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ABSTRACT

The limited transferability of learned policies is a major challenge that restricts
the applicability of learning-based solutions in decision-making tasks. In this pa-
per, we present a simple method for aligning latent state representations across
different domains using unaligned trajectories of proxy tasks. Once the alignment
process is completed, policies trained on the shared representation can be trans-
ferred to another domain without further interaction. Our key finding is that multi-
domain behavioral cloning is a powerful means of shaping a shared latent space.
We also observe that the commonly used domain discriminative objective for dis-
tribution matching can be overly restrictive, potentially disrupting the latent state
structure of each domain. As an alternative, we propose to use maximum mean
discrepancy for regularization. Since our method focuses on capturing shared
structures, it does not require discovering the exact cross-domain correspondence
that existing methods aim for. Furthermore, our approach involves training only
a single multi-domain policy, making it easy to extend. We evaluate our method
across various domain shifts, including cross-robot and cross-viewpoint settings,
and demonstrate that our approach outperforms existing methods that employ ad-
versarial domain translation. We also conduct ablation studies to investigate the
effectiveness of each loss component for different domain shifts.

1 INTRODUCTION

Humans have an astonishing ability to learn skills in a highly transferable way. Once we learn a
route from home to the station, for example, we can get to the destination using various modes of
transportation (e.g., walking, cycling, or driving) in different environments (e.g., on a map or in
the real world), disregarding irrelevant perturbations (e.g., weather, time, or traffic conditions). We
identify the underlying similarities across situations, perceive the world, and accumulate knowledge
in our way of abstraction. Such abstract knowledge can be readily employed in diverse similar situ-
ations. However, it is not easy for autonomous agents. Agents trained with reinforcement learning
(RL) or imitation learning (IL) often struggle to transfer knowledge acquired in a specific situation to
another. This is because the learned policies are strongly tied to the representations obtained under
a particular training configuration, which is not robust to changes in an agent or an environment.

Previous studies have attempted to address this problem through various approaches. Domain ran-
domization (Tobin et al., 2017; Peng et al., 2018; Andrychowicz et al., 2020) aims to learn a policy
that is robust to environmental changes by utilizing multiple training domains. However, it is unable
to handle significant domain gaps that go beyond the assumed domain distribution during training,
such as drastically different observations or agent morphologies. Numerous methods have been
proposed to overcome such domain discrepancies. Earlier approaches learn domain-invariant state
representations for imitation using a temporally-aligned dataset across domains (Gupta et al., 2017;
Liu et al., 2018b). In cases when we cannot assume such temporal alignment, other approaches
utilize an adversarial objective based on domain confusion (Stadie et al., 2017; Yin et al., 2022;
Franzmeyer et al., 2022) or cross-domain cycle-consistency (Zakka et al., 2021). These methods
require online interaction for adaptation in the target domain to refine a policy, limiting their appli-
cability.
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Figure 1: Illustration of a shared representation space. Since semantically similar states are close
together in the latent space, we can transfer knowledge across domains through the latent space.

Recently, a few methods have been proposed that do not necessitate online interaction for adaptation
(Kim et al., 2020; Zhang et al., 2021; Raychaudhuri et al., 2021). These methods find a cross-domain
transformation through the adversarial cross-domain translation of states, actions, or transitions.
Although these approaches show promising results, we have found two challenges they face. First,
the direct domain translation can be difficult to discover when the discrepancy between domains
is not small. For instance, if one agent has no legs while the other agent has multiple legs, we
cannot expect a perfect cross-robot translation of information on how the agent walks. Second,
these methods rely on signals from adversarial generation and other factors on top of generated
elements, lacking a more stable and reliable source of cross-domain alignment.

In this work, we propose a method that does not rely on exact cross-domain correspondence and
translation. Our approach learns a shared latent representation across different domains and a com-
mon abstract policy on top of it (Figure 1). After achieving the alignment, we can update a common
policy for the target task using any learning algorithm with the mappings between the shared space
and the original domains frozen. Combined with the frozen mappings, we can readily deploy the
learned common policy in either domain without further online interaction. Similar to previous stud-
ies (Kim et al., 2020; Zhang et al., 2021), we assume access to a dataset of expert demonstrations
of proxy tasks, which are relatively simple tasks used for aligning representation. In contrast to ex-
isting methods that stand on adversarial generation with domain confusion, our approach leverages
multi-domain behavioral cloning (BC) on proxy tasks as a core component for shaping a shared
representation space. We then add a few regularization terms on the latent state distributions to
encourage cross-domain alignment. Although adversarial generation with a domain classifier is a
commonly used technique to match multiple distributions, we observe that exact matching of distri-
butions is overly demanding and sometimes disrupts the structure of a shared representation space.
We instead employ maximum mean discrepancy (MMD) (Gretton et al., 2012), a widely utilized
technique in domain adaptation (Long et al., 2013; Tzeng et al., 2014; Baktashmotlagh et al., 2016).
We empirically confirm that it has a less detrimental impact on the representation structure. We can
optionally add more regularizations on the representation depending on proxy tasks. As an example,
we add Temporal Cycle-Consistency learning (TCC) (Dwibedi et al., 2019) to promote state-to-state
alignment using temporal information within a task rather than distribution overlap. It is worth not-
ing that our method only requires a policy network and a few loss terms, whereas other methods of
offline cross-domain transfer usually require more models and objectives to optimize. This allows
us to easily extend our method for better alignment in diverse situations.

We evaluate our approach under various domain shifts, including changes in observation, action,
viewpoint, and agent morphology. Our approach outperforms existing methods, particularly when
exact domain translation of states or actions is hard to discover. Moreover, our approach demon-
strates superior adaptation capabilities to out-of-distribution tasks. We also confirm that MMD per-
forms better than discriminative training in these cases. Additionally, we conduct extensive ablations
to investigate the role of each loss term. Perhaps surprisingly, our method shows some capability
of cross-domain transfer only with the BC loss when the target task has a similarity to proxy tasks.
This is an indication of implicit representation alignment of multi-domain BC.

In summary, our main contributions are as follows:

• We propose a method for cross-domain transfer that acquires a domain-shared feature space
leveraging signals from multi-domain imitation in addition to domain confusion regulariza-
tion with MMD, in contrast to the latest methods that rely on domain translation.
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• We experimentally show the efficacy of our method under various domain shifts. Our
method outperforms existing methods, especially in cross-robot transfer or cross-viewpoint
transfer, where exact domain translation is hard to discover.

• We perform ablations to investigate the effect of each loss component for different domain
shifts. We also confirm that the MMD regularization performs better than the domain dis-
criminative loss when the structure of latent states does not differ much between domains.

2 RELATED WORK

Cross-Domain Policy Transfer between MDPs Transferring a learned policy to a different envi-
ronment is a long-standing challenge in policy learning. Most of the previous methods acquire some
cross-domain metric to optimize and train a policy for a target task using a standard RL algorithm
(Gupta et al., 2017; Liu et al., 2018b; 2020; Zakka et al., 2021; Fickinger et al., 2022) or a Gen-
erative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016)-based approach (Stadie et al.,
2017; Yin et al., 2022; Franzmeyer et al., 2022) through online interaction with the environment.
An adversarial objective based on domain confusion is typically used to match the state distribution
of multiple domains. In the reward calculation for standard RL, the distance between temporally-
corresponding states (Gupta et al., 2017; Liu et al., 2018b) or the distance from the goal (Zakka
et al., 2021) in the latent space is often used. Similar to our method, some recent approaches do not
assume online interaction for the adaptation to the target task. Kim et al. (2020); Zhang et al. (2021);
Raychaudhuri et al. (2021) learn mappings between domains by adversarial generation of transitions
or by CycleGAN (Zhu et al., 2017), while Zhang et al. (2020) impose domain confusion on its state
representation to address domain shift in observation. Our approach predicts actions without learn-
ing cross-domain mappings and focuses only on the shared structure, and also utilizes multi-domain
BC for the representation alignment. In the experiment, we show that our approach can handle larger
and more diverse domain shifts in spite of the simplicity compared to other baselines. For cross-
robot transfer, Hejna et al. (2020) train a portable high-level policy by using a subgoal position as
a cross-robot feature. Gupta et al. (2022) cover a morphology distribution to generalize to unseen
robots. We intend to perform direct policy transfer without making domain-specific assumptions.

State Abstraction for Transfer Theoretical aspects of latent state representation have been ana-
lyzed in previous studies. There exist several principled methods of state representation learning for
transfer such as bisimulation (Castro & Precup, 2010) and successor features (Barreto et al., 2017).
Recently, Gelada et al. (2019) proved that the quality of a value function is guaranteed if the repre-
sentation is sufficient to predict the reward and dynamics of the original Markov decision process
(MDP). In a similar context, Zhang et al. (2020); Sun et al. (2022) provide performance guarantees
in multi-task settings or cross-domain transfer.

Unsupervised Domain Adaptation & Correspondence Learning Domain adaptation with un-
aligned datasets has been intensively studied in computer vision. Domain confusion is widely used
to match the distributions of multiple domains (Tzeng et al., 2014; Ganin et al., 2016; Tzeng et al.,
2017). CycleGAN (Zhu et al., 2017) finds a cross-domain translation by generating the correspond-
ing instances in another domain. If the output space is consistent between domains, we can enforce
invariance on downstream components before and after the translation (Hoffman et al., 2018; Rao
et al., 2020). Additionally, temporal relationships between frames (Sermanet et al., 2018; Dwibedi
et al., 2019), cycle-consistency in agent trajectories (Zhang et al., 2021; Wang et al., 2022), and
optimal transport methods (Fickinger et al., 2022) can be exploited to acquire domain translation
or domain-invariant features. These features can subsequently be used for reward shaping in cross-
domain imitation (Zakka et al., 2021).

3 PROBLEM FORMULATION

We consider a Markov decision process (MDP): M = (S,A, R, T ), where S is a state space, A is
an action space, R : S × A → R is a reward function, and T : S × A × S → R≥0 is a transition
function. We also define domain d as a tuple (Sd, Ad, Td) and denote an MDP in domain d as
Md : (Sd,Ad, Rd, Td). The aim of this paper is to transfer knowledge of a source MDP Mx in
a source domain x to a target MDP My in a target domain y. Here we assume that these MDPs
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(a) Alignment phase. All modules are trainable. (b) Adaptation phase. Only common policy is updated.

Figure 2: Overview of the training and inference procedure of our method. (a) In the alignment
phase, we train all modules of the policy via BC and regularization terms using trajectories of proxy
tasks to obtain cross-domain representation alignment. (b) In the adaptation phase, we only update
the common policy to adapt to the target task in the source domain. In inference, we can use the
updated policy combined with the encoder and decoder already trained in the alignment phase.

share a common latent structure which is also an MDP Mz . Formally, we assume the existence of
state mappings ϕx : Sx → Sz, ϕy : Sy → Sz and action mappings ψx : Ax → Az, ψy : Ay →
Az which translate states sx, sy or actions ax, ay into shared states sz or actions az , respectively,
satisfying Tz(ϕd(sd), ψd(ad), ϕd(s′d)) = Td(sd, ad, s

′
d) and Rz(ϕd(sd), ψd(ad)) = Rd(sd, ad) for

all sd, ad, s′d in each domain d. In short, we assume that the common latent MDP is expressive
enough to reproduce the dynamics and reward structure of both MDPs.

Our goal is to learn the state mapping functions ϕx, ϕy and the action mapping function ψx, ψy so
that any policy learned in the common latent space πz(az|sz) : Sz×Az → R≥0 can be immediately
used in either MDP combined with the obtained mappings. In this paper, we use a deterministic
policy and denote the latent policy as πz(sz) : Sz → Az , although we can easily extend it to a
stochastic policy. We learn these mappings using expert demonstrations of proxy tasks K, which are
simple tasks where we can easily collect demonstrations: D = {(Dx,k,Dy,k)}|K|

k=1, where Dd,k =
{τd,k,i}Ni=1 is a dataset of N state-action trajectories τd,k,i of an expert in domain d, task k. After
we learn the relationships, we update the policy for a novel target task k′ ̸∈ K in the source domain
x, and finally evaluate its performance in the target domain y.

4 LEARNING COMMON POLICY VIA REPRESENTATION ALIGNMENT

In this work, we aim to learn state mapping functions ϕx, ϕy , and action mapping functions ψx, ψy
or equivalents, and use them to transfer the policy learned in one domain to another. Our algorithm
consists of two steps as illustrated in Figure 2: (i) Cross-domain representation alignment, (ii) Policy
adaptation to a target task in the source domain. We call them the alignment phase and the adaptation
phase, respectively. After the adaptation phase, the learned policy of a target task can be readily used
in the target domain without any fine-tuning or further interaction with the target domain (Gupta
et al., 2017; Liu et al., 2018b; Zakka et al., 2021; Fickinger et al., 2022; Yin et al., 2022; Franzmeyer
et al., 2022), or a policy learning in the mapped target domain (Raychaudhuri et al., 2021).

4.1 CROSS-DOMAIN REPRESENTATION ALIGNMENT

In the alignment phase, we aim to learn the state and action mappings and acquire a domain-shared
feature space that can be used in either the source domain or the target domain. We represent our
policy as a simple feed-forward neural network as shown in Figure 2. It consists of three compo-
nents: a state encoder, a common policy, and an action decoder. They correspond to ϕ(s), π(sz),
and ψ−1(az), respectively. ψ−1 additionally takes a raw state s to replenish the domain-specific
information for the action prediction in a domain. Note that we feed domain ID d to the encoder
and the decoder, and one-hot encoded task ID k to the common policy, instead of using separate
networks for each domain, to handle multiple domains and tasks with a single model.

We train the network via multi-domain BC with two regularization terms: MMD (Gretton et al.,
2012) loss and TCC (Dwibedi et al., 2019). Each objective plays a different role in shaping the
aligned representation space. Through BC, the model learns the relationship between raw states and
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(a) P2P, BC Only (b) P2P, BC + MMD (c) P2A, BC Only

(d) P2A, BC + MMD (e) P2A, BC + MMD + TCC (f) P2A, with discriminative

Figure 3: Effect of each objective on the latent state distribution (sz). The representations are
projected to 2D space by t-SNE (Van der Maaten & Hinton, 2008). Here we sample corresponding
states from two domains of the Maze environment in our experiment (c.f. Section 5.1). (a-b) A plot
for P2P-medium environment, where the two domains are the same except for the format of states
and actions. Black lines connect 20 corresponding state pairs. BC shapes the latent space in each
domain separately (3a), and the MMD loss encourages the distribution alignment. (3b). (c-f) A plot
for P2A-medium environment, where two domains have a large discrepancy. With the help of MMD
and TCC, our method obtains a shared latent space keeping the original structure (3e). If we use
discriminative loss instead of MMD, the latent structure can be disrupted (3f).

corresponding expert actions. We simply calculate the L2 loss on raw actions as follows:

LBC = E(sd,ad,d,k)∼D
[
∥ψ−1

d (πz(ϕd(sd), k), sd)− ad∥2
]
. (1)

If we naı̈vely optimize this objective with trajectories from both domains, the model can learn a
separate state representation in each domain. If temporally-aligned trajectories are available (i.e.
(ϕx(s

t
x), ψx(a

t
x)) = (ϕy(s

t
y), ψy(a

t
y)) at timestep t), we can directly make corresponding represen-

tations ϕx(sx), ϕy(sy) or ψx(ax), ψy(ay) close together (Gupta et al., 2017). However, we do not
assume such an alignment and thus need to use other regularizations to align the representations.

MMD is a non-parametric metric that compares the discrepancy between two distributions based
on two sets of data points. Optimizing the MMD is widely used in domain adaptation in computer
vision (Long et al., 2013; Tzeng et al., 2014; Baktashmotlagh et al., 2016), and is also used to align
the support of two action distributions (Kumar et al., 2019). We apply it to latent states encoded in
the source domain and target domain:

LMMD = Esx,s′x∼Dx
[f(ϕx(sx), ϕx(s

′
x))] + Esy,s′y∼Dy

[f(ϕy(sy), ϕy(s
′
y))]

− 2Esx∼Dx,sy∼Dy
[f(ϕx(sx), ϕy(sy))], (2)

where Dd is a dataset of domain d and f is a kernel function that measures the similarity between
sets of data points. We adopt the Gaussian kernel as f , combined with batch-wise distance normal-
ization to avoid representation corruption. See Appendix C.3 for the details. For a similar purpose,
domain discriminative training, where we train state encoder or domain translation functions to fool
the domain discriminator, is frequently used in the context of cross-domain policy transfer (Kim
et al., 2020; Zhang et al., 2020; Raychaudhuri et al., 2021; Franzmeyer et al., 2022). However, this
objective enforces the complete match of the distributions even if the structure of latent space or
state frequency differs. Figure 3e and 3f show how the MMD and discriminative objective affect
the alignment in such a case. MMD encourages the distribution overlap modestly, whereas discrim-
inative training forces the exact match disregarding the original structure. We also observed that, in
visual input settings, aligning representations containing image embedding with the MMD is more
stable than with discriminative training. We evaluate the effect of this difference in our experiment.
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We additionally impose temporal alignment regularization on the representation sz using TCC.
Given two trajectories of the same task, TCC enforces cycle consistency between corresponding
frames in the latent space. TCC only selects the frame, in contrast to CycleGAN (Zhu et al., 2017)
generating the counterpart, which makes the learning easier. Specifically, we randomly sample two
state trajectories of the same task from both domains and encode each frame with the state encoder
ϕd(sd). Here we denote the two encoded trajectories as U = (u1, · · ·u|U |), V = (v1, · · · v|V |),
where ut = ϕd1(s

t
d1
), vt = ϕd2(s

t
d2
). For each state ui in U , we calculate the soft nearest-neighbor

in V : ṽi =
∑|V |
j softmaxj(−∥ui − vj∥) · vj . Then we choose a state in the first trajectory that

is closest to ṽi, and optimize the cross-entropy loss so that this sequence of mappings comes back
to the original frame ui. The final TCC objective is LTCC = −

∑|U |
i

∑|U |
k 1k=i log(y

i
k), where

yik = softmaxk(−∥ṽi − uk∥2), and 1 is an indicator function. Note that, as TCC requires unique
correspondences for each state, proxy tasks should be designed to have no repetition in a trajectory.

Combining these three objectives, (1), (2), and LTCC, we have our objective for the alignment phase:

min
ϕ,πz,ψ−1

Lalign = min
ϕ,πz,ψ−1

LBC + λMMDLMMD + λTCCLTCC, (3)

where λMMD and λTCC are hyperparameters that define the importance of the regularization terms.
Figure 3 shows the effect of each loss term in our experiment. We discuss it more in Section 5.3.

In some experimental setups, we observe that the state input for the action decoder can degrade the
performance because the decoder can obtain all necessary information except task ID k without the
common policy. We can eliminate this effect by removing the state input for the decoder when the
action prediction does not require domain-specific state information.

4.2 POLICY ADAPTATION

In the adaptation phase, we update the common policy on top of the aligned latent space trained in
the alignment phase. This adaptation can be solely in the source domain with any learning algorithm
including reinforcement learning as long as the latent space is fixed. As described in Figure 2, we
freeze the weights of the encoder and decoder during the process. In our experiments, we update the
common policy by BC using expert trajectories in the source domain Dx,k′ :

min
πz

Ladapt = min
πz

LBC. (4)

When the discrepancy between domains is not small, or the alignment is imperfect, the update only
with source domain data can make a common policy more or less domain-specific. This issue can
be addressed by mixing the data used in the alignment phase.

5 EXPERIMENTS

We conduct experiments to answer the following questions: (i) Can our method align latent states
of different domains? (ii) Can our method achieve zero-shot cross-domain transfer across various
settings? (iii) How does each loss contribute to transfer under different types of domain shifts?

5.1 ENVIRONMENTS AND TASKS

For locomotion tasks, we use the Maze environment of D4RL (Fu et al., 2020) (Figure 4). An agent
explores two types of mazes, umaze and medium, toward a designated goal position. An agent ob-
serves proprioceptive state vectors. A task is defined as a combination of a starting area and a 2D
position of a goal. Tasks with different goals from the goal of a target task are used as proxy tasks. In
OOD (Out-of-Distribution) variation, the target task is to take a detour as performed in given source
domain demonstrations (Figure 4f), despite the alignment dataset only containing trajectories that
take the shortest path. We create two setups with different domain shifts. (i) Point-to-Point (P2P):
a Point agent learns from another Point agent with different observation and action spaces. The
source domain and target domain are essentially identical and we can calculate ground-truth corre-
spondence between domains for evaluation. For ablation, we create P2P-obs for the medium maze,
where we only keep the observation shift. (ii) Point-to-Ant (P2A): an Ant agent learns from a Point
agent, which has drastically different observations, actions, dynamics, and physical capabilities.
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(a) P2P-medium (b) P2A-umaze (c) R2R-Lift

(d) V2V-Reach
(e) V2V-Open (f) Target route of P2P-OOD

Figure 4: (a-e) Pictures of P2P, P2A, R2R-Lift, and V2V. The red points in the mazes (4a) and (4b)
show the goals, which are not observable for the agents. (f) The route for OOD tasks. The red arrow
shows the target route, while the dataset only contains the shortest paths as the green arrow.

For manipulation, we create three tasks. (i) Robot-to-Robot Lift task (R2R-Lift) from robosuite
(Zhu et al., 2020): a robot has to learn from another robot with a different number of joints and
different grippers to pick up a target block in a position unseen during the alignment phase (Figure
4c). The observations are low-dimensional vectors with up to 37 dimensions. Both robots are
controlled by delta values of a 3D position of the end effector and a 1D gripper state, although the
outcome of the action can vary to some extent. A single goal position in 3D space is selected as a
target task and other goals that are not in the same height or same 2D position are used for proxy
tasks. In Viewpoint-to-Viewpoint (V2V) environments constructed based on environments in Meta-
World (Yu et al., 2019), a robot learns from demonstrations from a different viewpoint. The robot
observes an RGB image from a specific viewpoint in addition to common proprioceptive inputs. We
use two setups. (ii) V2V-Reach: the robot needs to move its arm to a goal shown as a ball with a
specific color in an image. The order of balls is randomly initialized. We use a single color for a
target task and use the rest for proxy tasks. (iii) V2V-Open: the robot needs to open the window in
a random position. The proxy tasks only contain trajectories of closing the window, where the robot
moves its arm in the opposite direction. For the details, please refer to Appendix C.1.

5.2 BASELINES

We refer to our method as PLP (Portable Latent Policy) and compare PLP with the following ap-
proaches. We also create PLP-disc where we replace our MMD loss with the domain discriminative
loss. For the reason mentioned in Section 4.1, we do not provide states for the decoder in R2R
and V2V. GAMA (Kim et al., 2020) learns direct cross-domain mappings of states and actions
via adversarial training on generated transitions using a dynamics model. GAMA solves the target
task using the updated source domain policy combined with the learned cross-domain translation.
CDIL (Raychaudhuri et al., 2021) learns a state translation function with CycleGAN (Zhu et al.,
2017) for cross-domain transfer. CDIL additionally employs information on task progression via
regression of the progression, which has a similar role to that of TCC. Contextual policy (Con-
textual for short) is a policy with Transformer (Vaswani et al., 2017) architecture that takes source
domain demonstration in the encoder and takes the observation history in the decoder, and outputs
the next action. It only has the alignment phase as it requires a pair of demonstrations from both
domains for the training. BC learns a flat policy that digests a state, domain ID, and task ID at once.
It is trained with the same parameters as PLP. See Appendix C.3 and C.4 for the details.

5.3 ALIGNMENT QUALITY

Quantitative Evaluation We evaluate the quality of the alignment in P2P, where we know the
ground-truth state correspondence between domains. As the two domains are essentially identical,
we expect that corresponding states are mapped to the same latent representation. For evaluation, we
sample 1000 corresponding state pairs from both domains, encode them into the latent space, and test
if we can find corresponding states based on the distance in the latent space. We compare PLP with
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Figure 5: Alignment scores. The values are top-1 accuracies of finding a corresponding state from
1k random states based on the distance in the latent space (or state space for GAMA).

Table 1: The success rates averaged over nine runs. In P2A-OOD, no method completes the task.

Task PLP (Ours) GAMA CDIL Contextual BC
P2P-umaze 0.68± 0.39 0.71± 0.40 1.00± 0.00 0.47± 0.08 0.28± 0.23
P2P-medium 0.84± 0.08 0.42± 0.19 0.62± 0.35 0.28± 0.20 0.24± 0.22
P2P-OOD 0.60± 0.46 0.31± 0.38 0.23± 0.37 0.00± 0.00 0.00± 0.00
P2A-umaze 0.50± 0.41 0.01± 0.03 0.01± 0.02 0.32± 0.25 0.33± 0.43
P2A-medium 0.70± 0.17 0.00± 0.01 0.00± 0.00 0.00± 0.00 0.17± 0.12
R2R-Lift 0.71± 0.21 0.09± 0.15 0.00± 0.00 0.09± 0.19 0.22± 0.40
V2V-Reach 0.68± 0.24 0.12± 0.18 0.03± 0.05 0.14± 0.12 0.11± 0.05
V2V-Open 0.68± 0.14 0.07± 0.01 0.00± 0.00 0.00± 0.01 0.00± 0.00

the ablated variants of PLP and the baselines with respect to top-1 accuracy. The results in Figure
5 show that the regularization terms of PLP enhances the quality of the alignment, although TCC
sometimes does not improve the performance. We observe that BC loss helps the alignment more
than MMD and TCC do in PLP training. It is also worth mentioning that, in P2P-obs, where there
is no action shift, representations are well aligned only with the BC loss. PLP achieves comparable
performance to existing methods. PLP-disc and GAMA perform even better, but the better score
does not necessarily lead to good transfer performance (Section 5.4).

Qualitative Evaluation We visualize the latent state distributions for Maze experiments in Fig-
ure 3. In P2P, the MMD loss effectively aligns the representations. In P2A, where the domains
differ significantly due to varying agent morphologies, neither MMD loss nor TCC alone makes a
difference we can visually confirm, and we need both to get them closer. The MMD loss moves
distributions toward the same space while preserving their structure. In contrast, with the discrimi-
native loss, distributions overlap but seem to lose the original structure in each domain, resulting in
the performance drop in Table 1 in the next section. This indicates that distribution matching can be
harmful unless it keeps exact correspondence. For R2R and V2V-Reach, we present interpretable
cross-domain correspondence on the plots in Appendix B.1.

5.4 CROSS-DOMAIN TRANSFER PERFORMANCE

Table 1 summarizes the success rate of a target task in each setting. PLP outperforms the baselines
in most settings ranging from cross-morphology transfer to cross-viewpoint transfer. GAMA and
CDIL show very limited performance in P2A and manipulation tasks including visual-input envi-
ronments, where cross-domain translation that these methods rely on is not trivial. PLP instead
reduces each MDP to the common one and avoids this issue. PLP also utilizes signals from joint
multi-domain imitation and does not fully rely on unstable adversarial training. Contextual policy
struggles to adapt to OOD tasks including V2V. It is because Contextual could only see proxy tasks
and does not have a way to adapt to unseen tasks, as it needs data from both domains to update
the policy. Contextual also shows suboptimal performance in P2A and R2R, where an agent needs
precise control. We observe that the control by Contextual is less precise than PLP possibly due to
the lack of adaptation phase to unseen target tasks. BC shows transferring capability to some extent
but the performance is suboptimal because it updates all parameters at adaptation even if it obtains
certain implicit alignment via imitation. It also completely fails at highly OOD tasks as it learns
OOD target tasks only on the latent space of a source domain when distributions of domains are
separate. We provide the visualization of agents in the tasks in B.2.
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Table 2: Comparison of the success rates between ablated variants of PLP. The standard deviations
are omitted for space restrictions. The full table is available in Table 3 in Appendix.

Task PLP-full PLP-disc BC + MMD BC + disc BC + TCC BC Only
P2P-obs-medium 0.92 0.90 0.94 0.91 0.87 0.92
P2P-medium 0.84 0.88 0.93 0.81 0.72 0.48
P2A-medium 0.70 0.52 0.54 0.45 0.62 0.52
R2R-Lift 0.71 0.39 0.63 0.11 0.54 0.64
V2V-Reach 0.68 0.68 0.70 0.37 0.43 0.43
V2V-Open 0.68 0.33 0.61 0.00 0.25 0.00

5.5 EFFECT OF EACH LOSS TERM ON TRANSFER PERFORMANCE

To investigate the impact of each loss term on transfer performance, we remove terms from the
objective or replace the MMD loss with the domain discriminative loss. Table 2 presents the success
rates. We confirm that the MMD effectively enhances the performance of PLP. While TCC aids
alignment, the improvement from BC+MMD is relatively small and task-dependent. The contrast
between the BC baseline and BC-only also highlights the advantages of the training strategy of PLP.

Although PLP-disc performs as well as PLP does in P2P, the discriminative term does not benefit the
performance, and can even deteriorate the performance of BC+TCC in P2A and manipulation tasks,
where the source domain and target domain are not identical (i.e., have differences in something
other than format). The cause of this difference seems to be that the discriminative objective is
excessively strong that the representation space cannot retain the original structure necessary for
precise action prediction when the state distributions of domains are not the same in the first place.
MMD loss avoids this issue and PLP achieves better performance than BC+TCC. Besides, in V2V
tasks, we find that the alignment with the discriminative objective is unstable and fails at overlapping
distributions in contrast to the performance in non-visual observation environments.

In environments with consistent action format and less-OOD target tasks such as P2P-obs and R2R,
BC-only performs similarly to PLP-full. In V2V environments, which do not have action shifts ei-
ther, the performance of BC-only decreases as the target task is getting OOD. These results indicate
that multi-domain BC seems to provide useful signals for representation alignment. As mentioned in
Section 5.3, BC-only achieves nearly perfect alignment in P2P-obs, and also, the alignment possibly
occurs in another place than where we impose the constraints as well. This good performance aligns
with the recent success in large-scale imitation across multiple domains and robots with a shared
architecture and action format (Jang et al., 2021; Ebert et al., 2022; Brohan et al., 2022). For addi-
tional discussions on the scaling of dataset, the number of domains and proxy tasks, hyperparameter
sensitivity, and learning from state-only demonstrations, please refer to Appendix A.

6 CONCLUSION

In this study, we introduce PLP, a novel method for learning a domain-shared policy for cross-
domain policy transfer. PLP leverages multi-domain BC for cross-domain representation alignment
in addition to MMD loss and TCC and avoids cross-domain translation that is difficult to learn.
Our experimental results show the effectiveness of PLP across situations such as cross-robot, cross-
viewpoint, and OOD-task settings. Interestingly, our results indicate that multi-domain BC some-
times implicitly aligns the representation when there is no large domain shift in action space. We
also confirm that MMD loss helps to align the latent distributions keeping their original structure,
whereas domain discriminative training can disrupt them when it forces complete overlap.

Although PLP shows promising results, it has several limitations. The performance of PLP is not
stable and it fails at adaptation to OOD tasks in a drastically different domain such as P2A-OOD.
Besides, similar to existing methods, PLP cannot handle novel groups of states that appear only in
the target task, such as new objects. Moreover, to broaden the applicability of PLP, future work
could explore approaches to utilize state-only demonstrations or add new domains to the existing
representation space. Thanks to its simplicity, we can easily extend PLP to build our idea on top of
it. We hope that our work provides valuable insights for researchers aiming to develop domain-free
portable policies, abstract policies that can be applied to any domain in a zero-shot manner.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our experimental setups and implementations in Section 5.1 and
Appendix C. These sections explain key hyperparameters, the design of environments and proxy
tasks, dataset size, and other necessary information for reproduction. We also release our codebase
and created datasets in the supplementary materials. The training time does not exceed about five
hours with a single GPU in our experiment.
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Table 3: Full table of the success rate comparison between ablated variants of PLP with standard
deviations. The scores are averaged over nine seeds.

Task PLP-full PLP-disc BC + MMD BC + disc
P2P-obs-medium 0.92± 0.09 0.90± 0.12 0.94± 0.05 0.91± 0.08
P2P-medium 0.84± 0.08 0.88± 0.09 0.93± 0.05 0.81± 0.13
P2A-medium 0.70± 0.17 0.52± 0.15 0.54± 0.26 0.45± 0.21
R2R-Lift 0.71± 0.21 0.39± 0.40 0.63± 0.37 0.11± 0.17
V2V-Reach 0.68± 0.24 0.68± 0.31 0.70± 0.07 0.37± 0.40
V2V-Open 0.68± 0.14 0.33± 0.11 0.61± 0.15 0.00± 0.01

Task BC + TCC BC Only
P2P-obs-medium 0.87± 0.10 0.92± 0.06
P2P-medium 0.72± 0.29 0.48± 0.23
P2A-medium 0.62± 0.24 0.52± 0.20
R2R-Lift 0.54± 0.42 0.64± 0.35
V2V-Reach 0.43± 0.33 0.43± 0.08
V2V-Open 0.25± 0.18 0.00± 0.01

Table 4: The success rates of the Ant-to-Spider (A2S) task averaged over nine runs.

Task PLP (Ours) GAMA CDIL Contextual BC
A2S-umaze 0.80± 0.30 0.10± 0.14 0.00± 0.00 0.01± 0.01 0.42± 0.38
A2S-medium 0.45± 0.18 0.04± 0.05 0.00± 0.00 0.00± 0.00 0.25± 0.20

A ADDITIONAL ILLUSTRATIONS, RESULTS AND DISCUSSIONS

A.1 ALIGNMENT SCORE WITH TOP-5 ACCURACY

Figure 6 shows the alignment scores when we use top-5 accuracy instead of top-1 accuracy as a
metric. The results show the same tendency as the one with top-1 accuracy (c.f. Figure 5).

Figure 6: Alignment scores. The values are top-5 accuracies of finding a corresponding state from
1k random states based on the distance in the latent space (or state space for GAMA).

A.2 FULL RESULTS OF ABLATION COMPARISONS OF LOSS TERMS.

Table 3 shows the full results with standard deviations.

A.3 ADDITIONAL MAZE EXPERIMENTS WITH SPIDER ROBOT.

We test the transfer performance from an agent with four legs (Ant) to an agent with six legs (Spider).
We call this task Ant-to-Spider (A2S). The robots are morphologically similar, but the position of the
legs are different to each other. Table 4 shows the results. PLP-performs best among the methods.
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Figure 7: Alignment complexity in the medium maze. The scores are averaged over three runs with
a fixed single goal, and the error bars represent the standard deviations.
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total number of trajectories increases proportionally.

Figure 8: The relationship between the number of source domains and the performance. The scores
are averaged over three runs with a fixed single goal. The error bars show the standard deviations.

A.4 ALIGNMENT COMPLEXITY

Figure 7 shows the alignment complexity in P2P-medium and P2A-medium with respect to the
number of demonstrations and the number of proxy tasks. Note that the number of goals in the
figure corresponds to one-fourth of the number of proxy tasks. We can observe that an increase in
the number of demonstrations or proxy tasks positively affects performance, but the performance
improvement does not continue until the perfect transfer especially in P2A seemingly due to the
insufficient quality of alignment.

A.5 EFFECT OF THE NUMBER OF SOURCE DOMAINS

One possible advantage of PLP compared to methods like GAMA is that we can easily increase
the number of domains contained in the source dataset. However, it is unclear how the increase in
domain variations affects imitation performance. To investigate this, we measure it in two settings:
i) increase the number of domains in a fixed-size dataset ii) increase the number of domains while
keeping the number of trajectories from one domain. In ii), the dataset size increases proportion-
ally to the number of domains. For the comparison, we maintain the total number of epochs, as
we observe that the training with the larger dataset does not converge within the same number of
iterations.

The results measured in P2P-medium and P2A-medium are summarized in Figure 8. The increase
in domain variations makes it difficult to shape a good shared representation space, resulting in
a performance drop. As shown in Figure 9b, if the number of demonstrations for each domain is
maintained, the performance degradation is mitigated, although it does not improve the performance
compared to the single-domain case, either. Future work could explore methods that can effectively
leverage multi-source datasets to boost the performance of a transferred policy.
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(b) The coefficient for the discriminative loss in PLP-
disc vs success rate.

Figure 9: The relationship between the coefficient of the regularization term and the performance.
The scores are averaged over three runs with a fixed single goal. The error bars show the standard
deviations.

Table 5: The success rates of PLP with the state input for the action decoder in R2R and V2V-Reach.

Task PLP PLP + State PLP + State (Proprio. only)
R2R-Lift 0.71± 0.21 0.53± 0.48 N/A
V2V-Reach 0.68± 0.24 0.38± 0.25 0.64± 0.30

A.6 EFFECT OF THE COEFFICIENT HYPERPARAMETER

Figure 9 shows the performance changes when we sweep the coefficient of the regularization term
for the MMD of PLP or the discriminative objective of PLP-disc. We confirmed that the performance
of PLP is not highly sensitive to the choice of λMMD For PLP-disc in V2V-Reach, we observe the
performance degradation when we set the coefficient to the large value, so we use 0.01 for the
experiments.

A.7 PLP WITH STATE INPUT FOR DECODER IN R2R-LIFT AND V2V-REACH

As we mentioned in the last part of Section 4.1, the inclusion of state input for the decoder can some-
times lead to performance degradation. This occurs because the decoder can receive all necessary
information except the task ID even without the common policy. While we show the performance
without state input in the main results of R2R and V2V, here we present the performance with state
input in Table 5. We observe a performance drop in environments, although it still significantly
outperforms the baselines. For V2V-Reach, we also test a variant that exclusively receives proprio-
ceptive inputs necessary for precise action prediction in the decoder, omitting the image inputs. This
modification yields improved performance comparable to the full PLP. This highlights the potential
for performance enhancement in PLP when we have prior knowledge about which inputs aid action
prediction and which elements should be aligned across domains to facilitate better transfer.

A.8 GAMA WITH STATE INPUT FOR DECODER

The reason why GAMA does not perform well in environments like P2A is the lack of symmetry and
exact correspondence between domains, resulting in the failure of action translation of GAMA from
the source domain to the target domain. In contrast, PLP overcomes this problem by learning a
common latent space and focusing on transferring shared structure between domains. Another ex-
planation of the performance gap between PLP and GAMA is that PLP provides domain-specific
state information to the decoder while GAMA does not. To investigate the impact of state input to
the performance of PLP, we measure the performance of GAMA when it receives state input for the
action translation function of GAMA. The results are presented in Table 6. With the inclusion of the
state input, GAMA is able to bridge the complexity gap between the source and target domain to
some extent. However, it still faces difficulties in finding good correspondences between domains.
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Table 6: The success rates of GAMA with the state input for the action translation function. Note
that, in R2R-Lift, we do not provide states into the action decoder.

Task PLP GAMA GAMA + State
P2A-umaze 0.50± 0.41 0.01± 0.03 0.31± 0.24
P2A-medium 0.70± 0.17 0.00± 0.01 0.11± 0.07
R2R-Lift 0.71± 0.21 0.09± 0.15 0.21± 0.31

Table 7: Success rate with state-only source domain demonstrations

Task PLP PLP-noaction
P2P-medium 0.84± 0.08 0.17± 0.20
P2A-medium 0.70± 0.17 0.14± 0.08

A.9 TRANSFER FROM STATE-ONLY SOURCE DOMAIN

We can extend the applicability of PLP to scenarios where actions from the source domains are
unavailable. In such cases, we can replace action prediction with next state prediction. We decouple
a PLP policy into next state prediction and inverse dynamics model. We calculate the loss on next
state prediction in the representation space on the output of a common policy and optimize the
encoder ϕ and common policy πz .

Lnext state = E
[
∥πz(ϕd(sd), k)− sg[ϕd(s′d)]∥2

]
,

where s′d is a next state of sd in domain d, and sg[·] shows stopping gradient. At the same time,
we separately train an inverse dynamics model ϕ−1 on the target domain dataset optimizing the
following objective:

LIDM = E
[
∥ψ−1(sg[ϕy(sy)], s′y)− ay∥2

]
At inference, the encoder and common policy predict the next latent state given a current state, do-
main, and task ID, followed by the action prediction of the inverse dynamics model from a predicted
next latent state and observed current state.

Table 7 presents the results. The performance is limited compared to the original setting. It is
seemingly because this state-only setting misses the opportunity to leverage alignment signal from
end-to-end behavioral cloning that the original PLP takes advantage of. Additional techniques are
required to seamlessly bridge domains with and without action information. We leave it for future
work as mentioned in the Conclusion.

B ADDITIONAL VISUALIZATION

B.1 DISTRIBUTION OF LATENT REPRESENTATION AND STATE CORRESPONDENCE

In Figure 10, we visualize corresponding states in the latent space of PLP obtained in R2R-Lift.
With the help of MMD loss, the latent state distributions are overlapped. In addition, while there
are instances of misalignment of states in some areas, we observe cross-domain state-to-state corre-
spondence in arm positions.

In Figure 11, we visualized the latent state representation of PLP obtained in V2V-Reach. We color
representation points for different ball orders with different colors in each domain how PLP organize
and align the latent space. We observe that points for each color order form a cluster in the latent
space, and the positions of clusters for the same arrangement of balls are located in a similar position
across domains (11b, 11c).

B.2 VISUALIZATIONS OF TRAJECTORIES OF AGENTS

We visualize the trajectories of the agents to observe their actual behavior. In Figure 12, we display
the trajectories of PLP and Contextual in P2P-OOD. We confirm that PLP successfully follows the
target route, while Contextual fails to adapt to this out-of-distribution target route. In Figure 13,
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Figure 10: Visualization of the latent space by t-SNE in the R2R-Lift task. We visualize the states
of the source (left-hand side) and target (right-hand side) domains that are closest to each other in
the latent space. In some cases, the arms were in similar positions across domains (1, 2, 4, 5, 6), but
in other cases, we observed positional deviation of the arms (3).

(a) All points (b) Source domain (c) Target domain

Figure 11: Distributions of latent states sz in V2V-Reach visualized by t-SNE. In (11b) and (11c), the
points are colored according to the color order of the balls in the environment. ID 0-5 corresponds
to GBR, GRB, BGR, BRG, RGB, and RBG, respectively. Each ID roughly forms a cluster in a
consistent position across domains.

we present the trajectories of PLP and GAMA in P2A-medium. We observe that the PLP agent
successfully reaches the goal, while the GAMA agent cannot move from the starting position due to
the challenge of finding exact correspondence between the Point agent and the Ant agent.

Figure 14 demonstrates trajectories of PLP agent and GAMA agent in R2R-Lift. PLP agent precisely
operates its arm and successfully grasps the target object, while GAMA agent attempts to close its
gripper in the wrong position.

Figure 15 shows the trajectories of PLP agent and BC agent in V2V-Reach. PLP agent successfully
adapts to the target task, while BC agent still heads to the goal of a proxy task. It is because the
adaptation only happens on the source domain states as a BC agent learns about the source domain
and target domain separately without aligning representations. We observe the same tendency in
the trajectories of V2V-Open in Figure 16 as well. The PLP agent successfully recognizes the
position of the window from the image and accomplishes the task (Figure 16a). The BC agent and
Contextual agent stick to the movement in proxy tasks and move its arm in the opposite direction
due to the lack of adaptation capability to OOD movements (16b, 16c).

We also provide videos of the agents in the supplementary material.
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(a) A trajectory of PLP

(b) A trajectory of Contextual

Figure 12: Trajectories of agents in P2P-OOD. The red point shows the goal. The target route is
illustrated by the red arrow in Figure 4f.

(a) A trajectory of PLP

(b) A trajectory of GAMA

Figure 13: Trajectories of agents in P2A-medium. The red point shows the goal.

C EXPERIMENT DETAILS

C.1 ENVIRONMENTS

All Maze environments used in this paper are based on D4RL (Fu et al., 2020). These environments
involve two types of agents: Point and Ant. The Point agent has a state space of four dimensions
and an action space of two dimensions. The state space comprises the positions and velocities along
the x-axis and y-axis, while the action space consists of the forces to be applied in each direction.
The Ant agent has a state space of 29 dimensions and an action space of eight dimensions. The state
space includes the position and velocity of the body, as well as the joint angles and angular velocities
of the four legs. The action space consists of the forces applied to each joint. The task is defined by
a combination of a starting area and a specific goal location. In the umaze, there are three starting
zones and seven goals, while in the medium maze, there are four starting zones and 26 goals. For the
experiments, three goals from different areas in the mazes are selected. In P2P, we constructed the
source domain by swapping the x and y-axis of observations and multiplying each element of actions
by -1. For example, a state-action pair in the target domain ((x, y, vx, vy), (ax, ay)) corresponds
to ((y, x, vy, vx), (−ax,−ay)) in the source domain. Here, x and y represent coordinate values
instead of domains. In the OOD variants, agents are required to take a detour in the medium maze
as depicted in Figure 4f, instead of directly heading toward the goal via the shortest path. In P2A,
although the shapes of the mazes are consistent between Point and Ant, the scale and x, y directions
of the mazes are different between agents from the beginning.

For R2R-Lift, we use robosuite framework (Zhu et al., 2020). The Sawyer robot and the UR5e robot
are used for the source and target domain, respectively, to test cross-robot transfer (Figure 4c). The
observation spaces of these robots consist of the positions or angular information, as well as the
velocity of each joint and the end effector. Sawyer and UR5e have state spaces of 32 dimensions
and 37 dimensions, respectively. Both robots are controlled by delta values of the 3D position of the
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(a) A trajectory of PLP

(b) A trajectory of GAMA

Figure 14: Trajectories of agents in R2R-Lift.

(a) A trajectory of PLP

(b) A trajectory of BC

Figure 15: Trajectories of agents in V2V-Reach. The goal color is set to green.

end effector and a 1D gripper state. We choose Block Lifting task, where the robot needs to pick up
a block and lift it to a certain height. A task is defined by the initial position of the object to be lift.
We set up a total of 27 tasks by placing the blocks on a 3 × 3 × 3 grid of points on the table. One
position is selected for the target task, and the remaining points that are not at the same height or the
same 2D position as the selected position are used as the proxy tasks. The initial pose of the robot
is randomized.

For V2V-Reach and V2V-Open, we use environments from the Meta-World benchmark (Yu et al.,
2019). Different viewpoints are employed for the source and target domain as depicted in Figure 17.
The robot observes the proprioceptive state and an image from a specific viewpoint. A propriocep-
tive state of the robot consists of a 3D position of the end effector and a 1D gripper state observed
in the last two steps. The action space of the robot is 4-dimensional, representing the delta values of
the 3D position of the end effector and the 1D gripper state. In V2V-Reach, three balls of different
colors spawn in a random order. The task is to reach a ball of a specific color. The agent needs to
interpret visual observation correctly. The initial position of the end-effector is also randomized.

In V2V-Open, we use Window-Close for the proxy task and Window-Open for the target task.
Window-Close is the task of closing windows in the environment, while Window-Open is the task
of opening windows. When closing the window, the robot approaches the left-hand side of a door
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(a) V2V-Open Success (PLP)

(b) V2V-Open Failure (BC)

(c) V2V-Open Failure (Contextual)

Figure 16: Trajectories of agents in V2V-Open.

Figure 17: Visualization of two different viewpoints in V2V. The agent is required to learn a target
task from one viewpoint and perform the task in another domain with a different viewpoint. The
figure on the left shows the viewpoint in the source domain, while the figure on the right shows the
one in the target domain.

and moves toward the right, whereas when opening the window, it heads to the right-hand side and
then moves to the left. That is, the robot has to take out-of-distribution actions in the target task.
Specifically, Window-Close is divided into four proxy tasks by roughly grouping the position of the
window to facilitate representation alignment. The success rate of a proxy task (i.e., one area) with-
out visual input is approximately 30%. In V2V-Open, which is a target task, we sample the window
position from the entire area randomly.

In the evaluation, we measure the success rates with 100 trials in each seed, and we show the average
and standard deviations calculated over nine seeds.

C.2 DATASETS

As explained in Section 3, the dataset comprises state-action trajectories of expert demonstrations
encompassing multiple tasks with different goals. Specifically, for the P2P and P2A, we provided
about 1k trajectories from 18 tasks (six training goals and three starting zones) for the umaze, and
about 1k trajectories from 100 tasks (25 training goals and four starting zones) for the medium
maze unless stated otherwise in the ablation study. The expert demonstrations of the Point agent
were downloaded from http://rail.eecs.berkeley.edu/datasets/offline_rl/
maze2d/ (maze2d-umaze-sparse-v1, maze2d-medium-sparse-v1). When generating expert trajec-
tories for the Ant agent, we employed PPO (Schulman et al., 2017) from stable-baselines3 (Raffin
et al., 2021) to train agents to move one of the four cardinal directions (up, down, left, or right). Sub-
sequently, we constructed complete demonstrations by solving the maze using breadth-first search
(BFS) and providing the agent with the direction of the next square. For R2R and V2V tasks, we
collected expert trajectories with scripted policies based on the object position and the gripper pose.
For R2R, we provide 1k trajectories in total in each domain. For V2V-Reach, we provided 300
trajectories for each task (i.e., each goal color). For V2V-Open, we provided 300 trajectories for
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Window-Close in total, that is, 75 trajectories for each. In adaptation, we provide 300 trajectories of
Window-Open.

C.3 ARCHITECTURES AND TRANING DETAILS OF PLP

Our policy architecture is a simple multilayer perceptron (MLP). The state encoder, common policy,
and decoder consist of three, four, and three hidden layers, respectively, with 192 units each and
GELU activations (Hendrycks & Gimpel, 2016). The final layer of the decoder uses Tanh activation.
The dimension of the latent representations is also set to 192. For the visual inputs in V2V, we used a
convolutional network with CoordConv (Liu et al., 2018a) of channels (64, 64, 128, 128, 128), kernel
size = 3, stride = 2, and padding = 1, followed by a single linear layer that projects the output into
a single vector with 1024 dimensions. In order to keep visual information that is irrelevant for proxy
tasks but necessary for the target task, we add an image reconstruction loss to the objective.

We optimized our objective with AdamW optimizer (Loshchilov & Hutter, 2019). In the Maze
environments, we set the learning rate to 5e-4 and the batch size to 256, and trained the model for
20 epochs. In the adaptation phase, we used about 400 trajectories towards an unseen goal to update
the common policy for 50 epochs. For R2R-Lift, we set the learning rate to 1e-4 and the batch size
to 512, and trained the model for 100 epochs. For V2V-Reach, we set the learning rate to 5e-4 and
the batch size to 64, and trained the model for 100 epochs. For V2V-Open, we set the learning rate
to 1e-4 and the batch size to 64, and trained the model for 200 epochs. As mentioned in Section
4.2, we mixed the dataset for the alignment so that domain-specific component does not leak into
the common policy. We randomly selected data from the alignment dataset of twice the size of the
adaptation dataset in P2P and R2R, and that of the same size for P2A and V2V. We also found
that adding weight decay stabilizes the alignment and the performance of P2P and P2A. We set the
coefficient to 1e-5 in these environments. We did not use weight decay in R2R and V2V. For a kernel
for MMD, we use Gaussian kernel: f(a, b) = exp(−∥a − b∥2/h). h is set to 1 in all experiments.
Since we observed that it decreased the scale of representation sz and deteriorated the performance,
we normalized the distance ∥a − b∥ by the average pairwise distance in a batch to mitigate the
issue. For the TCC part, we reduced the batch size to 64, 32, and 8 in the Maze, R2R, and V2V
environments respectively to reduce training time. The number of gradient steps for the TCC part is
kept the same as the other parts. Additionally, to alleviate the difficulty of classification in TCC, we
decimated the trajectories by selecting one out of every 16 frames. Regarding the coefficients in the
objective 3, we set λMMD = 0.1, λTCC = 0.2 for P2P, P2A, and R2R, and λMMD = 0.01, λTCC = 0.1
for V2V environments. In PLP-disc for the ablation, where we utilized the GAN-like discriminative
loss instead of MMD regularization, we introduced a discriminator network with four hidden layers.
The coefficient for the discriminative loss was set to 0.5 for P2P, P2A, and R2R, while we used 0.1
for V2V experiments. The training time was about an hour for the maze environments and R2R,
four hours for R2R-Lift, and three hours for the V2V environments with a single GPU.

In the supplementary material, we provide our implementation for reproduction.

C.4 BASELINES

For GAMA, we re-implemented the algorithm by referring to the original paper and an official im-
plementation (https://github.com/ermongroup/dail). When we found discrepancies
between the paper and the implementation, we followed the descriptions in the paper. We swept
the adversarial coefficient from 0.01 to 10, the learning rate from 1e-4 to 1e-3, and selected 0.5 and
1e-4, respectively.

For CDIL, we re-implemented the algorithm based on the paper. First, we pretrained the temporal
position models in both the source and target domains. Subsequently, we trained all models using
cycle consistency loss, adversarial loss, and temporal position loss between domains. At the same
time, we performed inference task adaptation using data from the target task in the source domain.
Next, we trained the inverse dynamics model in the target domain. Once the target task data in
the source domain was converted into the target domain, the inverse dynamics model was used to
compute the target task actions in the target domain. Finally, the final policy was obtained through
behavioral cloning using this data.
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For the demonstration-conditioned model (Contextual), we used a Transformer (Vaswani et al.,
2017)-based architecture to process sequences of observations and actions. We fed the demonstra-
tions and observation history as they were without thining-out timesteps. The maximum sequence
length was 250 and 400 for the umaze and medium maze in P2P, 350 and 600 in P2A, and 200 in
R2R and V2V, respectively. The model had three encoder layers and three decoder layers, each with
256 units and eight heads. The dropout rate was set to 0.2. The activation function was GELU and
the normalization was applied before the residual connections. We set the batch size to 64, the learn-
ing rate to 1e-3, and trained the model for 500 epochs in each environment in Maze environments
and R2R. In V2V, we set the batch size to 16.
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