usage.** Large Language Models (LLMs) were employed solely to help rephrase sentences
 542 and enhance text clarity. All scientific content, results, and interpretations presented in this paper
 543 were developed entirely by the authors.

544 **REFERENCES**

545 Beatrice Acciaio, Anastasis Kratsios, and Gudmund Pammer. Designing universal causal deep learning
 546 models: The geometric (hyper) transformer. *Mathematical Finance*, 34(2):671–735, 2024.

547 Abien Fred Agarap. Deep learning using rectified linear units (relu). *arXiv preprint
 548 arXiv:1803.08375*, 2018.

549 Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing
 550 a broken elbo. In *International conference on machine learning*, pp. 159–168. PMLR, 2018.

551 Francisco Andrade, Gabriel Peyré, and Clarice Poon. Sparsistency for inverse optimal transport.
 552 *arXiv preprint arXiv:2310.05461*, 2023.

553 Francisco Andrade, Gabriel Peyré, and Clarice Poon. Learning from samples: Inverse problems
 554 over measures via sharpened fenchel-young losses. *arXiv preprint arXiv:2505.07124*, 2025.

555 Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction to
 556 mcmc for machine learning. *Machine learning*, 50:5–43, 2003.

557 Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
 558 Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
 559 Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
 560 Gschwind, Brian Hirsh, Sherlock Huang, Kshitij Kalamkar, Laurent Kirsch, Michael Lazos,
 561 Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
 562 tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
 563 Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
 564 Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster
 565 machine learning through dynamic python bytecode transformation and graph compilation. In
 566 *29th ACM International Conference on Architectural Support for Programming Languages and
 567 Operating Systems, Volume 2 (ASPLOS '24)*. ACM, April 2024. doi: 10.1145/3620665.3640366.
 568 URL <https://pytorch.org/assets/pytorch2-2.pdf>.

569 Reza Arabpour, John Armstrong, Luca Galimberti, Anastasis Kratsios, and Giulia Livieri. Low-
 570 dimensional approximations of the conditional law of volterra processes: a non-positive curvature
 571 approach. *arXiv preprint arXiv:2405.20094*, 2024.

572 Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided image
 573 generation with conditional invertible neural networks. *arXiv preprint arXiv:1907.02392*, 2019.

574 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 575 *arXiv preprint arXiv:1907.02893*, 2019.

576 Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neu-
 577 ral optimal transport with general cost functionals. In *The Twelfth International Conference on
 578 Learning Representations*, 2024.

579 Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry Vetrov. Semi-
 580 conditional normalizing flows for semi-supervised learning. *arXiv preprint arXiv:1905.00505*,
 581 2019.

582 Janis Auffenberg, Jonas Bresch, Oleh Melnyk, and Gabriele Steidl. Unsupervised ground metric
 583 learning. *arXiv preprint arXiv:2507.13094*, 2025.

584 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 585 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
 586 systems*, 34:17981–17993, 2021.

594 Julio Backhoff-Veraguas and Gudmund Pammer. Applications of weak transport theory. *Bernoulli*,
 595 28(1):370–394, 2022.

596

597 Julio Backhoff-Veraguas, Mathias Beiglböck, and Gudmund Pammer. Existence, duality, and cyclical
 598 monotonicity for weak transport costs. *Calculus of Variations and Partial Differential Equations*,
 599 58(6):203, 2019.

600 Michal Balcerak, Tamaz Amiranashvili, Suprosanna Shit, Antonio Terpin, Sebastian Kaltenbach,
 601 Petros Koumoutsakos, and Bjoern Menze. Energy matching: Unifying flow matching and energy-
 602 based models for generative modeling. *arXiv preprint arXiv:2504.10612*, 2025.

603

604 David Barber. *Bayesian reasoning and machine learning*. Cambridge University Press, 2012.

605

606 Christopher M Bishop and Hugh Bishop. *Deep learning: Foundations and concepts*. Springer
 607 Nature, 2023.

608

609 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 610 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
 611 Information Processing Systems*, 35:28266–28279, 2022.

612

613 Davide Carbone. Hitchhiker’s guide on energy-based models: a comprehensive review on
 614 the relation with other generative models, sampling and statistical physics. *arXiv preprint
 615 arXiv:2406.13661*, 2024.

616

617 Davide Carbone, Mengjian Hua, Simon Coste, and Eric Vanden-Eijnden. Efficient training of
 618 energy-based models using jarzynski equality. *Advances in Neural Information Processing
 619 Systems*, 36:52583–52614, 2023.

620

621 Timothy CY Chan, Rafid Mahmood, and Ian Yihang Zhu. Inverse optimization: Theory and appli-
 622 cations. *Operations Research*, 73(2):1046–1074, 2025.

623

624 Chaofeng Chen, Wei Liu, Xiao Tan, and Kwan-Yee K Wong. Semi-supervised cycle-gan for face
 625 photo-sketch translation in the wild. *Computer Vision and Image Understanding*, 235:103775,
 626 2023.

627

628 Hansheng Chen, Kai Zhang, Hao Tan, Zexiang Xu, Fujun Luan, Leonidas Guibas, Gordon Wet-
 629 zstein, and Sai Bi. Gaussian mixture flow matching models. *arXiv preprint arXiv:2504.05304*,
 630 2025.

631

632 Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms
 633 for unbalanced optimal transport problems. *Mathematics of computation*, 87(314):2563–2609,
 634 2018.

635

636 Tong Cui, Qingyue Dai, Meng Zhang, Kairu Li, and Xiaofei Ji. Scl-dehaze: Toward real-world
 637 image dehazing via semi-supervised codebook learning. *Electronics*, 13(19):3826, 2024.

638

639 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
 640 information processing systems*, 26, 2013.

641

642 Marco Cuturi and David Avis. Ground metric learning. *The Journal of Machine Learning Research*,
 643 15(1):533–564, 2014.

644

645 Marco Cuturi, Michal Klein, and Pierre Ablin. Monge, bregman and occam: Interpretable optimal
 646 transport in high-dimensions with feature-sparse maps. In *International Conference on Machine
 647 Learning*, pp. 6671–6682. PMLR, 2023.

648

649 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 650 bridge with applications to score-based generative modeling. *Advances in Neural Information
 651 Processing Systems*, 34:17695–17709, 2021.

652

653 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
 654 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=HkpbnH91x>.

648 Yichao Du, Weizhi Wang, Zhirui Zhang, Boxing Chen, Tong Xu, Jun Xie, and Enhong Chen. Non-
 649 parametric domain adaptation for end-to-end speech translation. In Conference on Empirical
 650 Methods in Natural Language Processing (EMNLP), 2022.

651

652 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances
 653 in Neural Information Processing Systems, 32, 2019.

654 Yilun Du, Shuang Li, B. Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
 655 training of energy based models. In Proceedings of the 38th International Conference on Machine
 656 Learning (ICML-21), 2021.

657

658 Arnaud Dupuy, Alfred Galichon, and Yifei Sun. Estimating matching affinity matrices under low-
 659 rank constraints. Information and Inference: A Journal of the IMA, 8(4):677–689, 2019.

660 William Falcon, Nicki Skafte, Justus Schock, et al. Torchmetrics: Machine learning metrics for
 661 pytorch, 2020. URL <https://github.com/Lightning-AI/metrics>. Version: latest.

662

663 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
 664 las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
 665 optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

666

667 Alfred Galichon and Bernard Salanié. Cupid’s invisible hand: Social surplus and identification in
 668 matching models. The Review of Economic Studies, 89(5):2600–2629, 2022.

669

670 Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-
 671 based models by diffusion recovery likelihood. In International Conference on Learning
 672 Representations, 2021.

673 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 674 Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems,
 675 37:133345–133385, 2024.

676

677 Aude Genevay. Entropy-regularized optimal transport for machine learning. PhD thesis, Université
 678 Paris sciences et lettres, 2019.

679

680 Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complex-
 681 ity of sinkhorn divergences. In The 22nd international conference on artificial intelligence and
682 statistics, pp. 1574–1583. PMLR, 2019.

683

684 Cong Geng, Tian Han, Peng-Tao Jiang, Hao Zhang, Jinwei Chen, Søren Hauberg, and Bo Li.
 685 Improving adversarial energy-based model via diffusion process. In Forty-first International
686 Conference on Machine Learning, 2024.

687

688 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 689 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
690 processing systems, 27, 2014.

691

692 Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali. Kantorovich duality for
 693 general transport costs and applications. Journal of Functional Analysis, 273(11):3327–3405,
 694 2017.

695

696 Arthur Gretton, Alex Smola, Jiaoyuan Huang, Marcel Schmittfull, Karsten Borgwardt, Bernhard
 697 Schölkopf, et al. Covariate shift by kernel mean matching. Dataset shift in machine learning, 3
 698 (4):5, 2009.

699

700 Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, and Zongben Xu. Keypoint-guided optimal trans-
 701 port with applications in heterogeneous domain adaptation. Advances in Neural Information
702 Processing Systems, 35:14972–14985, 2022.

703

704 Xiang Gu, Liwei Yang, Jian Sun, and Zongben Xu. Optimal transport-guided conditional score-
 705 based diffusion model. Advances in Neural Information Processing Systems, 36:36540–36552,
 706 2023.

702 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev.
 703 Entropic neural optimal transport via diffusion processes. *Advances in Neural Information*
 704 *Processing Systems*, 36:75517–75544, 2023a.

705 Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrei Spiridonov, Evgeny
 706 Burnaev, and Alexander Korotin. Building the bridge of schrödinger: A continuous entropic
 707 optimal transport benchmark. *Advances in Neural Information Processing Systems*, 36:18932–
 708 18963, 2023b.

709 Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Light and optimal
 710 schrödinger bridge matching. In *Forty-first International Conference on Machine Learning*,
 711 2024a.

712 Nikita Gushchin, Daniil Selikhanovich, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin.
 713 Adversarial schrödinger bridge matching. In *The Thirty-eighth Annual Conference on Neural*
 714 *Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=L3Knnigicu>.

715 Paul Hagemann, Johannes Hertrich, Fabian Altekrüger, Robert Beinert, Jannis Chemseddine, and
 716 Gabriele Steidl. Posterior sampling based on gradient flows of the MMD with negative dis-
 717 tance kernel. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 718 <https://openreview.net/forum?id=YrXHEb2qMb>.

719 Matthieu Heitz, Nicolas Bonneel, David Coeurjolly, Marco Cuturi, and Gabriel Peyré. Ground
 720 metric learning on graphs. *Journal of Mathematical Imaging and Vision*, 63(1):89–107, 2021.

721 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 722 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 723 *neural information processing systems*, 30, 2017.

724 Peter Holderrieth, Michael Samuel Albergo, and Tommi Jaakkola. LEAPS: A discrete neural sam-
 725 pler via locally equivariant networks. In *Forty-second International Conference on Machine*
 726 *Learning*, 2025. URL <https://openreview.net/forum?id=Hq2RniQAET>.

727 Qianwen Hou, Shilong Wang, and Jianlei Liu. Semi-supervised dehazing method based on image
 728 enhancement and multi-negative contrastive auxiliary learning. *International Journal of Machine*
 729 *Learning and Cybernetics*, pp. 1–14, 2025.

730 Samuel Howard, George Deligiannidis, Patrick Rebeschini, and James Thornton. Differentiable
 731 cost-parameterized monge map estimators. *arXiv preprint arXiv:2406.08399*, 2024.

732 Geert-Jan Huizing, Laura Cantini, and Gabriel Peyré. Unsupervised ground metric learning using
 733 wasserstein singular vectors. In *International Conference on Machine Learning*, pp. 9429–9443.
 734 PMLR, 2022.

735 Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised learn-
 736 ing with normalizing flows. In *International conference on machine learning*, pp. 4615–4630.
 737 PMLR, 2020.

738 Pratik Jawanpuria, Dai Shi, Bamdev Mishra, and Junbin Gao. A riemannian approach to ground
 739 metric learning for optimal transport. In *ICASSP 2025-2025 IEEE International Conference on*
 740 *Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

741 Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo Cheng, Shujian Huang, and Lei Li. Learn-
 742 ing kernel-smoothed machine translation with retrieved examples. In *Conference on Empirical*
 743 *Methods in Natural Language Processing (EMNLP)*, 2021.

744 Yuxin Jiang, Liming Jiang, Shuai Yang, and Chen Change Loy. Scenimefy: Learning to craft
 745 anime scene via semi-supervised image-to-image translation. In *IEEE International Conference*
 746 *on Computer Vision (ICCV)*, 2023a.

747 Yuxin Jiang, Liming Jiang, Shuai Yang, and Chen Change Loy. Scenimefy: Learning to craft
 748 anime scene via semi-supervised image-to-image translation. In *Proceedings of the IEEE/CVF*
 749 *international conference on computer vision*, pp. 7357–7367, 2023b.

756 Cheng-Bin Jin, Hakil Kim, Mingjie Liu, Wonmo Jung, Seongsu Joo, Eunsik Park, Young Saem Ahn,
 757 In Ho Han, Jae Il Lee, and Xuenan Cui. Deep ct to mr synthesis using paired and unpaired data.
 758 *Sensors*, 19(10):2361, 2019.

759

760 George H Joblove and Donald Greenberg. Color spaces for computer graphics. In *Proceedings of*
 761 *the 5th annual conference on Computer graphics and interactive techniques*, pp. 20–25, 1978.

762 Leonid V Kantorovich. On the translocation of masses. In *Dokl. Akad. Nauk. USSR (NS)*, vol-
 763 ume 37, pp. 199–201, 1942.

764

765 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 766 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 767 *recognition*, pp. 4401–4410, 2019.

768 Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. Metric learning in optimal transport for
 769 domain adaptation. In *International joint conference on artificial intelligence*, pp. 2162–2168.
 770 *IJCAI*, 2020.

771

772 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 773 2014.

774

775 Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light schrödinger bridge. In *The Twelfth*
 776 *International Conference on Learning Representations*, 2024.

777

778 Grigoriy Ksenofontov and Alexander Korotin. Categorical schrödinger bridge matching. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=RBly0nOr2h>.

779

780 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
 781 based learning. *Predicting structured data*, 1(0), 2006.

782

783 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
 784 transport. *Discrete & Continuous Dynamical Systems-A*, 34(4):1533–1574, 2014.

785

786 Lerenhan Li, Yunlong Dong, Wenqi Ren, Jinshan Pan, Changxin Gao, Nong Sang, and Ming-Hsuan
 787 Yang. Semi-supervised image dehazing. *IEEE Transactions on Image Processing*, 29:2766–2779,
 788 2019a.

789

790 Ruilin Li, Xiaojing Ye, Haomin Zhou, and Hongyuan Zha. Learning to match via inverse optimal
 791 transport. *Journal of machine learning research*, 20(80):1–37, 2019b.

792

793 Wan Li and Chenyang Chang. Semi-supervised image-dehazing network based on a trusted library.
 794 *Electronics*, 14(15):2956, 2025.

795

796 Jianxin Lin, Yingce Xia, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Conditional image-to-image
 797 translation. In *Computer Vision and Pattern Recognition (CVPR)*, 2018.

798

799 Jianlei Liu, Qianwen Hou, Shilong Wang, and Xueqing Zhang. Semi-supervised single image de-
 800 hazing based on dual-teacher-student network with knowledge transfer. *Signal, Image and Video*
 801 *Processing*, 18(6):5073–5087, 2024.

802

803 Shaojun Ma, Haodong Sun, Xiaojing Ye, Hongyuan Zha, and Haomin Zhou. Learning cost functions
 804 for optimal transport. *arXiv preprint arXiv:2002.09650*, 2020.

805

806 Andrey Malinin, Neil Band, German Chesnokov, Yarin Gal, Mark JF Gales, Alexey Noskov, Andrey
 807 Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, et al. Shifts: A dataset of
 808 real distributional shift across multiple large-scale tasks. *arXiv preprint arXiv:2107.07455*, 2021.

809

810 Simone Di Marino and Augusto Gerolin. An optimal transport approach for the schrödinger bridge
 811 problem and convergence of sinkhorn algorithm. *Journal of Scientific Computing*, 85(2):27, 2020.

812

813 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *CoRR*, abs/1411.1784,
 814 2014. URL <http://arxiv.org/abs/1411.1784>.

810 Tiande Mo, Siqian Zheng, Wai-Yat Chan, and Renhua Yang. Review of ai image enhancement
 811 techniques for in-vehicle vision systems under adverse weather conditions. *World Electric Vehicle*
 812 *Journal*, 16(2):72, 2025.

813

814 Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
 815 Energy-guided entropic neural optimal transport. In *The Twelfth International Conference on*
 816 *Learning Representations*, 2024.

817 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad.*
 818 *Royale Sci.*, pp. 666–704, 1781.

819

820 Nikita Moriakov, Jonas Adler, and Jonas Teuwen. Kernel of cyclegan as a principal homogeneous
 821 space. In *International Conference on Learning Representations*, 2020.

822 Makoto Morishita, Jun Suzuki, and Masaaki Nagata. Domain adaptation of machine translation with
 823 crowdworkers. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 824 2022.

825 Kevin P Murphy. *Machine learning: a probabilistic perspective*. MIT press, 2012.

826

827 Aamir Mustafa and Rafał K Mantiuk. Transformation consistency regularization—a semi-supervised
 828 paradigm for image-to-image translation. In *Computer Vision–ECCV 2020: 16th European*
 829 *Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16*, pp. 599–615.
 830 Springer, 2020.

831

832 Ryosuke Nagumo and Hironori Fujisawa. Density ratio estimation with doubly strong robustness.
 833 In *Forty-first International Conference on Machine Learning*, 2024.

834

835 Manan Oza, Himanshu Vaghela, and Sudhir Bagul. Semi-supervised image-to-image translation. In *2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT)*,
 836 pp. 16–20. IEEE, 2019.

837

838 Pauliina Paavilainen, Saad Ullah Akram, and Juho Kannala. Bridging the gap between paired and
 839 unpaired medical image translation. In *MICCAI Workshop on Deep Generative Models*, pp.
 840 35–44. Springer, 2021.

841

842 Nishant Panda, Natalie Klein, Dominic Yang, Patrick Gasda, and Diane Oyen. Semi-supervised
 843 learning of pushforwards for domain translation & adaptation. *arXiv preprint arXiv:2304.08673*,
 2023.

844

845 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 846 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine*
 847 *Learning Research*, 22(57):1–64, 2021.

848

849 Duo Peng, Ping Hu, QiuHong Ke, and Jun Liu. Diffusion-based image translation with label guid-
 850 ance for domain adaptive semantic segmentation. In *IEEE International Conference on Computer*
 851 *Vision (ICCV)*, 2023.

852

853 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 854 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

855

856 Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoencoders.
 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 14104–14113, 2020.

857

858 Allan Pinkus. Approximation theory of the mlp model in neural networks. *Acta numerica*, 8:143–
 195, 1999.

859

860 Yuxi Ren, Jie Wu, Peng Zhang, Manlin Zhang, Xuefeng Xiao, Qian He, Rui Wang, Min Zheng, and
 861 Xin Pan. Ugc: Unified gan compression for efficient image-to-image translation. In *Proceedings*
 862 *of the IEEE/CVF International Conference on Computer Vision*, pp. 17281–17291, 2023.

863

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
 their discrete approximations. *Bernoulli*, pp. 341–363, 1996.

864 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
 865 for biomedical image segmentation. In Medical image computing and computer-assisted
 866 intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9,
 867 2015, proceedings, part III 18, pp. 234–241. Springer, 2015.

868 Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: A benchmark of
 869 tabular machine learning in-the-wild. arXiv preprint arXiv:2406.19380, 2024.

870 Filippo Santambrogio. Optimal transport for applied mathematicians. Birkhäuser, NY, 55(58–63):94,
 871 2015.

872 Igal Sason. On reverse pinsker inequalities. arXiv preprint arXiv:1503.07118, 2015.

873 Christopher Scarvelis and Justin Solomon. Riemannian metric learning via optimal transport. In
 874 International Conference on Learning Representations. OpenReview, 2023.

875 Tobias Schröder, Zijing Ou, Jen Lim, Yingzhen Li, Sebastian Vollmer, and Andrew Duncan. En-
 876 ergy discrepancies: a score-independent loss for energy-based models. Advances in Neural
 877 Information Processing Systems, 36:45300–45338, 2023.

878 Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and Junchi Yan. Understanding and generalizing
 879 contrastive learning from the inverse optimal transport perspective. In International conference
 880 on machine learning, pp. 31408–31421. PMLR, 2023.

881 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 882 bridge matching. Advances in Neural Information Processing Systems, 36, 2024.

883 Henrik Skibbe, Akiya Watakabe, F Rachmadi, Carlos Enrique Gutierrez, Ken Nakae, and T Ya-
 884 mamori. Semi-supervised image-to-image translation for robust image registration. Medical
 885 Imaging with Deep Learning (MIDL), 2021.

886 Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
 887 arXiv:2101.03288, 2021.

888 Andrew M Stuart and Marie-Therese Wolfram. Inverse optimal transport. SIAM Journal on Applied
 889 Mathematics, 80(1):599–619, 2020.

890 Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
 891 learning. Cambridge University Press, 2012.

892 Xiaole Tang, Xin Hu, Xiang Gu, and Jian Sun. Residual-conditioned optimal transport: To-
 893 wards structure-preserving unpaired and paired image restoration. In Forty-first International
 894 Conference on Machine Learning, 2024. URL <https://openreview.net/forum?id=irBHP1knxP>.

895 Panagiotis Theodoropoulos, Nikolaos Komianos, Vincent Pacelli, Guan-Horng Liu, and Evangelos
 896 A Theodorou. Feedback schrödinger bridge matching. arXiv preprint arXiv:2410.14055,
 897 2024.

898 Soumya Tripathy, Juho Kannala, and Esa Rahtu. Learning image-to-image translation using paired
 899 and unpaired training samples. In Computer Vision–ACCV 2018: 14th Asian Conference on
 900 Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part II 14, pp.
 901 51–66. Springer, 2019.

902 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
 903 bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

904 Florin-Alexandru Vasluiianu, Andrés Romero, Luc Van Gool, and Radu Timofte. Shadow removal
 905 with paired and unpaired learning. In Proceedings of the IEEE/CVF Conference on Computer
 906 Vision and Pattern Recognition, pp. 826–835, 2021.

907 Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

918 Ke Wang, Michaël Gharbi, He Zhang, Zhihao Xia, and Eli Shechtman. Semi-supervised parametric
 919 real-world image harmonization. In Proceedings of the IEEE/CVF Conference on Computer
 920 Vision and Pattern Recognition, pp. 5927–5936, 2023.

921 Meilin Wang, Wei Huang, Mingming Gong, and Zheng Zhang. Projection pursuit density ratio
 922 estimation. In Forty-second International Conference on Machine Learning, 2025. URL <https://openreview.net/forum?id=MgNeJO0PcF>.

923 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 924 from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
 925 612, 2004.

926 Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods
 927 with conditional normalizing flows. CoRR, abs/1912.00042, 2019. URL <http://arxiv.org/abs/1912.00042>.

928 Zaifeng Yang and Zhenghua Chen. Learning from paired and unpaired data: Alternately trained
 929 cyclegan for near infrared image colorization. In 2020 IEEE International Conference on Visual
 930 Communications and Image Processing (VCIP), pp. 467–470. IEEE, 2020.

931 Peiyu Yu, Yaxuan Zhu, Sirui Xie, Xiaojian Shawn Ma, Ruiqi Gao, Song-Chun Zhu, and Ying Nian
 932 Wu. Learning energy-based prior model with diffusion-amortized mcmc. Advances in Neural
 933 Information Processing Systems, 36:42717–42747, 2023.

934 Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao Dong, and Liang Lin. Unsupervised
 935 image super-resolution using cycle-in-cycle generative adversarial networks. In Proceedings of
 936 the IEEE conference on computer vision and pattern recognition workshops, pp. 701–710, 2018.

937 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 938 effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
 939 computer vision and pattern recognition, pp. 586–595, 2018.

940 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 941 using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
 942 on computer vision, pp. 2223–2232, 2017.

943 Yaxuan Zhu, Jianwen Xie, Ying Nian Wu, and Ruiqi Gao. Learning energy-based models by co-
 944 operative diffusion recovery likelihood. In The Twelfth International Conference on Learning
 945 Representations, 2024. URL <https://openreview.net/forum?id=AyzkDpuqcl>.

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972	CONTENTS	
973		
974		
975	A Neural Parameterization	19
976	A.1 Algorithm Derivation	20
977	A.2 Illustrative Example	21
978	A.3 Details on Colored Images Example	21
979	A.4 Conclusion	21
980		
981		
982		
983	B Additional Discussions	22
984	B.1 Entropic/Weak/Inverse Optimal Transport	22
985	B.2 Discrete Spaces Extension	24
986	B.3 Partially Paired Data	24
987	B.4 Examples of Semi-supervised Domain Translation Setups	25
988	B.5 Related Works	25
989		
990		
991		
992		
993	C General Details of Experiments	27
994	C.1 General Implementation Details	27
995	C.2 Gaussian To Swiss Roll Mapping	27
996	C.3 Weather Prediction	28
997	C.4 Image Translation via ALAE	28
998		
999		
1000		
1001		
1002	D Gaussian To Swiss Roll Mapping	29
1003	D.1 Paired Data Generation	29
1004	D.2 Baseline Details	29
1005	D.3 Baselines for Swiss Roll with the Large Amount of Data (16k)	31
1006	D.4 Ablation study	32
1007		
1008		
1009		
1010		
1011	E Proofs	32
1012	E.1 Loss Derivation	32
1013	E.2 Expressions for the Gaussian Parametrization	33
1014	E.3 Gradient of our Loss for Energy-Based Modeling	34
1015	E.4 Universal Approximation	35
1016		
1017		
1018		
1019	A NEURAL PARAMETERIZATION	
1020		
1021		

Throughout the main text, we parameterized the cost c^θ and potential f^θ using log-sum-exp functions and Gaussian mixtures (see §3.3). At this point, a reader may naturally wonder whether more general parameterizations for c^θ and f^θ can be used in our method, such as directly parameterizing both with neural networks. In this section, we affirmatively address this question by providing a procedure to optimize our main objective $\mathcal{L}(\theta)$ in (13) with general parameterizations for c^θ and f^θ .

1026
1027

A.1 ALGORITHM DERIVATION

1028
1029
1030
1031
1032
1033

We note that a key advantage of our chosen parameterization (see §3.3) is that the normalizing constant Z_θ appearing in $\mathcal{L}(\theta)$ is available in the closed form. Unfortunately, this is not the case with general parameterizations of c^θ and f^θ , necessitating the use of more advanced optimization techniques. While the objective $\mathcal{L}(\theta)$ itself may be intractable, we can derive its gradient, which is essential for optimization. The following proposition is derived in a manner similar to (Mokrov et al., 2024), who proposed methods for solving forward entropic OT problems with neural nets.

1034
1035

Proposition A.1 (Gradient of our main loss (13)). *It holds that*

1036
1037
1038
1039
1040
1041

$$\begin{aligned} \frac{\partial}{\partial \theta} \mathcal{L}(\theta) = \varepsilon^{-1} \left\{ \mathbb{E}_{x,y \sim \pi^*} \left[\frac{\partial}{\partial \theta} c^\theta(x, y) \right] - \mathbb{E}_{y \sim \pi_y^*} \left[\frac{\partial}{\partial \theta} f^\theta(y) \right] \right. \\ \left. + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^\theta(y|x)} \left[\frac{\partial}{\partial \theta} (f^\theta(y) - c^\theta(x, y)) \right] \right\}. \end{aligned} \quad (19)$$

1042
1043
1044
1045
1046
1047
1048
1049
1050

The gradient formula eliminates the need for the intractable normalizing constant Z_θ , but computing it still requires sampling from the current model $y \sim \pi^\theta(\cdot|x)$. Unlike the Gaussian mixture case in §3.3, we now only access the unnormalized density defined by c^θ and f^θ , which is not necessarily a Gaussian mixture. To address this, we rely on standard methods for sampling from unnormalized densities, such as Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003). This enables practical gradient estimation and motivates the training procedure in Algorithm 1, where the conditional distribution is modeled as $\pi^\theta(y|x) \propto \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right)$, with energy $\varepsilon^{-1}(c^\theta(x, y) - f^\theta(y))$.

1051
1052**Algorithm 1:** Semi-supervised Learning via Energy-Based Modeling1053
1054
1055
1056
1057
1058

Input : Paired samples $XY_{\text{paired}} \sim \pi^*$; unpaired samples $X_{\text{unpaired}} \sim \pi_x^*$, $Y_{\text{unpaired}} \sim \pi_y^*$;
potential network $f^\theta : \mathbb{R}^{D_y} \rightarrow \mathbb{R}$, cost network $c^\theta(x, y) : \mathbb{R}^{D_x} \times \mathbb{R}^{D_y} \rightarrow \mathbb{R}$;
number of Langevin steps $K > 0$, Langevin discretization step size $\eta > 0$;
basic noise std $\sigma_0 > 0$; batch sizes $\hat{P}, \hat{Q}, \hat{R} > 0$.

Output: trained potential network f^{θ^*} and cost network c^{θ^*} recovering $\pi^{\theta^*}(y|x)$ from (10).

for $i = 1, 2, \dots$ do

Derive batches $\{\hat{x}_p, \hat{y}_p\}_{p=1}^{\hat{P}} = XY \sim \pi^*$, $\{x_n\}_{q=1}^{\hat{Q}} = X \sim \pi_x^*$, $\{y_r\}_{r=1}^{\hat{R}} = Y \sim \pi_y^*$;
Sample basic noise $Y^{(0)} \sim \mathcal{N}(0, \sigma_0)$ of size \hat{Q} ;
for $k = 1, 2, \dots, K$ do
 Sample $Z^{(k)} = \{z_q^{(k)}\}_{q=1}^{\hat{Q}}$, where $z_q^{(k)} \sim \mathcal{N}(0, 1)$;
 Obtain $Y^{(k)} = \{y_q^{(k)}\}_{q=1}^{\hat{Q}}$ with Langevin step:
 $y_q^{(k)} \leftarrow y_q^{(k-1)} + \frac{\eta}{2\varepsilon} \cdot \text{stop-grad}\left(\frac{\partial}{\partial y} [f^\theta(y) - c^\theta(x_q, y)] \Big|_{y=y_q^{(k-1)}}\right) + \sqrt{\eta} z_q^{(k)}$
 $\hat{\mathcal{L}} \leftarrow \frac{1}{\hat{P}} \left[\sum_{x_p, y_p \in XY} c^\theta(x_p, y_p) \right] + \frac{1}{\hat{Q}} \left[\sum_{y_q^{(K)} \in Y^{(K)}} f^\theta(y_q^{(K)}) \right] - \frac{1}{\hat{R}} \left[\sum_{y_r \in Y} f_\theta(y_r) \right]$;
 Perform a gradient step over θ by using $\frac{\partial \hat{\mathcal{L}}}{\partial \theta}$;

1071
1072
1073
1074

In Algorithm 1, we use the Unadjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996), a standard MCMC method. For an in-depth discussion on EBM training methods, see the recent surveys (Song & Kingma, 2021; Carbone, 2024).

1075
1076
1077
1078

Our proposed *inverse* OT algorithm is closely related to the *forward* OT framework in (Mokrov et al., 2024, Algorithm 1), with key distinctions: **(1)** it learns the cost function c^θ during training, and **(2)** it leverages both paired and unpaired data.

1079

Below, we demonstrate a proof-of-concept performance of Algorithm 1 on two setups: an illustrative 2D example.

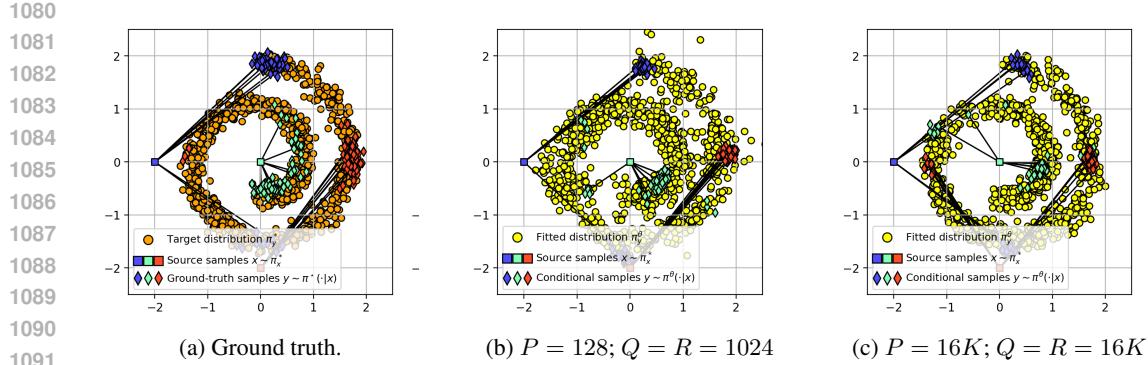


Figure 5: Performance of our Algorithm 1 in the *Gaussian → Swiss Roll* mapping task (§5.1). We use MLPs to parametrize both the potential function f^θ and the cost function c^θ .

A.2 ILLUSTRATIVE EXAMPLE

Setup. We begin with a 2D example to showcase the capability of Algorithm 1 to learn conditional plans using a fully neural network-based parametrization. Specifically, we conduct experiments on the *Gaussian → Swiss Roll* mapping problem (see §5.1) using two datasets: one containing 128 paired samples (described in §5.1) and another with 16K paired samples (detailed in Appendix D.3).

Discussion. It is worth noting that the model’s ability to fit the target distribution is influenced by the amount of labeled data used during training. When working with partially labeled samples (as shown in Figure 5b), the model’s fit to the target distribution is less accurate compared to using a larger dataset. However, even with limited labeled data, the model still maintains good accuracy in terms of the paired samples. On the other hand, when provided with fully labeled data (see Figure 5c), the model generates more consistent results and achieves a better approximation of the target distribution. A comparison of the results obtained using Algorithm 1 with neural network parametrization and those achieved using Gaussian parametrization (Figure 2d) reveals that Algorithm 1 exhibits greater instability. This observation aligns with the findings of (Mokrov et al., 2024, Section 2.2), which emphasize the instability and mode collapse issues commonly encountered when working with EBMs.

Implementation Details. We employ MLPs with hidden layer configurations of [128, 128] and [256, 256, 256], using *LeakyReLU*(0.2) for the parametrization of the potential f^θ and the cost c^θ , respectively. The learning rates are set to $lr_{\text{paired}} = 5 \times 10^{-4}$ and $lr_{\text{unpaired}} = 2 \times 10^{-4}$. The sampling parameters follow those specified in (Mokrov et al., 2024).

A.3 DETAILS ON COLORED IMAGES EXAMPLE

Implementation Details. We adopt the same parameters as in (Mokrov et al., 2024), except for the cost function:

$$c^\theta(x, y) = \frac{1}{D_y} \|U_{\text{net}}^\theta - y\|_2^2.$$

Here, the dimensions of source and target spaces are $D_x = D_y = 3 \times 32 \times 32$ and $U_{\text{net}}^\theta : \mathbb{R}^{D_x} \rightarrow \mathbb{R}^{D_y}$ is a neural net function with U-Net architecture (Ronneberger et al., 2015) with 16 layers. The first layer has 64 filters, and the number of filters doubles in each subsequent layer. The experiment was run for 10,000 iterations on a 2080 Ti GPU, completing in approximately 40 minutes.

A.4 CONCLUSION

It is important to recognize that the field of Energy-Based Models has undergone significant advancements in recent years, with the development of numerous scalable approaches. For examples of such progress, we refer readers to recent works by (Geng et al., 2024; Carbone et al., 2023; Du et al., 2021; Gao et al., 2021) and other the references therein. Additionally, we recommend the comprehensive tutorial by (Song & Kingma, 2021; Carbone, 2024) for an overview of train-

1134 ing methods for EBMs. Given these advancements, it is reasonable to expect that by incorporating
 1135 more sophisticated techniques into our basic Algorithm 1, it may be possible to scale the method to
 1136 handle high-dimensional setups, such as image data. However, exploring these scaling techniques
 1137 is beyond the scope of the current paper, which primarily focuses on the general methodology for
 1138 semi-supervised domain translation. The investigation of methods to further scale our approach as
 1139 a promising future research avenue.

1140

1141 B ADDITIONAL DISCUSSIONS

1143 B.1 ENTROPIC/WEAK/INVERSE OPTIMAL TRANSPORT

1144

1145 In this section, we explain our motivation for adopting the *entropic* OT formulation rather than the
 1146 standard OT formulation (OT). Specifically, we focus on the *weak semi-dual* formulation of the en-
 1147 tropic OT problem (Mokrov et al., 2024, §3.1), as opposed to its standard *semi-dual* form (Genevay,
 1148 2019, §4.3), and highlight its connections to the existing inverse entropic optimal transport frame-
 1149 works in the literature.

1150 **Classic OT.** Given source and target distributions $\alpha \in \mathcal{P}_{\text{ac}}(\mathcal{X})$ and $\beta \in \mathcal{P}_{\text{ac}}(\mathcal{Y})$, and a cost function
 1151 $c^* : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, the *primal* optimal transport problem (Villani et al., 2009) is defined as:

1152

$$1153 \text{OT}_{c^*}(\alpha, \beta) \stackrel{\text{def}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \mathbb{E}_{x, y \sim \pi} [c^*(x, y)]. \quad (\text{OT})$$

1154

1155 This formulation was originally introduced by Kantorovich (Kantorovich, 1942) as a relaxation of
 1156 Monge’s original problem (Monge, 1781), which is more restrictive because it does not allow mass
 1157 to be split, resulting in *deterministic* solutions called optimal transport *maps*. However, as is well-
 1158 known in optimal transport theory (see (Villani et al., 2009, §9)), solutions to problem (OT), called
 1159 optimal transport *plans*, can still be deterministic. For example, when the cost is quadratic and the
 1160 measures are absolutely continuous, Brenier’s theorem (Remark 2.24 in (Peyré et al., 2019)) guaran-
 1161 tees that the optimal transport plan is deterministic. Specifically, each x is mapped deterministically
 1162 to $y = T^*(x)$ for some optimal map T^* , meaning that the conditional distribution $\pi^*(y|x)$ collapses
 1163 to a single point mass $\delta_{T^*(x)}$.

1163

1164 Such deterministic plans, however, are unsuitable for our semi-supervised domain translation setup,
 1165 where a multimodal transport behavior of $\pi^*(y|x)$ may be necessary. Our synthetic experiments
 1166 in §5.1 (Figure 2) illustrate these cases. To enforce mapping uniqueness while allowing *stochastic*
 1167 (i.e., non-deterministic) mappings, a common approach is to regularize (OT) with an entropy term,
 1168 which makes the objective strictly convex with respect to π , as discussed below.

1168

1169 **Entropic OT.** The work of (Cuturi, 2013) proposed regularizing (OT) with an entropy term, known
 1170 as entropic OT (EOT), to improve computational tractability of OT (Genevay, 2019). Moreover,
 1171 besides the computational advantages, the EOT problem has a connection to the *Static Schrödinger
 1172 Bridge* (SB) problem (Léonard, 2014):

1172

$$1173 \pi^* = \arg \min_{\pi \in \Pi(\alpha, \beta)} \text{KL}(\pi \| \pi^{\text{ref}}), \quad (\text{SB})$$

1174

1175 where the aim of the problem is to find the transport plan $\pi \in \Pi(\alpha, \beta)$ closest to π^{ref} in terms of the
 1176 Kullback-Leibler (KL) divergence. Observe that EOT and the static SB problem are equivalent:

1177

$$1178 \min_{\pi \in \Pi(\alpha, \beta)} \text{KL}(\pi \| \pi^{\text{ref}}) = \min_{\pi \in \Pi(\alpha, \beta)} \mathbb{E}_{x, y \sim \pi} \log \frac{\pi(x, y)}{\pi^{\text{ref}}(x, y)} = \quad (20)$$

1179

$$1180 \min_{\pi \in \Pi(\alpha, \beta)} \left\{ \mathbb{E}_{x, y \sim \pi} \underbrace{[-\log \pi^{\text{ref}}(x, y)]}_{\stackrel{\text{def}}{=} c^*(x, y)} - H(\pi) \right\} = \min_{\pi \in \Pi(\alpha, \beta)} \left\{ \mathbb{E}_{x, y \sim \pi} [c^*(x, y)] - H(\pi) \right\}. \quad (21)$$

1181

1182

1183 Using the equivalence of the following formulations (see (Mokrov et al., 2024, Eq. 2–4) and
 1184 (Gushchin et al., 2023b, Eq. 3–5) for details):

1185

1186

1187

$$\begin{cases} \text{EOT}_{c^*, \varepsilon}^{(1)}(\alpha, \beta) \\ \text{EOT}_{c^*, \varepsilon}^{(2)}(\alpha, \beta) \\ \text{EOT}_{c^*, \varepsilon}(\alpha, \beta) \end{cases} = \min_{\pi \in \Pi(\alpha, \beta)} \mathbb{E}_{x, y \sim \pi} [c^*(x, y)] + \begin{cases} +\varepsilon \text{KL}(\pi \| \alpha \otimes \beta), \\ -\varepsilon H(\pi), \\ -\varepsilon \mathbb{E}_{x \sim \alpha} H(\pi(\cdot|x)), \end{cases}$$

1188 we conclude that equation (21) is equivalent to (1) for $\varepsilon = 1$.
 1189

1190 From the equations (20)–(21), we see that the cost function $c^*(x, y)$ defines a reference measure that
 1191 determines the mapping we aim to reconstruct in the forward problem (1). Furthermore, since KL
 1192 minimization is equivalent to maximum likelihood estimation, EOT is theoretically consistent with
 1193 standard probabilistic modeling principles.
 1194

1194 **Weak OT.** Following (Mokrov et al., 2024), we provide more details regarding *weak* OT. For a more
 1195 rigorous treatment, see (Gozlan et al., 2017; Backhoff-Veraguas et al., 2019). Given a *weak* transport
 1196 cost $C^* : \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \rightarrow \mathbb{R}$, which penalizes the displacement of a point $x \in \mathcal{X}$ into a distribution
 1197 $\pi(\cdot|x) \in \mathcal{P}(\mathcal{Y})$, the weak OT problem is defined as:
 1198

$$\text{WOT}_{C^*}(\alpha, \beta) \stackrel{\text{def}}{=} \min_{\pi \in \Pi(\alpha, \beta)} \mathbb{E}_{x \sim \alpha} C^*(x, \pi(\cdot|x)). \quad (\text{p-WOT})$$

1200 Just as in the classical OT problem (OT), the weak OT formulation (p-WOT) also enjoys *strong*
 1201 *duality* under mild assumptions (see (Gozlan et al., 2017, Theorem 9.5); (Backhoff-Veraguas &
 1202 Pammer, 2022, Theorem 3.3)). This means that the weak formulation (p-WOT) admits an equivalent
 1203 *weak semi-dual* representation:
 1204

$$\text{WOT}_{C^*}(\alpha, \beta) = \max_{f \in \mathcal{C}(\mathcal{Y})} \left\{ \mathbb{E}_{x \sim \alpha} f^{C^*}(x) + \mathbb{E}_{y \sim \beta} f(y) \right\}, \quad (\text{sd-WOT})$$

1207 where $\mathcal{C}(\mathcal{Y})$ denotes the set of continuous functions over \mathcal{Y} and f^C so-called *weak C-transform*:
 1208

$$f^C(x) \stackrel{\text{def}}{=} \min_{\mu \in \mathcal{P}(\mathcal{Y})} \{C(x, \mu) - \mathbb{E}_{y \sim \mu} f(y)\}. \quad (22)$$

1210 Furthermore, note that the EOT formulation in (1) can be seen as a special case of the weak OT
 1211 problem (p-WOT), corresponding to the following weak transport cost C_{EOT}^* :
 1212

$$C_{\text{EOT}}^*(x, \pi(\cdot|x)) \stackrel{\text{def}}{=} \mathbb{E}_{y \sim \pi(\cdot|x)} [c^*(x, y)] - \varepsilon \text{H}(\pi(\cdot|x)). \quad (23)$$

1214 Substituting expression above into (22), we obtain equation (3) for the weak *entropic c-transform*:
 1215

$$f^{c^*}(x) = \min_{\mu \in \mathcal{P}(\mathcal{Y})} \{ \mathbb{E}_{y \sim \mu} [c^*(x, y)] - \varepsilon \text{H}(\mu) - \mathbb{E}_{y \sim \mu} f(y) \},$$

1218 which admits a closed-form expression given in (Mokrov et al., 2024, Eq. 14), and which we use in
 1219 our work (4):
 1220

$$f^c(x) = -\varepsilon \log \int_{\mathcal{Y}} \exp \left(\frac{f(y) - c(x, y)}{\varepsilon} \right) dy.$$

1222 Furthermore, Appendix A.1 of (Mokrov et al., 2024) provides a detailed discussion of the relationship
 1223 between the weak entropic *c*-transform and the so-called (c, ε) -transform (Genevay et al., 2019,
 1224 4.15), (Marino & Gerolin, 2020, Theorem 1.2):
 1225

$$v^{c, \varepsilon}(x) = -\varepsilon \log \mathbb{E}_{y \sim \beta} \left[\exp \left(\frac{v(y) - c(x, y)}{\varepsilon} \right) \right], \quad (24)$$

1228 which is used in the *semi-dual* formulation of the EOT problem (Genevay, 2019, §4.3):
 1229

$$\text{OT}_{c^*, \varepsilon}^{\text{semi-dual}}(\alpha, \beta) = \max_{v \in \mathcal{C}(\mathcal{Y})} \left\{ \mathbb{E}_{x \sim \alpha} v^{c^*, \varepsilon}(x) + \mathbb{E}_{y \sim \beta} v(y) \right\}. \quad (\text{sd-EOT})$$

1231 As noted in (Mokrov et al., 2024), the main difference between (4) and (24) lies in the integration
 1232 measure: (24) integrates with respect to β , while (4) uses the standard Lebesgue measure.
 1233

1234 For completeness, we present below the *dual* formulation of EOT with a slightly different regularization
 1235 term, $+\varepsilon \text{KL}(\pi \parallel \alpha \otimes \beta)$. As noted above, this is equivalent to our choice of regularization,
 1236 but it is the version commonly used in inverse problems and will be discussed later:
 1237

$$\text{OT}_{c^*, \varepsilon}^{\text{dual}}(\alpha, \beta) = \max_{\substack{u \in \mathcal{C}(\mathcal{X}) \\ v \in \mathcal{C}(\mathcal{Y})}} \left\{ \mathbb{E}_{x \sim \alpha} u(x) + \mathbb{E}_{y \sim \beta} v(y) \right. \\ \left. - \mathbb{E}_{x, y \sim \alpha \otimes \beta} \left[\exp \left(\frac{u(x) + v(y) - c(x, y)}{\varepsilon} \right) \right] \right\}, \quad (\text{d-EOT})$$

where the optimization is performed over two Kantorovich potentials u and v , in contrast to the single potential used in our formulation (13). With that said, we are ready to discuss the existing formulations of inverse entropic optimal transport.

Inverse OT. The use of the entropic formulation for inverse optimal transport was first proposed in (Du & Mordatch, 2019, Eq. 8). Their setup, identical to our formulation (5), restricted attention to bilinear cost functions of the form $c_A(x, y) = x^\top A y$, (Eq. 5), with the goal of recovering the matrix A in a discrete setting. A subsequent work (Ma et al., 2020, Eq. 21) extended this idea to the continuous setting by introducing a loss function for learning cost functions, based on the dual formulation (d-EOT) of the EOT problem. As shown in (Andrade et al., 2023, Appendix A.1), their formulation and ours are equivalent, and both admit a maximum likelihood interpretation, consistent with our derivation in §3.1.

The most directly related approach is that of (Andrade et al., 2025, Lemma 1), which addresses the unbalanced OT framework (Chizat et al., 2018) while still relying on the dual formulation (d-EOT). They employ a linearly parameterized cost function (Eq. 4), but their focus is on establishing bounds for cost recovery, in contrast to our emphasis on semi-supervised domain translation.

For further formulations of inverse OT, we refer readers to the works cited in the introduction of (Andrade et al., 2023).

B.2 DISCRETE SPACES EXTENSION

Our theoretical framework is not limited to continuous spaces \mathcal{X}, \mathcal{Y} . For instance, if the target space \mathcal{Y} is discrete and takes values in a finite set $\mathbb{K} = \{1, 2, \dots, K\}$, such as a set of categories, our method remains directly applicable. In this case, the dual potential f^θ (16) can be represented as a vector of length K , and the cost function $c^\theta(x, y)$ (15) can be implemented with a standard neural network. The partition function $Z^\theta(x)$ can then be computed as a finite sum over the K terms, making the implementation straightforward. Note that the input x can be either continuous or discrete - it does not affect the formulation.

Challenges arise when y is a more complex discrete object, such as a structured output like a sequence of T tokens drawn from a dictionary of size K , i.e., \mathbb{K}^T . In such cases, parameterizing f_θ , computing Z_θ , and sampling from the associated energy-based model become significantly more difficult, requiring advanced inference and training techniques, see (Holderrieth et al., 2025) for details.

Discrete domains (Austin et al., 2021; Campbell et al., 2022; Gat et al., 2024; Ksenofontov & Krotin, 2025) have received considerable attention recently, and extending our methodology to such spaces represents a promising direction for future research.

B.3 PARTIALLY PAIRED DATA

A potential limitation of the formulation in equation (13) is that it implicitly relies on the paired data having marginals matching the true distributions π_x^* and π_y^* . If the paired samples are artificially selected, so that their empirical x - and y -marginals deviate from π_x^* and π_y^* —one might suspect that the objective no longer corresponds to the KL functional in §3.1. In practice, however, this is not a fundamental issue: the theoretical formulation remains valid, which we discuss below.

Assume that the observed pairs (x, y) come from a joint distribution π_{subset}^* supported on a limited subset of the support of π^* , with x -marginal μ_x and conditional density $\pi^*(y | x)$. In this setting, the induced y -marginal is $\nu_y(y) = \mathbb{E}_{x \sim \mu_x} \pi^*(y | x)$ and the *ground-truth joint density* becomes

$$\pi_{\text{subset}}^*(x, y) = \mu_x(x) \pi^*(y | x).$$

Applying the same derivation as in §3.1, we obtain:

$$\text{KL}(\pi_{\text{subset}}^* \| \pi^\theta) = \underbrace{\text{KL}(\mu_x \| \pi_x^*)}_{\text{Marginal}} + \underbrace{\mathbb{E}_{x \sim \mu_x} \text{KL}(\pi^*(\cdot | x) \| \pi^\theta(\cdot | x))}_{\text{Conditional}}. \quad (25)$$

Focusing on the conditional term:

$$\mathbb{E}_{x \sim \mu_x} \mathbb{E}_{y \sim \pi^*(\cdot | x)} [\log \pi^*(y | x) - \log \pi^\theta(y | x)] = -\mathbb{E}_{x \sim \mu_x} H(\pi^*(\cdot | x)) - \mathbb{E}_{x, y \sim \pi_{\text{subset}}^*} \log \pi^\theta(y | x). \quad (26)$$

1296 Thus, we recover the same conditional log-likelihood structure as in (9). Substituting the EBM
 1297 parametrizations (10) and (12), we obtain
 1298

$$1299 \mathbb{E}_{x,y \sim \pi_{\text{subset}}^*} [c(x,y)] - \mathbb{E}_{y \sim \nu_y} f(y) + \mathbb{E}_{x \sim \mu_x} \log Z^\theta(x) = \quad (27)$$

$$1300 \mathbb{E}_{x,y \sim \pi_{\text{subset}}^*} [c(x,y)] - \mathbb{E}_{y \sim \pi_y^*} \left[\frac{\nu_y(y)}{\pi_y^*(y)} f(y) \right] + \mathbb{E}_{x \sim \pi_x^*} \left[\frac{\mu_x(x)}{\pi_x^*(x)} \log Z^\theta(x) \right]. \quad (28)$$

1302 Introducing the *weights*:

$$1304 \quad w_x(x) = \frac{\mu_x(x)}{\pi_x^*(x)}, \quad w_y(y) = \frac{\nu_y(y)}{\pi_y^*(y)}, \quad (29)$$

1306 we obtain the corrected objective:

$$1308 \mathcal{L}_q(\theta) = \underbrace{\varepsilon^{-1} \mathbb{E}_{x,y \sim \pi_{\text{subset}}^*} [c^\theta(x,y)]}_{\text{Joint, requires pairs } (x,y) \sim \pi_{\text{subset}}^*} - \underbrace{\varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} [w_y(y) f^\theta(y)]}_{\text{Marginal, requires } y \sim \pi_y^*} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} [w_x(x) \log Z^\theta(x)]}_{\text{Marginal, requires } x \sim \pi_x^*} \rightarrow \min_{\theta}. \quad (30)$$

1311 A practical way to estimate the required ratios is classifier-based density ratio estimation, widely
 1312 used in covariate-shift adaptation (Gretton et al., 2009; Sugiyama et al., 2012). To estimate a
 1313 marginal ratio such as $w_x(x) = \mu_x(x)/\pi_x^*(x)$, we draw samples from the true marginal π_x^* and
 1314 the biased marginal μ_x , label them as target (1) and observed (0), and train a probabilistic classifier
 1315 $s_\varphi(x) = \text{Prob}(\text{target} \mid x)$. With balanced class priors, $\hat{w}_x(x) = \frac{s_\varphi(x)}{1-s_\varphi(x)}$. The same holds for $w_y(y)$.
 1316 This method is requires no density estimation. For recent advancement in density ratio estimation,
 1317 please refer to (Nagumo & Fujisawa, 2024; Wang et al., 2025). Thus, even if the paired data are
 1318 *artificially biased*, the loss remains correct as long as the true marginals are known and appropriate
 1319 weights are applied.

1321 B.4 EXAMPLES OF SEMI-SUPERVISED DOMAIN TRANSLATION SETUPS

1322 In this section we outline some real-world scenarios, where *semi-supervised* setup are very natural.

- 1325 • **Image Harmonization in Photo Editing** (Wang et al., 2023). Photo compositing often involves
 1326 placing a foreground object into a new background, but realistic blending (e.g., matching lighting
 1327 and color tone) is challenging. While only a small set of artist-labeled (paired) composites may
 1328 be available, large collections of unlabeled (unpaired) composites can be gathered from the web.
- 1329 • **Scene Stylization (e.g., Anime Rendering)** (Jiang et al., 2023b). Transforming real-world photos
 1330 into anime-style renderings is popular in gaming and animation but is limited by the scarcity of
 1331 labeled real-anime image pairs.
- 1332 • **Image Enhancement for Outdoor Vision** (Li et al., 2019a; Liu et al., 2024; Cui et al., 2024; Li
 1333 & Chang, 2025; Hou et al., 2025). Adverse weather and low-light conditions can compromise the
 1334 visual systems of autonomous vehicles, such as self-driving cars and UAVs, leading to challenges
 1335 in both decision-making and navigation. For a comprehensive overview of these scenarios and
 1336 existing semi-supervised approaches, see (Mo et al., 2025).
- 1337 • **Biomedical Image Registration (Microscopy)** (Skibbe et al., 2021). In neuroscience research,
 1338 aligning images from different modalities (e.g., tracer vs. Nissl stain) is crucial but difficult due to
 1339 modality shifts. Only a limited number of images can be manually registered (paired data), while
 1340 many are unregistered (unpaired).

1341 The examples above underscore the importance of developing methods for semi-supervised domain
 1342 translation, which have applications in rendering, image editing, design, computer graphics, and
 1343 autonomous driving, while also streamlining existing digital content creation pipelines. At the same
 1344 time, it is important to recognize that the rapid advancement of generative models may have unin-
 1345 tended consequences, potentially impacting certain jobs within these industries.

1347 B.5 RELATED WORKS

1348 This section provides the detailed discussion of related work and methods that were only briefly
 1349 summarized in §4, and includes additional coverage of metric learning.

1350 **Semi-supervised models.** As discussed in §1, many existing semi-supervised domain translation
 1351 methods combine paired and unpaired data by introducing multiple loss terms into *ad hoc optimization*
 1352 *objectives*. Several works, such as (Jin et al., 2019, §3.3), (Tripathy et al., 2019, §3.5),
 1353 (Oza et al., 2019, §C), (Paavilainen et al., 2021, §2), (Chen et al., 2023, §3.3), (Ren et al., 2023,
 1354 §3) and (Panda et al., 2023, Eq. 8), employ GAN-base objectives, which incorporate the GAN
 1355 losses (Goodfellow et al., 2014) augmented with specific regularization terms to utilize paired data.
 1356 Although most of these methods were initially designed for the image-to-image translation, their
 1357 dependence on GAN objectives enables their application to broader domain translation tasks. In
 1358 contrast, the approaches introduced by (Mustafa & Mantiuk, 2020, §3.2) and (Tang et al., 2024,
 1359 Eq. 8) employ loss functions specifically tailored for the image-to-image translation, making them
 1360 unsuitable for the general domain translation problem described in §2.1.
 1361 Another line of research explores methods based on *key-point guided OT* (Gu et al., 2022), which in-
 1362 tegrates paired data information into the discrete transport plan. Building on this concept, (Gu et al.,
 1363 2023) uses such transport plans as heuristics to train a conditional score-based model on unpaired or
 1364 semi-paired data. Furthermore, recent work (Theodoropoulos et al., 2024) heuristically incorporates
 1365 paired data into the cost function $c(x, y)$ in (1) with corresponding dynamical formulation.
 1366 Importantly, the paradigms outlined above do not offer any theoretical guarantees for reconstructing
 1367 the conditional distribution $\pi^*(y|x)$, as they depend on heuristic loss constructions. We show that
 1368 such approaches actually fail to recover the true plan even in toy 2-dimensional cases, refer to exper-
 1369 iments in §5 for an illustrative example. We also note that there exist works addressing the question
 1370 of incorporating unpaired data to the log-likelihood training (9) by adding an extra likelihood terms,
 1371 see (Atanov et al., 2019; Izmailov et al., 2020). However, they rely on x being a discrete object (e.g.,
 1372 a class label) and does not easily generalize to the continuous case, see Appendix D.2 for details.
 1373 **Inverse OT solvers.** As highlighted in §2.2, the task of inverse optimal transport (IOT) implies
 1374 learning the cost function from samples drawn from an optimal coupling π^* . Existing IOT solvers
 1375 (Dupuy et al., 2019; Li et al., 2019b; Stuart & Wolfram, 2020; Galichon & Salanié, 2022; Andrade
 1376 et al., 2025) focus on reconstructing cost functions primarily from discrete marginal distributions,
 1377 in particular, using the log-likelihood maximization techniques (Dupuy et al., 2019), see the intro-
 1378 duction of (Andrade et al., 2023) for a review. Additionally, the recent work by (Shi et al., 2023)
 1379 explores the IOT framework in the context of contrastive learning. In contrast, we develop a log-
 1380 likelihood based approach aimed at learning conditional distributions $\pi^\theta(\cdot|x) \approx \pi^*(\cdot|x)$ using both
 1381 paired and unpaired data but not the cost function itself.
 1382 **Forward OT solvers.** Our solver is based on the framework of (Mokrov et al., 2024), which pro-
 1383 posed a *forward* solver for *unsupervised* domain translation. In contrast, our approach integrates the
 1384 optimization of the cost function directly into the objective (equation (18)), allowing for effective
 1385 utilization of paired data. Additionally, we extend the Gaussian Mixture parameterization proposed
 1386 by (Korotin et al., 2024; Gushchin et al., 2024a), which was originally developed as a forward solver
 1387 for entropic OT with a quadratic cost function $c^*(x, y) = \frac{1}{2}\|x - y\|_2^2$. Our work generalizes this
 1388 solver to accommodate a wider variety of cost functions, as specified in equation (15). As a result,
 1389 our approach also functions as a novel forward solver for these generalized cost functions.
 1390 Recent work by (Howard et al., 2024) proposes a framework for learning cost functions to improve
 1391 the mapping between the domains. However, it is limited by the use of deterministic mappings, i.e.,
 1392 does not have the ability to model non-degenerate conditional distributions.
 1393 Another work by (Asadulaev et al., 2024) introduces a neural network-based OT framework for
 1394 semi-supervised scenarios, utilizing general cost functionals for OT. However, their method requires
 1395 *manually* constructing cost functions which can incorporate class labels or predefined pairs. In con-
 1396 trast, our method dynamically adjusts the cost function during training, offering a more flexibility.
 1397 **Metric-learning and OT.** In addition to purely inverse OT approaches, there is a line of work that
 1398 aims to learn the ground metric used by optimal transport. A seminal work (Cuturi & Avis, 2014)
 1399 introduced *ground metric learning* in a supervised setting, where they optimize over metric matrices
 1400 so that OT distances between labeled histograms better reflect the class structure. Building on this,
 1401 (Huizing et al., 2022) propose *unsupervised ground metric learning* via what they call Wasserstein
 1402 singular vectors. They jointly learn a ground metric on features and a distance between samples
 1403 by finding positive singular vectors of the mapping from metric matrices to OT distance matrices.
 Their method uses stochastic approximation with entropic regularization and is scalable to high-

dimensional data. More recently, the work (Auffenberg et al., 2025) analyze this fixed-point problem more deeply: they prove convergence for a stochastic fixed-point iteration (even in scenarios where classical contraction assumptions do not hold) and show that their framework naturally recovers Mahalanobis-type metrics and graph-Laplacian parameterizations as special cases.

In another direction, (Scarvelis & Solomon, 2023) introduce a *Riemannian metric-learning* framework: they parametrize a spatially-varying metric tensor as a neural network over a manifold, and optimize it so that OT distances under this learned geometry better explain meaningful interpolations, such as trajectories in scRNA data or bird migration. In graph-structured domains, (Heitz et al., 2021) learn ground metrics constrained to be geodesic distances on a graph, allowing a structured and efficient metric learning aligned with the graph topology.

Moreover, (Jawanpuria et al., 2025) propose to learn a symmetric positive definite (SPD) ground metric matrix by optimizing over the Riemannian manifold of SPD matrices, enabling the cost metric to adapt flexibly to data while jointly optimizing the OT distance. Finally, in the context of *domain adaptation*, (Kerdoncuff et al., 2020) present MLot, which learns a global Mahalanobis metric that improves the alignment of source and target distributions under OT.

While these metric-learning works learn a distance function (or cost metric) via OT, they typically assume particular parametric forms (Mahalanobis, SPD matrices, or constructed on manifolds) and focus on matching distributions or aligning domains. In contrast, our approach learns conditional couplings $\pi^\theta(\cdot|x)$ (not just a ground cost), and integrates cost learning dynamically into a likelihood-based solver over paired and unpaired data. Moreover, our cost parameterization extends beyond classical metric forms, enabling more flexible and expressive cost functions (see Eq. (15)).

C GENERAL DETAILS OF EXPERIMENTS

C.1 GENERAL IMPLEMENTATION DETAILS

Parametrization. The depth and number of hidden layers vary depending on the experiment.

For f^θ (16) we represent:

- w_n as $\log w_n$,
- b_n directly as a vector,
- the matrix B_n in diagonal form, with $\log(B_n)_{i,i}$ on its diagonal. This choice not only reduces the number of learnable parameters in θ_f but also enables efficient computation of B_n^{-1} with a time complexity of $\mathcal{O}(D_y)$.

For c^θ (15), we represent:

- $v_m(x)$ as a multilayer perceptron (MLP) with ReLU activations (Agarap, 2018) and a Log-SoftMax output layer,
- $a_m(x)$ as an MLP with ReLU activations.

Optimizers. We employ two separate Adam optimizers (Kingma, 2014) with different step sizes for paired and unpaired data to enhance convergence.

Initialization.

- $\log w_n$ as $\log \frac{1}{n}$,
- b_n using random samples from π_y^* ,
- $\log(B_n)_{j,j}$ with $\log(0.1)$,
- for the neural networks, we use the default PyTorch initialization (Ansel et al., 2024),
- $\varepsilon = 1$ for all experiments, since the solver is independent of ε , as discussed in §2.2.

C.2 GAUSSIAN TO SWISS ROLL MAPPING

Implementation Details. We choose the parameters as follows: $N = 50$, $M = 25$, with learning rates $lr_{\text{paired}} = 3 \times 10^{-4}$ and $lr_{\text{unpaired}} = 0.001$. We utilize a two-layer MLP network for the function

1458 $a_m(x)$ and a single-layer MLP for $v_m(x)$. The experiments are executed in parallel on a 2080 Ti
 1459 GPU for a total of 25,000 iterations, taking approximately 20 minutes to complete.
 1460

1461 C.3 WEATHER PREDICTION

1463 We select two distinct months from the dataset (Malinin et al., 2021; Rubachev et al., 2024) and
 1464 translate the meteorological features from the source month (January) to the target month (June). To
 1465 operate at the monthly scale, we represent a source data point $x \in \mathbb{R}^{188}$ as the mean and standard
 1466 deviation of the features collected at a specific location over the source month. The targets $y \in \mathbb{R}^{94}$
 1467 correspond to individual measurements in the target month.

1468 Pairs are constructed by aligning a source data point with the target measurements at the same lo-
 1469 cation. Consequently, multiple target data points y may correspond to a single source point x and
 1470 represent samples from conditional distributions $\pi^*(y|x)$. The measurements from non-aligned lo-
 1471 cations are treated as unpaired. **Such unpaired data naturally arise because stations may not provide**
 1472 **reliable measurements in both months, for example, due to maintenance, sensor failures, extreme**
 1473 **weather, or connectivity issues.**

1474 We obtain 500 unpaired and 192 paired data samples. For testing, 100 pairs are randomly selected.
 1475

Implementation Details. In general, we consider the same setting as in C.2. Specifically, we set
 1476 $N = 10$, $M = 1$ and the number of optimization steps to 30,000. The baseline uses an MLP net-
 1477 work with the same number of parameters, predicting the parameters of a mixture of 10 Gaussians.
 1478

Extremely Low-Data Regimes Discussion. As it clear from Table 1, our method diverges when
 1479 trained on very few samples (e.g., 5 paired and no unpaired). This is not surprising given the high
 1480 dimensionality of the data ($D = 94$) and the number of learnable parameters ($|\theta| = 2668$). In
 1481 such low-data regimes, the model likely overfits the cost function c^θ to the small paired dataset,
 1482 which can cause instability. This issue could potentially be alleviated by simplifying the model, for
 1483 instance by using a shallow or even linear parameterization of c^θ (Andrade et al., 2025). However,
 1484 for consistency and fairness, we kept the architecture fixed across all experiments in the table.
 1485

1486 C.4 IMAGE TRANSLATION VIA ALAE

1488 Finally, we review experiments on two types of image translation tasks: **(i)** Gender translation and
 1489 **(ii)** Age translation. Extended results for the Woman-to-Man task are shown in Figure 8, and for
 1490 Old-to-Young in Figure 9 and Table 4.

Setup. We follow the experimental setup of (Theodoropoulos et al., 2024), using the pre-trained
 1491 ALAE autoencoder (Pidhorskyi et al., 2020) on the 1024×1024 FFHQ dataset (Karras et al., 2019).
 1492 Translation is performed in the 512-dimensional latent space.
 1493

Baseline method. We used the publicly available FSBM (Theodoropoulos et al., 2024) implemen-
 1495 tation from GitHub¹. However, due to reproducibility issues in the repository, we generated 2K paired
 1496 samples ourselves via the procedure described in Appendix C.3 of the original paper.
 1497

Metric computation. Metrics were computed using `TorchMetrics` (Falcon et al., 2020) with a
 1498 batch size of 128. All metrics measure similarity between the generated and target distributions and
 1499 are averaged across three independent runs with different seeds. Results are reported rounded to the
 1500 first significant digit.
 1501

Implementation Details. We largely follow the setup in Appendix C.2, setting $N = 10$, $M = 1$,
 1502 and using 10K optimization steps. Our method employs a single-layer MLP to predict the parameters
 1503 of a mixture of 10 Gaussians.
 1504

Method	FID \downarrow	SSIM \uparrow	LPIPS \downarrow
FSBM	11.5 ± 0.6	0.5285 ± 0.0008	0.5628 ± 0.0004
Ours	9.4 ± 0.2	0.5361 ± 0.0004	0.5560 ± 0.0005

1509 Table 4: Metrics for Old-to-Young translation .
 1510

1511 ¹<https://github.com/panostheo98/FSBM>

1512 **D GAUSSIAN TO SWISS ROLL MAPPING**
 1513

1514 **D.1 PAIRED DATA GENERATION**
 1515

1516 **Generation process.** To create the ground truth plan
 1517 π^* , we utilize the following procedure: sample a
 1518 mini-batch of size 64 and then determine the optimal
 1519 mapping using the entropic Sinkhorn algorithm, as
 1520 outlined in (Cuturi, 2013) and implemented in (Fla-
 1521 mary et al., 2021). This process is repeated P times
 1522 to generate the required number of pairs.

1523 **Cost Matrix.** Let $x \in \mathbb{R}^2$ and $y \in \mathbb{R}^2$ be points
 1524 from the source and target distributions, respectively.
 1525 Define the rotated vectors as

$$1526 \quad y^{\pm\varphi} = R_{\pm\varphi}(y) = \begin{bmatrix} \cos(\pm\varphi) & -\sin(\pm\varphi) \\ \sin(\pm\varphi) & \cos(\pm\varphi) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix},$$

1527 where φ is a given rotation angle, in our case, it's
 1528 $\pm 90^\circ$. The corresponding elements of mini-batch OT cost matrices are then

$$1529 \quad C_{ij}^{+\varphi} = \|x_i - y_j^{+\varphi}\|_2, \quad C_{ij}^{-\varphi} = \|x_i - y_j^{-\varphi}\|_2,$$

1530 and the final cost matrix is

$$1531 \quad C_{ij} = \min(C_{ij}^{+\varphi}, C_{ij}^{-\varphi}), \quad \forall i, j.$$

1532 In other words, each $x_i \sim \pi_x^*$ is mapped to a point y_j on the opposite side of the Swiss Roll, rotated
 1533 either by $+90^\circ$ or -90° , depending on which distance is smaller.

1534 **D.2 BASELINE DETAILS**
 1535

1536 This section details the loss functions employed by the baseline models, providing context and ex-
 1537 planation for the data usage summarized in Table 5. Furthermore, it explains a straightforward
 1538 adaptation of the log-likelihood loss function presented in (9) to accommodate unpaired data, offer-
 1539 ing a natural comparative approach to the method proposed in our work. Finally, it includes details
 1540 about our reproduction of other methods and their discussion.

1541 **1. Standard generative & predictive models:**

- 1542 **• Regression Model** (MLP) uses the following simple ℓ^2 loss

$$1543 \quad \min_{\theta} \mathbb{E}_{(x,y) \sim \pi^*} \|y - G_{\theta}(x)\|^2,$$

1544 where $G_{\theta} : \mathcal{X} \rightarrow \mathcal{Y}$ is a generator MLP with trainable parameters θ . Clearly, such a model can
 1545 use only paired data. Furthermore, it is known that the optimal regressor G^* coincides with
 1546 $\mathbb{E}_{y \sim \pi^*(\cdot|x)} y$, i.e., predicts the conditional expectation. Therefore, such a model will never learn
 1547 the true data distribution unless all $\pi^*(\cdot|x)$ are degenerate.

- 1548 **• Conditional GAN** uses the following min max loss:

$$1549 \quad \min_{\theta} \max_{\phi} \left[\underbrace{\mathbb{E}_{x,y \sim \pi^*} \log(D_{\phi}(y|x))}_{\text{Joint, requires pairs } (x,y) \sim \pi^*} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{z \sim p_z(z)} \log(1 - D_{\phi}(G_{\theta}(z|x)|x))}_{\text{Marginal, requires } x \sim \pi_x^*} \right],$$

1550 where $G_{\theta} : \mathcal{Z} \times \mathcal{X} \rightarrow \mathcal{Y}$ is the conditional generator with parameters θ , p_z is a distribution
 1551 on latent space \mathcal{Z} , and $D_{\phi} : \mathcal{Y} \times \mathcal{X} \rightarrow (0, 1)$ is the conditional discriminator with parameters
 1552 ϕ . It is clear that the model can use not only paired data during the training, but also samples
 1553 from π_x^* . The minimum of this loss is achieved when $G_{\theta}(\cdot|x)$ generates $\pi^*(\cdot|x)$ from p_z .

- 1554 **• Unconditional GAN + ℓ^2 loss** optimizes the following min max objective:

$$1555 \quad \min_{\theta} \max_{\phi} \left[\underbrace{\lambda \mathbb{E}_{(x,y) \sim \pi^*} \mathbb{E}_{z \sim p_z} \|y - G_{\theta}(x, z)\|^2}_{\text{Joint, requires pairs } (x,y) \sim \pi^*} + \underbrace{\mathbb{E}_{y \sim \pi_y^*} \log(D_{\phi}(y))}_{\text{Marginal, requires } y \sim \pi_y^*} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{z \sim p_z} \log(1 - D_{\phi}(G_{\theta}(x, z)))}_{\text{Marginal, requires } x \sim \pi_x^*} \right],$$

Method	Paired $(x, y) \sim \pi^*$	Unpaired $x \sim \pi_x^*$	Unpaired $y \sim \pi_y^*$
Regression	✓	✗	✗
UGAN + ℓ^2	✓	✓	✓
CGAN	✓	✓	✗
CondNF	✓	✗	✗
CondNF (SS)	✓	✓	✓
GNOT	✓	✓	✓
DCPEME	✓	✓	✓
parOT	✓	✓	✓
OTCS	✓	✓	✓
FSBM	✓	✓	✓
CGMM (SS)	✓	✓	✓
Our method	✓	✓	✓

Table 5: The ability to use paired/unpaired data by various models.

1566 where $\lambda > 0$ is a hyperparameter and $G_\theta : \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{Y}$ is the stochastic generator. Compared
 1567 to the unconditional case, the main idea here is to use the unconditional disctiminator $D_\phi : \mathcal{Y} \rightarrow (0, 1)$. This allows using unpaired samples from π_y^* . However, using only GAN loss
 1568 would ignore the paired information in any form, this is why the supervised ℓ^2 loss is added
 1569 ($\lambda = 1$).
 1570

1571 We note that this model has a trade-off between the target matching loss (GAN loss) and
 1572 regression loss (which suffers from averaging). Hence, the model is unlikely to learn the true
 1573 paired data distribution and can be considered as a heuristic loss for using both paired and
 1574 unpaired data. Overall, we believe this baseline is representative of many existing GAN-based
 1575 solutions (Tripathy et al., 2019, §3.5), (Jin et al., 2019, §3.3), (Yang & Chen, 2020, §C),
 1576 (Vasluianu et al., 2021, §3), which use objectives that are *ideologically* similar to this one for
 1577 paired and unpaired data.
 1578

- **Conditional Normalizing Flow** (Winkler et al., 2019) learns an explicit density model

$$\pi^\theta(y|x) = p_z(G_\theta^{-1}(y|x)) \left| \frac{\partial G_\theta^{-1}(y|x)}{\partial y} \right|$$

1582 via optimizing log-likelihood (9) of the paired data. Here $G_\theta : \mathcal{Z} \times \mathcal{X} \rightarrow \mathcal{Y}$ is the conditional
 1583 generator function. It is assumed that $\mathcal{Z} = \mathcal{Y}$ and $G_\theta(\cdot|x)$ is invertible and differentiable.
 1584 In the implementation, we use the well-celebrated RealNVP neural architecture (Dinh et al.,
 1585 2017). The optimal values are attained when the generator $G_\theta(\cdot|x)$ indeed generates $\pi^\theta(\cdot|x) = \pi^*(\cdot|x)$.
 1586

1587 The conditional flow is expected to accurately capture the true conditional distributions, pro-
 1588 vided that the neural architecture is sufficiently expressive and there is an adequate amount of
 1589 paired data available. However, as mentioned in §3.1, a significant challenge arises in integrat-
 1590 ing unpaired data into the learning process. For instance, approaches such as those proposed
 1591 by (Atanov et al., 2019; Izmailov et al., 2020) aim to extend normalizing flows to a semi-
 1592 supervised context. However, these methods primarily assume that the input conditions x are
 1593 discrete, making it difficult to directly apply their frameworks to our continuous case. For
 1594 completeness, below we discuss a variant of the log-likelihood loss (Atanov et al., 2019, Eq.
 1595 1) when both x, y are continuous.

2. Semi-supervised log-likelihood methods (Atanov et al., 2019; Izmailov et al., 2020):

- **Semi-supervised Conditional Normalizing Flows.** As noted by the the authors, a natural
 1596 strategy for log-likelihood semi-supervised training that leverages both paired and unpaired
 1597 data is to optimize the following loss:

$$\max_\theta \left[\underbrace{\mathbb{E}_{(x,y) \sim \pi^*} \log \pi^\theta(y|x)}_{\text{Joint, requires pairs } (x, y) \sim \pi^*} + \underbrace{\mathbb{E}_{y \sim \pi_y^*} \log \pi^\theta(y)}_{\text{Marginal, requires } y \sim \pi_y^*} \right]. \quad (31)$$

1603 This straightforward approach involves adding the unpaired data component, $\mathbb{E}_{y \sim \pi_y^*} \log \pi^\theta(y)$
 1604 to the loss function alongside the standard paired data component (9). While loss (31) looks
 1605 natural, its optimization is *highly non-trivial* since the marginal log-likelihood $\log \pi^\theta(y)$ is not
 1606 directly available. In fact, (Atanov et al., 2019; Izmailov et al., 2020) use this loss exclusively
 1607 in the case when x is a discrete object, e.g., the class label $x \in \{1, 2, \dots, K\}$. In this case
 1608 $\log \pi^\theta(y)$ can be analytically computed:

$$\log \pi^\theta(y) = \log \mathbb{E}_{x \sim \pi_x^*} \pi^\theta(y|x) = \log \sum_{k=1}^K \pi^\theta(y|x=k) \pi_x^*(x=k),$$

1612 and $\pi^*(x = k)$ are known class probabilities. Unfortunately, in the continuous case $\pi_x^*(x)$ is
 1613 typically not available explicitly, and one has to exploit *approximations* such as

$$\log \pi^\theta(y) = \log \mathbb{E}_{x \sim \pi_x^*} \pi^\theta(y|x) \approx \log \frac{1}{Q} \sum_{q=1}^Q \log \pi^\theta(y|x_q),$$

1618 where x_q are train (unpaired) samples. However, such Monte-Carlo estimates are generally
 1619 **biased** (because of the logarithm) and do not lead to good results, especially in high dimen-
 1620 sions. Nevertheless, for completeness, we also test how this approach performs. In our 2D

example (Figure 2j), we found there is no significant difference between this loss and the fully supervised loss (9): both models incorrectly map to the target and fail to learn conditional distributions.

- **Semi-supervised Conditional Gaussian Mixture Model.** Using the natural loss (31) for semi-supervised learning, one could also consider a (conditional) Gaussian mixture parametrization for $\pi^\theta(y|x)$ instead of the normalizing flow. For completeness, we include this baseline for comparison. Using the same Gaussian mixture parametrization (17) as in our method, we observed that this loss quickly overfits and leads to degenerate solutions, see Figure 2e.

3. **Semi-supervised Methods.** These methods are designed to learn deterministic OT maps with general cost functions and, as a result, cannot capture stochastic conditional distributions.

- **Neural optimal transport with pair-guided cost functional** (Asadulaev et al., 2024, GNOT). This method employs a general cost function for the neural optimal transport approach, utilizing a neural network parametrization for the mapping function and potentials. In our experiments, we focus on the paired cost function setup, enabling the use of both paired and unpaired data. We use the publicly available implementation², which has been verified through toy experiments provided in the repository.
- **Differentiable cost-parameterized entropic mapping estimator** (Howard et al., 2024, DCPEME). We obtained the implementation from the authors but were unable to achieve satisfactory performance. This is likely due to the deterministic map produced by their method based on the entropic map estimator from (Cuturi et al., 2023). In particular, scenarios where nearby or identical points are mapped to distant locations may introduce difficulties, potentially leading to optimization stagnation during training.
- **Parametric Pushforward Estimation With Map Constraints** (Panda et al., 2023, parOT)³. We evaluated this method using the ℓ_2 cost function, where it performed as expected. However, on our setup, the method occurred unsuitable because it learns a fully deterministic transport map, which lacks the flexibility needed to model stochastic multi-modal mapping. This limitation is visually evident in Figure 6g.
- **Optimal Transport-guided Conditional Score-based diffusion model** (Gu et al., 2023, OTCS). We evaluated this method on a two-dimensional example from their GitHub repository⁴, where it performed as expected. However, when applied to our setup (described in §5.1), the method failed to yield satisfactory results, even when provided with a large amount of training data (refer to Figure 6h and detailed in Appendix D.3).
- **Feedback Schrödinger Bridge Matching** (Theodoropoulos et al., 2024, FSBM). We first tested the method on a two-dimensional example from their GitHub repository⁵, where it performed as reported in the original paper. However, as shown in Figure 2o, the learned target distribution is very noisy with a small amount of data. With more samples (Figure 6i), the method approximates the target distribution better but still fails to capture the ground-truth conditional distribution, presumably due to misleading guidance from the key-points.

D.3 BASELINES FOR SWISS ROLL WITH THE LARGE AMOUNT OF DATA (16K)

In this section, we show the results of training of the baselines on the large amount of both paired (16K) and unpaired (16K) data (Figure 6). Recall that the ground truth π^* is depicted in Figure 2c.

As expected, Regression fails to learn anything meaningful due to the averaging effect (Figure 6a). In contrast, the unconditional GAN+ ℓ^2 (Figure 6b) nearly succeeds in generating the target data π_y^* , but the learned plan is still incorrect, also due to the averaging effect. Given a sufficient amount of training data, Conditional GAN (Figure 6c) nearly succeeds in learning the true conditional distributions $\pi^*(\cdot|x)$. The same applies to the conditional normalizing flow (Figure 6d), but its results are slightly worse, presumably due to the limited expressiveness of invertible flow architecture.

Experiments using the natural semi-supervised loss function in (31) demonstrate that this loss function can reasonably recover the conditional mapping with both CondNF (Figure 6e) and CGMM

²<https://github.com/machinestein/GNOT>

³<https://github.com/natalieklein229/uq4ml/tree/parot>

⁴<https://github.com/XJTU-XGU/OTCS/>

⁵<https://github.com/panostheo98/FSBM>

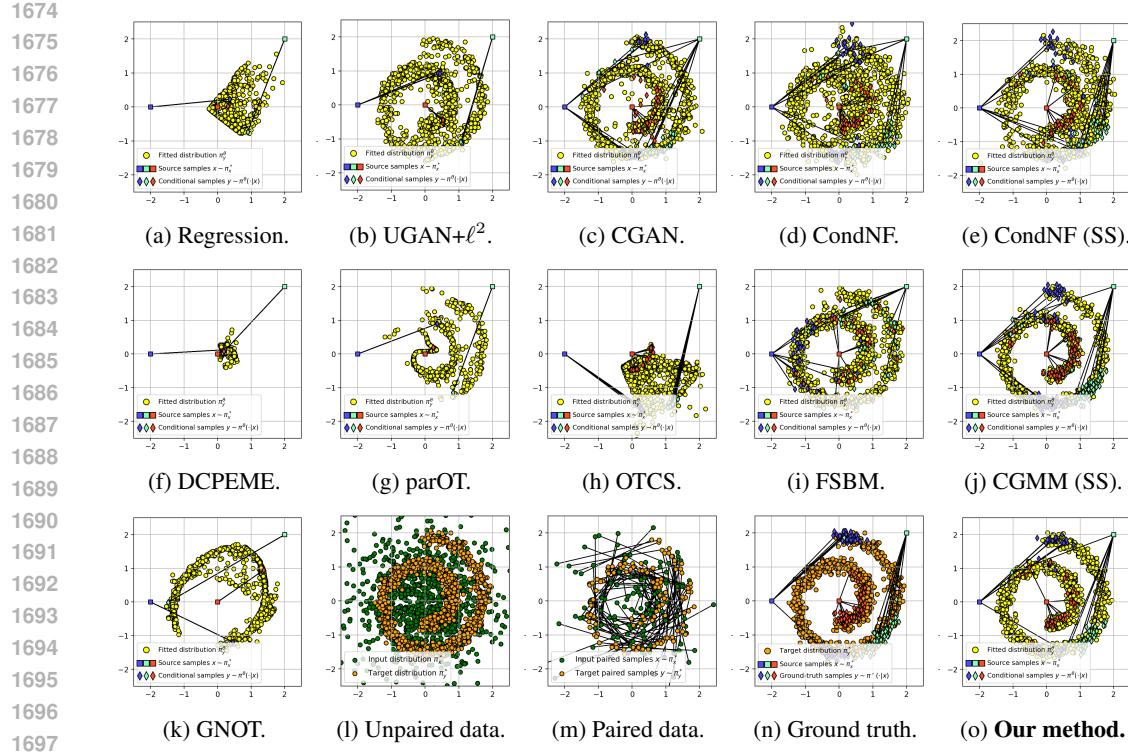


Figure 6: Comparison of the mapping learned by baselines on *Gaussian* → *Swiss Roll* task (§5.1). We use $P = 16K$ paired data, $Q = R = 16K$ unpaired data for training.

(Figure 6j) parameterizations. However, it requires significantly more training data compared to our proposed loss function (13). This conclusion is supported by the observation that the CGMM model trained with (31) tends to overfit, as shown in Figure 2e. In contrast, our method, which uses the objective (13), achieves strong results, as illustrated in Figure 2d.

Other methods, unfortunately, also struggle to handle this illustrative 2D task effectively, despite their success in large-scale problems. This discrepancy raises questions about the theoretical justification and general applicability of these methods, particularly in scenarios where simpler tasks reveal limitations not evident in more complex settings.

D.4 ABLATION STUDY

In this section, we conduct an ablation study to address the question posed in §3.1 regarding how the number of source and target samples influences the quality of the learned mapping. The results, shown in Figure 7, indicate that the quantity of target points R has a greater impact than the number of source points Q (compare Figure 7c with Figure 7b). Additionally, it is evident that the inclusion of unpaired data helps mitigate over-fitting, as demonstrated in Figure 7a.

E PROOFS

E.1 LOSS DERIVATION

Below, we present a step-by-step derivation of the mathematical transitions, allowing the reader to follow and verify the validity of our approach. We denote as C_1, C_2 all terms that are not involved in learning the conditional plan $\pi^\theta(y|x)$, i.e., not dependent on θ or marginal distributions such as π_x^* . Starting from (6), we deduce

$$\text{KL}(\pi^* \parallel \pi^\theta) = \mathbb{E}_{x,y \sim \pi^*} \log \frac{\pi_x^*(x)\pi^*(y|x)}{\pi_x^\theta(x)\pi^\theta(y|x)} = \mathbb{E}_{x \sim \pi_x^*} \log \frac{\pi_x^*(x)}{\pi_x^\theta(x)} + \mathbb{E}_{x,y \sim \pi^*} \log \frac{\pi^*(y|x)}{\pi^\theta(y|x)} =$$

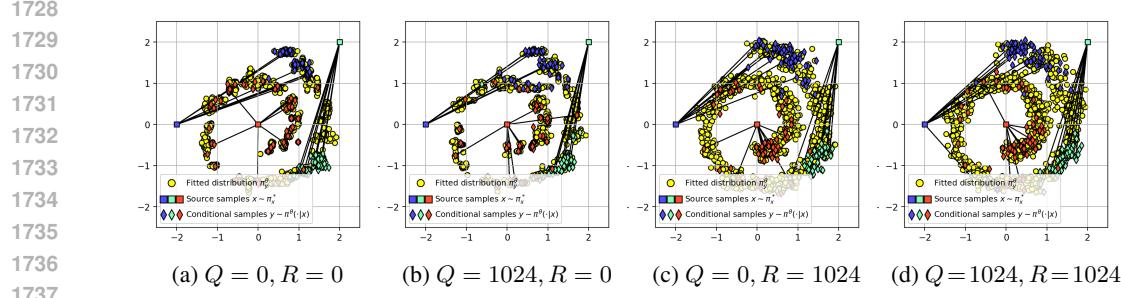


Figure 7: Ablation study analyzing the impact of varying source and target data point quantities on the learned mapping for the *Gaussian* → *Swiss Roll* task (using $P = 128$ paired samples).

$$\begin{aligned}
 \text{KL}(\pi_x^* \parallel \pi_x^\theta) + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} \log \frac{\pi^*(y|x)}{\pi^\theta(y|x)} &= \underbrace{\text{KL}(\pi_x^* \parallel \pi_x^\theta)}_{\text{Marginal}} + \underbrace{\mathbb{E}_{x \sim \pi_x^*} \text{KL}(\pi^*(\cdot|x) \parallel \pi^\theta(\cdot|x))}_{\text{Conditional}} = \\
 C_1 + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} \log \frac{\pi^*(y|x)}{\pi^\theta(y|x)} &= C + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} [\log \pi^*(y|x) - \log \pi^\theta(y|x)] = \\
 C_1 - \mathbb{E}_{x \sim \pi_x^*} H(\pi^*(\cdot|x)) - \mathbb{E}_{x,y \sim \pi^*} \log \pi^\theta(y|x) &= C_2 - \mathbb{E}_{x,y \sim \pi^*} \log \pi^\theta(y|x) \stackrel{(10)}{=} \\
 C_2 - \mathbb{E}_{x,y \sim \pi^*} \log \frac{\exp(-E^\theta(y|x))}{Z^\theta(x)} &= C_2 + \mathbb{E}_{x,y \sim \pi^*} E^\theta(y|x) + \mathbb{E}_{x,y \sim \pi^*} \log Z^\theta(x) \stackrel{(12)}{=} \\
 C_2 + \mathbb{E}_{x,y \sim \pi^*} \frac{c^\theta(x,y) - f^\theta(y)}{\varepsilon} + \mathbb{E}_{x,y \sim \pi^*} \log Z^\theta(x) &= \\
 C_2 + \varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} [c^\theta(x,y)] - \varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} f^\theta(y) + \mathbb{E}_{x,y \sim \pi^*} \log Z^\theta(x) &= \\
 C_2 + \varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} [c^\theta(x,y)] - \varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} \mathbb{E}_{x \sim \pi^*(\cdot|y)} f^\theta(y) + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^*(\cdot|x)} \log Z^\theta(x) &= \\
 C_2 + \varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} [c^\theta(x,y)] - \varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} f^\theta(y) \underbrace{\mathbb{E}_{x \sim \pi^*(\cdot|y)} 1}_{=1} + \mathbb{E}_{x \sim \pi_x^*} \log Z^\theta(x) \underbrace{\mathbb{E}_{y \sim \pi^*(\cdot|x)} 1}_{=1} &= \\
 C_2 + \varepsilon^{-1} \mathbb{E}_{x,y \sim \pi^*} [c^\theta(x,y)] - \varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} f^\theta(y) + \mathbb{E}_{x \sim \pi_x^*} \log Z^\theta(x). &
 \end{aligned}$$

The mathematical derivation presented above demonstrates that our defined loss function (13) is essentially a framework for minimizing KL-divergence. In other words, when the loss (13) equals to $-C_2$, it implies that we have successfully recovered the true conditional plan π^* in the KL sense.

E.2 EXPRESSIONS FOR THE GAUSSIAN PARAMETRIZATION

Proof of Proposition 3.1. Our parametrization of the cost c^θ (15) and the dual potential f^θ (16) gives:

$$\begin{aligned}
 \exp\left(\frac{f^\theta(y) - c^\theta(x,y)}{\varepsilon}\right) &= \exp\left(\log \sum_{n=1}^N w_n \mathcal{N}(y \mid b_n, \varepsilon B_n) + \log \sum_{m=1}^M v_m(x) \exp\left(\frac{\langle a_m(x), y \rangle}{\varepsilon}\right)\right) \\
 &= \sum_{m=1}^M \sum_{n=1}^N \frac{v_m(x) w_n}{\sqrt{\det(2\pi\varepsilon^{-1} B_n^{-1})}} \exp\left(-\frac{1}{2}(y - b_n)^\top \frac{B_n^{-1}}{\varepsilon} (y - b_n) + \frac{\langle a_m(x), y \rangle}{\varepsilon}\right)
 \end{aligned}$$

We now rewrite the expression inside the exponent, scaled by -2ε , using the symmetry of B_n , to cast it into a Gaussian mixture form:

$$\begin{aligned}
 (y - b_n)^\top B_n^{-1} (y - b_n) - 2\langle a_m(x), y \rangle &= y^\top B_n^{-1} y - 2b_n^\top B_n^{-1} y + b_n^\top B_n^{-1} b_n - 2\langle a_m(x), y \rangle = \\
 &= y^\top B_n^{-1} y - 2 \underbrace{(b_n + B_n a_m(x))^\top}_{\stackrel{\text{def}}{=} d_{mn}^\top(x)} B_n^{-1} y + b_n^\top B_n^{-1} b_n = \\
 &= (y - d_{mn}(x))^\top B_n^{-1} (y - d_{mn}(x)) + b_n^\top B_n^{-1} b_n - d_{mn}^\top(x) B_n^{-1} d_{mn}(x).
 \end{aligned}$$

1782 Afterwards, we rewrite the last two terms:

$$\begin{aligned}
 1783 \quad & b_n^\top B_n^{-1} b_n - d_{mn}^\top(x) B_n^{-1} d_{mn}(x) = b_n^\top B_n^{-1} b_n - (b_n + B_n a_m(x))^\top B_n^{-1} (b_n + B_n a_m(x)) = \\
 1784 \quad & \underbrace{b_n^\top B_n^{-1} b_n}_{=0} - \underbrace{b_n^\top B_n^{-1} b_n}_{=I} - \underbrace{b_n^\top B_n^{-1} B_n a_m(x)}_{=I} - a_m^\top(x) \underbrace{B_n B_n^{-1} b_n}_{=I} - a_m^\top(x) \underbrace{B_n B_n^{-1} B_n a_m(x)}_{=I} = \\
 1785 \quad & -a_m^\top(x) B_n a_m(x) - 2b_n^\top a_m(x).
 \end{aligned}$$

1786 Finally, we get

$$\begin{aligned}
 1787 \quad & \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right) = \sum_{m=1}^M \sum_{n=1}^N w_n v_m(x) \underbrace{\exp\left(\frac{a_m^\top(x) B_n a_m(x) + 2b_n^\top a_m(x)}{2\varepsilon}\right)}_{\stackrel{\text{def}}{=} z_{mn}(x)} \\
 1788 \quad & \cdot \underbrace{\frac{1}{\sqrt{\det(2\pi\varepsilon^{-1}B_n^{-1})}} \exp\left(-\frac{1}{2}(y - d_{mn}(x))^\top \frac{B_n^{-1}}{\varepsilon} (y - d_{mn}(x))\right)}_{=\mathcal{N}(y | d_{mn}(x), \varepsilon B_n)},
 \end{aligned}$$

1789 and, since $\int_{\mathcal{Y}} \mathcal{N}(y | d_{mn}(x), \varepsilon B_n) dy = 1$, the normalization constant simplifies to the sum of
1800 $z_{mn}(x)$:

$$\begin{aligned}
 1801 \quad & Z^\theta(x) = \int_{\mathcal{Y}} \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right) dy \\
 1802 \quad & = \int_{\mathcal{Y}} \sum_{m=1}^M \sum_{n=1}^N z_{mn}(x) \mathcal{N}(y | d_{mn}(x), \varepsilon B_n) dy = \sum_{m=1}^M \sum_{n=1}^N z_{mn}(x).
 \end{aligned}$$

1803 \square

1804 *Proof of Proposition 3.2.* Combining equations (10), (12) and derivation above, we seamlessly obtain
1805 the expression (17) needed for Proposition 3.2. \square

1806 E.3 GRADIENT OF OUR LOSS FOR ENERGY-BASED MODELING

1807 *Proof of Proposition A.1.* Direct differentiation of (13) gives:

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta) = \varepsilon^{-1} \mathbb{E}_{x, y \sim \pi^*} \left[\frac{\partial}{\partial \theta} c^\theta(x, y) \right] - \varepsilon^{-1} \mathbb{E}_{y \sim \pi_y^*} \left[\frac{\partial}{\partial \theta} f^\theta(y) \right] + \mathbb{E}_{x \sim \pi_x^*} \left[\frac{\partial}{\partial \theta} \log Z^\theta(x) \right]. \quad (32)$$

1808 Recalling expression for the normalization constant, the last term can be expressed as follows:

$$\begin{aligned}
 1809 \quad & \mathbb{E}_{x \sim \pi_x^*} \left[\frac{1}{Z^\theta(x)} \frac{\partial}{\partial \theta} Z^\theta(x) \right] = \mathbb{E}_{x \sim \pi_x^*} \left[\frac{1}{Z^\theta(x)} \int_{\mathcal{Y}} \frac{\partial}{\partial \theta} \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right) dy \right] = \\
 1810 \quad & \mathbb{E}_{x \sim \pi_x^*} \left[\frac{1}{Z^\theta(x)} \int_{\mathcal{Y}} \frac{\frac{\partial}{\partial \theta} (f^\theta(y) - c^\theta(x, y))}{\varepsilon} \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right) dy \right] = \\
 1811 \quad & \varepsilon^{-1} \mathbb{E}_{x \sim \pi_x^*} \left[\int_{\mathcal{Y}} \frac{\partial}{\partial \theta} (f^\theta(y) - c^\theta(x, y)) \underbrace{\left\{ \frac{1}{Z^\theta(x)} \exp\left(\frac{f^\theta(y) - c^\theta(x, y)}{\varepsilon}\right) \right\}}_{\pi^\theta(y|x)} dy \right].
 \end{aligned}$$

1812 From equation above we obtain:

$$\begin{aligned}
 1813 \quad & \frac{\partial}{\partial \theta} \mathcal{L}(\theta) = \varepsilon^{-1} \left\{ \mathbb{E}_{x, y \sim \pi^*} \left[\frac{\partial}{\partial \theta} c^\theta(x, y) \right] - \mathbb{E}_{y \sim \pi_y^*} \left[\frac{\partial}{\partial \theta} f^\theta(y) \right] \right. \\
 1814 \quad & \left. + \mathbb{E}_{x \sim \pi_x^*} \mathbb{E}_{y \sim \pi^\theta(y|x)} \left[\frac{\partial}{\partial \theta} (f^\theta(y) - c^\theta(x, y)) \right] \right\},
 \end{aligned}$$

1815 which concludes the proof. \square

1836 E.4 UNIVERSAL APPROXIMATION
1837

1838 Our objective is to set up and use the very general universal approximation result in (Acciaio et al.,
1839 2024, Theorem 3.8). Hereinafter, we use the following notation that slightly abuse notation from the
1840 main text.

1841 **Intra-Section Notation.** For any $D \in \mathbb{N}$ we denote the Lebesgue measure on \mathbb{R}^D by λ_D , sup-
1842 pressing the subscript D whenever clear from its context, we use $L_+^1(\mathbb{R}^D)$ to denote the set of
1843 Lebesgue integrable (equivalence class of) functions $f : \mathbb{R}^D \rightarrow \mathbb{R}$ for which $\int f(x) \lambda(dx) = 1$
1844 and $f \geq 0$ λ -a.e; i.e. Lebesgue-densities of probability measures. We use $\mathcal{P}_1^+(\mathbb{R}^D)$ to denote the
1845 space of all Borel probability measures on \mathbb{R}^D which are absolutely continuous with respect to
1846 λ , metrized by the total variation distance d_{TV} . For any $D \in \mathbb{N}$, we denote the set of $D \times D$
1847 positive-definite matrices by PD_D . Additionally, for any $N \in \mathbb{N}$, we define the N -simplex by
1848 $\Delta_N \stackrel{\text{def.}}{=} \{u \in [0, 1]^N : \sum_{n=1}^N u_n = 1\}$. We also denote floor operation for any $x \in \mathbb{R}$ as
1849 $\lfloor x \rfloor \stackrel{\text{def.}}{=} \max\{n \in \mathbb{Z} | n \leq x\}$.
1850

1851 **Lemma E.1** (The Space $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$ is quantizable by Gaussian Mixtures). *For every $N \in \mathbb{N}$,*
1852 *let $D_N \stackrel{\text{def.}}{=} \frac{N}{2}((D^2 + 3D + 2))$ and define the map*

$$1854 \quad GMM_N : \mathbb{R}^{D_N} = \mathbb{R}^N \times \mathbb{R}^{ND} \times \mathbb{R}^{\frac{N}{2}D(D+1)} \rightarrow \mathcal{P}_1^+(\mathbb{R}^D) \\ 1855 \quad (w, \{b_n\}_{n=1}^N, \{B_n\}_{n=1}^N) \mapsto \sum_{n=1}^N \text{Proj}_{\Delta_N}(w)_n \nu(b_n, \varphi(B_n)), \\ 1856 \quad 1857$$

1858 where $\text{Proj}_{\Delta_N} : \mathbb{R}^N \mapsto \Delta_N$ is the ℓ^2 orthogonal projection of \mathbb{R}^N onto the N -simplex Δ_N and
1859 $\nu(b_n, \varphi(B_n))$ is the Gaussian measure on \mathbb{R}^D with mean b_n , and non-singular covariance matrix
1860 given by $\varphi(B_n)$ where $\varphi : \mathbb{R}^{D(D+1)/2} \rightarrow \text{PD}_D$ is given for each $B \in \mathbb{R}^{D(D+1)/2}$ by

$$1861 \quad \varphi(B) \stackrel{\text{def.}}{=} \exp \left(\begin{pmatrix} B_1 & B_2 & \dots & B_D \\ B_2 & B_3 & \dots & B_{2D-1} \\ \vdots & \ddots & & \vdots \\ B_D & B_{2D-1} & \dots & B_{D(D+1)/2} \end{pmatrix} \right), \quad (33) \\ 1862 \quad 1863 \\ 1864 \\ 1865$$

1866 where \exp is the matrix exponential on the space of $D \times D$ matrices. Then, the family $(GMM_n)_{n=1}^\infty$
1867 is a quantization of $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$ in the sense of (Acciaio et al., 2024, Definition 3.2).

1868 *Proof.* As implied by (Arabpour et al., 2024, Equation (3.10) in Proposition 7) every Gaussian
1869 measure $\mathcal{N}(m, \Sigma) := \mu$ on \mathbb{R}^D with mean $m \in \mathbb{R}^D$, symmetric positive-definite covariance matrix
1870 Σ can be represented as

$$1871 \quad \mu = \mathcal{N}(m, \varphi(X)) \quad (34)$$

1872 for some (unique) vector $X \in \mathbb{R}^{D(D+1)/2}$. Therefore, by definition of a quantization, see (Acciaio
1873 et al., 2024, Definition 3.2), it suffices to show that the family of Gaussian mixtures is dense in
1874 $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$.

1875 Now, let $\nu \in \mathcal{P}_1^+(\mathbb{R}^D)$ be arbitrary. By definition of $\mathcal{P}_1^+(\mathbb{R}^D)$ the measure ν admits a Radon-
1876 Nikodym derivative $f \stackrel{\text{def.}}{=} \frac{D\mu}{D\lambda}$, with respect to the D -dimensional Lebesgue measure λ . Moreover,
1877 by the Radon-Nikodym theorem, $f \in L_\mu^1(\mathbb{R}^D)$; and by since μ is a probability measure then $\nu \in$
1878 $L_+^1(\mathbb{R}^D)$.

1879 Since compactly-supported smooth functions are dense in $L_+^1(\mathbb{R}^D)$ then, for every $\varepsilon > 0$, there
1880 exists some $\tilde{f} \in C_c^\infty(\mathbb{R}^D)$ with $\tilde{f} \geq 0$ such that

$$1881 \quad \|f - \tilde{f}\|_{L^1(\mathbb{R}^D)} < \frac{\varepsilon}{3}. \quad (35) \\ 1882 \\ 1883$$

1884 Since $C_c^\infty(\mathbb{R}^D)$ is dense in $L^1(\mathbb{R}^D)$ then we may without loss of generality re-normalize \tilde{f} to ensure
1885 that it integrates to 1.

1886 Since \tilde{f} is compactly supported and approximates f , then (if f is non-zero, which it cannot be as
1887 it integrates to 1) then it cannot be analytic, and thus it is non-polynomial. For every $\delta > 0$, let φ_δ

denote the density of the D -dimensional Gaussian probability measure with mean 0 and isotropic covariance δI_D (where I_D is the $D \times D$ identity matrix). Therefore, the proof of (Pinkus, 1999, Proposition 3.7) (or any standard mollification argument) shows that we can pick $\delta \stackrel{\text{def.}}{=} \delta(\varepsilon) > 0$ small enough so that the convolution $\tilde{f} \star \varphi_\delta$ satisfies

$$\|\tilde{f} - \tilde{f} \star \varphi_\delta\|_{L^1(\mathbb{R}^D)} < \frac{\varepsilon}{3}. \quad (36)$$

Note that $\tilde{f} \star \varphi_\delta$ is the density of probability measure on \mathbb{R}^D ; namely, the law of a random variable which is the sum of a Gaussian random variance with law $\mathcal{N}(0, \delta I_N)$ and a random variable with law μ . That is, $\tilde{f} \star \varphi_\delta \lambda \in L_+^1(\mathbb{R}^D)$. Together (35) and (36) imply that

$$\|f - \tilde{f} \star \varphi_\delta\|_{L^1(\mathbb{R}^D)} < \frac{2\varepsilon}{3}. \quad (37)$$

Recall the definition of the convolution: for each $x \in \mathbb{R}^D$ we have

$$\tilde{f}(x) \star \varphi_\delta \stackrel{\text{def.}}{=} \int_{u \in \mathbb{R}^D} \tilde{f}(u) \varphi_\delta(x - u) \lambda(du). \quad (38)$$

Since $\tilde{f}, \varphi_\delta \in C_c^\infty(\mathbb{R}^D)$ then Lebesgue integral of their product coincides with the Riemann integral of their product; whence, there is an $N \stackrel{\text{def.}}{=} N(\varepsilon) \in \mathbb{N}$ “large enough” so that

$$\left\| \int_{u \in \mathbb{R}^D} \tilde{f}(u) \varphi_\delta(x - u) \lambda(du) - \sum_{n=1}^N \tilde{f}(u_n) \varphi_\delta(x - u_n) \lambda(du) \right\|_{L^1(\mathbb{R}^D)} < \frac{\varepsilon}{3} \quad (39)$$

for some $u_1, \dots, u_N \in \mathbb{N}$. Note that, $\sum_{n=1}^N \tilde{f}(u_n) \varphi_\delta(x - u_n)$ is the law of a Gaussian mixture. Therefore, combining (37) and (39) implies that

$$\left\| f - \sum_{n=1}^N \tilde{f}(u_n) \varphi_\delta(x - u_n) \lambda(du) \right\|_{L^1(\mathbb{R}^D)} < \varepsilon. \quad (40)$$

Finally, recalling that the total variation distance between two measures with integrable Lebesgue density equals the $L^1(\mathbb{R}^D)$ norm of the difference of their densities; yields the conclusion; i.e.

$$d_{TV}(\nu, \hat{\nu}) = \left\| f - \sum_{n=1}^N \tilde{f}(u_n) \varphi_\delta(x - u_n) \lambda(du) \right\|_{L^1(\mathbb{R}^D)} < \varepsilon$$

where $\frac{D\hat{\nu}}{D\lambda} \stackrel{\text{def.}}{=} \sum_{n=1}^N \tilde{f}(u_n) \varphi_\delta(x - u_n) \lambda(du)$. \square

Lemma E.2 (The space $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$ is Approximate Simplicial). *Let $\hat{\mathcal{Y}} \stackrel{\text{def.}}{=} \bigcup_{N \in \mathbb{N}} \Delta_N \times [\mathcal{P}_1^+(\mathbb{R}^D)]^N$ and define the map $\eta : \hat{\mathcal{Y}} \mapsto \mathcal{P}_1^+(\mathbb{R}^D)$ by*

$$\eta(w, (r_n)_{n=1}^N) \stackrel{\text{def.}}{=} \sum_{n=1}^N w_n r_n.$$

Then, η is a mixing function, in the sense of (Acciaio et al., 2024, Definition 3.1). Consequentially, $(\mathcal{P}_1^+(\mathbb{R}^D), \eta)$ is approximately simplicial.

Proof. Let $\mathcal{M}^+(\mathbb{R}^D)$ denote the Banach space of all finite signed measures on \mathbb{R}^D with finite total variation norm $\|\cdot\|_{TV}$. Since $\|\cdot - \cdot\|_{TV} = d_{TV}$ when restricted to $\mathcal{P}_1^+(\mathbb{R}^D) \times \mathcal{P}_1^+(\mathbb{R}^D)$ and since $\|\cdot\|_{TV}$ is a norm, then the conclusion follows from (Acciaio et al., 2024, Example 5.1) and since $\mathcal{P}_1^+(\mathbb{R}^D)$ is a convex subset of $\mathcal{M}^+(\mathbb{R}^D)$. \square

Together, Lemmata E.1 and E.2 imply that $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV}, \eta, Q)$ is a QAS space in the sense of (Acciaio et al., 2024, Definition 3.4), where $Q \stackrel{\text{def.}}{=} (GMM_M)_{M \in \mathbb{N}}$. Consequently, the following is a geometric attention mechanism in the sense of (Acciaio et al., 2024, Definition 3.5)

$$\hat{\eta} : \bigcup_{N \in \mathbb{N}} \Delta_N \times \mathbb{R}^{N \times D_M} \rightarrow \mathcal{P}_1^+(\mathbb{R}^D)$$

$$\left(w, (v_m, (b_{mn})_{n=1}^N, (B_{mn})_{n=1}^N)_{m=1}^M \right) \mapsto \sum_{n=1}^N w_n \sum_{m=1}^M \text{Proj}_{\Delta_M}(v_m)_n \nu(b_{mn}, \varphi(B_{mn})).$$

1944 Before presenting our main theorem, we first introduce several definitions of activation functions
 1945 that will be used in the theorem. These definitions, which are essential for completeness, are taken
 1946 from (Acciaio et al., 2024, Definitions 2.2-2.4).

1947 **Definition E.3** (Trainable Activation Function: Singular-ReLU Type). A trainable activation func-
 1948 tion σ is of *ReLU+Step type* if

$$\sigma_\alpha : \mathbb{R} \ni x \mapsto \alpha_1 \max\{x, \alpha_2 x\} + (1 - \alpha_1) \lfloor x \rfloor \in \mathbb{R}$$

1950 **Definition E.4** (Trainable Activation Function: Smooth-ReLU Type). A trainable activation func-
 1951 tion σ is of *smooth non-polynomial type* if there is a non-polynomial $\sigma^* \in C_c^\infty(\mathbb{R})$, for which

$$\sigma_\alpha : \mathbb{R} \ni x \mapsto \alpha_1 \max\{x, \alpha_2 x\} + (1 - \alpha_1) \sigma^*(x) \in \mathbb{R}$$

1953 **Definition E.5** (Classical Activation Function). Let $\sigma^* \in C_c^\infty(\mathbb{R})$ be non-affine and such that there
 1954 is some $x \in \mathbb{R}$ at which σ is differentiable and has non-zero derivative. Then σ is a classical
 1955 regular activation function if, for every $\alpha \in \mathbb{R}^2$, $\sigma_\alpha = \sigma^*$.

1958 Further in the text, we assume that activation functions are applied element-wise to each vector
 1959 $x \in \mathbb{R}^D$. We are now ready to prove the first part of our approximation theorem.

1960 **Proposition E.6** (Deep Gaussian Mixtures are Universal Conditional Distributions in the TV Dis-
 1961 tance). Let $\pi : (\mathbb{R}^D, \|\cdot\|_2) \rightarrow (\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$ be Hölder. Then, for every compact subset $K \subseteq \mathbb{R}^D$,
 1962 every approximation error $\varepsilon > 0$ there exists $M, N \in \mathbb{N}$ and a MLP $\hat{f} : \mathbb{R}^D \mapsto \mathbb{R}^{N \times ND_M}$ with
 1963 activations as in Definitions E.3, E.4, E.5 such that the (non-degenerate) Gaussian-mixture valued
 1964 map

$$\hat{\pi}(\cdot|x) \stackrel{\text{def.}}{=} \hat{\eta} \circ \hat{f}(x)$$

1965 satisfies the uniform estimate

$$\max_{x \in K} d_{TV}(\hat{\pi}(\cdot|x) \| \pi(\cdot|x)) < \varepsilon.$$

1970 *Proof.* Since Lemmata E.2 and E.1 imply that $(\mathcal{P}_1^+(\mathbb{R}^D), d_{TV}, \eta, Q)$, is a QAS space in the sense
 1971 of (Acciaio et al., 2024, Definition 3.4), then the conclusion follows directly from (Acciaio et al.,
 1972 2024, Theorem 3.8). \square

1974 Since many of our results are formulated in the Kullback-Leibler divergence, then our desired guar-
 1975 antee is obtained only under some additional mild regularity requirements of the target conditional
 1976 distribution $\hat{\pi}$ being approximated.

1977 **Assumption E.7** (Regularity of Conditional Distribution). Let $\pi : (\mathbb{R}^D, \|\cdot\|_2) \rightarrow (\mathcal{P}_1^+(\mathbb{R}^D), d_{TV})$
 1978 be Hölder and, for each $x \in \mathbb{R}^D$, $\pi(\cdot|x)$ is absolutely continuous with respect to the Lebesgue
 1979 measure λ on \mathbb{R}^D . Suppose that there exist some $0 < \delta \leq \Delta$ such that its conditional Lebesgue
 1980 density satisfies

$$\delta \leq \frac{d\pi(\cdot|x)}{d\lambda} \leq \Delta \quad \text{for all } x \in \mathbb{R}^D. \quad (41)$$

1983 **Theorem E.8** (Deep Gaussian Mixtures are Universal Conditional Distributions). Suppose that π
 1984 satisfies Assumption E.7. Then, for every compact subset $K \subseteq \mathbb{R}^{D_x}$, every approximation error
 1985 $\varepsilon > 0$ there exists $M, N \in \mathbb{N}$ such that: for each $m = 1, \dots, M$ and $n = 1, \dots, N$ there exist
 1986 MLPs: $a_m : \mathbb{R}^{D_x} \mapsto \mathbb{R}^{D_y}$, $v_m : \mathbb{R}^{D_x} \mapsto \mathbb{R}^M$ with ReLU activation functions and w_n, B_n learnable
 1987 parameters such that the (non-degenerate) Gaussian-mixture valued map

$$\hat{\pi}(\cdot|x) \stackrel{\text{def.}}{=} \sum_{n=1}^N \sum_{m=1}^M z_{mn}(x) \nu(d_{mn}(x), \varphi(D_{mn}(x)))$$

1991 satisfies the uniform estimate

$$\max_{x \in K} d_{TV}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) < \varepsilon. \quad (42)$$

1994 If, moreover, $\hat{\pi}$ also satisfies (41) (with $\hat{\pi}$ in place of π) then additionally

$$\max_{x \in K} \text{KL}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) \in \mathcal{O}(\varepsilon), \quad (43)$$

1997 where \mathcal{O} hides a constant independent of ε and of the dimension D .

1998 The proof of Theorem E.8 makes use of the *symmetrized Kullback-Leibler divergence* KL_{sym}
 1999 which is defined for any two $\alpha, \beta \in \mathcal{P}(\mathbb{R}^D)$ by $\text{KL}_{\text{sym}}(\mu, \nu) \stackrel{\text{def.}}{=} \text{KL}(\alpha\|\beta) + \text{KL}(\beta\|\alpha)$; note,
 2000 if $\text{KL}_{\text{sym}}(\alpha, \beta) = 0$ then $\text{KL}_{\text{sym}}(\alpha\|\beta) = 0$. We now prove our main approximation guarantee.
 2001

2002 *Proof of Theorem E.8.* To simplify the explanation of our first claim, we provide the expression for
 2003 $\hat{\pi}(y|x)$ from (17):
 2004

$$2005 \hat{\pi}(y|x) = \sum_{n=1}^N w_n \sum_{m=1}^M v_m(x) \exp \left(\frac{a_m^\top(x) B_n a_m(x) + 2b_n^\top a_m(x)}{2\varepsilon} \right) \mathcal{N}(y | d_{mn}(x), \varepsilon B_n)$$

$$2006$$

$$2007$$

2008 Thanks to the wide variety of activation functions available from Definitions E.3, E.4, E.5, we can
 2009 construct the map \hat{f} and directly apply Proposition E.6. This completes the proof of the first claim.
 2010

2011 Under Assumption E.7, $\pi(\cdot|x)$ and $\hat{\pi}(\cdot|x)$ are equivalent to the D -dimensional Lebesgue measure λ .
 2012 Consequently, for all $x \in \mathbb{R}^{D_x}$:

$$2013 \pi(\cdot|x) \ll \hat{\pi}(\cdot|x)$$

2014 Therefore, the Radon-Nikodym derivative $\frac{\hat{\pi}(\cdot|x)}{\pi(\cdot|x)}$ is a well-defined element of $L^1(\mathbb{R}^{D_x})$, for each
 2015 $x \in \mathbb{R}^{D_x}$; furthermore, we have

$$2016 \frac{\pi(\cdot|x)}{\hat{\pi}(\cdot|x)} = \frac{\pi(\cdot|x)}{d\lambda} \frac{d\lambda}{\hat{\pi}(\cdot|x)}. \quad (44)$$

$$2017$$

2018 Again, leaning on Assumption (41) and the Hölder inequality, we deduce that
 2019

$$2020 \sup_{a \in \mathbb{R}^D} \left| \frac{\pi(\cdot|x)}{\hat{\pi}(\cdot|x)}(a) \right| = \sup_{a \in \mathbb{R}^D} \left| \frac{\pi(\cdot|x)}{d\lambda}(a) \frac{d\lambda}{\hat{\pi}(\cdot|x)}(a) \right|$$

$$2021$$

$$2022 \leq \sup_{a \in \mathbb{R}^D} \left| \frac{\pi(\cdot|x)}{d\lambda}(a) \right| \sup_{a \in \mathbb{R}^D} \left| \frac{d\lambda}{\hat{\pi}(\cdot|x)}(a) \right|$$

$$2023$$

$$2024 \leq \sup_{a \in \mathbb{R}^D} \left| \frac{\pi(\cdot|x)}{d\lambda}(a) \right| \frac{1}{\delta}$$

$$2025$$

$$2026 \leq \frac{\Delta}{\delta}$$

$$2027$$

$$2028 \leq \frac{\Delta}{\delta} \quad (45)$$

$$2029$$

2030 where the final inequality under the assumption that $\hat{\pi}$ also satisfies Assumption 41. Importantly,
 2031 we emphasize that the right-hand side of (45) holds *independently of* $x \in \mathbb{R}^{D_x}$ (“which we are
 2032 conditioning on”). A nearly identical estimate holds for the corresponding lower-bound. Therefore,
 2033 we may apply (Sason, 2015, Theorem 1) to deduce that: there exists a constant $C > 0$ (independent
 2034 of $x \in \mathbb{R}^{D_x}$ and depending only on the quantities $\frac{\Delta}{\delta}$ and $\frac{\delta}{\Delta}$; thus only on δ, Δ) such that: for each
 $x \in \mathbb{R}^{D_x}$

$$2035 \text{KL}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) \leq C d_{TV}(\pi(\cdot|x), \hat{\pi}(\cdot|x)). \quad (46)$$

2036 The conclusion now follows, since the right-hand side of (46) was controllable by the first statement;
 2037 i.e. since (42) holds we have

$$2038 \text{KL}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) \leq C d_{TV}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) \leq C\varepsilon. \quad (47)$$

$$2039$$

2040 A nearly identical derivation shows that

$$2041 \text{KL}(\hat{\pi}(\cdot|x), \pi(\cdot|x)) \leq C\varepsilon. \quad (48)$$

$$2042$$

2043 Combining (47) and (48) yields the following bound

$$2044 \max_{x \in K} \text{KL}_{\text{sym}}(\pi(\cdot|x), \hat{\pi}(\cdot|x)) \in \mathcal{O}(\varepsilon). \quad (49)$$

$$2045$$

2046 Since $\text{KL}(\alpha\|\beta) \leq \text{KL}_{\text{sym}}(\alpha, \beta)$ for every pair of Borel probability measures α and β on \mathbb{R}^{D_x}
 2047 then (49) implies (43). \square
 2048

2049

2050

2051

Figure 8: Extended visual comparisons between the FSBM (Theodoropoulos et al., 2024) method (3rd column) and our method (4th column) for Woman-to-Man translation are shown here. The task is described in §5.3, with further implementation details in Appendix C.4. The first column shows the source image and the second column the target image.

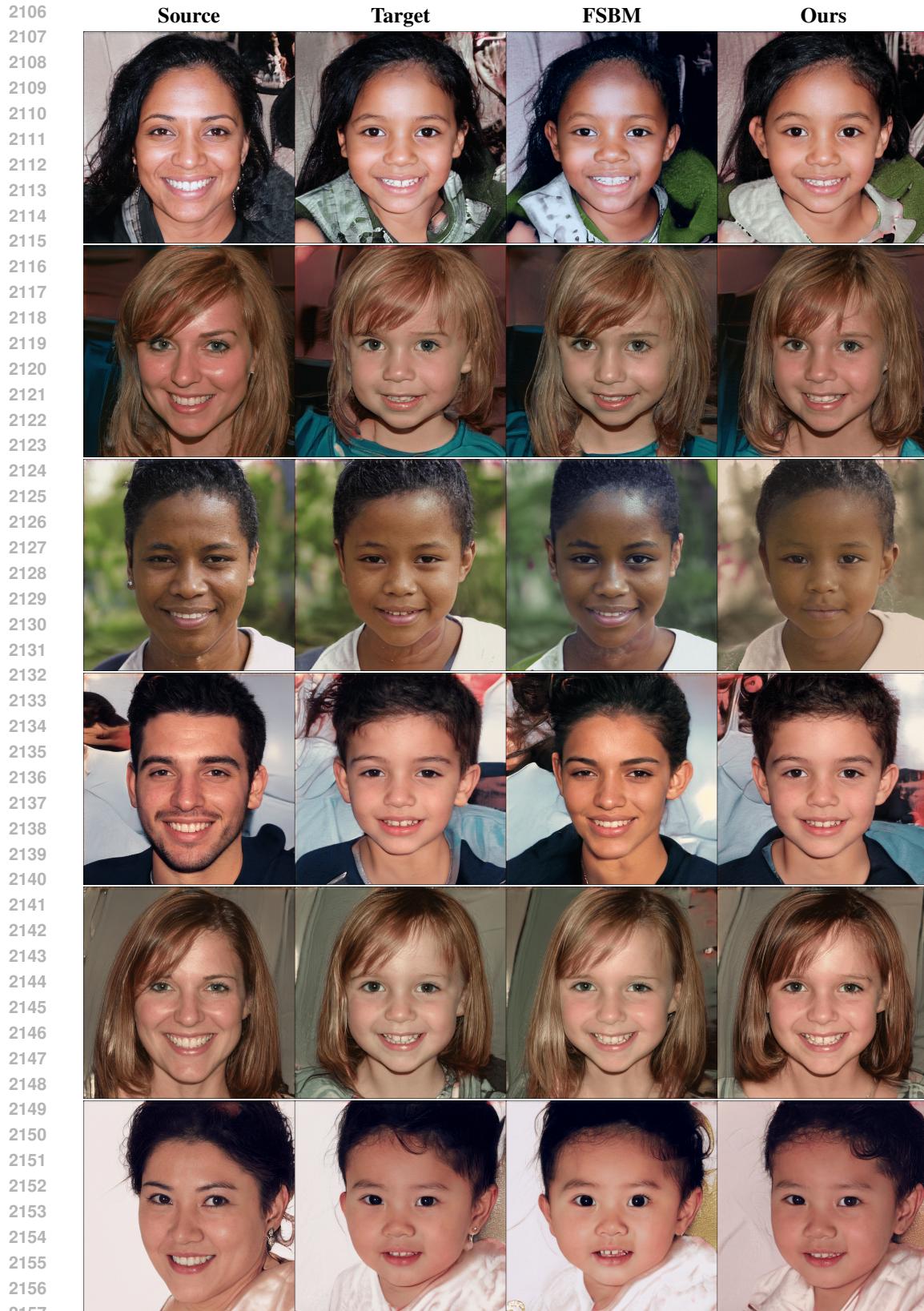


Figure 9: Visual comparisons for the Old-to-Young translation task between the FSBM (Theodoropoulos et al., 2024) method (3rd column) and our method (4th column). The task is described in Appendix C.4, which also provides additional implementation details. The first column displays the source image, and the second column shows the target image.