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ABSTRACT

We study the sample complexity of online reinforcement learning in the general
non-episodic setting of nonlinear dynamical systems with continuous state and
action spaces. Our analysis accommodates a large class of dynamical systems
ranging from a finite set of nonlinear candidate models to models with bounded and
Lipschitz continuous dynamics, to systems that are parametrized by a compact and
real-valued set of parameters. In the most general setting, our algorithm achieves a
policy regret of O(Nϵ2 + ln(m(ϵ))/ϵ2), where N is the time horizon, ϵ is a user-
specified discretization width, and m(ϵ) measures the complexity of the function
class under consideration via its packing number. In the special case where the
dynamics are parametrized by a compact and real-valued set of parameters (such as
neural networks, transformers, etc.), we prove a policy regret of O(

√
Np), where

p denotes the number of parameters, recovering earlier sample-complexity results
that were derived for linear time-invariant dynamical systems. While this article
focuses on characterizing sample complexity, the proposed algorithms are likely
to be useful in practice, due to their simplicity, their ability to incorporate prior
knowledge, and their benign transient behaviors.

1 INTRODUCTION

Reinforcement learning describes the situation where a decision-maker chooses actions to control a
dynamical system, which is unknown a priori, to optimize a performance measure. At the core of
reinforcement learning is the fundamental dilemma between choosing actions that reveal information
about the dynamics and choosing actions that optimize performance. These are typically conflicting
goals. We consider an online non-episodic setting, where the decision-maker is required to learn
continuously and is unable to reset the state of the dynamical system. This further introduces the chal-
lenge that the information received by the learner is correlated over time and hence, standard statistical
tools cannot be applied directly. Despite these important challenges, we provide a suite of online
reinforcement learning algorithms that build on Hedge-type updates (Cesa-Bianchi & Lugosi, 2006)
and posterior sampling reinforcement learning (Osband et al., 2013), while being straightforward
to analyze, practically and theoretically relevant, and offering strong non-episodic, nonasymptotic,
frequentist policy-regret guarantees that apply to continuous state-action systems. The algorithms
sample from a posterior over the different model candidates (or an approximation thereof), apply
the corresponding “certainty-equivalent” policies (Mania et al., 2019), while carefully introducing
enough excitation to ensure that the posterior distribution over models converges sufficiently rapidly.

We consider three different settings. In the first setting, the decision-maker has access to a finite
set of nonlinear candidate models that potentially describe the system dynamics (continuous state
and action spaces). This setting is relevant for many practical engineering applications, where
the choice of candidate models provides a natural way to incorporate prior knowledge. In this
setting our online algorithm achieves a sample complexity of O((ln(N) + ln(m))/∆) in terms of
policy regret, where N denotes the time horizon, m the number of candidate models, and ∆ > 0
a constant that characterizes the separation between models. In the second setting, we allow for
any class of dynamical system, where the dynamics are given by a bounded set in a normed vector
space. This includes, e.g., all bounded Lipschitz continuous functions with the supremum norm,
or a bounded set of square integrable functions. By applying packing and covering arguments, we
relate the second setting to the first one and derive corresponding policy-regret guarantees that take
the form O(Nϵ2 + ln(m(ϵ))/ϵ2), where ϵ describes the discretization width and m(ϵ) the packing
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number, which measures the complexity of the function class (Wainwright, 2019). In the third setting,
we consider systems that are parametrized by a compact and real-valued set of parameters. This
includes the situation where the dynamics are parametrized by neural networks, transformers, or other
parametric function approximators, and we obtain a policy regret of O(

√
Np), where p describes

the number of parameters. We further note that in the common situation where our function class is
given by a linear combination of nonlinear feature vectors, which also encompasses linear dynamics
as a special case, our algorithm is straightforward to implement, as it only requires sampling from a
(truncated) Gaussian distribution at every iteration (Cao & Katzfuss, 2024).

Our main contributions are summarized as follows:
• We provide a suite of algorithms with nonasymptotic policy-regret guarantees for online reinforce-

ment learning over continuous state and action spaces with nonlinear dynamics. Numerical results
highlight that transients are benign and that our algorithms are likely to be useful in practice.

• Compared to earlier works on posterior sampling reinforcement learning (Osband et al., 2013;
Abbasi-Yadkori & Szepesvári, 2015; Xu et al., 2024; Ouyang et al., 2017), our algorithm introduces
additional exploration and achieves frequentist policy-regret guarantees. Our analysis operates
under standard identifiability and persistence of excitation assumptions (Ljung, 1999; Slotine & Li,
1991) suitable for continuous state-action systems even near the stability boundary, which contrasts
resampling strategies (Ouyang et al., 2017) or mixing assumptions (Xu et al., 2024).

• Results from earlier works on the linear-quadratic regulator (see, e.g., Dean et al., 2018; Simchowitz
& Foster, 2020) are recovered up to constants when specializing to linear dynamics. In contrast to
the maximum-a-posteriori identification principle in these works, we rely on posterior sampling,
resulting in a Hedge-type algorithm that is general and tractable for analysis.

• Compared to earlier work in the adaptive control community (see, e.g. Anderson et al., 2000;
Hespanha et al., 2001), which focuses on asymptotic stability, boundedness, and deterministic
systems, we consider stochastic systems and characterize nonasymptotic performance. We provide
a nonasymptotic bound on the second moment of state trajectories and show that our estimation
converges in finite time almost surely.

• The work provides a powerful separation principle that applies to nonlinear dynamics. Our
algorithms separate optimal model identification and certainty-equivalent control, simplifying
policy evaluation, e.g., through predictive control or proximal policy optimization with a simulator.

The decision-making problem considered here is central to machine learning and related disciplines,
and there has been a great deal of prior work. We provide a short review of recent prior work that is
closely in the following paragraphs; a more detailed literature review can be found in App. A.

The fundamental exploration-exploitation dilemma of reinforcement learning has been elegantly
addressed from many angles. Posterior sampling reinforcement learning is an algorithmic paradigm
introduced by Osband et al. (2013); Osband & Van Roy (2014); Osband et al. (2016); Osband &
Van Roy (2017), which draws analogies to stochastic multi-armed bandits and Thompson sampling
(Russo et al., 2018). While these works initially focused on tabular Markov decision processes and
episodic settings, extensions to the non-episodic setting have been achieved by Abbasi-Yadkori &
Szepesvári (2015); Ouyang et al. (2017); Theocharous et al. (2018); Xu et al. (2024). Our algorithmic
idea broadly falls into the category of posterior sampling reinforcement learning, with the distinction
of introducing additional excitation and bridging insights from statistics and online learning (Hedge)
and control (dissipativity) to provide frequentist policy-regret guarantees, whereas these works
provide Bayesian guarantees. We further rely on persistence of excitation assumptions, which are
common in system identification and statistics (Ljung, 1999; Slotine & Li, 1991). These are weaker
than the mixing assumptions of earlier works (see, e.g., Xu et al., 2024).

Optimism in the face of uncertainty is another important principle to balance exploration and
exploitation (Lattimore & Szepesvári, 2020). Early works by Auer & Ortner (2006); Bartlett &
Tewari (2009); Jaksch et al. (2010) focus on the tabular setting, while a plethora of recent works
(Abbasi-Yadkori & Szepesvári, 2011; Cohen et al., 2019; Abeille & Lazaric, 2020; Croissant et al.,
2024; Zanette et al., 2021) demonstrate the usefulness of this principle in handling continuous
state-action systems. These approaches maintain confidence sets of parametric models and sample
the most optimistic model and policy for exploration. The iterative computation of confidence sets
and optimistic policies can be challenging and computationally intensive. Moreover, the resulting
complexity measures affecting policy regret, such as the eluder dimension (Foster & Rakhlin, 2023),
can be difficult to bound beyond linear Markov decision processes. In contrast, we decouple online
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best model identification and certainty-equivalent control. This separation not only simplifies policy
evaluation (e.g., offline or through model predictive control (Borrelli et al., 2017)), but also facilitates
explicit characterization of policy regret via packing numbers, a standard and well-studied complexity
measure in statistics.

The research frontier in the domain of reinforcement learning with continuous states and actions
(Recht, 2019; Meyn, 2022; Hu et al., 2023) moves from linear (Hazan & Singh, 2022; Tsiamis et al.,
2023) to nonlinear dynamics. Prior work (see, e.g., Kakade et al., 2020; Boffi et al., 2021; Lin
et al., 2024) shows that sublinear O(

√
N) regret can be achieved under structural assumptions on the

dynamics, e.g., contraction or linear representations of nonlinear features, which are stronger than
what is assumed herein. Our approach is also related to multi-model adaptive control, where the goal
is asymptotic stabilization (Anderson & Dehghani, 2008), and online switching control (Li et al.,
2023; Kim & Lavaei, 2024). In contrast, we provide nonasymptotic policy-regret guarantees that go
beyond stabilization and scale with O(ln(m)) compared to O(m1/3) obtained with switching control.

The article is structured as follows: Sec. 2 discusses the problem formulation and presents the main
results. Sec. 3 illustrates our analysis, where we focus on the first setting (finite set of models)—the
other two settings are similar at a high level and we provide a detailed presentation in the appendix.
Sec. 4 provides a short conclusion, while proofs, numerical experiments, and further discussion is
included in the appendix.

2 PROBLEM FORMULATION AND SUMMARY

We consider a reinforcement learning problem where a decision-maker chooses actions uk ∈ Rdu

to control a dynamical system xk+1 = f(xk, uk) + nk, where xk ∈ Rdx denotes the state, f :
Rdx ×Rdu → Rdx the dynamics (unknown to the decision-maker), and nk ∼ N (0, σ2I) the process
noise (independent across time; can be non-zero-mean or sub-Gaussian, see below). Without loss of
generality, we set x1 = 0. We further denote the Lipschitz constant of f in (x, u) by L.

The decision-maker aims at minimizing the expected loss, E[
∑N

k=1 l(xk, uk)], where l : Rdx×Rdu →
R≥0 captures the stage cost, by learning and applying an appropriate and possibly random feedback
policy uk = µk(xk).

We consider three different settings. In the first setting (S1) the decision-maker has access to m
(nonlinear) candidate models F := {f1, . . . , fm}, f i : Rdx × Rdu → Rdx , i = 1, . . . ,m that
describe potential system dynamics. Each f i is L-Lipschitz in (x, u). In the second setting (S2), we
allow for any class of functions F that is given by a bounded set in a normed vector space, which
is therefore much broader and includes, for example, all bounded L-Lipschitz functions with the
usual supremum norm. In the third setting (S3), the dynamics are parametrized by the parameter
θ, i.e., F = {fθ(x, u) | θ ∈ Ω}, where Ω is a compact real-valued set. Without loss of generality,
we assume that Ω is contained in a unit ball by scaling the parameters accordingly. This captures
the setting where the functions fθ are represented by neural or transformer architectures, or when
fθ are given by linear combinations of (nonlinear) feature vectors fθ(x, u) = θ⊤ϕ(x, u). This also
encompasses linear dynamics as a special case. We further assume that the system dynamics f are
contained in the set of candidate models, i.e., f ∈ F for each setting.

This article analyzes the decision-making strategy listed in Alg. 1, which can be easily adapted to
the settings S2/S3 (see Alg. 2 in App. D and Alg. 3). The algorithm keeps track of the one-step
prediction error (Ljung, 1999; Chua et al., 2018; Janner et al., 2019), that is,

sik =

k−1∑
j=1

|xj+1 − f i(xj , uj)|2

1 + |(xj , uj)|2/b2
, f i ∈ F,

where b > 0 is a sufficiently large constant, and |(xj , uj)| denotes the ℓ2-norm of a vector stacking
xj and uj . The normalization with 1 + |(xk, uk)|2/b2 ensures that the variables sik remain bounded
even when xk, uk become arbitrarily large, while for small xk, uk the normalization is close to the
identity. This will simplify the subsequent analysis and the resulting statement of the policy-regret
bounds. Our analysis also carries over to the limiting case where b is unbounded (i.e., b → ∞),
and the same regret bounds apply, as is discussed in App. F; however, the constants in the resulting
regret guarantees and algorithm parameters become more complex. The sum of squared distances
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Algorithm 1 Reinforcement learning (S1)

Inputs: F := {f1, . . . , fm}, η, M , {σ2
uk}∞k=1

compute {µ1, . . . , µm} // e.g. by d. p.
/* can be approximated by MPC, PPO on simulator*/

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

sik←
∑k−1

j=1

|xj+1−fi(xj ,uj)|2

1+|(xj ,uj)|2/b2
, ∀i∈{1,. . .,m}

ik ∼ exp(−ηsik)/Z
else

ik = ik−1 //stay with ik−1

end if
//follow policy ik and add excitation
uk = µik (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

Algorithm 3 Reinforcement learning (S3)

Inputs: F = {fθ | θ ∈ Ω }, η, M , {σ2
uk}∞k=1

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

sk(θ) =
∑k−1

j=1

|xj+1−fθ(xj ,uj)|2

1+|(xj ,uj)|2/b2

θk ∼ exp(−ηsk(θ)) 1θ∈Ω/Z

compute µθ corr. to fθ ∈ F // e.g. by d. p.
/* can be approximated by MPC, PPO step*/

else
θk = θk−1 //stay with ik−1

end if
//follow policy θk and add excitation
uk = µθk (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

|xj+1 − f i(xj , uj)|2 can be interpreted as the negative log-likelihood of model i given the past
trajectory {xj , uj}kj=1, due to the Gaussian process noise. Hence, from a Bayesian perspective,
the distribution exp(−sik) represents the probability that model f i corresponds to f given the past
trajectory. The scaling with η implements a softmax (for η large we greedily pick the model that
maximizes the posterior, for η ≈ 1 we directly sample from the posterior). The update rule has
close connections to Hedge or multiplicative weights, which is a common decision-making strategy
in online learning (Cesa-Bianchi & Lugosi, 2006; Arora et al., 2012; Mourtada & Gaïffas, 2019).
Nonetheless, our setting is mathematically distinct from Hedge due to dynamics that couple states,
actions, and rewards across time, and the need for exploration. As such, existing analysis techniques
do not apply. Furthermore, our analysis extends to non-zero-mean nk, since this can be captured by
modifying f accordingly, and generalizes to sub-Gaussian process noises thanks to the corresponding
bounds on moment-generating functions.

The algorithm chooses control actions uk as

uk = µik(xk) + nuk,

where nuk ∼ N (0, σ2
ukI), and ik is a random variable that is defined in the following way: If

mod(k − 1,M) = 0, ik takes the value ik = i with probability density pik ∼ exp(−ηsik)/Z
(conditional on the past), where Z denotes a normalization constant. If mod(k − 1,M) ̸= 0, ik
remains fixed, i.e., ik = ik−1. The random variable switches only every M th step, which ensures that
the excitation with nuk is rich enough, as specified precisely in Ass. 3 below. The feedback policy µi

describes any policy associated with candidate model f i, i.e., a policy that achieves the performance

lim sup
N→∞

1

N
E
[ N∑
k=1

l(xi
k, µ

i(xi
k))
]
= γi, (1)

on the candidate model f i, where xi
k+1 := f i(xi

k, µ
i(xi

k)) + nk with xi
1 = 0. The policy µi can be

optimal for model f i, but this does not necessarily need to be the case. In practice, such a policy can
be obtained by solving a Bellman equation through (approximate) dynamic programming (Bertsekas,
2017), or by applying proximal policy optimization in conjunction with an offline simulator. We
will consider policy regret as our performance objective, where the policy µ corresponding to the
dynamics f represents the benchmark performance.

The reinforcement learning strategy has a natural interpretation: The strategy selects, at each M th
iteration, the feedback policy µik , where the index ik is sampled from a distribution following a
softmax function of sik. The system is further excited by adding the random perturbation nuk to
the feedback policy. If persistence of excitation is guaranteed, the estimation will converge at a
rate at least O(1/k2), which yields a policy regret (compared to the strategy µ corresponding to the
dynamics f ) that scales logarithmically in the horizon N and the number of candidates m.

We emphasize that our analysis technique translates in straightforward ways to more general situations
than the ones described herein. For example, while this article focuses on time-invariant policies, it
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would be straightforward to also incorporate time-varying policies µi
k, and a corresponding finite-

horizon benchmark. More precisely, we focus on steady-state performance, where the benchmark
is given by the steady-state performance of policy µ (corresponding to f ). However, finite-horizon
objectives can be easily accommodated by measuring regret with respect to the optimal finite-horizon
policy µk; the same nonasymptotic regret bounds would apply. The article also focuses on “naive”
excitation signals nuk, sampled from a normal distribution. However, our analysis principle is
flexible enough to also incorporate more general type of excitation strategies (e.g., relying on domain-
specific knowledge), as long as the excitation has finite second moments and guarantees a persistence
condition similar to Ass. 3.

Our results are summarized as follows:

Theorem 2.1 (S1) Let the cost-to-go function corresponding to f and the stage cost l be smooth
(see Ass. 1 and 2), the feedback policies µi be Lipschitz continuous, and let a persistence of excitation
condition be satisfied (see Ass. 3). Then, for a constant learning rate η and σ2

uk ∼ 1/(∆duk) +
ln(m)/(∆duk

2) the policy regret of Alg. 1 is bounded by

E[

N∑
k=1

l(xk, uk)]−Nγ ≤ cr1ln(N)/∆+ cr2ln(m)/∆+ cr3σ
2dx + cr1/∆,

for all N ≥ 2M , where cr1, cr2, cr3 are constant, γ corresponds to theH2 gain of f (see (1)), and ∆
characterizes the discrepancy between models. The precise constants are listed in Thm. 3.2.

Theorem 2.2 (S2) Let the set of candidate models F be a bounded set in a normed vector space.
Let the cost-to-go function corresponding to f and the stage cost l be smooth (see Ass. 2 and 5),
the feedback policies µf̄ corresponding to an f̄ ∈ F be Lipschitz continuous, and let a persistence
of excitation condition be satisfied (see Ass. 4). Then, for all N ≥ 2M , any ϵ > 0, for a constant
learning rate η, and σ2

uk ∼ 1/(ϵ2duk) + ln(m(ϵ))/(ϵ2duk
2), the policy regret of Alg. 2 (see App. D)

is bounded by

E[

N∑
k=1

l(xk, uk)]−Nγ ≤ cr0Nϵ2 + cr1ln(N)/ϵ2 + cr2ln(m(ϵ))/ϵ2 + cr3σ
2dx,

where m(ϵ) denotes the packing number of the set F . The precise constants are listed in Thm. D.2.

Theorem 2.3 (S3) Let the set of candidate models F be parametrized by θ, i.e., F = {fθ(x, u) | θ ∈
Ω}, where Ω ⊂ Rp is contained in a unit ball of dimension p. Let the cost-to-go function correspond-
ing to f and the stage cost l be smooth (see Ass. 2 and Ass. 7), the feedback policies µθ corresponding
to each fθ ∈ F be Lipschitz continuous, and let a persistence of excitation condition be satisfied (see
Ass. 6). Then, for all N ≥ 2M , for a constant learning rate η, and σ2

uk ∼ 1/(duk) + p/(duk
2), the

policy regret of Alg. 3 is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤
√

(cr1ln(N) + cr2p)N + cr3σ
2dx.

The precise constants are listed in Thm. E.1.

The results characterize precisely how the policy regret scales with the dimension dx, du and the
time horizon N . In the setting of Thm. 2.1, we have a finite class of models, and the policy regret
scales with ln(m), which is in line with the literature on online learning (Cesa-Bianchi & Lugosi,
2006; Lattimore & Szepesvári, 2020).1 Thm. 2.2 relies on a packing argument, whereby the set
F is successively approximated by a finite number of candidate models. The result is stated in
full generality; for a specific function class F and packing number m(ϵ) the right-hand side can
be minimized over ϵ (the discretization width). For instance if F consists of the space of bounded
L-Lipschitz functions, the packing number m(ϵ) scales with dx exp((L/ϵ)

dx+du), which means that

1The bound depends on ∆, characterizing the discrepancy between models. If models are arbitrarily close to
each other, the bound applies asymptotically and becomes loose for small m and N . In this situation, a tighter
bound of O(

√
N ln(m)) is achieved for small m, N , by distinguishing models to ensure ∆ ∼

√
ln(m)/

√
N .

The situation is captured by Thm. 2.2 and Thm. 2.3 and is therefore not discussed further.
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the policy regret grows roughly with N (dx+du)/(dx+du+2) = o(N), and establishes no-regret learning
for a very large class of functions. In the special case where dx = du = 1, the right-hand side grows
with
√
N . Thm. 2.3 is of direct practical importance, since it provides an algorithm and corresponding

regret bound that applies to the typical scenario where the functions F are parametrized, for example
by neural networks. In the simplest setting, F consists of linear dynamical systems, which directly
recovers well-known results from the literature (e.g., Dean et al., 2018; Mania et al., 2019; Simchowitz
& Foster, 2020). More precisely, if F consists of linear dynamical systems, the number of parameters
is given by d2x + dxdu, which means that the resulting regret bound scales with

√
(d2x + dxdu)N .

Our algorithms are optimal up to logarithmic factors, since the formulation incorporates online
regression as a special case. This results in an Ω(ln(m)) lower bound for setting (S1) and a
Ω(
√
Np) lower bound for setting (S3) (Rakhlin & Sridharan, 2014).

We conclude the summary by commenting on boundedness of states. In control-theoretic applications
(and in the related community) boundedness of solutions and benign transients are a primary concern.
We will see that in all our results we can ensure boundedness provided that the stage cost satisfies
l(x, u) ≥ Ll|x|2/2 for a constant Ll > 0. More precisely, we can guarantee that

LlE[|xk|2] ≤ 2E[V (xk)] ≤ cb (2)
for all k = 1, . . . , along the trajectories of our reinforcement learning algorithm, where V refers
to the cost-to-go function corresponding to the dynamics f and policy µ, and cb > 0 is an explicit
constant. Due to the fact that the dynamics are Lipschitz continuous and nk, nuk are Gaussian, xk, uk

are in fact sub-Gaussian with mean and second moment bounded by
√

cb/Ll and cb/Ll, respectively,
and we can therefore characterize tail probabilities for finite k, as well as for arbitrarily large values
of k under ergodicity assumptions.

3 SUMMARY OF THE ANALYSIS

This section discusses the technical details and insights that lead to the results presented in Thm. 2.1-
2.3. The presentation focuses on setting S1, since the results in setting S2 and S3 follow analogously.

3.1 FINITE MODEL SET-UP

This section considers F = {f1, . . . , fm} being finite and f ∈ F . We denote the cost-to-go function
related to the dynamics f and the policy µ by V : Rdx → R≥0, where V is any function that satisfies
the following assumption:

Assumption 1 (Bellman-type inequality) The cost-to-go function V (corresponding to f and µ)
satisfies the following inequality

V (x)≥E[l(x, u) + V (f(x, u) + n)]− γ − duLuσ
2
u, (3)

for a constant Lu and for all x ∈ Rdx , where u = µ(x)+nu, n ∼ N (0, σ2I), nu ∼ N (0, σ2
uI), and

the expectation is taken over n and nu.

Ass. 1 is met for linear dynamical systems (Abeille & Lazaric, 2020; Abbasi-Yadkori & Szepesvári,
2011; Simchowitz & Foster, 2020; Dean et al., 2018) and nonlinear dynamical systems under
dissipation assumptions (Khalil, 2002, Ch. 5), e.g., Boffi et al. (2021); Li et al. (2023). The rationale
behind Ass. 1 is the following: From a dynamic programming point of view computing an optimal
policy µ requires solving a corresponding infinite-horizon average-cost-per-stage problem. In general,
a corresponding Bellman equation and cost-to-go function might not exist, as for example discussed
in Bertsekas (2017), Ch. 5. The formulation via Ass. 1 circumvents these technical difficulties, due
to the fact that γ is not required to correspond to the optimal infinite-horizon average cost. Indeed,
from a control-theoretic point of view Ass. 1 characterizes a notion of dissipation (Willems, 2007),
where V represents a storage function and −l(x, u) + γ the supply rate (for σu = 0). Moreover,
if a Bellman equation (Bertsekas, 2017, Prop. 5.5.1) and corresponding cost-to-go function exist
for the dynamics f , then Ass. 1 is clearly satisfied for the corresponding cost-to-go function (for
σu = 0). The additional term duLuσ

2
u captures the influence of the excitation nu and is without loss

of generality, since for any smooth function ξ : Rdu → R the following applies

E[ξ(u+ nu)] = E
[
ξ(u) +∇ξ(u)⊤nu +

1

2
n⊤

u ∇2 ξ(ū) nu

]
= E[ξ(u)] +O(duσ

2
u ),

6
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where nu ∼ N (0, σ2
u I). The constant Lu in Ass. 1 makes the previous bound quantitative.

We will further require the following smoothness conditions:

Assumption 2 The policies µi are Lµ Lipschitz, the stage-cost l is L̄l smooth, and the cost-to-go
function V is L̄V smooth and satisfies V (x) ≥ −cV + LV|x|2/2 for some LV > 0 and cV ≥ 0.

Ass. 2 is met for linear dynamical systems (Abeille & Lazaric, 2020; Abbasi-Yadkori & Szepesvári,
2011; Simchowitz & Foster, 2020; Dean et al., 2018) and many nonlinear dynamical systems, e.g.,
(Khalil, 2002, Ch. 5) when l is a positive definite quadratic. These smoothness assumptions will
be needed to analyze how the cost-to-go V evolves if the feedback policy µq ̸= µ is applied and
prevent the state from diverging in finite time. We note that the quadratic lower bound on V (x) is
automatically satisfied in view of Ass. 1 if l(x, u) ≥ Ll|x|2/2 for a constant Ll > 0.

We further require the following assumption:

Assumption 3 There exists an integer M > 0 and two constants ∆ > 0 and b > 0 such that for any
x1 ∈ Rdx , σu > 0, and f i ∈ F , f i ̸= f ,

1

M

M∑
k=1

E
[ |f i(xk, uk)− f(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ du∆σ2

u

holds, where xk+1 = f(xk, uk)+nk, uk = µq(xk)+nuk with nk ∼ N (0, σ2I), nuk ∼ N (0, σ2
uI),

and q ∈ {1, . . . ,m}.

The previous assumption specifies persistence of excitation, which guarantees that the estimate ik of
the best candidate model will quickly converge to i∗, where f i∗ = f , and is standard in the statistics
(Fisher information) and system identification literature (see, e.g., Ljung, 1999, Ch. 8.2); (Slotine &
Li, 1991; Ly et al., 2017; Chatzikiriakos et al., 2025). Ass. 3 is generically satisfied for linear systems
with M = 2, whereby the constant ∆ relates to the controllability of the closed-loop dynamics and
the accuracy |Ai − A|2F and |Bi − B|2F of the different candidate models with | · |F the Frobenius
norm, see App. F. The assumption is also met for a broad class of nonlinear dynamical systems, as
shown in App. F and Prop. F.2. Ass. 3 includes a normalization with the constant b, whereas the
literature usually considers b→∞. However, as discussed in App. F our analysis also encompasses
the case b→∞; the resulting constants are more elaborate and we therefore focus our discussion on
the situation where b is finite. Moreover, Ass. 3 is a more general version of the “uniformly excited
feature” assumption, which is common in online reinforcement learning (Hao et al., 2021; Liu et al.,
2023; Lazic et al., 2020) and arises from f i(x, u) = ϕ(x, u)⊤θi and setting M = 1.

Our analysis of Alg. 1 starts by showing that the convergence to the best candidate model is fast,
which leads to the logarithmic scaling of the policy regret with N and m. This is summarized with
the following proposition:

Proposition 3.1 Let Ass. 3 be satisfied and let the step size be η ≤ min{1/(4Mσ2), 1/(2ML2b2)}.
Then, the following holds

Pr(ik = i) ≤ exp

−du∆η

4

k−M∑
j=1

σ2
uj

 ,

for k = 1, 2, . . . and any i ̸= i∗, where f i∗ = f . Moreover, it holds that

Pr(ik ̸= i∗) ≤ M2

(k −M)2
, ∀k ≥M + 1

for σ2
uk = 4

ηdu∆M

(
2

⌈k/M⌉ +
ln(m)

(⌈k/M⌉)2

)
, where ⌈·⌉ denotes rounding to the next higher integer.

Proof The proof can be found in App. C.1 and relies on a concentration of measure argument. □

An immediate corollary of the fast convergence rate established with Prop. 3.1 is that the sequence ik
will converge to i∗ in finite time (almost surely), where f i∗ = f . This is discussed in Cor. C.6. As a
result of Prop. 3.1, we are now ready to state and prove our first main result that characterizes the
policy regret in setting S1.
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Theorem 3.2 Let Ass. 1, 2 and 3 be satisfied and choose η ≤ min{1/(4Mσ2), 1/(2ML2b2)} and
σ2
uk as in Prop. 3.1. Then, the policy regret of Alg. 1 is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ cr1 + cr2M ln(m)/∆+ cr2ln(N)/∆,

for all N ≥ 2M , where the constants co, c2 are specified in Lemma C.3, and cr1, cr2 are given by

cr1 = 3cαM(dxσ
2L̄V/2 + co) + cr2/∆, cr2 = 8cα(L̄VL

2 + L̄l + Lu)/η, cα = e3c2M .

Proof (Sketch, details are in App. C.2) The proof relies on using V as a Lyapunov function and
performing the following decomposition

E[V (xk+1)] =E[V (xk+1)|ik ̸= i∗]Pr(ik ̸= i∗) + E[V (xk+1)|ik = i∗]Pr(ik = i∗). (4)

The first term describes the evolution of V (xk+1) when choosing ik ̸= i, and in this (unfavorable)
situation V may grow at most exponentially. This is captured by the following bound that relies on
the continuity assumptions on V (see Lemma C.3)

E[V (xk+1)|ik ̸= i∗] ≤ c2E[V (xk)] +O(σ2 + σ2
uk)− E[l(x, uk)|ik ̸= i∗],

where the notation O hides continuity and dimension-related constants. The second term in (4),
describes the favorable situation of choosing ik = i∗, where V (xk+1) is bounded as a result of the
Bellman-type inequality (3). This yields:

E[V (xk+1)|ik = i∗] ≤ E[V (xk)] + γ +O(σ2
uk)− E[l(xk, uk)|ik = i∗],

where continuity and dimension-related constants are again hidden. By combining the two inequalities
we arrive at

E[V (xk+1)] ≤ E[V (xk)](c2Pr(ik ̸= i∗) + 1) + γ −E[l(xk, uk)] +O(σ2
uk +Pr(ik ̸= i∗)σ2). (5)

From Prop. 3.1, we know that Pr(ik ̸= i∗) decays at rate 1/k2. This means that, roughly speaking,
the inequality (5) gives rise to a telescoping sum (see Lemma C.4 for details), which yields

N∑
k=1

E[l(xk, uk)]− γN ≤ O(
N∑

k=1

(σ2
uk + Pr(ik ̸= i∗)σ2)).

The fact that Pr(ik ̸= i∗) is summable, due to the decay at rate 1/k2, and that the sum over σ2
uk

evaluates to O(ln(N) + ln(m)) establishes the desired result up to constants (these are computed in
App. C.2). □

The proof of Thm. 3.2 relies on using V as a Lyapunov function. Provided that the stage cost l(x, u)
is bounded below by a quadratic of the type |x|2, we can modify the analysis in straightforward ways
to obtain explicit bounds on E[V (xk)] and hence on E[|xk|2], uniform over k, which is an important
concern in the adaptive control community. Moreover, these bounds require persistence of excitation
only over a finite number of steps, since Pr(ik ̸= i∗) is monotonically decreasing even when Ass. 3
is not satisfied. The details are presented in App. C.4.

3.2 INFINITE CARDINALITY

The ideas described in the previous section translate to the situation in which the set of candidate
models F is a bounded subset of a normed vector space with norm ∥ · ∥. For example, F could
represent the set of bounded, L-Lipschitz continuous functions that map from Rdx × Rdu → Rdx ,
with ∥ · ∥ the supremum norm. Alternatively, F could be a bounded subset of the set of square
integrable functions. Our presentation focuses on the main ideas that enable us to apply the arguments
from the previous section; the details and formal proofs can be found in App. D.

The decision-making strategy for S2 is listed in Alg. 2 (see App. D). Alg. 2 computes a minimizer
argminf̄∈F sk(f̄), which will be denoted by f∗, where sk(f̄) denotes the prediction error as before,

sk(f̄) =

k−1∑
j=1

|xj+1 − f̄(xj , uj)|2

1 + |(xj , uj)|2/b2
, f̄ ∈ F.
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We then construct an ϵ-packing of the set F , denoted by F ϵ
k by greedily adding functions f i ∈ F as

long as ∥f i − f̄∥ > ϵ for all f̄ ∈ F ϵ
k . As a result F ϵ

k covers F by construction, i.e., for every f ∈ F
there exists f i ∈ F ϵ

k such that ∥f i−f∥ ≤ ϵ. The cardinality of F ϵ
k is bounded by the packing number

of F , which is denoted by m(ϵ). The algorithm then randomly samples ik as before and applies the
feedback policy µik that corresponds to model f ik ∈ F ϵ

k . Clearly, these steps (minimization over
f̄ ∈ F , constructing the packing, and solving a dynamic programming problem at every iteration) are
computationally intractable in general and one would have to resort to approximations in practice.
The purpose of Alg. 2 is to provide an upper bound on the sample complexity of online reinforcement
learning in this very general setting and not to characterize computational complexity; see the next
subsection for a computationally tractable variant. As before, the key step to our analysis is to ensure
that Pr(ik = i) decays rapidly for models f i ∈ F ϵ

k where ∥f i − f∥ is large. The fact that the
dynamics f are not included in F ϵ

k is of minor importance, since by construction F ϵ
k contains f∗,

the minimizer of sk(f). This means that the arguments used in deriving Prop. 3.1 apply in the same
way and implies that Pr(ik ̸∈ I∗k) ≤M2/(k −M)2 as before, where I∗k denotes the set of models
f i∗ ∈ F ϵ

k that satisfy ∥f i∗ − f∥ ≤ ϵ. As a result, the same arguments as in the proof of Thm. 3.2
apply, which yields the statement of Thm. 2.2. The details are presented in App. D.

3.3 PARAMETRIC MODELS

The following section discusses the situation where the set of candidate models F is parametrized by
a parameter θ ∈ Ω ⊂ Rp, where Ω is contained in a p-dimensional unit ball, that is,

F = {fθ : Rdx × Rdu → Rdx | θ ∈ Ω}.

The canonical example we have in mind is when fθ is parametrized with a large neural network,
transformer, or state-space architecture, where θ represents the parameters. As in the previous section,
we assume that f ∈ F , and without loss of generality, we set f = fθ=0, i.e., the parameters are
centered around f .

Alg. 3 has a particularly straightforward interpretation, which also facilitates its implementation in
practice. In each iteration, fθk is sampled from the posterior distribution over models fθ, scaled
by η. In the special case where fθ(x, u) = ϕ(x, u)⊤θ we note that the density exp(−ηsk(θ))/Z
corresponding to the random variable θk is Gaussian, with mean and covariance

argmin
θ∈Rp

k−1∑
j=1

|xj+1 − ϕ(xj , uj)
⊤θ|2

1 + |(xj , uj)|2/b2
,

1

2η

k−1∑
j=1

ϕ(xj , uj)ϕ(xj , uj)
⊤

1 + |(xj , uj)|2/b2

−1

.

The Gaussian mean and covariance can be efficiently evaluated by running a recursive least squares
algorithm, resulting in a per-iteration computational complexity of only O(p2). The corresponding
computation of the policy µθ for the model fθ is more challenging, but can, in principle, be done
offline with dynamic programming, or in an offline simulation with proximal policy optimization, for
example. A notable exception is when ϕ(x, u) is linear, in which case the corresponding (steady-state
optimal) policy µθ is linear and can be computed by solving a Riccati equation in O(d3x) steps. If
fθ has a more general structure, the sampling can, for example, be implemented with Langevin
Monte-Carlo (Vempala & Wibisono, 2019). The regret analysis follows the same steps as in Sec. 3.1
and is included in App. E.

4 CONCLUSION

This article provides policy-regret guarantees for online reinforcement learning with nonlinear
dynamical systems over continuous state and action spaces. We provide a suite of algorithms and
prove that the resulting policy regret over N steps scales as O(ln(N)/∆+ ln(m)/∆) in a setting
where there is a finite class of m models that are separated via the constant ∆ and as O(

√
Np) in a

setting where models are parametrized over a compact real-valued space of dimension p. The results
require persistence of excitation, and rely on continuity assumptions on the dynamics, feedback
policies, and a corresponding value function.

The results highlight important and fruitful connections between reinforcement learning and control
theory and open numerous exciting future research avenues.
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A RELATED WORK

This article revolves around online reinforcement learning with multiple nonlinear candidate models.
We adopt a viewpoint at the intersection of online decision-making, reinforcement learning, and
adaptive control. We review representative works along major distinct algorithmic ideas as follows.

Posterior sampling reinforcement learning has been introduced by Osband et al. (2013); Osband
& Van Roy (2014); Osband et al. (2016); Osband & Van Roy (2017), where sample complexity of
online reinforcement learning is typically quantified via the eluder dimension. These works focus on
episodic reinforcement learning and draw analogies to stochastic multi-armed bandits and Thompson
sampling (Russo et al., 2018). The relation to Thompson sampling enables algorithms that are
effective in practice and, compared to optimistic approaches discussed below, avoid the computation
of confidence regions, which can be nontrivial. These initial works focus on episodic and finite-state-
action settings. The resulting policy-regret guarantees are Bayesian (so-called Bayesian regret), i.e.,
the regret bounds do not hold for any potential environment in the set of candidates, but only in
expectation, when environments are sampled according to the prior. Our work establishes frequentist
policy-regret guarantees by introducing additional exploration. One line of follow-up works by
Abbasi-Yadkori & Szepesvári (2015); Abeille & Lazaric (2017); Kargin et al. (2022) deals with
continuous states and actions by exploiting linear parameterizations of dynamics and/or controllers.
Another line of works by Fan & Ming (2021); Sasso et al. (2023) leverages approximations of
dynamics, rewards, or value functions to navigate through continuous state-action spaces. Model-free
variants of posterior-sampling reinforcement learning (Osband et al., 2016; 2019; Janz et al., 2019)
maintain a distribution of value functions (instead of dynamics), albeit entailing challenges in explicit
representations and accurate updates of such value functions. The online non-episodic scenario,
most relevant to our work, is addressed in Abbasi-Yadkori & Szepesvári (2015); Theocharous et al.
(2018); Xu et al. (2024). Along this line, Xu et al. (2024) augment existing posterior sampling
reinforcement learning with an environment resampling at random Bernoulli trials. This addition
generalizes the theory to high-dimensional weakly communicating Markov decision processes and
continuous state-action spaces via function approximation in non-episodic settings.

Our algorithmic paradigm falls into the category of posterior sampling reinforcement learning.
Different from existing works, we bridge insights from statistics (Hedge updates) and control
(dissipativity and Lyapunov analysis) to handle dependent states, actions, and losses in online
non-episodic reinforcement learning with continuous states and actions. This bridge enables us to
explicitly establish frequentist policy regret guarantees, closed-loop stability, and bounded losses in
the presence of complex coupling arising from non-stationary and nonlinear dynamics. Our policy-
regret guarantees are subject to a persistence of excitation/identifiability assumption as introduced in
the system identification and statistics literature (Ljung, 1999, Ch. 8.2); (Slotine & Li, 1991), which
are weaker than the mixing assumptions from Xu et al. (2024) that, e.g., do not apply to dynamics
close to the stability boundary.

Optimism in the face of uncertainty is a well-known paradigm from the multi-armed bandit
literature that inherently trades off exploration with exploitation. The paradigm has been applied
to online reinforcement learning in the tabular setting by Auer & Ortner (2006); Bartlett & Tewari
(2009); Jaksch et al. (2010), and later extended to more general Markov decision processes by
Abbasi-Yadkori & Szepesvári (2011); Cohen et al. (2019); Abeille & Lazaric (2020); Croissant et al.
(2024); Kakade et al. (2020); Zanette et al. (2021); Yang & Wang (2020); Jin et al. (2023). Later
approaches hinge on iteratively refining parametric models with confidence bounds and applying
policies associated with the most optimistic model. The resulting frequentist regret bounds typically
enjoy a square-root dependence on the time horizon (except for Zanette et al. (2021)) and introduce
different complexity measures that capture the function class at hand. The work by Yang & Wang
(2020); Jin et al. (2023) focuses on an episodic setting with linear Markov decision processes. The
bound in Kakade et al. (2020) depends on the dimension of a feature representation and is vacuous
if process noise is absent, Croissant et al. (2024) relies on a combination of eluder dimension and
covering numbers, Cohen et al. (2019); Abeille & Lazaric (2020) focus on the linear-quadratic
regulator. More generally, the challenges of the optimism in the face of uncertainty paradigm lie in i)
computing confidence sets and ii) optimizing over optimistic policies on the basis of these confidence
sets. The suggested complexity measures, such as the eluder dimension (Foster & Rakhlin, 2023) and
variants thereof, tend to be difficult to evaluate and to assert boundedness.
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Our algorithms do not introduce optimism in the face of uncertainty, thereby avoiding the computation
of confidence intervals and optimisitic policies (in Alg. 1 policies can even be computed offline).
However, exploration must be incorporated and analyzed explicitly, and we rely on the notion of
persistence of excitation to do so. Persistence of excitation has a rich history in system identification,
statistics, and adaptive control (Ljung, 1999; Slotine & Li, 1991), and is tailored to continuous state-
action systems, unlike eluder dimension, Bellman-rank, etc., which are rooted in (linear) Markov
decision processes and dynamic programming. We further use packing numbers, which is standard
and well-established, as a complexity measure for our function class. The overall policy-regret
guarantees share a similar square root dependence on N with state-of-the-art algorithms based on the
principle of optimism, but feature a complexity measure suitable for continuous state-action systems.

The separation principle describes the algorithmic idea of separating identification and optimal
control. This approach has turned out to be very effective for linear quadratic regulators (see, e.g.,
Dean et al., 2018; Mania et al., 2019; Simchowitz & Foster, 2020). The earlier work by Dean et al.
(2018) incorporated model-uncertainty via a robust control synthesis; however it was later found
(Mania et al., 2019; Simchowitz & Foster, 2020) that the robust control synthesis can be replaced by
solving the standard linear quadratic regulator problem, thereby simplifying control synthesis. The
works by (Mania et al., 2019; Simchowitz & Foster, 2020) offer improved policy-regret guarantees
and lower bounds (Simchowitz & Foster, 2020).

This work shares the idea of certainty-equivalence with Mania et al. (2019); Simchowitz & Foster
(2020), but with the key difference that model candidates are sampled from a posterior over models
rather than the maximum a-posteriori. The posterior sampling enables a Hedge-type analysis that
facilitates generalization beyond linear systems, whereas the works mentioned rely on perturbation
bounds to discrete Riccati equations, which are tailored to linear time-invariant systems. We further
recover a O(

√
Np) policy-regret guarantee for linear systems matching Simchowitz & Foster (2020).

Multi-model adaptive control emphasizes the versatility of a system to handle diverse operating
conditions by switching among multiple candidate models and associated controllers (Narendra &
Balakrishnan, 1997; Anderson et al., 2000; Hespanha et al., 2001; Muehlebach, 2023; Chatzikiriakos
& Iannelli, 2024). There is a supervisory policy that tracks the performance of the running controller
and, if necessary, applies another more appropriate one based on a switching logic. Oftentimes the
switching criterion follows the model (and the corresponding controller) with the smallest estimation
error integral (Liberzon, 2003; Anderson & Dehghani, 2008) or implements performance-based
falsification (Safonov & Tsao, 1997). These works mainly focus on asymptotic stabilization, whereas
this article explores online reinforcement learning characterized by nonasymptotic policy-regret.

Online control with switching policies is closely related to adaptive control with multiple models.
Nonetheless, instead of tackling asymptotic stabilization, online control addresses optimal control
from a modern finite-sample perspective. Specifically, Li et al. (2023); Kim & Lavaei (2024) consider
regulating a nonlinear dynamical system by iteratively selecting a control input from a finite set
of candidate control policies. The key principles are to use the system trajectory driven by the
chosen controller as a performance criterion to remove non-stabilizing controllers and identify the
best stabilizing controller in hindsight via Exp3 (Auer et al., 2002), a classical multi-armed bandit
algorithm. The regret bounds therein scale sublinearly with the time horizon, but grow exponentially
with the number of non-stabilizing controllers. In contrast, in the setting with finite candidate models,
our algorithm attains a favorable logarithmic regret in terms of both the time horizon and the number
of models. Furthermore, we extend the design and analysis to handle a continuum of nonlinear
candidate models contained in a bounded subset of a normed space. Our multi-model perspective
is also connected to the line of works by Doya et al. (2002); Rajeswaran et al. (2017); Modi et al.
(2020) that use dynamic convex combinations of an ensemble of models to synthesize policies. In
contrast, we tackle a challenging non-episodic scenario without state reset and handle more general
model classes including parametric families and families with infinite cardinality.

Online optimization for continuous control is based on online performance optimization over an
appropriate policy class. A frequent policy class is given by disturbance-action policies (Agarwal
et al., 2019; Hazan et al., 2020; Simchowitz et al., 2020; Li et al., 2021; Chen & Hazan, 2021; Zhao
et al., 2023), which are motivated by the design of robust controllers for linear systems (Gartska
& Wets, 1974; Löfberg, 2003; Goulart et al., 2006). These works are restricted to linear systems,
although growing attention is currently paid to online nonlinear control, where additional structure,
e.g., matched uncertainty (Boffi et al., 2021)), contractive perturbation (Lin et al., 2024) or incremental
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input-to-state stability (Karapetyan et al., 2023) is introduced. Another approach is to parametrize
policies, e.g., via linear functions and to apply zeroth-order or first-order optimization techniques
(see, e.g., Fazel et al., 2018; Ma et al., 2024; Hu et al., 2023). We refer the readers to Hazan & Singh
(2022); Tsiamis et al. (2023) for comprehensive reviews. Compared to the algorithms and analysis
presented herein, the benchmarks in these works are typically different, and focus, for example, on
the set of linear disturbance feedback policies or various policy parametrizations that are optimized
subject to a fixed system model. The system dynamics are a-priori known to the decision-maker.
Hence, no tradeoff between exploration and exploitation is needed and the methods are more closely
related to online or stochastic optimization, rather than reinforcement learning.

In summary, all the aforementioned works provide a comprehensive ground for online decision-
making. Nonetheless, achieving sublinear policy regret in an online non-episodic regime encom-
passing a broad class of nonlinear dynamics remains a critical challenge. In this article, we adopt a
multi-model perspective and provide a suite of algorithms that identify the best candidate model and
apply a certainty-equivalent policy, all equipped with nonasymptotic frequentist policy-regret guar-
antees. More precisely, for linear quadratic regulator problems we recover O(

√
Np) regret bounds

derived in earlier works (e.g., (Simchowitz & Foster, 2020)), but our analysis generalizes to nonlinear
dynamics and smooth non-quadratic stage costs. In the nonlinear setting, prior work has established
similar O(

√
N) results, however, under different assumptions, such as parametrization via kernels

(Kakade et al., 2020), dynamics linear in the parameters (Boffi et al., 2021), or contraction (Lin et al.,
2024). Other works, such as Li et al. (2023) achieve policy regret ofO(m1/3N2/3)+exp(O(|M|)) in
a finite model setting (|M| is the number of potentially destabilizing candidate controllers), which is
much worse than our resultO(ln(N)+ ln(m)). While aligned with posterior sampling reinforcement
learning (Osband et al., 2013), we tackle an online non-episodic setting with dependent continuous
states, actions, and losses. We further establish frequentist policy-regret guarantees, closed-loop
stability, and bounded losses. Compared to optimistic methods (Abeille & Lazaric, 2020; Croissant
et al., 2024) that achieve O(

√
N) regret and a square-root dependence on the eluder dimension, our

assumptions are explicit and encompass a large set of nonlinear systems. Further, we characterize
the scaling of policy regret with respect to complexity measures of the model class in the finite,
nonparametric, and parametric regimes. Our approach avoids the computation of optimistic policies
or confidence regions and can therefore be directly integrated in nonlinear model predictive control
techniques (Rawlings et al., 2017; Borrelli et al., 2017). We envision that fruitful advances in these
directions will further consolidate our multi-model perspective on online decision-making.

B NUMERICAL EXAMPLE

We present results of a numerical simulation to illustrate our algorithms. To simplify the presentation
we consider a linear time-invariant dynamical system of dimension dx = 20 and du = 5 and apply
the two algorithms Alg. 1 and Alg. 3. The stage cost is l(x, u) = |x|2 + |u|2. The dynamics
f (unknown to the decision-maker) consist of five four-dimensional leaky integrators of the type
xi
k+1 = 0.8xi

k + xi+1
k , i = 1, . . . , 3. The dynamics are relatively challenging for control, as there is

a lag of five steps until a change in the input affects x1
k. The above dynamics are compactly written as

f(x, u) = Ax+Bu, where x ∈ Rdx is the state, u ∈ Rdu is the input, A = I5 ⊗A0, B = I5 ⊗B0

are system matrices, I5 is an identity matrix of size 5, ⊗ denotes the Kronecker product, and

A0 =

0.8 1 0 0
0 0.8 1 0
0 0 0.8 1
0 0 0 0.8

 , B0 =

000
1

 .

It is assumed that the elements of the matrices A and B that define the dynamics are unknown with
respect to an absolute error of 0.1 and relative error of 20%, which gives rise to a large set of possible
models including some open-loop unstable ones. For instance, the jk-th element ajk of A, is known
to be in the range [0.8ajk − 0.1, 1.2ajk + 0.1].

B.1 SETTING S1

Set-up: We generate m candidate models f i(x, u) = Aix+Biu at random, whereby each element
of Ai, Bi is randomly drawn from the known parameter range, e.g., the jk-th element aijk of Ai is
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sampled from the uniform distribution over [0.8ajk − 0.1, 1.2ajk + 0.1]. The feedback policy µi

related to candidate model f i is

µi(x) = −Kix, where Ki = (I +Bi⊤PBi)−1Bi⊤P iAi,

and P i ∈ Rdx×dx is a positive definite matrix satisfying the discrete-time algebraic Riccati equation
involving Ai and Bi Bertsekas (2017). The policies µi are computed through the built-in dlqr
command in MATLAB and the settings of Alg. 1 were chosen as specified in Thm. 3.2, that is

η = 10, σ2
uk =

10

ηduM

(
2

⌈k/M⌉
+

ln(2m)

⌈k/M⌉)2

)
, M = 2.

Assumptions of Thm. 3.2: Ass. 1-3 are clearly satisfied:

• The cost-to-go function V is given by V (x) = x⊤Px, where P satisfies the discrete-
time algebraic Riccati equation involving A and B. Hence, Ass. 1 is satisfied with γ =
tr(P )σ2, Lu = σ̄(P ), where σ̄ denotes the maximum singular value of a matrix.

• Ass. 2 is satisfied with cV = 0, LV = σ(P ), where σ is the minimum singular value of a
matrix.

• Ass. 3 is satisfied (for any M > 0) with
ce = min

i∈{1,...,m}
|Bi −B|2F,

for example, as can be seen from (13). Larger values of ce can be achieved when choosing
M larger and factoring in the controllability Gramian W c

k.

Please note that the constants ce, cV, LV, γ only appear in the resulting policy-regret bounds and are
not needed for running Alg. 1.

Computational complexity: All experiments run on a Laptop (Intel Core i7 processor with
2.30GHz; 32 GB of random access memory) and are executed in a few minutes even when increasing
the number of candidate model up to 10,000. The offline computation of the policies µi has cost
O(d3x + d2udx), the online computation in Alg. 1 is O(dxm+ dudx).

B.2 SETTING S2

Set-up: The parameter space Ω ⊂ Rp with p = d2x+dxdu = 500 covers the entire parameter range
Ω = {(Ā, B̄) ∈ Rp | ājk ∈ [0.8ajk − 0.1, 1.2ajk + 0.1], b̄jk ∈ [0.8bjk − 0.1, 1.2bjk + 0.1]},

where we slightly abuse notation to avoid distinguishing between different ways of stacking vectors
and matrices (we will frequently do so in the following as the stacking is clear from context). For a
given set of matrices (Ā, B̄) ∈ Ω the corresponding feedback controller µ̄(x) = −K̄x is given as
in setting S1 and requires solving the discrete-time algebraic Riccati equation involving Ā, B̄. As
before, the feedback policies are computed through the built-in dlqr command in MATLAB and the
settings of Alg. 3 are chosen as specified in Thm. E.1, that is,

η = 10, ϵ = p/T, σ2
uk =

10

ηduMϵ

(
2

⌈k/M⌉
+

p

⌈k/M⌉2

)
, M = 5.

The posterior distribution over models in Alg. 3 is updated by a recursive least squares algorithm and
we set b→∞. The recursive implementation has the advantage that reasonable estimates of A and
B are already provided in the first p steps, which is important for the initial transient behavior.

Assumptions of Thm. E.1: Ass. 2, Ass. 6, and Ass. 7 are satisfied:

• The cost-to-go function is given by V (x) = x⊤Px, where P satisfies the discrete-time
algebraic Riccati equation involving A and B. One can easily show that Ass. 7 is satisfied by
applying Prop. D.1. (As pointed out in (Simchowitz & Foster, 2020, Prop. 6), for example,
the policies µθ are continuously dependent on the system parameters θ = (A,B).)

• Ass. 7 is satisfied with cV = 0, LV = σ(P ).
• Ass. 6 is satisfied in view of (13) in Sec. 3, provided that M = 5, which ensures that the

controllability Gramian W c
k is full rank for any feedback gain K̄. (The dynamics A,B give

rise to decoupled four-dimensional leaky integrators, hence the Gramian W c
4 defined in

Sec. 3 is guaranteed to be full rank.)
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Figure 1: The first panel shows the evolution of the parameter error of Alg. 1, while the second panel
shows the evolution of the two-norm of the states. The green line indicates the performance of the
optimal (steady-state) policy on a different realization of nk. We note that near-optimal steady state
performance is reached in about 25 steps.

Computational complexity: Sampling the parameter θk in Alg. 3 amounts to sampling from a
truncated Gaussian, where the mean and covariance of the Gaussian are computed via the recursive
least squares algorithm. The computation of mean and covariance can be done in at mostO(d2x+dxdu)
elementary operations at each iteration k. We then sample θk by applying rejection sampling (although
much more efficient approaches could be applied). The policy µθk is then computed by solving
the corresponding discrete-time algebraic Riccati equation, which requires at most O(d3x + d2udx)
elementary operations.

B.3 RESULTS

Simulation results for the setting S1 are shown in Fig. 1, whereas the results for setting S2 are shown
in Fig. 2. A rapid convergence to near-optimal steady-state behavior can be observed in both cases.
We note that the space of parameters in Alg. 3 is uncountable compared to Alg. 1 and therefore Alg. 3
takes about twice as long to converge. Alg. 1 achieves optimal steady-state performance very quickly
(in about twenty steps). We therefore believe that Alg. 1 provides an algorithmic paradigm that is
applicable to many emerging real-world machine learning and engineering challenges, including the
control of intelligent transportation systems or automated supply chains.

To showcase the scalability of our algorithms, we provide comparison results when the number of
models m in Alg. 1 is increased from 10 to 10, 000. We perform 40 independent realizations of
Alg. 1 for each value of m and show the corresponding policy regret in Fig. 3a (averaged over the
40 realizations). Once again we observe a fast initial transient phase after which the policy regret
stabilizes and near-optimal steady-state performance is achieved. Fig. 3b shows the corresponding
evolution of the two-norm of the state trajectory on a single realization. The plots highlight that
Alg. 1 scales favorably in the number of models.

C DETAILS OF SEC. 3.1

We first state and prove two intermediate lemmas that are used in the proof of Prop. 3.1. The two
lemmas express the fact that the larger the expected model deviation f i − f (accumulated over the
past steps), the smaller the corresponding probability of selecting model i.

Lemma C.1 For any step size η > 0 it holds that

Pr(ik = i) ≤ E[e−η(sik−sjk)],

for all sjk (and in particular for sjk = s∗k corresponding to f ).

Proof We note that pik is given by

pik =
e−ηsik∑m
j=1 e

−ηsjk
≤ e−η(sik−s̄k) ≤ e−η(sik−sjk),
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Figure 2: The first panel shows the evolution of the parameter error of Alg. 3, while the second panel
shows the evolution of the two-norm of the states. The green line indicates the performance of the
optimal (steady-state) policy on a different realization of nk. Compared to Fig. 1b the overshoot is
larger and the convergence to near-optimal performance requires about 60 iterations.
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Figure 3: The first panel shows the change in policy regret of Alg. 1 when varying m. The second
panel shows the evolution of the two-norm of the state trajectory. We note that the behavior is
consistent over the different values of m (from 10 to 10, 000, which amounts to three orders of
magnitude). The green line indicates the performance of the optimal (steady-state) policy on the
same realization of nk.
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for all j ∈ {1, . . . ,m}, where s̄k = mini∈{1,...,m} s
i
k. In addition, it holds that

Pr(ik = i) = E[1ik=i] = E[E[1ik=i|x1, . . . , xk, uk, nk]] = E[pik],

where 1 denotes the indicator function, which yields the desired result. □

Lemma C.2 Let

lik :=
|xk+1 − f i(xk, uk)|2

1 + |(xk, uk)|2/b2
,

where b > 0 is constant. Let Fk denote the collection of random variables xj , uj , ij , nj−1, nuj up
to time k. Then, the following bound holds for all 0 < η ≤ min{1/(4σ2), 1/(2L2b2)} and for all
1 ≤ q ≤ k:

E[e−η(lik−l∗k)|Fq] ≤ exp

(
−η

4
E

[
|f − f i|2

1 + |(xk, uk)|2/b2
∣∣∣Fq

])
,

where f stands for f(xk, uk) and f i for f i(xk, uk), and where l∗k corresponds to the loss of the
candidate f .

Proof We note that |xk+1 − f i(xk, uk)|2 can be expressed as

|f − f i + nk|2 = |f − f i|2 + 2n⊤
k (f − f i) + n⊤

k nk,

and, as a result, lik − l∗k is given by

|f − f i|2 + 2n⊤
k (f − f i)

1 + |(xk, uk)|2/b2
.

Hence, conditioned on xk, uk, the randomness in lik− l∗k is solely due to n⊤
k (f −f i), which describes

a sum of dx independent Gaussian random variables, weighted by the components of f − f i. As
a result, we exploit the closed-form expression for the moment generating function of a Gaussian,
which yields

E[e−η(lik−l∗k)|xk, uk] ≤ exp

(
2η2σ2|f − f i|2

1 + |(xk, uk)|2/b2
− η

|f − f i|2

1 + |(xk, uk)|2/b2

)
.

Thus, for η ≤ 1/(4σ2), the following bound holds

E[e−η(lik−l∗k)|Fq] ≤ E

[
exp

(
− η|f − f i|2/2
1 + |(xk, uk)|2/b2

)∣∣∣Fq

]
.

As a result of the Lipschitz continuity of f and f i, the term

0 ≤ |f − f i|2

1 + |(xk, uk)|2/b2
≤ 4L2b2 (6)

is bounded. When deriving the previous inequality we used the fact that |f i(xk, uk)− f(xk, uk)| ≤
|f i(xk, uk)− f i(0, 0)|+ |f(xk, uk)− f(0, 0)| ≤ 2L|(xk, uk)| by Lipschitz continuity of f and f i.2
We can therefore apply a “Poissonian” inequality (see, e.g., Cesa-Bianchi & Lugosi, 2006, App. A),
which yields

E[e−η(lik−l∗k)|Fq] ≤ exp

(
(e−2ηL2b2 − 1)

4L2b2
E

[
|f − f i|2

1 + |(xk, uk)|2/b2
∣∣∣Fq

])
,

for all η ≤ 1/(4σ2). The desired result follows from the fact that (e−2ηL2b2 − 1)/(4L2b2) ≤ −η/4
for all η ≤ min{1/(4σ2), 1/(2L2b2)}. □

2We stated the inequality assuming f(0, 0) = f i(0, 0) = 0. In the more general situation the upper bound
2|f i(0, 0)− f(0, 0)|2 + 8L2b2 applies in (6).
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C.1 PROOF OF PROP. 3.1

We first consider the iterations k = k′M + 1, for k′ = 0, 1, . . . . These are the iterations k where
the random variable ik is updated according to the distribution pik (conditional on xk, uk). It will be
useful to introduce the variables l̄ik′ as follows:

l̄ik′ =

M∑
j=1

lik′M+j ,

which corresponds to a sum of the variables lik over M steps. Let Fk′ denote the collection of all
random variables (xk, uk, ik, nk−1, nuk) up to time k = k′M + 1. We condition on Fk′−1 and
conclude from Lemma C.2

E[e−η(l̄i
k′−l̄∗

k′ )|Fk′−1]=E[e
−η

∑M
j=1(l

i
k′M+j

−l∗
k′M+j

)|Fk′−1]

≤
M∏
j=1

(E[e−ηM(li
k′M+j

−l∗
k′M+j

)|Fk′−1])
1/M

≤
M∏
j=1

(e
− ηM

4 E[
|f−fi|2

1+|(xk,uk)|2/b2
|Fk′−1])1/M

≤ exp

(
−ηMcedu

4
σ2
u(k−1)

)
, (7)

where we have used Hölder’s inequality for the first inequality, Lemma C.2 for the second inequality,
and Ass. 3 for the third inequality. As a result, by unrolling the recursion for k′ − 1, k′ − 2, . . . , we
conclude that

E[e−η(sik−s∗k)] ≤ exp

−ηM∆du
4

k′∑
j=1

σ2
u(Mj)

 .

By virtue of Lemma C.1, this implies

Pr(ik = i) ≤ exp

−ηM∆du
4

k′∑
j=1

σ2
u(Mj)

 .

The bound holds in fact also for k + 1, k + 2, until k + (M − 1), since, by definition, ik = ik+1 =
· · · = ik+(M−1). This proves the first bound of Prop. 3.1.

It remains to derive the second bound, which is done by approximating the sum over σ2
uk from below.

We find

ηM∆du
4

k′∑
j=1

σ2
u(Mj) =

k′∑
j=1

(
2

j
+

ln(m)

j2

)
≥
∫ k′

1

2

j
dj + ln(m) ≥ 2ln(k′) + ln(m),

for k′ ≥ 1. This concludes that Pr(ik = i) ≤ 1/(mk′2), due to the fact that m ≥ 1. We further note
that k′ = (k − 1)/M by our choice of k. However, ik remains unchanged for the M next iterations,
and therefore

Pr(ik+M−1 = i) ≤ M2

m(k − 1)2
,

which holds for all k ≥ 2 and i ̸= i∗. This implies Pr(ik = i) ≤ M2/(m(k − M)2) for all
k ≥ M + 1 by a change of variables. Applying a union bound yields the second inequality of
Prop. 3.1, i.e.,

Pr(ik ̸= i∗) ≤
∑
i ̸=i∗

Pr(ik = i) ≤ M2

(k −M)2
.

□
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C.2 PROOF OF THM. 3.2

We will use V as a Lyapunov function and have

E[V (xk+1)] =E[V (xk+1)|ik ̸= i∗]Pr(ik ̸= i∗) + E[V (xk+1)|ik = i∗]Pr(ik = i∗). (8)

The first term can be further simplified in view of Lemma C.3, which yields

E[V (xk+1)|xk, ik ̸= i∗] ≤ c2V (xk) + L̄Vdxσ
2/2 + co

− E[l(x, uk)|xk, ik ̸= i∗] + (L̄VL
2 + L̄l)duσ

2
uk. (9)

The second term in (8) is bounded as a result of the Bellman-type inequality (3) for the policy µ (the
policy that corresponds to V ). It will be convenient to rewrite the bound (3) in the following way:

E[V (f(x, u) + n)] ≤ V (x)− E[l(x, u)] + q(x) + duLuσ
2
u,

where u = µ(x) + nu, (nu, n) are independent with nu ∼ N (0, σ2
uI), n ∼ N (0, σ2I), and q(x) is

chosen such that q(x) ≤ γ and −E[l(x, u)] + q(x) ≤ 0.3 The function q(x) is introduced to account
for the fact that the policy µ might in principle also achieve a running cost E[l(x, u)] ≤ γ in the short
term, since γ captures only the steady-state performance. As a result, we obtain

E[V (xk+1)|ik = i∗] ≤ −E[l(xk, uk)|ik = i∗] + E[V (xk)] + γk + duLuσ
2
uk, (10)

where γk := E[q(xk)]. By combining (9) and (10) with (8) we arrive at

E[V (xk+1)] ≤ E[V (xk)](c2Pr(ik ̸= i∗) + 1) + γk − E[l(xk, uk)]

+ L̄uduσ
2
uk + (L̄Vdxσ

2/2 + co)Pr(ik ̸= i∗),

where L̄u := L̄VL
2+ L̄l+Lu. As a result of Prop. 3.1, we know that Pr(ik ̸= i∗) ≤M2/(k−M)2

for k ≥M + 1. We further note that E[l(xk, uk)] ≥ γk and γk ≤ γ (by our choice of γk). We now
invoke Lemma C.4 and conclude

N∑
k=1

(E[l(xk, uk)]− γk) ≤ cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(ik ̸= i∗),

where we have used the fact that V (x1) = 0 and the following calculation
∞∏
k=1

(c2Pr(ik ̸= i∗) + 1) ≤ ec2
∑∞

k=1 Pr(ik ̸=i∗) ≤ e3Mc2 = cα,

due to the fact that
∞∑
k=1

Pr(ik ̸= i∗) ≤ 2M − 1 +
∞∑

k=2M

M2

(k −M)2

≤ 2M +

∫ ∞

2M

M2

(k −M)2
dk ≤ 3M.

Moreover, we bound the sum over σ2
uk as follows

N∑
k=1

σ2
uk =

4

duη∆

N∑
k=1

(
2

M⌈k/M⌉
+

M ln(m)

(M⌈k/M⌉)2

)

≤ 4

duη∆

N∑
k=1

(
2

k
+

M ln(m)

k2

)
≤ 8

duη∆
(1 + ln(N − 1) +M ln(m)).

Combining the previous inequalities and taking advantage of the fact that γk ≤ γ yields the desired
result. □

3This can by achieved by setting q(x) = E[V (f(x, µ(x)+nu)+n)]−V (x)+E[l(x, µ(x)+nu)]−duσ2
uLu

for γ ≥ E[l(x, µ(x) + nu)] and q(x) = γ otherwise.
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C.3 SUPPORTING LEMMAS IN THE PROOF OF THM. 3.2

This section contains two lemmas that support the proof of Thm. 3.2.

Lemma C.3 Let Ass. 2 be satisfied. Then, there exist two constants c2, co ≥ 0 such that

E[V (f(x,µi(x)+nu)+n)] ≤ c2V (x)− E[l(x, µi(x)+nu)] + co + (L̄VL
2+L̄l)duσ

2
u +

L̄V

2
dxσ

2,

for all x ∈ Rdx , σu > 0, and i ∈ {1, . . . ,m}, where the constant c2 is given by

c2 = (8L2L̄V(1 + Lµ)
2 + 2L̄l(1 + 2L2

µ))/LV,

and co can be expressed as an explicit function of maxi∈[m] |µi(0)|, V (0), |∇V (0)|, l(0, 0),
|∇l(0, 0)|, |f(0, µ(0))|, and cV. The random variables nu and n are independent and satisfy
n ∼ N (0, σ2I), nu ∼ N (0, σ2

uI).

Proof We exploit smoothness of V to bound E[V (f(x, µi(x) + nu) + n)] by

E[V (f(x, µi(x) + nu)] +
L̄V

2
dxσ

2,

where we used the fact that the term linear in n vanishes in expectation. We further note that the term
V (f(x, µi(x) + nu)) can be bounded in a similar way:

V (f(x, µi(x) + nu)) ≤ V (f(x, µi(x))) +∇V (f(x, µi(x)))⊤∇uf(ξ)nu +
L̄V

2
|∇uf(ξ)nu|2,

where we applied the mean value theorem to rewrite f(x, µi(x) + nu)− f(x, µi(x)) as ∇uf(ξ)nu

for some ξ (dependent on nu). By applying Young’s inequality and taking advantage of the fact that
∇uf is bounded above we arrive at

E[V (f(x, µi(x) + nu))] ≤ V (f(x, µi(x))) +
1

2L̄V
|∇V (f(x, µi(x)))|2 + L̄VL

2duσ
2
u.

Due to smoothness, V is guaranteed to satisfy

|∇V (x)| ≤ co1 + L̄V|x|, V (x) ≤ co2 + L̄V|x|2,

where co1 = |∇V (0)|, and the constant co2 ≥ 0 is similarly related to |∇V (0)| and V (0). As a
result, we obtain the following upper bound on E[V (f(x, µi(x) + nu))]:

E[V (f(x, µi(x) + nu))] ≤ co2 +
c2o1
L̄V

+ 2L̄V|f(x, µi(x))|2 + L̄VL
2duσ

2
u.

The fact that f(x, µi(x)) is L(1 + Lµ) Lipschitz can be used to conclude that |f(x, µi(x))|2 ≤
co3 + 2L2(1 + Lµ)

2|x|2, where co3 = 2|f(0, µ(0))|2, which, in turn, yields the following upper
bound

E[V (f(x, µi(x) + nu))] ≤ co2 +
c2o1
L̄V

+ 2L̄Vco3 + 4L̄VL
2(1 + Lµ)

2|x|2 + L̄VL
2duσ

2
u.

We further note that the fact that l is L̄l smooth and l(x, u) ≥ 0 implies l(x, u) ≤ co4+L̄l(|x|2+|u|2)
and therefore

E[l(x, µi(x) + nu)] ≤ co5 + L̄lduσ
2
u + L̄l(1 + 2L2

µ)|x|2,

where co5 ≥ 0 is related to maxi∈[m] |µi(0)|, l(0, 0), and |∇l(0, 0)|. Combining the previous two
inequalities results in

E[V (f(x, µi(x) + nu))] ≤ co6 +
c2LV

2
|x|2 − E[l(x, µi(x) + nu)] + (L̄VL

2 + L̄l)duσ
2
u,

where co6 ≥ 0 is constant and can be expressed as a function of maxi∈[m] |µi(0)|, V (0), |∇V (0)|,
l(0, 0), |∇l(0, 0)|, and |f(0, µ(0))|. The result follows by inserting LV|x|2/2 ≤ V (x) + cV in the
previous inequality. □

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Lemma C.4 Let the sequence

Vk+1 ≤ (1 + αk)Vk + g+k − g−k , Vk ≥ 0,

be given, where k = 1, 2, . . . , αk ≥ 0 g+k ≥ 0, and g−k ≥ 0 are arbitrary sequences such that
cα :=

∏∞
k=1(1 + αk) <∞. Then, the following holds for all N ≥ 1

N∑
j=1

g−j ≤ cα

 N∑
j=1

g+j + V1

 .

Proof By unrolling the linear difference equation we obtain

VN+1 ≤
N∏

k=1

(1 + αk)V1 +

N∑
i=1

(g+i − g−i )

N∏
j=i+1

(1 + αj)

≤ cα

(
V1 +

N∑
i=1

g+i

)
−

N∑
i=1

g−i ,

where we exploited the fact that
∏N

k=1(1 + αk) < cα <∞. □

C.4 FINITE SECOND MOMENT

Corollary C.5 Let Ass. 2 be satisfied, let σ2
uk be as in Prop. 3.1, let l(x, u) ≥ Ll|x|2/2 for some

constant Ll > 0, and η ≤ min{1/(4Mσ2), 1/(2ML2b2)}. Let Ass. 3 be satisfied for at least the
first

k0 :=
⌈
M

(
1 +

√
2L̄Vc2/Ll

)⌉
steps. Then, it holds that

E[V (xk)] ≤ max{c3, c4}, ∀k ≥ 1,

with

c3 = ck0
2 k0(L̄Vdxσ

2 + co + (L̄VL
2 + L̄l)duσ

2
u1),

c4 =
2L̄V

Ll

(γ+(L̄VL
2+L̄l+Lu)duσ

2
u1+L̄Vdxσ

2 + co).

Proof We conclude from Prop. 3.1 that Pr(ik ̸= i∗) is bounded by

Pr(ik ̸= i∗) ≤ M2

(k −M)2
≤ Ll

2L̄Vc2
, (11)

for all k ≥ k0. It is important to note that persistence of excitation is only required to hold for k0
steps, as, by our choice of η, Pr(ik ̸= i∗) is monotonically decreasing (see proof of Prop. 3.1). By
Lemma C.3 we conclude that over the first k0 steps the following holds

E[V (xk+1)] ≤ c2E[V (xk)] + L̄Vdxσ
2 + co + (L̄VL

2 + L̄l)duσ
2
uk,

which implies that

E[V (xk)] ≤ ck0
2 k0(L̄Vdxσ

2 + co + (L̄VL
2 + L̄l)duσ

2
u1),

for all k ≤ k0 + 1, where we have exploited that σuk is monotonically decreasing.

By following the same reasoning (case distinction between ik = i∗ and ik ̸= i∗) as in the proof of
Thm. 3.2 we arrive at

E[V (xk+1)] ≤ E[V (xk)](Ll/(2L̄V) + 1) + γ − E[l(xk, uk)] + L̄uduσ
2
u1 + L̄Vdxσ

2 + co,

for all k ≥ k0, where we have used inequality (11) to bound Pr(ik ̸= i∗), γk ≤ γ, and the fact that
σuk is decreasing. The constant L̄u is given by L̄u = L̄VL

2 + L̄l + Lu. Due to the fact that l is
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Algorithm 2 Reinforcement learning (S2)

Inputs: F , η, M , {σ2
uk}∞k=1, ϵ

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

f∗ ← argminf̄∈F sk(f̄)
F ϵ ← greedyCover(F, f∗, ϵ)

sk(f
i)←

∑k−1
j=1

|xj+1−fi(xj ,uj)|2

1+|(xj ,uj)|2/b2
, f i∈F ϵ

ik ∼ exp(−ηsk(f i))/Z, f i ∈ F ϵ

compute µik corr. to f ik ∈ F ϵ // e.g. by d.p.
else

ik = ik−1 //stay with ik−1

end if
//follow policy ik and add excitation
uk = µik (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

Algorithm 4 greedyCover(F, f∗, ϵ)

F ϵ ← {f∗}
S ← {f̄ ∈ F | ∥f̄ − f i∥ > ϵ,∀f i ∈ F ϵ}
while S ̸= {} do

// pick an element from S
F ϵ ← F ϵ ∪ {f̄}, f̄ ∈ S

S ← {f̄ ∈ F | ∥f̄ − f i∥ > ϵ,∀f i ∈ F ϵ}
end while
return F ϵ

bounded below by a quadratic we conclude that l(x, u) ≥ Ll/L̄VV (x) for all x ∈ Rdx , which can be
used to simplify the above inequality:

E[V (xk+1)] ≤ E[V (xk)](1− Ll/(2L̄V)) + γ + L̄uduσ
2
u1 + L̄Vdxσ

2 + co.

This readily implies

E[V (xk)] ≤ 2
L̄V

Ll

(γ + L̄uduσ
2
u1 + L̄Vdxσ

2 + co),

for all k ≥ k0, which yields the desired result. □

C.5 CONVERGENCE IN FINITE TIME

Corollary C.6 (Finite time convergence) Let the assumptions of Prop. 3.1 be satisfied. Then, almost
surely, {ik}∞k=1 converges to i∗ in finite time, that is,

Pr( sup
ik ̸=i∗

k <∞) = 1.

Proof We conclude from Prop. 3.1 that Pr(ik ̸= i∗) ≤ M2/(k −M)2 for all k ≥ M + 1. This
implies for any j ≥M + 1

Pr( sup
ik ̸=i∗

k > j) ≤
∞∑
k=j

Pr(ik ̸= i∗),

where the right-hand side is bounded above by
∞∑
k=j

M2

(k −M)2
≤ M2

(j −M)2
+

∫ ∞

j

M2

(k −M)2
dk ≤ M2

j −M

(
1 +

1

j −M

)
.

Hence, the right-hand side converges to zero for large j, which yields the desired result. □

D DETAILS OF SEC. 3.2

In order to provide regret guarantees, we will slightly modify Ass. 3 from setting S1 as follows.

Assumption 4 There exists an integer M > 0 and a constant ce > 0 such that for all x1 ∈ Rdx ,
σu > 0, and f1, f2 ∈ F ,

1

M

M∑
k=1

E
[ |f1(xk, uk)−f2(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ duceσ

2
u∥f1 − f2∥2,

holds, where xk+1 = f(xk, uk)+nk, uk = µ̂(xk)+nuk with nk ∼ N (0, σ2I) and uk ∼ N (0, σ2
uI),

and where µ̂ is any policy corresponding to a model f ∈ F .
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The assumption is stated for a finite b > 0 even though it can be relaxed to b → ∞, and the
same policy-regret guarantees apply although with more elaborate constants, see App. F for further
discussion. For b → ∞ the assumption describes persistence of excitation as used in system
identification and statistics (see, e.g., Ljung, 1999, Ch. 8.2). From a maximum-likelihood point of
view, Ass. 8 ensures that the dynamics f correspond to a unique non-degenerate minimum of the
one-step prediction error, accumulated over M steps. The assumption is generically satisfied if the
models f ∈ F are linear and ∥ · ∥ denotes the Lipschitz-norm (see, e.g., Beer & Hoffman, 2013), as
highlighted in Sec. 3. A similar reasoning applies to nonlinear systems, see Sec. F.

We will further strengthen the Bellman-inequality from Ass. 1 to ensure that the steady-state perfor-
mance γ of the policy µ is stable under small policy changes that arise from models f i ∈ F close to
f . This notion of stability requires µ to optimize the corresponding Q-function. This is made precise
as follows.

Assumption 5 (Bellman-type inequality) For all small enough ξ > 0 there exists a cost-to-go
function V (corresponding to f and µ) satisfying the following inequality:

V (x) ≥ E[l(x, µi(x) + nu) + V (f(x, µi(x) + nu) + n)]− γ − Luduσ
2
u − Lµξ

2,

for all policies µi corresponding to ∥f i − f∥ < ξ, for all x ∈ Rdx , where Lu, Lµ > 0 are constant,
n ∼ N (0, σ2I), and nu ∼ N (0, σ2

uI).

The following proposition provides a sufficient condition for Ass. 5 to hold. In particular, the
proposition applies to the class of linear dynamical systems with a quadratic, positive definite stage
cost, where all assumptions are satisfied (see also Prop. 6 in Simchowitz & Foster, 2020).

Proposition D.1 Let Ass. 1 and Ass. 2 be satisfied and fix x ∈ Rdx . If, in addition,

l(x, u) ≥ Ll|x|2/2, µ(x) ∈ argmin
u∈Rdu

E[l(x, u) + V (f(x, u) + n)], and ∥µi − µ∥op ≤ L′
µξ,

holds for all policies µi corresponding to ∥f i − f∥op < ξ and all ξ > 0 small enough, then Ass. 5
is satisfied for x and all σu small enough, where Ll, L

′
µ > 0 are constant and n ∼ N (0, σ2I). The

Lipschitz-norm ∥ · ∥op is defined for any Lipschitz-continuous function q : Rdx → Rd as

∥q∥op := max
{
|q(0)|, sup

x1,x2∈Rdx

|q(x1)− q(x2)|
|x1 − x2|

}
.

Proof Let cs/L′2
µ denote the smoothness constant of E[l(x, u) + V (f(x, u) + n)] in u in a neighbor-

hood of u = µ(x). From smoothness and the fact that µ(x) is a minimizer we conclude

E[l(x, µi(x))+V (f(x, µi(x))+n)] ≤E[l(x, µ(x))+V (f(x, µ(x))+n)]+cs|µi(x)−µ(x)|2/(2L′
µ)

≤ V (x) + γ + cs|µi(x)− µ(x)|2/(2L′2
µ ), (12)

where Ass. 1 has been used for the second step (where we set σu = 0). We further note that

|µi(x)− µ(x)| = |µi(0)− µ(0) + µi(x)− µ(x)− (µi(0)− µ(0))| ≤ L′
µ(ξ + ξ|x|),

due to the fact that ∥µi − µ∥op ≤ L′
µξ. We multiply (12) by 1 + 4csξ

2/Ll, define Ṽ := (1 +

4csξ
2/Ll) V , and arrive at

E[l(x, µi(x)) + Ṽ (f(x, µi(x)) + n)] ≤ Ṽ (x) + (1 + 4csξ
2/Ll)γ − 2ξ2cs|x|2

+cs(1 + 4csξ
2/Ll)ξ

2 + cs(1 + 4csξ
2/Ll)ξ

2|x|2,

where we have used the fact that l(x, u) ≥ Ll|x|2/2. We choose ξ2 ≤ Ll/(4cs) and rearrange terms.
This results in

E[l(x, µi(x))+Ṽ (f(x, µi(x))+n)] ≤ Ṽ (x)+γ+2cs(2γ/Ll + 1)ξ2+cs(−1 + 4csξ
2/Ll)ξ

2|x|2,

where the last term is non-positive. We therefore conclude that the inequality in Ass. 5 holds for Ṽ
with Lµ = 2cs(2γ/Ll + 1), Lu = cs/(2L

′2
µ ), and a small enough σu. □

We are now ready to prove the main result of this section:
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Theorem D.2 Let Ass. 2, Ass. 4, and Ass. 5 be satisfied and choose η and σuk as

η = min
{ 1

4Mσ2
,

1

2ML2b2

}
, σ2

uk =
4

ηceduMϵ2

(
2

⌈k/M⌉
+

ln(m(ϵ))

(⌈k/M⌉)2

)
.

Then, the policy regret of Alg. 2 is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ cr1
3ln(N) +M ln(m(ϵ))

ϵ2
+ LµNϵ2 + cr2

for all N ≥ 2M , where m(ϵ) denotes the packing number of F for a packing of size ϵ and where the
constants cr1 and cr2 are given by

cr1 =
8cα(L̄VL

2 + L̄l + Lu)

ηce
, cα = e3c2M , cr2 = 3Mcα(L̄Vdxσ

2/2 + co).

Proof The proof follows Thm. 3.2. At every iteration k we denote by I∗k the set of models f i∗ ∈ F ϵ
k

that satisfy ∥f i∗ − f∥ ≤ ϵ. We then conclude from the same reasoning as in Prop. 3.1 that

Pr(ik ̸∈ I∗k) ≤
M2

(k −M)2
,

for all k ≥M + 1. We make therefore the case distinction ik ∈ I∗k and ik ̸∈ I∗k , which then yields by
the same arguments (see (8))

N∑
k=1

(E[l(xk, uk)]− γk) ≤ NLµϵ
2 + cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(ik ̸∈ I∗k),

where there is an additional error term, due to the fact that f i∗ and f could be different (although
∥f i∗ − f∥ ≤ ϵ for any i∗ ∈ I∗k , by construction of I∗k ). The desired result follows from the previous
inequality. However, compared to Thm. 3.2 we used the slightly more conservative bound

N∑
k=1

σ2
uk ≤

8

duηceϵ2
(3ln(N) +M ln(m(ϵ))),

which applies as long as N ≥ 2, and simplifies the resulting constants. □

E DETAILS OF SEC. 3.3

For deriving the regret bound we will slightly adapt the persistence of excitation condition Ass. 3
from Sec. 3. The motivation is analogous to Ass. 4 and we refer the reader to App. D and App. F for
further discussion.

Assumption 6 There exists an integer M > 0 and a constant c̄e > 0 such that

1

M

M∑
k=1

E
[ |fθ(xk, uk)− f(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ duc̄eσ

2
u|θ|2,

for all θ ∈ Ω and all x1 ∈ Rdx , where xk+1 = f(xk, uk) + nk, uk = µθ(xk) + nuk, and nk, nuk

are independent random variables that satisfy nuk ∼ N (0, σ2
uI), nk ∼ N (0, σ2I).

The second assumption, which will be important, is a strengthened version of the Bellman-inequality
from Ass. 1. The assumption ensures that the steady-state performance γ of the policy µ is stable
under small policy changes that arise from models fθ ∈ F that are close to f . The sufficient condition
provided by Prop. D.1 applies here in the same way (∥fθ − f∥op reduces to |θ|) and we therefore
conclude that the assumption below is, for example, satisfied for linear dynamical systems with a
quadratic, positive definite stage cost.
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Assumption 7 (Bellman-type inequality) For all small enough ξ > 0, there exists a cost to go
function V (corresponding to f and µ) satisfying the following inequality:

V (x) ≥ E[l(x, µθ(x) + nu) + V (f(x, µθ(x) + nu) + n)]− γ − Luduσ
2
u − Lµξ

2,

for all policies µθ with |θ| < ξ, for all x ∈ Rdx , where Lu, Lµ > 0 are constant, n ∼ N (0, σ2I),
and nu ∼ N (0, σ2

uI).

We now prove the main result characterizing policy regret for the setting S3.

Theorem E.1 Let Ass. 2, Ass. 6, and Ass. 7 be satisfied and choose η and σ2
uk as

η ≤ min
{ 1

4Mσ2
,

1

2ML2b2

}
, σ2

uk =
4

ηc̄eduMϵ2

(
2

⌈k/M⌉
+

p

(⌈k/M⌉)2

)
.

Then, for all N ≥ 2M there exists a large enough p, such that the policy regret of Alg. 3 is bounded
by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ 2
√

cr1(3ln(N) +Mp)N + cr2,

where the constants cr1 and cr3 are given by

cr1 =
8cαLµ(L̄VL

2 + L̄l + Lu)

ηc̄e
, cα = e3c2M , cr2 = 3Mcα(L̄Vdxσ

2/2 + co),

with

ϵ2 =

√
cr1(3ln(N) +Mp)

L2
µN

.

Proof We first argue that the reasoning in Lemma C.1 applies in a very similar way to setting S3. To
that extent, we first define the random variable pk as follows

pk =

∫
Ω\{θ:|θ|≤ϵ} e

−η(sk(θ)−s̄k)dθ∫
Ω
e−η(sk(θ)−s̄k)dθ

,

where dθ denotes the Lebesgue measure, and s̄k = minθ∈Ω sk(θ). However, compared to the
discrete setting, where the denumerator was simply bounded below by unity, the situation is more
delicate. More precisely, we bound the denumerator from below by |Bδ|e−ηh(δ), where h(δ) :=
maxθ∈Bδ

sk(θ) − s̄k and Bδ denotes a ball of radius δ with volume |Bδ| centered at a minimizer
of sk(θ). From the smoothness of sk(θ) we conclude that h(δ) = O(δ2) for small δ. Due to our
normalization, Ω is contained in a ball of unit radius and we have |Bδ|/|Ω| ≥ |Bδ|/|B1| ≥ δp where
p refers to the dimension of Ω. Hence we arrive at the following lower bound∫

Ω

e−η(sk(θ)−s̄k)dθ ≥ |Ω|δpe−h(δ) ≳ |Ω|e−p,

where the second inequality arises from carefully choosing δ in order to balance the the term δp and
e−h(δ). This yields the following bound on pk (which resembles the discrete setting)

pk ≤
ep

|Ω|

∫
Ω\{θ:|θ|≤ϵ}

e−η(sk(θ)−s∗k)dθ,

where we have also replaced s̄k with s∗k due to the fact that s̄k is a minimum. Following the same
reasoning as in Lemma C.1 and Prop. 3.1 yields therefore

Pr(|θk| > ϵ) ≤ ep

|Ω|

∫
Ω\{θ:|θ|≤ϵ}

E[e−η(sk(θ)−s∗k)]dθ ≤ ep exp

− c̄eduη

4
ϵ2

k−M∑
j=1

σ2
uj

 ,

where Fubini’s theorem has been used in the first step to interchange expectation and integration. In
addition, due to the modification of σ2

uk compared to Thm. D.2 (where now m(ϵ) is replaced by ep),
we find that

Pr(|θk| ≥ ϵ) ≤ M2

(k −M)2
,
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for all k ≥M + 1. We apply the same reasoning as in the proof of Thm. 3.2, where we now have
the case distinction Pr(|θk| > ϵ) and Pr(|θk| ≤ ϵ) (corresponding to Pr(ik ̸= i∗) and Pr(ik = i∗)).
This concludes that

N∑
k=1

(E[l(xk, uk)]− γk) ≤ LµNϵ2 + cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(|θk| > ϵ),

where, as before,
N∑

k=1

Pr(|θk| > ϵ) ≤ 3M.

We further note that the sum over σ2
uk yields

N∑
k=1

σ2
uk ≤

8

duηc̄eϵ2
(1 + ln(N) +Mp) ≤ 8

duηc̄eϵ2
(3ln(N) +Mp),

where N ≥ 2M ≥ 2 (and therefore ln(N) ≥ 1/2) has been used in the second step. Consequently
the regret is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ LµNϵ2 + cr1
3ln(N) +Mp

Lµϵ2
+ cr2.

The choice of ϵ achieves an optimal trade-off between the first two terms, which yields the desired
result. □

F RELAXING PERSISTENCE OF EXCITATION

This section discusses the situation when b → ∞. We first note that when f i ∈ F are linear (see
also Chatzikiriakos et al., 2025), that is f i(x, u) = Aix+Biu, µi(x) = Kix, Ass. 3 for b→∞ is
straightforward to verify and we obtain, for example, the following bound for k ≥ 2:

E[|f i(xk, uk)−f(xk, uk)|2] ≥ σ2
u|Bi−B|2F +

(
σ2
uσ(W

c
k−1) + σ2

)
|Ai−A+(Bi−B)Kq|2F,

(13)

where Kq represents the linear feedback controller corresponding to model fq ∈ F , and W c
k denotes

the controllability Gramian (over k steps):

W c
k =

k−1∑
j=0

(A+BKq)j
⊤
BB⊤(A+BKq)j ,

where σ denotes the minimum singular value. Hence, we conclude that Ass. 3 is satisfied for M = 2
with ∆ = mini,q∈{1,...,m} |Bi −B|2F + σ(W c

k−1)|Ai −A+ (Bi −B)Kq|2F.

We now derive a variant of Lemma C.2 that relies on the fact that over finite time xk and uk are
sub-Gaussian random variables. To this extent, we slightly modify Ass. 3 as follows:

Assumption 8 There exists an integer M > 0 and a constant ∆ > 0 such that for any x1 ∈ Rdx ,
σu > 0, and f i ∈ F , f i ̸= f ,

1

M

M∑
k=1

E
[
|f i(xk, uk)− f(xk, uk)|2

]
≥∆(duσ

2
u + dxσ

2)

holds, where xk+1 = f(xk, uk)+nk, uk = µq(xk)+nuk with nk ∼ N (0, σ2I), nuk ∼ N (0, σ2
uI),

and q ∈ {1, . . . ,m}.

Lemma F.1 Let Ass. 8 be satisfied and let

lik = |xk+1 − f i(xk, uk)|2,
for k = 1, 2, . . . , where xk, uk denotes the trajectory resulting from Alg. 1, and σ2

uk is monotonically
decreasing. Let k′ ≥ 0 be an integer and define k = k′M + 1 (i.e., k is a time instance where
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ik switches). Then, the following bound holds for all 0 < η ≤ min{1/(4Mσ2), η0} and all
j = k, . . . , k +M − 1

E[e−η
∑k+M−1

j=k (lij−l∗j )|xk] ≤ exp

−η∆

4

k+M−1∑
j=k

(duσ
2
uj + dxσ

2)

 ,

where
η0 =

1

4M(σ2dx + σ2
u1du)

· ∆

128M2(2L2M (1 + Lµ)2M )2
,

and fj ,f i
j is shorthand notation for f(xj , uj) and f i(xj , uj), respectively.

Proof Without loss of generality we set k = 1 and k′ = 0 (the proof follows exactly the same
steps for k′ > 0). We first note that the random variables xj and uj for j ≥ k are Lipschitz
continuous functions of the noise variables {nq, nuq}M−1

q=1 . We define the random variable Xj :=

|f(xj , uj)− f i(xj , uj)|/
√
2 and note that X is sub-Gaussian with variance proxy

σ̃2 := 2L2M (1 + Lµ)
2MM(σ2

u1du + σ2dx),

due to the fact that there are at most M steps between x1 and xj . We will simplify the notation by
introducing the following variables

L̃ := 2L2M (1 + Lµ)
2M , σ2

e := M(σ2
u1du + σ2dx),

such that σ̃2 = L̃σ2
e and 128M2σ̃2η0 = ∆/(4L̃). The previous result exploits the fact that a Lv-

Lipschitz function of a set of pv independent standard Gaussian random variables is sub-Gaussian
with variance proxy pvLv (see, e.g., Wainwright, 2019, Ch.2.3). By following the same argument as
in Prop. 3.1 and Lemma. C.2 we arrive at

E[e−η
∑M

j=1(l
i
j−l∗j )] ≤

 M∏
j=1

E[e−ηM(lj−l∗j )]

1/M

≤

 M∏
j=1

E[e−ηM |fj−fi
j |

2/2]

1/M

≤

 M∏
j=1

E[e−ηMX2
j ]

1/M

,

where we used the shorthand notation fj , f
i
j as in the statement of the lemma and the fact η ≤

1/(4Mσ2). The random variables Xj are sub-Gaussian with variance proxy σ̃2 and therefore
X2

j − E[X2
j ] are sub-Exponential with parameter 16σ̃2. As a result, we can simplify the previous

inequality to

E[e−η
∑M

j=1(l
i
j−l∗j )] ≤

 M∏
j=1

e−ηME[X2
j ]+ησ̃2∆/(4L̃)

1/M

,

since 128Mησ̃2 ≤ ∆/(4L̃) by our choice of η0. As a result of Ass. 8 we infer
M∑
j=1

E[X2
j ] ≥M∆(duσ

2
u1 + dxσ

2)/2 = ∆σ2
e/2,

and therefore
M∑
j=1

E[X2
j ]−

∆σ̃2

4L̃
≥ σ2

e (
∆

2
− ∆

4
) =

σ2
e∆

4
.

This establishes
E[e−η

∑M
j=1(l

i
j−l∗j )] ≤ e−η∆σ2

e/4,

and yields the desired result. □
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The conclusion from the setting with linear dynamics can be generalized to nonlinear systems as
follows. In order to simplify the presentation we consider the situation where the process noise is
absent (σ = 0); the same rationale applies when σ > 0. The following result demonstrates that
Ass. 3 is generic and holds for a broad class of nonlinear dynamics. This result also highlights a close
connection between controllability and the required notion of persistence of excitation.

Proposition F.2 Let x ∈ Rdx and q ∈ {1, . . . ,m} be fixed. Then, there exists a constant ∆′ > 0
such that

E[|f i(xk, uk)− f(xk, uk)|2] ≥ ∆′duσ
2
u

for all small enough σu > 0 if either of the two inequalities are satisfied
|f i(x̄k, µ

q(x̄k))− f(x̄k, µ
q(x̄k))|2 > 0, σ(W c

k−1) |Ai
k −Ak|2F + |Bi

k −Bk|2F > 0,

where xk is defined recursively via x1 = x, xj+1 = f(xj , µ
q(xj) + nuj) with nuj ∼ N (0, σ2

ujI)
j = 1, . . . , k − 1 and

Ak :=
∂

∂x
f(x, µq(x))

∣∣∣∣
x=x̄k

, Ai
k :=

∂

∂x
f i(x, µq(x))

∣∣∣∣
x=x̄k

,

Bk :=
∂

∂u
f(x, u)

∣∣∣∣
x=x̄k,u=µq(x̄k)

, Bi
k :=

∂

∂u
f(x, u)

∣∣∣∣
x=x̄k,u=µq(x̄k)

,

W c
k :=

k−1∑
j=1

Ak−1Ak−2 . . . Aj+1BjB
⊤
j A⊤

j+1 . . . A
⊤
k−2A

⊤
k−1.

Moreover, x̄k corresponds to the noise-free trajectory and is defined via x̄1 = x, x̄j+1 =
f(x̄j , µ

q(x̄j)).

Proof We start by considering the situation where f i(x̄k, µ
q(x̄k)) ̸= f(x̄k, µ

q(x̄k)). We note that

E[|f i(xk, µ
q(xk) + nuk)− f(xk, µ

q(xk) + nuk)|2]
continuously depends on σu and converges to |f i(x̄k, µ

q(x̄k)) − f(x̄k, µ
q(x̄k))|2 > 0 as σu → 0.

Hence the desired inequality is clearly satisfied for all small enough σu > 0.

Next we consider the situation where f i(x̄k, µ
q(x̄k)) = f(x̄k, µ

q(x̄k)) and apply Taylor’s theorem
as follows:

f(xk, µ
q(xk) + nuk) = f(x̄k, µ

q(x̄k)) +Ak(x̄k − xk) +Bknuk + o(x̄k − xk, nuk),

where o is a continuous function that satisfies o(ξ)/|ξ| → 0 for |ξ| → 0. We therefore conclude

|f i(xk, uk)− f(xk, uk)| =
∣∣∣(Ai

k −Ak)(xk − x̄k) + (Bi
k −Bk)nuk + o(x̄k − xk, nuk)

∣∣∣,
where we slightly abused notation to redefine the reminder term (we will frequently do so throughout
the remainder of the proof). We further apply Taylor’s theorem to express xk − x̄k as

xk − x̄k =

k−1∑
j=1

Ak−1 . . . Aj+1Bjnuj + o(nu1, . . . , nuk−1).

By combining the previous two equations, squaring, and taking expectations, we arrive at
E[|f i(xk, uk)− f(xk, uk)|2] ≥ (|Ai

k −Ak|2Fσ(W c
k−1) + |Bi

k −Bk|2F)σ2
u − o(σ2

u),

where we took advantage of the fact that nu1, . . . , nuk are mutually independent. We further used the
following reasoning: i) independence between nui and nuj , i ̸= j, concludes

E[o(nui)n
⊤
uj ] = E[o(nui)E[n

⊤
uj | nui]] = 0.

ii) for i = j we have

E[o(|nui|2)] =
∫
Rdu

o(|ξ|2) 1

(
√
2πσu)du

e−|ξ|2/(2σ2
u)dξ ≤

∫
Rdu

o(|ξ|2) 2q
√
2π

du

q!

|ξ|2q
dξ︸ ︷︷ ︸

=const.

σ2q−du
u ,

for any integer q ≥ 0 large enough, where we have bounded the exponential using e−ξ ≤ q!/ξq for
all ξ ≥ 0. This implies that E[o(|nui|2)] = o(σ2

u) (in fact E[o(|nui|2)] decays much faster for small
σu), which leads to the desired result. □
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