
Published in Transactions on Machine Learning Research (06/2025)

Large Language Model-Brained GUI Agents: A Survey

Chaoyun Zhang1∗, Shilin He1∗, Jiaxu Qian1, Bowen Li2, Liqun Li1, Si Qin1, Yu Kang1, Minghua
Ma1, Guyue Liu4, Qingwei Lin1, Saravan Rajmohan1, Dongmei Zhang1, Qi Zhang1
1Microsoft 2Shanghai Artificial Intelligence Laboratory 3Peking University

Reviewed on OpenReview: https: // openreview. net/ forum? id= xChvYjvXTp

Abstract

Graphical User Interfaces (GUIs) have long been central to human-computer interaction,
providing an intuitive and visually-driven way to access and interact with digital systems.
Traditionally, automating GUI interactions relied on script-based or rule-based approaches,
which, while effective for fixed workflows, lacked the flexibility and adaptability required
for dynamic, real-world applications. The advent of Large Language Models (LLMs),
particularly multimodal models, has ushered in a new era of GUI automation. They have
demonstrated exceptional capabilities in natural language understanding, code generation,
task generalization, and visual processing. This has paved the way for a new generation of
“LLM-brained” GUI agents capable of interpreting complex GUI elements and autonomously
executing actions based on natural language instructions. These agents represent a paradigm
shift, enabling users to perform intricate, multi-step tasks through simple conversational
commands. Their applications span across web navigation, mobile app interactions, and
desktop automation, offering a transformative user experience that revolutionizes how
individuals interact with software. This emerging field is rapidly advancing, with significant
progress in both research and industry.
To provide a structured understanding of this trend, this paper presents a comprehensive
survey of LLM-powered GUI agents, exploring their historical evolution, core components,
and advanced techniques. We address critical research questions such as existing GUI agent
frameworks, the collection and utilization of data for training specialized GUI agents, the
development of fine-tuned models tailored for GUI tasks, and the evaluation metrics and
benchmarks necessary to assess their effectiveness. Additionally, we examine emerging
applications powered by these agents. Through a detailed analysis, this survey identifies key
research gaps and outlines a roadmap for future advancements in the field. By consolidating
foundational knowledge and state-of-the-art developments, this work aims to guide both
researchers and practitioners in overcoming challenges and unlocking the full potential of
LLM-powered GUI agents. We anticipate that this survey will serve both as a practical
cookbook for constructing LLM-powered GUI agents, and as a definitive reference for
advancing research in this rapidly evolving domain.
The collection of papers reviewed in this survey will be hosted and regularly updated on
the GitHub repository: https://github.com/vyokky/LLM-Brained-GUI-Agents-Survey.
Additionally, a searchable webpage is available at https://aka.ms/gui-agent for easier
access and exploration.

1 Introduction

Graphical User Interfaces (GUIs) have been a cornerstone of human-computer interaction, fundamentally
transforming how users navigate and operate within digital systems Jansen (1998). Designed to make

∗Chaoyun Zhang and Shilin He are corresponding authors: chaoyun.zhang@microsoft.com, shilin.he@microsoft.com

1

https://openreview.net/forum?id=xChvYjvXTp
https://github.com/vyokky/LLM-Brained-GUI-Agents-Survey
https://aka.ms/gui-agent

Published in Transactions on Machine Learning Research (06/2025)

User Request GUI Agent

PowerPoint

PhotosWord

Extract

Observe
Summarize

Teams

Web Browser

Send

ClickClick

Creation

Read

Adobe Acrobat

Figure 1: Illustration of the high-level concept of an LLM-powered GUI agent. The agent receives a
user’s natural language request and orchestrates actions seamlessly across multiple applications. It extracts
information from Word documents, observes content in Photos, summarizes web pages in the browser, reads
PDFs in Adobe Acrobat, and creates slides in PowerPoint before sending them through Teams.

computing more intuitive and accessible, GUIs replaced command-line interfaces (CLIs) Sampath et al. (2021)
with visually driven, user-friendly environments. Through the use of icons, buttons, windows, and menus,
GUIs empowered a broader range of users to interact with computers using simple actions such as clicks,
typing, and gestures. This shift democratized access to computing, allowing even non-technical users to
effectively engage with complex systems. However, GUIs often sacrifice efficiency for usability, particularly in
workflows requiring repetitive or multi-step interactions, where CLIs can remain more streamlined Michalski
et al. (2006).

While GUIs revolutionized usability, their design, primarily tailored for human visual interaction, poses
significant challenges for automation. The diversity, dynamism, and platform-specific nature of GUI layouts
make it difficult to develop flexible and intelligent automation tools capable of adapting to various environments.
Early efforts to automate GUI interactions predominantly relied on script-based or rule-based methods
Hellmann & Maurer (2011); Steven et al. (2000). Although effective for predefined workflows, these methods
were inherently narrow in scope, focusing primarily on tasks such as software testing and robotic process
automation (RPA) Ivančić et al. (2019). Their rigidity required frequent manual updates to accommodate
new tasks, changes in GUI layouts, or evolving workflows, limiting their scalability and versatility. Moreover,
these approaches lacked the sophistication needed to support dynamic, human-like interactions, thereby
constraining their applicability in complex or unpredictable scenarios.

The rise of Large Language Models (LLMs)1 Zhao et al. (2023b); Naveed et al. (2023), especially those
augmented with multimodal capabilities Yin et al. (2023), has emerged as a game changer for GUI automation,
redefining the the way agents interact with graphical user interfaces. Beginning with models like ChatGPT Wu
et al. (2023c), LLMs have demonstrated extraordinary proficiency in natural language understanding, code
generation, and generalization across diverse tasks Liu et al. (2024g); Shen (2024); Feng et al.; Zhao et al.

1By LLMs, we refer to the general concept of foundation models capable of accepting various input modalities (e.g., visual
language models (VLMs), multimodal LLMs (MLLMs)) while producing output exclusively in textual sequences contributors
(2024).

2

Published in Transactions on Machine Learning Research (06/2025)

(2023b). The integration of visual language models (VLMs) has further extended these capabilities, enabling
these models to process visual data, such as the intricate layouts of GUIs Hong et al. (2023). This evolution
bridges the gap between linguistic and visual comprehension, empowering intelligent agents to interact with
GUIs in a more human-like and adaptive manner. By leveraging these advancements, LLMs and VLMs offer
transformative potential, enabling agents to navigate complex digital environments, execute tasks dynamically,
and revolutionize the field of GUI automation.

1.1 Motivation for LLM-Powered GUI agents

With a LLM serving as its cognitive core, LLM-powered GUI automation introduces a new class of intelligent
agents capable of interpreting natural language instructions, analyzing GUI elements, and autonomously
executing corresponding actions. These LLM-powered GUI agents operate without reliance on complex
platform-specific scripts or hard-coded workflows, enabling a more flexible and generalizable approach to
automation. We define them as:

Intelligent agents that operate within GUI environments, leveraging LLMs as their core
inference and cognitive engine to generate, plan, and execute actions in a flexible and
adaptive manner.

This paradigm fosters dynamic, human-like interactions and real-time decision-making across diverse platforms,
as illustrated in Figure 1. To summarize, the motivation behind LLM-powered GUI agents can be distilled
into the following three key aspects:

Overcoming the Limitations of Traditional Automation. Traditional GUI automation tools are
typically constrained by rigid, rule-based logic and narrow task scopes. They struggle to generalize across
diverse applications or adapt to dynamic environments. In contrast, LLM-powered GUI agents integrate
natural language understanding, visual perception, and reasoning into a unified framework. This enables them
to handle a broader range of tasks and react intelligently to context changes. Furthermore, unlike API-based
agents—which depend on exposed or accessible interfaces—GUI agents interact with applications through
their graphical frontends. This GUI-centric approach allows non-intrusive automation even in closed-source or
legacy applications, significantly broadening the applicability of these agents across platforms and ecosystems.

Democratizing Access Through Natural Interaction. By enabling users to control complex software
systems using natural language, LLM-powered GUI agents lower the barrier to automation for non-technical
users. They eliminate the need for programming skills or manual scripting, making multi-step operations more
intuitive and accessible. Examples such as SeeAct Zheng et al. (2024a) for web navigation, AppAgent Zhang
et al. (2023a) for mobile apps, and UFO Zhang et al. (2024a) for Windows automation demonstrate the
growing breadth of use cases. Multi-platform agents like CogAgent CogAgent Team (2024) further extend
these capabilities across heterogeneous environments. These systems are increasingly resembling intelligent
virtual assistants Guan et al. (2023)—akin to J.A.R.V.I.S. from Iron Man—that understand user intent and
perform tasks fluidly across applications.

Emerging Real-World Adoption. LLM-powered GUI agents are rapidly transitioning from research to
deployment. For instance, Microsoft Power Automate integrates LLMs to assist users in building automation
workflows across applications using natural language2. Similarly, AI copilots in productivity software like
Microsoft Copilot3 are bridging the gap between user intent and application behavior. These agents also hold

2https://www.microsoft.com/en-us/power-platform/blog/power-automate/revolutionize-the-way-you-work-with-automation-and-ai/
3https://copilot.microsoft.com/

3

https://www.microsoft.com/en-us/power-platform/blog/power-automate/revolutionize-the-way-you-work-with-automation-and-ai/
https://copilot.microsoft.com/

Published in Transactions on Machine Learning Research (06/2025)

promise for improving accessibility—for example, enabling visually impaired users to control GUI interfaces
using voice or text input Aljedaani et al. (2024).

The convergence of LLMs and GUI automation has sparked growing research interest, spanning topics such
as application frameworks Zhang et al. (2024a), data collection and GUI grounding Cheng et al. (2024a),
model optimization Hong et al. (2023), and evaluation methodologies Zhuge et al. (2024). This momentum
reflects both the transformative potential and the technical complexity of the field. Despite recent advances,
fundamental challenges remain—such as robust GUI grounding, error recovery, and generalization across
unseen interfaces. However, a comprehensive survey of this rapidly evolving domain is still lacking, creating
an urgent need for systematic synthesis and analysis. Our work aims to address this gap.

1.2 Scope of the Survey

To address this gap, this paper provides a pioneering, comprehensive survey of LLM-powered GUI agents. We
cover the historical evolution of GUI agents, provide a step-by-step guide to building these agents, summarize
essential and advanced techniques, review notable tools and research related to frameworks, data and models,
showcase representative applications, and outline future directions. Specifically, this survey aims to answer
the following research questions (RQs):

1. RQ1: What are the key background, enabling factors, and unique characteristics of LLM-powered
GUI agents? (Section 3)

2. RQ2: What are the essential components and advanced technologies that form the foundation of
LLM-powered GUI agents? (Section 4)

3. RQ3: What are the principal frameworks for LLM GUI agents across web, mobile, computer and
multi-platform and what are their defining characteristics? (Section 5)

4. RQ4: What are the existing datasets, and how can comprehensive datasets be collected to train
optimized LLMs for GUI agents? (Section 6)

5. RQ5: How can the collected data be used to train purpose-built Large Action Models (LAMs)4 for
GUI agents, and what are the current leading models in the field? (Section 7)

6. RQ6: What metrics and benchmarks are used to evaluate the capability and performance of GUI
agents? (Section 8)

7. RQ7: What are the most significant real-world applications of LLM-powered GUI agents, and how
have they been adapted for practical use? (Section 9)

8. RQ8: What are the major challenges, limitations, and future research directions for developing
robust and intelligent GUI agents? (Section 10)

Through these questions, this survey aims to provide a comprehensive overview of the current state of the field,
offer a guide for building LLM-powered GUI agents, identify key research gaps, and propose directions for
future work. This survey is one of the pioneers to systematically examine the domain of LLM-powered GUI
agents, integrating perspectives from LLM advancements, GUI automation, and human-computer interaction.
To start, we present a structural overview in Figure 2. For ease of reference, a list of abbreviations used
throughout the paper is provided in Table 1.

2 Related Work

The integration of LLMs with GUI agents is an emerging and rapidly growing field of research. Several
related surveys and tutorials provide foundational insights and guidance. We provide a brief review of existing

4In our context, LAM denotes a fine-tuned large language or vision-language model that is specifically tailored for executing
GUI agent tasks.

4

Published in Transactions on Machine Learning Research (06/2025)

Large Language Model-Brained
GUI Agents

11 Conclusion

10 Limitations, Challenges
and Future Roadmap

10.8 Summary

10.7 Scalability and Generalization

10.6 Ethical and Regulatory Challenges

10.5 Customization and Personalization

10.4 Human-Agent Interaction

10.3 Safety and Reliability

10.2 Latency, Performance,
and Resource Constraints

10.1 Privacy Concerns

9 Applications of LLM-Powered GUI Agents
9.2 Virtual Assistants

9.2.3 Production

9.2.2 Open-Source Projects

9.2.1 Research

9.1 GUI Testing 9.1.4 Verification

9.1.3 Bug Replay

9.1.2 Text Input Generation

9.1.1 General Testing

8 Evaluation for LLM-Powered GUI Agents

8.7 Cross-Platform Benchmark

8.6 Computer Agent Benchmark

8.5 Mobile Agent Benchmark

8.4 Web Agent Benchmark

8.3 Evaluation Platforms

8.2 Evaluation Measurements

8.1 Evaluation Metrics

7 Models for Optimizing
LLM-Powered GUI Agents

7.7 Emerging Trends Amid Rapid Improvements in LAM Capabilities

7.6 Cross-Platform Large Action Models

7.5 LAMs for Computer GUI Agents

7.4 LAMs for Mobile GUI Agents

7.3 LAMs for Web GUI Agents

7.2 Large Action Models

7.1 Foundation Models
7.1.2 Open-Source Models

7.1.1 Close-Source Models

6 Data for Optimizing
LLM-Powered GUI Agents

6.5 Cross-Platform Agent Data

6.4 Computer Agent Data

6.3 Mobile Agent Data

6.2 Web Agent Data

6.1 Data Collection
6.1.2 Collection Pipeline

6.1.1 Data Composition and Sources

5 LLM-Powered GUI Agent Framework

5.4 Cross-Platform GUI Agents

5.3 Computer GUI Agents

5.2 Mobile GUI Agents

5.1 Web GUI Agents

4 LLM-Powered GUI Agents:
Foundations and Design

4.8 From Foundations to
Innovations: A Roadmap

4.7 Advanced Enhancements

4.7.6 Summary & Takeaways

4.7.5 Reinforcement Learning

4.7.4 Self-Evolution

4.7.3 Self-Reflection

4.7.2 Multi-Agent Framework

4.7.1 Computer Vision-Based GUI Grounding

4.6 Memory
4.6.2 Long-Term Memory

4.6.1 Short-Term Memory

4.5 Actions Execution

4.5.4 Summary

4.5.3 AI Tools

4.5.2 Native API Calls

4.5.1 UI Operations

4.4 Model Inference

4.4.3 Complementary Outputs

4.4.2 Action Inference

4.4.1 Planning4.3 Prompt Engineering

4.2 Operating Environment

4.2.3 Environment Feedback

4.2.2 Environment State Perception

4.2.1 Platform

4.1 Architecture and Workflow in a Nutshell

3 Background

3.4 Evolution to LLM-Powered GUI Agents
3.4.2 OS-Integrated Agents: Opportunities and Challenges

3.4.1 GUI Agent vs. API-Based Agent

3.3 GUI Automation: Tools, Techniques, and Challenges

3.2 LLM Agents: From Language to Action

3.1 Large Language Models: Foundations and Capabilities

2 Related Work
2.2 Survey on GUI Automation

2.1 Surveys on LLM Agents

1 Introduction
1.2 Scope of the Survey

1.1 Motivation for LLM-Powered GUI Agents

Figure 2: The structure of the survey on LLM-powered GUI agents.

overview articles on GUI automation and LLM agents, as these topics closely relate to and inform our research
focus. To begin, we provide an overview of representative surveys and books on GUI automation, LLM agents,
and their integration, as summarized in Table 2. These works either directly tackle one or two core areas in
GUI automation and LLM-driven agents, or provide valuable insights that, while not directly addressing the
topic, contribute indirectly to advancing the field.

5

Published in Transactions on Machine Learning Research (06/2025)

Table 1: List of abbreviations in alphabetical order.

Acronym Explanation
AI Artificial Intelligence

AITW Android in the Wild
AITZ Android in The Zoo
API Application Programming Interface
CLI Command-Line Interface

CLIP Contrastive Language-Image Pre-Training
CoT Chain-of-Thought
CSS Cascading Style Sheets
CuP Completion under Policy
CV Computer Vision

DOM Document Object Model
DPO Direct Preference Optimization
GCC General Computer Control
GPT Generative Pre-trained Transformers
GUI Graphical User Interface
HCI Human-Computer Interaction

HTML Hypertext Markup Language
ICL In-Context Learning
IoU Intersection over Union

LAM Large Action Model
LLM Large Language Model

LSTM Long Short-Term Memory
LTM Long-Term Memory

MCTS Monte Carlo Tree Search
MoE Mixture of Experts
MDP Markov Decision Process

MLLM Multimodal Large Language Model
OCR Optical Character Recognition
OS Operation System

RAG Retrieval-Augmented Generation
ReAct Reasoning and Acting

RL Reinforcement Learning
RLHF Reinforcement Learning from Human Feedback
RNN Recurrent Neural Network
RPA Robotic Process Automation
UI User Interface
UX User Experience

VAB VisualAgentBench
VLM Visual Language Models
ViT Vision Transformer
VQA Visual Question Answering
SAM Segment Anything Model
SoM Set-of-Mark
STM Short-Term Memory

6

Published in Transactions on Machine Learning Research (06/2025)

Table 2: Summary of representative surveys and books on GUI automation and LLM agents. A ✓symbol
indicates that a publication explicitly addresses a given domain, while an ⃝ symbol signifies that the
publication does not focus on the area but offers relevant insights. Publications covering both GUI automation
and LLM agents are highlighted for emphasis.

Scope
Survey One Sentence Summary GUI

Automation
LLM
Agent

LLM Agent +
GUI Automation

Li & Wu (2006) A book on how to develop an automated GUI testing tool. ✓
Rodríguez-Valdés et al.
(2021)

A survey on automated GUI testing in 30 years. ✓

Arnatovich & Wang (2018) A survey on automated techniques for mobile functional GUI
testing.

✓

et al., Ivančić et al. (2019) A literature review on RPA. ✓
Said et al. (2020) An overview on mobile GUI testing. ✓
Li (2023) An survey on Android GUI testing. ✓
Oksanen (2023) GUI testing on Windows OS. ✓
Deshmukh et al. (2023) A survey on GUI testing for improving user experience. ✓
Bajammal et al. (2020) A survey on the use of computer vision for software engineering. ✓
Yu et al. (2023) A survey on using computer for mobile app GUI testing. ✓
Syed et al. (2020) A review of contemporary themes and challenges in RPA. ✓
Chakraborti et al. (2020) A review of emerging trends of intelligent process automation. ✓
Enríquez et al. (2020) A scientific and industrial systematic mapping study of RPA. ✓
Ribeiro et al. (2021) A review of combining AI and RPA in industry 4.0. ✓
Nass et al. (2021) Discuss the chanllenges of GUI testing. ✓
Agostinelli et al. (2019) Discuss the research challenges of intelligent RPA. ✓
Wali et al. (2023) A review on task automation with intelligent agents. ✓
Zhao et al. (2023b) A comprehensive survey of LLMs. ✓
Zhao et al. (2023a) A survey of LLM-based agents. ✓
Cheng et al. (2024b) An overview of LLM-based AI agent. ✓
Li et al. (2024i) A survey on personal LLM agents on their capability, efficiency

and security.
✓

Xi et al. (2023) A comprehensive survey of LLM-based agents. ✓
Wang et al. (2024g) A survey on LLM-based autonomous agents. ✓
Guo et al. (2024b) A survey of mult-agent LLM frameworks. ✓
Han et al. (2024) A survey on LLM multi-agent systems, with their challenges and

open problems.
✓

Sun et al. (2024a) A survey on LLM-based multi-agent reinforcement learning. ✓
Huang et al. (2024b) A survey on planning in LLM agents. ✓
Aghzal et al. (2025) A survey on automated planning in LLMs. ✓
Zheng et al. (2025c) Discuss the roadmap of lifelong learning in LLM agents. ✓
Zhang et al. (2024q) A survey on the memory of LLM-based agents. ✓
Shen (2024) A survey of the tool usage in LLM agents. ✓
Chang et al. (2024) A survey on evaluation of LLMs. ✓
Li et al. (2024d) A survey on benchmarks multimodal applications. ✓
Li et al. (2025d) A survey on benchmarking evaluations, applications, and challenges

of visual LLMs.
✓

Huang & Zhang (2024) A survey on evaluation of multimodal LLMs. ✓
Xie et al. (2024a) A survey on LLM based multimodal agent. ✓ ⃝
Durante et al. (2024) A survey of multimodal interaction with AI agents. ✓ ⃝
Wu et al. (2024a) A survey of foundations and trend on multimodal mobile agents. ✓ ✓
Wang et al. (2024k) A survey on the integration of foundation models with GUI agents. ✓ ✓
Gao et al. (2024f) A survey on autonomous agents across digital platforms. ✓ ✓
Nguyen et al. (2024) A survey on GUI agents. ✓ ✓
Liu et al. (2025b) A survey on GUI agent on phone automation. ✓ ✓
Hu et al. (2024b) A survey on MLLM based agents for OS. ✓ ✓
Shi et al. (2025) A survey of building trustworthy GUI agents. ✓ ✓
Ning et al. (2025) A survey of agents for Web automation. ✓ ✓
Tang et al. (2025b) A survey of GUI agents powered by (multimodal) LLMs. ✓ ✓
Sager et al. (2025) A review of AI agent for computer use. ⃝ ✓ ✓
Our work A comprehensive survey on LLM-brained GUI agents, on

their foundations, technologies, frameworks, data, models,
applications, challenges and future roadmap.

⃝ ✓ ✓

2.1 Survey on GUI Automation

GUI automation has a long history and wide applications in industry, especially in GUI testing Li & Wu
(2006); Rodríguez-Valdés et al. (2021); Arnatovich & Wang (2018) and RPA Ivančić et al. (2019) for task
automation Wali et al. (2023).

7

Published in Transactions on Machine Learning Research (06/2025)

Said et al., Said et al. (2020) provide an overview of GUI testing for mobile applications, covering objectives,
approaches, and challenges within this domain. Focusing on Android applications, Li Li (2023) narrows
the scope further, while Oksanen et al., Oksanen (2023) explore automatic testing techniques for Windows
GUI applications, a key platform for agent operations. Similarly, Moura et al., Moura et al. (2023) review
GUI testing for web applications, which involves diverse tools, inputs, and methodologies. Deshmukh et
al., Deshmukh et al. (2023) discuss automated GUI testing for enhancing user experience, an area where
LLMs also bring new capabilities. A cornerstone of modern GUI testing is computer vision (CV), which is
used to interpret UI elements and identify actionable controls Bajammal et al. (2020). Yu et al., Yu et al.
(2023) survey the application of CV in mobile GUI testing, highlighting both its significance and associated
challenges. In LLM-powered GUI agents, application UI screenshots are equally essential, serving as key
inputs for reliable task comprehension and execution.

On the other hand, RPA, which focuses on automating repetitive human tasks, also relies heavily on GUI
automation for relevant processes. Syed et al., Syed et al. (2020) review this field and highlight contemporary
RPA themes, identifying key challenges for future research. Chakraborti et al., Chakraborti et al. (2020)
emphasize the importance of shifting from traditional, script-based RPA toward more intelligent, adaptive
paradigms, offering a systematic overview of advancements in this direction. Given RPA’s extensive industrial
applications, Enriquez et al., Enríquez et al. (2020) and Ribeiro et al., Ribeiro et al. (2021) survey the field
from an industrial perspective, underscoring its significance and providing a comprehensive overview of RPA
methods, development trends, and practical challenges.

Both GUI testing Nass et al. (2021) and RPA Agostinelli et al. (2019) continue to face significant challenges in
achieving greater intelligence and robustness. LLM-powered GUI agents are poised to play a transformative
role in these fields, providing enhanced capabilities and adding substantial value to address these persistent
issues.

2.2 Surveys on LLM Agents

The advent of LLMs has significantly enhanced the capabilities of intelligent agents Zhao et al. (2023a),
enabling them to tackle complex tasks previously out of reach, particularly those involving natural language
understanding and code generation Cheng et al. (2024b). This advancement has spurred substantial research
into LLM-based agents designed for a wide array of applications Li et al. (2024i).

Both Xie et al., Xi et al. (2023) and Wang et al., Wang et al. (2024g) offer comprehensive surveys on LLM-
powered agents, covering essential background information, detailed component breakdowns, taxonomies,
and various applications. These surveys serve as valuable references for a foundational understanding of
LLM-driven agents, laying the groundwork for further exploration into LLM-based GUI agents. Xie et al.,
Xie et al. (2024a) provide an extensive overview of multimodal agents, which can process images, videos, and
audio in addition to text. This multimodal capability significantly broadens the scope beyond traditional
text-based agents Durante et al. (2024). Notably, most GUI agents fall under this category, as they rely on
image inputs, such as screenshots, to interpret and interact with graphical interfaces effectively. Multi-agent
frameworks are frequently employed in the design of GUI agents to enhance their capabilities and scalability.
Surveys by Guo et al., Guo et al. (2024b) and Han et al., Han et al. (2024) provide comprehensive overviews
of the current landscape, challenges, and future directions in this area. Sun et al., Sun et al. (2024a) provide
an overview of recent methods that leverage reinforcement learning to strengthen multi-agent LLM systems,
opening new pathways for enhancing their capabilities and adaptability. These surveys offer valuable insights
and guidance for designing effective multi-agent systems within GUI agent frameworks.

In the realm of digital environments, Wu et al., Wu et al. (2024a) presents a survey on LLM agents operating
in mobile environments, covering key aspects of mobile GUI agents. In a boarder scope, Wang et al., Wang
et al. (2024k) present a survey on the integration of foundation models with GUI agents. Another survey by
Gao et al., provides an overview of autonomous agents operating across various digital platforms Gao et al.
(2024f), highlighting their capabilities, challenges, and applications. All these surveys highlighting emerging
trends in this area.

Regarding individual components within LLM agents, several surveys provide detailed insights that are
especially relevant for GUI agents. Huang et al., Huang et al. (2024b) examine planning mechanisms in

8

Published in Transactions on Machine Learning Research (06/2025)

LLM agents, which are essential for executing long-term tasks—a frequent requirement in GUI automation.
Zhang et al., Zhang et al. (2024q) explore memory mechanisms, which allow agents to store critical historical
information, aiding in knowledge retention and decision-making. Additionally, Shen Shen (2024) surveys the
use of tools by LLMs (such as APIs and code) to interact effectively with their environments, grounding actions
in ways that produce tangible impacts. Further, Chang et al., Chang et al. (2024) provide a comprehensive
survey on evaluation methods for LLMs, which is crucial for ensuring the robustness and safety of GUI agents.
Two additional surveys, Li et al. (2024d) and Huang & Zhang (2024), provide comprehensive overviews
of benchmarks and evaluation methods specifically tailored to multimodal LLMs. The evaluation also
facilitates a feedback loop, allowing agents to improve iteratively based on assessment results. Together, these
surveys serve as valuable resources, offering guidance on essential components of LLM agents and forming a
foundational basis for LLM-based GUI agents.

Compared to existing surveys, our work offers a significantly more comprehensive and up-to-date overview
of the LLM-powered GUI agent landscape. We curate and synthesize over 500 references, covering a wide
range of topics including foundation models, data sources, system frameworks, benchmarks, evaluation
methodologies, and practical deployments. While prior surveys often concentrate on narrower aspects on
selected platform (e.g., web, mobile), our survey takes a holistic perspective that spans the full development
and deployment lifecycle. Beyond narrative summaries, we also provide consolidated reference tables for each
subdomain, enabling readers to quickly categorize and locate relevant works across platforms and research
themes—serving as a practical handbook for both researchers and practitioners. Furthermore, we incorporate
foundational background material and propose evaluation taxonomies that make the survey accessible to
newcomers, addressing gaps in prior work that often assume a high degree of prior familiarity.

3 Background

The development of LLM-powered GUI agents is grounded in three major advancements: (i) large language
models (LLMs) Zhao et al. (2023b), which bring advanced capabilities in natural language understanding
and code generation, forming the core intelligence of these agents; (ii) accompanying agent architectures
and tools Wang et al. (2024g) that extend LLM capabilities, bridging the gap between language models and
physical environments to enable tangible impacts; and (iii) GUI automation Yeh et al. (2009), which has
cultivated a robust set of tools, models, and methodologies essential for GUI agent functionality. Each of
these components has played a critical role in the emergence of LLM-powered GUI agents. In the following
subsections, we provide a brief overview of these areas to set the stage for our discussion.

3.1 Large Language Models: Foundations and Capabilities

The study of language models has a long and rich history Shannon (1951), beginning with early statistical
language models Cavnar et al. (1994) and smaller neural network architectures Chung et al. (2014). Building
on these foundational concepts, recent advancements have focused on transformer-based LLMs, such as the
Generative Pre-trained Transformers (GPTs) Mann et al. (2020). These models are pretrained on extensive
text corpora and feature significantly larger model sizes, validating scaling laws and demonstrating exceptional
capabilities across a wide range of natural language tasks. Beyond their sheer size, these LLMs exhibit
enhanced language understanding and generation abilities, as well as emergent properties that are absent in
smaller-scale language models Wei et al. (2021).

Early neural language models, based on architectures like recurrent neural networks (RNNs) Medsker et al.
(2001) and long short-term memory networks (LSTMs) Hochreiter (1997), were limited in both performance
and generalization. The introduction of the Transformer model, built on the attention mechanism Vaswani
(2017), marked a transformative milestone, establishing the foundational architecture now prevalent across
almost all subsequent LLMs. This development led to variations in model structures, including encoder-only
models (e.g., BERT Devlin (2018), RoBERTa Liu (2019), ALBERT Lan (2019)), decoder-only models (e.g.,
GPT-1 Radford (2018), GPT-2 Radford et al. (2019)), and encoder-decoder models (e.g., T5 Raffel et al.
(2020), BART Lewis (2019)). In 2022, ChatGPT Wu et al. (2023c) based on GPT-3.5 Ouyang et al. (2022)
launched as a groundbreaking LLM, fundamentally shifting perceptions of what language models can achieve.
Since then, numerous advanced LLMs have emerged, including GPT-4 Achiam et al. (2023), LLaMA-3 Dubey

9

Published in Transactions on Machine Learning Research (06/2025)

et al. (2024), and Gemini Team et al. (2023), propelling the field into rapid growth. Today’s LLMs are highly
versatile, with many of them are capable of processing multimodal data and performing a range of tasks,
from question answering to code generation, making them indispensable tools in various applications Hurst
et al. (2024); Jiang et al. (2024); Zhang et al. (2024b); Liu et al. (2024d).

The emergence of LLMs has also introduced significant advanced properties that invigorate their applications,
making previously challenging tasks, such as natural language-driven GUI agents feasible. These advancements
include:

1. Few-Shot Learning Mann et al. (2020): Also referred to as in-context learning Dong et al.
(2022), LLMs can acquire new tasks from a small set of demonstrated examples presented in the
prompt during inference, eliminating the need for retraining. This capability is crucial for enabling
GUI agents to generalize across different environments with minimal effort.

2. Instruction Following Zhang et al. (2023c): After undergoing instruction tuning, LLMs exhibit
a remarkable ability to follow instructions for novel tasks, demonstrating strong generalization skills
Ouyang et al. (2022). This allows LLMs to effectively comprehend user requests directed at GUI
agents and to follow predefined objectives accurately.

3. Long-Term Reasoning Huang & Chang (2022): LLMs possess the ability to plan and solve
complex tasks by breaking them down into manageable steps, often employing techniques like chain-
of-thought (CoT) reasoning Wei et al. (2022); Ding et al. (2023). This capability is essential for GUI
agents, as many tasks require multiple steps and a robust planning framework.

4. Code Generation and Tool Utilization Chen et al. (2021a): LLMs excel in generating code
and utilizing various tools, such as APIs Shen (2024). This expertise is vital, as code and tools form
the essential toolkit for GUI agents to interact with their environments.

5. Multimodal Comprehension Yin et al. (2023): Advanced LLMs can integrate additional data
modalities, such as images, into their training processes, evolving into multimodal models. This
ability is particularly important for GUI agents, which must interpret GUI screenshots presented as
images in order to function effectively White et al. (2019).

To further enhance the specialization of LLMs for GUI agents, researchers often fine-tune these models with
domain-specific data, such as user requests, GUI screenshots, and action sequences, thereby increasing their
customization and effectiveness. In Section 7, we delve into these advanced, tailored models for GUI agents,
discussing their unique adaptations and improved capabilities for interacting with graphical interfaces.

3.2 LLM Agents: From Language to Action

Traditional AI agents have often focused on enhancing specific capabilities, such as symbolic reasoning or
excelling in particular tasks like Go or Chess. In contrast, the emergence of LLMs has transformed AI agents
by providing them with a natural language interface, enabling human-like decision-making capabilities, and
equipping them to perform a wide variety of tasks and take tangible actions in diverse environments Wang
et al. (2024g); Kim et al. (2023); Liu et al. (2024g); Qiao et al. (2023). In LLM agents, if LLMs form the
“brain” of a GUI agent, then its accompanying components serve as its “eyes and hands”, enabling the LLM to
perceive the environment’s status and translate its textual output into actionable steps that generate tangible
effects Xi et al. (2023). These components transform LLMs from passive information sources into interactive
agents that execute tasks on behalf of users, which redefine the role of LLMs from purely text-generative
models to systems capable of driving actions and achieving specific goals.

In the context of GUI agents, the agent typically perceives the GUI status through screenshots and widget
trees Boshart & Kosa (2003), then performs actions to mimic user operations (e.g., mouse clicks, keyboard
inputs, touch gestures on phones) within the environment. Since tasks can be long-term, effective planning
and task decomposition are often required, posing unique challenges. Consequently, an LLM-powered GUI
agent usually possess multimodal capabilities Xie et al. (2024a), a robust planning system Huang et al.

10

Published in Transactions on Machine Learning Research (06/2025)

(2024b), a memory mechanism to analyze historical interactions Zhang et al. (2024q), and a specialized toolkit
to interact with its environment Li & Wu (2006). We will discuss these tailored designs for GUI agents in
detail in Section 4.

3.3 GUI Automation: Tools, Techniques, and Challenges

GUI automation has been a critical area of research and application since the early days of GUIs in
computing. Initially developed to improve software testing efficiency, GUI automation focused on simulating
user actions, such as clicks, text input, and navigation, across graphical applications to validate functionality
Said et al. (2020). Early GUI automation tools were designed to execute repetitive test cases on static
interfaces Rodríguez-Valdés et al. (2021). These approaches streamlined quality assurance processes, ensuring
consistency and reducing manual testing time. As the demand for digital solutions has grown, GUI automation
has expanded beyond testing to other applications, including RPA Ivančić et al. (2019) and Human-Computer
Interaction (HCI) Li & Hilliges (2021). RPA leverages GUI automation to replicate human actions in business
workflows, automating routine tasks to improve operational efficiency. Similarly, HCI research employs GUI
automation to simulate user behaviors, enabling usability assessments and interaction studies. In both cases,
automation has significantly enhanced productivity and user experience by minimizing repetitive tasks and
enabling greater system adaptability Abuaddous et al. (2022); Gao et al. (2024b).

Traditional GUI automation methods have primarily depended on scripting and rule-based frameworks
Hellmann & Maurer (2011); Qian et al. (2020). Scripting-based automation utilizes languages such as Python,
Java, and JavaScript to control GUI elements programmatically. These scripts simulate a user’s actions on
the interface, often using tools like Selenium Bruns et al. (2009) for web-based automation or AutoIt Rupp
et al. (2022) and SikuliX Granda et al. (2021) for desktop applications. Rule-based approaches, meanwhile,
operate based on predefined heuristics, using rules to detect and interact with specific GUI elements based on
properties such as location, color, and text labels Hellmann & Maurer (2011). While effective for predictable,
static workflows Xu et al. (2024c), these methods struggle to adapt to the variability of modern GUIs, where
dynamic content, responsive layouts, and user-driven changes make it challenging to maintain rigid, rule-based
automation Gove & Faytong (2012).

CV has become essential for interpreting the visual aspects of GUIs Yu et al. (2023); Li et al. (2021); Chang
et al. (2010), enabling automation tools to recognize and interact with on-screen elements even as layouts
and designs change. CV techniques allow GUI automation systems to detect and classify on-screen elements,
such as buttons, icons, and text fields, by analyzing screenshots and identifying regions of interest Zou et al.
(2023); Ye et al. (2021); Chen et al. (2020). Optical Character Recognition (OCR) further enhances this
capability by extracting text content from images, making it possible for automation systems to interpret
labels, error messages, and form instructions accurately Qian et al. (2022). Object detection models add
robustness, allowing automation agents to locate GUI elements even when the visual layout shifts White
et al. (2019). By incorporating CV, GUI automation systems achieve greater resilience and adaptability in
dynamic environments.

Despite advances, traditional GUI automation methods fall short in handling the complexity and variability
of contemporary interfaces. Today’s applications often feature dynamic, adaptive elements that cannot be
reliably automated through rigid scripting or rule-based methods alone Gambino et al. (2018); He et al.
(2008). Modern interfaces increasingly require contextual awareness Stefanidi et al. (2022), such as processing
on-screen text, interpreting user intent, and recognizing visual cues. These demands reveal the limitations of
existing automation frameworks and the need for more flexible solutions capable of real-time adaptation and
context-sensitive responses.

LLMs offer a promising solution to these challenges. With their capacity to comprehend natural language,
interpret context, and generate adaptive scripts, LLMs can enable more intelligent, versatile GUI automation
Liu et al. (2024k). Their ability to process complex instructions and learn from context allows them to bridge
the gap between static, rule-based methods and the dynamic needs of contemporary GUIs Brie et al. (2023).
By integrating LLMs with GUI agents, these systems gain the ability to generate scripts on-the-fly based on
the current state of the interface, providing a level of adaptability and sophistication that traditional methods
cannot achieve. The combination of LLMs and GUI agents paves the way for an advanced, user-centered

11

Published in Transactions on Machine Learning Research (06/2025)

< 2023 Jan-Apr 2023
May-Aug

Sep-Dec

2024

Web
Mobile
Computer
Cross

WoB
WGE
Qweb
DOM-Q-NET
FLIN
WebGPT
WebShop

WebArena
WebAgent
AutoDroid

DroidBot-GPT

WebVoyager
Mobile-Agent
SeeAct
CoCo-Agent
DUAL-VCR
UFO
OS-Copilot
Cradle
AutoWebGLM
MMAC-Copilot
SeeClick

GUI Narrator
Mobile-Experts
Agent-E
Search-Agent
Agent Q
Openwebagent
WebPilot

NaviQAte
Steward
Hybrid Agent
WMA
AgentOccam
NNetnav
MobA
Agent S
AutoGLM
LiMAC
TinyClick
OSCAR
Claude Computer Use

CogAgent
Auto-GUI
WebGUM
LASER
Zero-shot Agent
OpenAgents
MM-Navigator
AppAgent

May-Aug

Jan-Apr

Sep-Dec

2025+

Figure 3: An overview of GUI agents evolution by year and platforms.

automation paradigm, capable of responding flexibly to user requests and interacting seamlessly with complex,
evolving interfaces.

3.4 Evolution to LLM-Powered GUI Agents

As illustrated in Figure 3, prior to 2023 and the emergence of LLMs, work on GUI agents was limited in both
scope and capability. Since then, the proliferation of LLM-based approaches has fostered numerous notable
developments across platforms including web, mobile, and desktop environments. This surge is ongoing and
continues to drive innovation in the field. The key takeaway is that GUI agents are not only growing in
number but also rapidly advancing in terms of data, models, frameworks, and applications. This section
takes you on a journey tracing the evolution of GUI agents, emphasizing key milestones that have brought
the field to its present state.

3.4.1 GUI Agent vs. API-Based Agent

In the field of LLM-powered agents operating within digital environments, the action space can be broadly
categorized into two types:

1. GUI Agents, which primarily rely on GUI operations (e.g., clicks, keystrokes) to complete tasks.

2. API-Based Agents, which utilize system or application-native APIs to fulfill objectives.

We show the principle of both agent types in Figure 4. Each type has distinct advantages, and a deeper
understanding of these approaches is critical for designing effective agents.

GUI operations provide a universal control interface that can operate across diverse applications using
the same action primitives. This makes GUI agents highly generalizable, as they can interact with a wide
range of software environments without requiring application-specific adaptations. However, GUI-based
interactions are inherently more complex; even simple tasks may require multiple sequential steps, which can
increase both the decision-making cost for the agent and the computational resources required for long-term,
multi-step workflows. Another key aspect is the transparency of actions in GUI agents. Since GUI agents
interact with applications in the same way a human would, by clicking, typing, and navigating through the
interface, their actions are inherently more observable and interpretable to users. This transparency fosters
better trust and comprehension in agent-computer interactions.

12

Published in Transactions on Machine Learning Research (06/2025)

API_1

- Description: ...

- Args: ...

- Return: ...

- Examples: ...

API Information

GUI Observation

API_6(

 arg1=...,

 arg2=...,

 ...

)

Action

Action

User QueryUser Query

GUI AgentGUI AgentAPI AgentAPI Agent

API_n

- Description: ...

- Args: ...

- Return: ...

- Examples: ...

...

API_2

- Description: ...

- Args: ...

- Return: ...

- Examples: ...

CLICK(X=…, Y=...)

CLICK(X=…, Y=...)

CLICK(X=…, Y=...)

Figure 4: The comparison between API agent vs. GUI agent.

In contrast, API-based agents offer a more efficient and direct approach to task completion. By leveraging
native APIs, tasks can often be fulfilled with a single, precise call, significantly reducing execution time
and complexity. However, these native APIs are often private or restricted to specific applications, limiting
accessibility and generalizability. This makes API-based agents less versatile in scenarios where API access is
unavailable or insufficient. In addition, API-based agents operate behind the scenes, executing tasks through
direct system calls, which, while often more efficient and reliable, can make their operations less visible and
harder to debug for end users.

The most effective digital agents are likely to operate in a hybrid manner, combining the strengths of
both approaches. Such agents can utilize GUI operations to achieve broad compatibility across software
while exploiting native APIs where available to maximize efficiency and effectiveness. These hybrid agents
strike a balance between generalization and task optimization, making them a critical focus area in this
survey. For a more comprehensive comparison between GUI agents and API agents, please refer to Zhang
et al. (2025a).

3.4.2 OS-Integrated Agents: Opportunities and Challenges

As agent capabilities continue to advance, we are witnessing the emergence of OS-integrated assistants such as
Apple Intelligence (built into iOS/macOS) and Microsoft Copilot (integrated across Windows and Microsoft
365). These systems exemplify a growing trend in which foundational models are embedded directly into the
operating system, offering native capabilities for task execution, summarization, and user assistance.

While these assistants represent significant progress in bringing foundation models closer to users, their
functionality is largely shaped by API-based control paradigms. They are optimized for environments where
fine-grained APIs are available and sanctioned, enabling streamlined and secure task execution. However, as
discussed in Section 3.4.1, this model imposes inherent limitations: many third-party or legacy applications
lack sufficient API exposure, and system-level privileges are often restricted, especially in closed ecosystems
like iOS. This restricts the agent’s ability to generalize across diverse software landscapes.

GUI-based agents offer a compelling complement in this context. By simulating human interaction with
visual interfaces, GUI agents can extend automation capabilities to software that is otherwise inaccessible to
OS-level API agents. This makes them especially valuable in scenarios where application internals are opaque,
APIs are limited or unstable, or extensibility across software is desired. In essence, GUI agents serve as a
universal fallback mechanism—enabling broader coverage and versatility without requiring privileged access

13

Published in Transactions on Machine Learning Research (06/2025)

or deep integration. The growing presence of OS-level agents amplifies the importance of developing hybrid
agent architectures that combine the precision and efficiency of APIs with the generality and accessibility
of GUI-based control. For example, an assistant like Microsoft Copilot could selectively use GUI-based
interactions for third-party or legacy apps while relying on APIs for native tools like Word or Excel. Such
hybridization can enhance task coverage, robustness, and user experience across heterogeneous environments.

Looking forward, we envision increasing pressure for these integrated systems to support modular and
extensible agent interfaces, allowing third-party developers and researchers to build on top of foundation
agents with GUI-based capabilities. This direction not only broadens the deployment landscape for LLM-
powered agents but also fosters a richer ecosystem of intelligent assistants that are adaptable to real-world
variability in software availability, permissions, and user needs.

4 LLM-Brained GUI Agents: Foundations and Design

In essence, LLM-powered GUI agents are designed to process user instructions or requests given in natural
language, interpret the current state of the GUI through screenshots or GUI element trees, and execute
actions that simulate human interaction across various software interfaces Zhang et al. (2024a). These agents
harness the sophisticated natural language understanding, reasoning, and generative capabilities of LLMs
to accurately comprehend user intent, assess the GUI context, and autonomously engage with applications
across diverse environments, thereby enabling the completion of complex, multi-step tasks. This integration
allows them to seamlessly interpret and respond to user requests, bringing adaptability and intelligence to
GUI automation.

As a specialized type of LLM agent, most current GUI agents adopt a similar foundational framework,
integrating core components such as planning, memory, tool usage, and advanced enhancements like multi-
agent collaboration, among others Wang et al. (2024g). However, each component must be tailored to meet
the specific objectives of GUI agents to ensure adaptability and functionality across various application
environments.

In the following sections, we provide an in-depth overview of each component, offering a practical guide and
tutorial on building an LLM-powered GUI agent from the ground up. This comprehensive breakdown serves
as a cookbook for creating effective and intelligent GUI automation systems that leverage the capabilities of
LLMs.

4.1 Architecture and Workflow In a Nutshell

In Figure 5, we present the architecture of an LLM-brained GUI agent, showcasing the sequence of operations
from user input to task completion. The architecture comprises several integrated components, each
contributing to the agent’s ability to interpret and execute tasks based on user-provided natural language
instructions. Upon receiving a user request, the agent follows a systematic workflow that includes environment
perception, prompt engineering, model inference, action execution, and continuous memory utilization until
the task is fully completed. It is important to recognize that user–agent interaction can be bi-directional, as
opposed to a passive, one-shot task execution. GUI agents may initiate communication with users to request
clarification, recover from errors, or resume control when needed—mechanisms that significantly improve
task completion reliability and user experience.

In general, it consists of the following components:

1. Operating Environment: The environment defines the operational context for the agent, encom-
passing platforms such as mobile devices, web browsers, and desktop operating systems like Windows.
To interact meaningfully, the agent perceives the environment’s current state through screenshots,
widget trees, or other methods of capturing UI structure Memon et al. (2003b). It continuously
monitors feedback on each action’s impact, adjusting its strategy in real time to ensure effective task
progression.

14

Published in Transactions on Machine Learning Research (06/2025)

Prompt Engineering

Operating
Environment

Action
Execution

LLMLLM

Screenshots Widget TreeWidget Tree UI Element PropertiesUI Element PropertiesScreenshots Widget Tree UI Element Properties

Environment State

Screenshots Widget Tree UI Element Properties

Environment State

RequestRequest

Perception

Input

Input

Input

Input

Input

Plan

Action

...

 Model
Inference

Step t-1 Step t-2 Step t-n...

Memory

Step t-1 Step t-2 Step t-n...

Memory

Agent

Clarification,
Error Recovery,

Control Resumption
Communication

Figure 5: An overview of the architecture and workflow of a basic LLM-powered GUI agent.

2. Prompt Engineering: Following environment perception, the agent constructs a detailed prompt to
guide the LLM’s inference Wang et al. (2023b). This prompt incorporates user instructions, processed
visual data (e.g., screenshots), UI element layouts, properties, and any additional context relevant to
the task. This structured input maximizes the LLM’s ability to generate coherent, context-aware
responses aligned with the current GUI state.

3. Model Inference: The constructed prompt is passed to a LLM, the agent’s inference core, which
produces a sequence of plans, actions and insights required to fulfill the user’s request. This model
may be a general-purpose LLM or a specialized model fine-tuned with GUI-specific data, enabling a
more nuanced understanding of GUI interactions, user flows, and task requirements.

4. Actions Execution: Based on the model’s inference results, the agent identifies specific actions
(such as mouse clicks, keyboard inputs, touchscreen gestures, or API calls) required for task execution
Shen (2024). An executor within the agent translates these high-level instructions into actionable
commands that impact the GUI directly, effectively simulating human-like interactions across diverse
applications and devices.

5. Memory: For multi-step tasks, the agent maintains an internal memory to track prior actions, task
progress, and environment states Zhang et al. (2024q). This memory ensures coherence throughout
complex workflows, as the agent can reference previous steps and adapt its actions accordingly. An
external memory module may also be incorporated to enable continuous learning, access external
knowledge, and enhance adaptation to new environments or requirements.

By iteratively traversing these stages and assembling the foundational components, the LLM-powered GUI
agent operates intelligently, seamlessly adapting across various software interfaces and bridging the gap
between language-based instruction and concrete action. Each component is critical to the agent’s robustness,
responsiveness, and capability to handle complex tasks in dynamic environments. In the following subsections,
we detail the design and core techniques underlying each of these components, providing a comprehensive
guide for constructing LLM-powered GUI agents from the ground up.

15

Published in Transactions on Machine Learning Research (06/2025)

Table 3: Summary of platform-specific challenges, action spaces, and typical tasks for Web, Mobile, and
Computer GUI environments.

Platform Typical GUI Challenges Action Space Representative Tasks
Mobile

• Constrained screen real es-
tate

• Heavy reliance on touch and
gesture recognition Mitra &
Acharya (2007)

• App architectures (native vs.
hybrid)

• Accessibility frameworks
(e.g., Android’s Accessibility
API, iOS VoiceOver)

• Platform-specific con-
straints (permissions,
security, privacy)

• Tap, swipe, pinch, and other
touch gestures

• Virtual keyboard input
• In-app navigation (menus,

tabs)
• Accessing hardware features

(camera, GPS)

• App-based login and form
filling

• Messaging, social media
posting

• Location-based services and
map interactions

• Handling push notifications
and permission dialogs

Web
• Dynamic and responsive lay-

outs
• Asynchronous updates

(AJAX, fetch APIs)
• HTML/DOM-based struc-

tures
• Cross-browser inconsisten-

cies

• Click, hover, scroll
• DOM-based form filling
• Link navigation and element

inspection
• JavaScript event triggering

• Form completion (registra-
tions, checkouts)

• Data extraction/web scrap-
ing

• Searching and filtering (e.g.,
e-commerce)

• Multi-step web navigation
(redirects, pop-ups)

Computer
• Full-fledged OS-level inter-

faces
• Multi-window operations

and system-level shortcuts
• Automation APIs (e.g., Win-

dows UI Automation Oksa-
nen (2023))

• Frequent software updates
requiring adaptation

• Complex, multi-layered soft-
ware suites

• Mouse click, drag-and-drop
• Keyboard shortcuts and text

input
• Menu navigation, toolbars
• Access to multiple applica-

tion windows

• File management and sys-
tem settings

• Productivity software usage
(office suites, IDEs)

• Installing/uninstalling appli-
cations

• Coordinating multi-
application workflows

(a) Web GUI (b) Mobile GUI (c) Computer GUI

Figure 6: Examples of GUIs from web, mobile and computer platforms.

4.2 Operating Environment

The operating environment for LLM-powered GUI agents encompasses various platforms, such as mobile,
web, and desktop operating systems, where these agents can interact with graphical interfaces. Each platform

16

Published in Transactions on Machine Learning Research (06/2025)

(a) A clean GUI screenshot. (c) A GUI screenshot with widgets
highlighted by bounding boxes.

(b) A GUI screenshot with widgets
highlighted by SoM.

Figure 7: Examples of different variants of VS Code GUI screenshots.

has distinct characteristics that impact the way GUI agents perceive, interpret, and act within it. Examples
of GUIs from each platform are shown in Figure 6. This section details the nuances of each platform, the
ways agents gather environmental information, and the challenges they face in adapting to diverse operating
environments.

4.2.1 Platform

GUI agents can interact with a wide range of platforms, including mobile devices, web applications, and
computer operating systems like Windows. Each platform offers unique capabilities and constraints for GUI
automation, requiring agents to adapt their perception and interaction strategies accordingly. We provide a
comparative overview of the platforms, including their challenges, action spaces, and representative tasks, in
Table 3.

1. Mobile Platforms: Mobile devices operate within constrained screen real estate, rely heavily on
touch interactions Hardy & Rukzio (2008), and offer varied app architectures (e.g., native vs. hybrid
apps). Mobile platforms often use accessibility frameworks, such as Android’s Accessibility API5Lee
et al. (2022) and iOS’s VoiceOver Accessibility Inspector6, to expose structured information about GUI
elements. However, GUI agents must handle additional complexities in mobile environments, such as
gesture recognition Mitra & Acharya (2007), app navigation Jokinen (2008), and platform-specific
constraints (e.g., security and privacy permissions) Enck et al. (2011); Egele et al. (2011).

2. Web Platforms: Web applications provide a relatively standardized interface, typically accessible
through Hypertext Markup Language (HTML) and Document Object Model (DOM) structures
Sierkowski (2002); Fernandes et al. (2011). GUI agents can leverage HTML attributes, such as
element ID, class, and tag, to identify interactive components. Web environments also present
dynamic content, responsive layouts, and asynchronous updates (e.g., AJAX requests) Garrett et al.
(2005), requiring agents to continuously assess the DOM and adapt their actions to changing interface
elements.

3. Computer Platforms: Computer OS platforms, such as Windows, offer full control over GUI
interactions. Agents can utilize system-level automation APIs, such as Windows UI Automation7

Oksanen (2023), to obtain comprehensive GUI element data, including type, label, position, and
bounding box. These platforms often support a broader set of interaction types, mouse, keyboard,

5https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
6https://developer.apple.com/documentation/accessibility/accessibility-inspector
7https://learn.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-overview

17

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.apple.com/documentation/accessibility/accessibility-inspector
https://learn.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-overview

Published in Transactions on Machine Learning Research (06/2025)

GroupBox - Adjust

Botton – Remove Background

MenuItem – Corrections

MenuItem – Color

MenuItem – Artistic Effects

MenuItem – Transparency

MenuItem – Compress Pictures...

MenuItem –Change Picture

SplitButton –Reset Picture

Button –Reset Picture

MenuItem –More Options

GUI

Widget Tree

Figure 8: An example of a GUI and its widget tree.

and complex multi-window operations. These enable GUI agents to execute intricate workflows.
However, these systems also require sophisticated adaptation for diverse applications, ranging from
simple GUI to complex, multi-layered software suites.

In summary, the diversity of platforms, spanning mobile, web, and desktop environments, enable GUI agents
to deliver broad automation capabilities, making them a generalized solution adaptable across a unified
framework. However, each platform presents unique characteristics and constraints at both the system
and application levels, necessitating a tailored approach for effective integration. By considering these
platform-specific features, GUI agents can be optimized to address the distinctive requirements of each
environment, thus enhancing their adaptability and reliability in varied automation scenarios.

4.2.2 Environment State Perception

Accurately perceiving the current state of the environment is essential for LLM-powered GUI agents, as it
directly informs their decision-making and action-planning processes. This perception is enabled by gathering
a combination of structured data, such as widget trees, and unstructured data, like screenshots, to capture a
complete representation of the interface and its components. In Table 4, we outline key toolkits available for
collecting GUI environment data across various platforms, and below we discuss their roles in detail:

1. GUI Screenshots: Screenshots provide a visual snapshot of the application, capturing the entire
state of the GUI at a given moment. They offer agents a reference for layout, design, and visual
content, which is crucial when structural details about GUI elements are either limited or unavailable.
Visual elements like icons, images, and other graphical cues that may hold important context can be
analyzed directly from screenshots. Many platforms have built-in tools to capture screenshots (e.g.,

18

Published in Transactions on Machine Learning Research (06/2025)

Table 4: Key toolkits for collecting GUI environment data.

Tool Platform Environment Accessible Information Highlight Link
Selenium Web Browser (Cross-

platform)
DOM elements, HTML struc-
ture, CSS properties

Extensive browser support
and automation capabilities https://www.selenium.dev/

Puppeteer Web Browser (Chrome,
Firefox)

DOM elements, HTML/CSS,
network requests

Headless browser automa-
tion with rich API https://pptr.dev/

Playwright Web Browser (Cross-
platform)

DOM elements, HTML/CSS,
network interactions

Multi-browser support with
automation and testing capa-
bilities

https://playwright.dev/

TestCafe Web Browser (Cross-
platform)

DOM elements, HTML struc-
ture, CSS properties

Easy setup with JavaScript/-
TypeScript support

https://testcafe.io/

BeautifulSoup Web HTML Parsing HTML content, DOM ele-
ments

Python library for parsing
HTML and XML documents

https://www.crummy.com/software/
BeautifulSoup/

Protractor Web Browser (Angular) DOM elements, Angular-
specific attributes

Designed for Angular appli-
cations, integrates with Sele-
nium

https://www.protractortest.org/

WebDriverIO Web Browser (Cross-
platform)

DOM elements, HTML/CSS,
network interactions

Highly extensible with a vast
plugin ecosystem

https://webdriver.io/

Ghost Inspec-
tor

Web Browser (Cross-
platform)

DOM elements, screenshots,
test scripts

Cloud-based automated
browser testing and monitor-
ing

https://ghostinspector.com/

Cypress Web Browser (Cross-
platform)

DOM elements, HTML/CSS,
network requests

Real-time reloads and inter-
active debugging

https://www.cypress.io/

UIAutomator Mobile Android GUI hierarchy, widget prop-
erties, screen content

Native Android GUI testing
framework

https://developer.android.com/
training/testing/ui-automator

Espresso Mobile Android GUI components, view hier-
archy, widget properties

Google’s native Android GUI
testing framework

https://developer.android.com/
training/testing/espresso

Android View
Hierarchy

Mobile Android GUI hierarchy, widget prop-
erties, layout information

View hierarchy accessible via
developer tools

https://developer.android.com/
studio/debug/layout-inspector

iOS Accessibil-
ity Inspector

Mobile iOS Accessibility tree, GUI ele-
ments, properties

Tool for inspecting iOS app
GUI elements

https://developer.apple.com/
documentation/accessibility/
accessibility-inspector

XCUITest Mobile iOS GUI elements, accessibility
properties, view hierarchy

Apple’s iOS GUI testing
framework

https://developer.apple.com/
documentation/xctest/user_interface_
tests

Flutter Driver Mobile Flutter apps Widget tree, properties, in-
teractions

Automation for Flutter ap-
plications

https://flutter.dev/docs/testing

Android’s Me-
diaProjection
API

Mobile Android Screenshots, screen record-
ing

Capturing device screen con-
tent programmatically

https://developer.android.com/
reference/android/media/projection/
MediaProjection

Windows GUI
Automation

Computer Windows Control properties, widget
trees, accessibility tree

Native Windows support
with OS integration https://docs.microsoft.com/windows/

win32/winauto/entry-uiauto-win32
Sikuli Computer Windows, macOS,

Linux
Screenshots (image recogni-
tion), GUI elements

Image-based automation us-
ing computer vision

http://sikulix.com/

AutoIt Computer Windows Window titles, control prop-
erties, coordinates

Scripting language for Win-
dows GUI automation

https://www.autoitscript.com/site/
autoit/

Inspect.exe Computer Windows GUI elements, control prop-
erties, accessibility tree

Tool for inspecting Windows
GUI elements

https://docs.microsoft.com/windows/
win32/winauto/inspect-objects

macOS Acces-
sibility API

Computer macOS Accessibility tree, GUI ele-
ments, control properties

macOS support for accessi-
bility and GUI automation

https://developer.apple.com/
accessibility/

Pywinauto Computer Windows Control properties, GUI hi-
erarchy, window information

Python-based Windows GUI
automation

https://pywinauto.readthedocs.io/

Electron In-
spector

Computer Electron apps DOM elements, HTML/CSS,
JavaScript state

Tool for Electron applica-
tions

https://www.electronjs.org/docs/
latest/tutorial/automated-testing

Windows
Snipping Tool

Computer Windows Screenshots Tool for capturing screen-
shots in Windows

https://www.microsoft.com/en-us/
windows/tips/snipping-tool

macOS
Screenshot
Utility

Computer macOS Screenshots, screen record-
ing

Tool for capturing screen-
shots and recording screen

https://support.apple.com/guide/
mac-help/take-a-screenshot-or%
2Dscreen-recording%2Dmh26782/mac

AccessKit Cross-
Platform

Various OS Accessibility tree, control
properties, roles

Standardized APIs across
platforms

https://github.com/AccessKit/
accesskit

Appium Cross-
Platform

Android, iOS, Win-
dows, macOS

GUI elements, accessibility
properties, gestures

Mobile automation frame-
work https://appium.io/

Robot Frame-
work

Cross-
Platform

Web, Mobile, Desk-
top

GUI elements, DOM, screen-
shots

Extensible with various li-
braries

https://robotframework.org/

Cucumber Cross-
Platform

Web, Mobile, Desk-
top

Step definitions, GUI inter-
actions

BDD framework supporting
automation tools

https://cucumber.io/

TestComplete Cross-
Platform

Web, Mobile, Desk-
top

GUI elements, DOM, control
properties

Tool with extensive feature
set

https://smartbear.com/product/
testcomplete/overview/

Katalon Stu-
dio

Cross-
Platform

Web, Mobile, Desk-
top

GUI elements, DOM, screen-
shots

All-in-one automation solu-
tion

https://www.katalon.com/

Ranorex Cross-
Platform

Web, Mobile, Desk-
top

GUI elements, DOM, control
properties

Tool with strong reporting
features

https://www.ranorex.com/

Applitools Cross-
Platform

Web, Mobile, Desk-
top

Screenshots, visual check-
points, DOM elements

AI-powered visual testing https://applitools.com/

19

https://www.selenium.dev/
https://pptr.dev/
https://playwright.dev/
https://testcafe.io/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.protractortest.org/
https://webdriver.io/
https://ghostinspector.com/
https://www.cypress.io/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/debug/layout-inspector
https://developer.android.com/studio/debug/layout-inspector
https://developer.apple.com/documentation/accessibility/accessibility-inspector
https://developer.apple.com/documentation/accessibility/accessibility-inspector
https://developer.apple.com/documentation/accessibility/accessibility-inspector
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://flutter.dev/docs/testing
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.android.com/reference/android/media/projection/MediaProjection
https://docs.microsoft.com/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/windows/win32/winauto/entry-uiauto-win32
http://sikulix.com/
https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/site/autoit/
https://docs.microsoft.com/windows/win32/winauto/inspect-objects
https://docs.microsoft.com/windows/win32/winauto/inspect-objects
https://developer.apple.com/accessibility/
https://developer.apple.com/accessibility/
https://pywinauto.readthedocs.io/
https://www.electronjs.org/docs/latest/tutorial/automated-testing
https://www.electronjs.org/docs/latest/tutorial/automated-testing
https://www.microsoft.com/en-us/windows/tips/snipping-tool
https://www.microsoft.com/en-us/windows/tips/snipping-tool
https://support.apple.com/guide/mac-help/take-a-screenshot-or%2Dscreen-recording%2Dmh26782/mac
https://support.apple.com/guide/mac-help/take-a-screenshot-or%2Dscreen-recording%2Dmh26782/mac
https://support.apple.com/guide/mac-help/take-a-screenshot-or%2Dscreen-recording%2Dmh26782/mac
https://github.com/AccessKit/accesskit
https://github.com/AccessKit/accesskit
https://appium.io/
https://robotframework.org/
https://cucumber.io/
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/
https://www.katalon.com/
https://www.ranorex.com/
https://applitools.com/

Published in Transactions on Machine Learning Research (06/2025)

Widget Name Position Attributes

Button - 'Remove
Background'

L-3810, T128, R-3708, B243
title='Remove Background';
auto_id='PictureBackgroundRemoval';
control_type='Button'

MenuItem -
'Corrections'

L-3689, T128, R-3592, B243
title='Corrections';
auto_id='PictureCorrectionsMenu';
control_type='MenuItem'

MenuItem - 'Color' L-3589, T128, R-3527, B243
title='Color';
auto_id='PictureColorMenu';
control_type='MenuItem'

MenuItem - 'Artistic
Effects'

L-3524, T128, R-3448, B243
title='Artistic Effects';
auto_id='PictureArtisticEffectsGallery';
control_type='MenuItem'

MenuItem -
'Transparency'

L-3445, T128, R-3336, B243
title='Transparency';
auto_id='PictureTransparencyGallery';
control_type='MenuItem'

Button - 'Compress
Pictures...'

L-3333, T128, R-3138, B164
title='Compress Pictures...';
auto_id='PicturesCompress';
control_type='Button'

MenuItem - 'Change
Picture'

L-3333, T167, R-3149, B203
title='Change Picture';
auto_id='PictureChangeMenu';
control_type='MenuItem'

SplitButton - 'Reset
Picture'

L-3333, T206, R-3160, B242
title='Reset Picture';
control_type='SplitButton'

Widget

Figure 9: Examples of UI element properties in the PowerPoint application for GUI Agent interaction.

Windows Snipping Tool8, macOS Screenshot Utility9, and Android’s MediaProjection API10), and
screenshots can be enhanced with additional annotations, such as Set-of-Mark (SoM) highlights Yang
et al. (2023) or bounding boxes Wu et al. (2023d) around key GUI components, to streamline agent
decisions. Figure 7 illustrates various screenshots of the VS Code GUI, including a clean version, as
well as ones with SoM and bounding boxes that highlight actionable components, helping the agent
focus on the most critical areas of the interface.

2. Widget Trees: Widget trees present a hierarchical view of interface elements, providing structured
data about the layout and relationships between components Gamma (1995). We show an example
of a GUI and its widget tree in Figure 8. By accessing the widget tree, agents can identify attributes
such as element type, label, role, and relationships within the interface, all of which are essential for
contextual understanding. Tools like Windows GUI Automation and macOS’s Accessibility API11

provide structured views for desktop applications, while Android’s Accessibility API and HTML
DOM structures serve mobile and web platforms, respectively. This hierarchical data is indispensable
for agents to map out logical interactions and make informed choices based on the GUI structure.

3. GUI Element Properties: Each GUI element in the interface contains specific properties, such
as control type, label text, position, and bounding box dimensions, that help agents target the
appropriate components. These properties are instrumental for agents to make decisions about
spatial relationships (e.g., adjacent elements) and functional purposes (e.g., distinguishing between
buttons and text fields). For instance, web applications reveal properties like DOM attributes (id,

8https://support.microsoft.com/en-us/windows/use-snipping-tool-to-capture%2Dscreenshots%2D00246869%2D1843%
2D655f%2Df220%2D97299b865f6b

9https://support.apple.com/guide/mac-help/take-a-screenshot-mh26782/mac
10https://developer.android.com/reference/android/media/projection/MediaProjection
11https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/

20

https://support.microsoft.com/en-us/windows/use-snipping-tool-to-capture%2Dscreenshots%2D00246869%2D1843%2D655f%2Df220%2D97299b865f6b
https://support.microsoft.com/en-us/windows/use-snipping-tool-to-capture%2Dscreenshots%2D00246869%2D1843%2D655f%2Df220%2D97299b865f6b
https://support.apple.com/guide/mac-help/take-a-screenshot-mh26782/mac
https://developer.android.com/reference/android/media/projection/MediaProjection
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/

Published in Transactions on Machine Learning Research (06/2025)

3

1

2

5

Widgets
detected by APIs

Widgets detected
by CV models

CV-Detected Widgets Information

Id: 1, type: icon, label: Page 4 thumbnail

Id: 2, type: icon, label: Page 5 thumbnail

Id: 3, type: icon, label: Page 6 thumbnail

Id: 5, type: editbox, label: Canvas
4

Id: 4, type: icon, label: Page 7 thumbnail

Figure 10: An example illustrating the use of a CV approach to parse a PowerPoint GUI and detect non-
standard widgets, inferring their types and labels.

class, name) and CSS styles that provide context and control information. These attributes assist
agents in pinpointing precise elements for interaction, enhancing their ability to navigate and operate
within diverse GUI environments. Figure 9 illustrates examples of selected GUI element properties
extracted by the Windows UI Automation API, which support GUI agents in decision-making.

4. Complementary CV Approaches: When structured information is incomplete or unavailable,
computer vision techniques can provide additional insights Wang et al. (2024a). For instance, OCR
allows agents to extract text content directly from screenshots, facilitating the reading of labels, error
messages, and instructions Qian et al. (2022). Furthermore, advanced object detection Chen et al.
(2020) models like SAM (Segment Anything Model) Kirillov et al. (2023), DINO Liu et al. (2023a)
and OmniParser Lu et al. (2024d) can identify and classify GUI components in various layouts,
supporting the agent in dynamic environments where GUI elements may frequently change. These
vision-based methods ensure robustness, enabling agents to function effectively even in settings where
standard GUI APIs are insufficient. We illustrate an example of this complementary information in
Figure 10 and further detail these advanced computer vision approaches in Section 4.7.1.

Together, these elements create a comprehensive, multimodal representation of the GUI environment’s
current state, delivering both structured and visual data. By incorporating this information into prompt
construction, agents are empowered to make well-informed, contextually aware decisions without missing
critical environmental cues.

4.2.3 Environment Feedback

Effective feedback mechanisms are essential for GUI agents to assess the success of each action and make
informed decisions for subsequent steps. Feedback can take several forms, depending on the platform and
interaction type. Figure 11 presents examples of various types of feedback obtained from the environment.

1. Screenshot Update: By comparing before-and-after screenshots, agents can identify visual differ-
ences that signify state changes in the application. Screenshot analysis can reveal subtle variations in
the interface, such as the appearance of a notification, visual cues, or confirmation messages, that
may not be captured by structured data Moran et al. (2018).

21

Published in Transactions on Machine Learning Research (06/2025)

Before

After

Screenshot Update

ClickClick

Click on the “Video”

Click

Click on the “Video”

Groupbox -
Media

MenuItem -
Video

MenuItem -
Audio

Button -
 Screen Recording

Groupbox -
Media

MenuItem -
Video

MenuItem -
Audio

Button -
 Screen Recording

Before After

UI Structure Change

Groupbox -
Media

MenuItem -
Video

MenuItem -
Audio

Button -
 Screen Recording

MenuItem -
Video

MenuItem –
This Device ...

MenuItem –
Stock Videos ...

MenuItem –
Online Videos ...Groupbox -

Media

MenuItem -
Video

MenuItem -
Audio

Button -
 Screen Recording

MenuItem -
Video

MenuItem –
This Device ...

MenuItem –
Stock Videos ...

MenuItem –
Online Videos ...

Function Return
Values and Exceptions

Function Return
Values and Exceptions

Difference

Figure 11: Examples of various types of feedback obtained from a PowerPoint application environment.

2. GUI Structure Change: After executing an action, agents can detect modifications in the widget
tree structure, such as the appearance or disappearance of elements, updates to element properties,
or hierarchical shifts Ricós et al. (2023). These changes indicate successful interactions (e.g., opening
a dropdown or clicking a button) and help the agent determine the next steps based on the updated
environment state.

3. Function Return Values and Exceptions: Certain platforms offer direct feedback on action
outcomes through function return values or system-generated exceptions Du et al. (2024). For
example, API responses or JavaScript return values can confirm action success on web platforms,
while exceptions or error codes can signal failed interactions, guiding the agent to retry or select an
alternative approach.

These feedback provided by the environment is crucial for GUI agents to assess the outcomes of their previous
actions. This real-time information enables agents to evaluate the effectiveness of their interventions and
determine whether to adhere to their initial plans or pivot towards alternative strategies. Through this
process of self-reflection, agents can adapt their decision-making, optimizing task execution and enhancing
overall performance in dynamic and varied application environments.

4.3 Prompt Engineering

In the operation of LLM-powered GUI agents, effective prompt construction is a crucial step that encapsulates
all necessary information for the agent to generate appropriate responses and execute tasks successfully Wang
et al. (2023b). After gathering the relevant data from the environment, the agent formulates a comprehensive
prompt that combines various components essential for inference by the LLM. Each component serves a
specific purpose, and together they enable the agent to execute the user’s request efficiently. Figure 12
illustrates a basic example of prompt construction in an LLM-powered GUI agent. The key elements of the
prompt are summarized as follows:

22

Published in Transactions on Machine Learning Research (06/2025)

Agent Instruction:

You are a GUI agent, your task is to …

Please follow the guidelines below …
1. ...
2. ...

Agent Instruction:

You are a GUI agent, your task is to …

Please follow the guidelines below …
1. ...
2. ...

User Request:
Create a PowerPoint slide based on ...

User Request:
Create a PowerPoint slide based on ...

Action Information:

...

Action Information:

...

Complementary Information:

Memory External Knowledge ...

Demonstrated Examples:

Widget TreeWidget TreeWidget Tree UI Element PropertiesUI Element PropertiesUI Element PropertiesScreenshotsScreenshots

Environment State:

Prompt Engineering

Figure 12: A basic example of prompt construction in a LLM-powered GUI agent.

1. User Request: This is the original task description provided by the user, outlining the objective
and desired outcome. It serves as the foundation for the agent’s actions and is critical for ensuring
that the LLM understands the context and scope of the task.

2. Agent Instruction: This section provides guidance for the agent’s operation, detailing its role,
rules to follow, and specific objectives. Instructions clarify what inputs the agent will receive and
outline the expected outputs from the LLM, establishing a framework for the inference process. The
core agent instructions are usually embedded within the base system prompt of the LLM, with
supplementary instructions dynamically injected or updated based on environmental feedback and
contextual adaptation.

3. Environment States: The agent includes perceived GUI screenshots and GUI information, as
introduced in Section 4.2.2. This multimodal data may consist of various versions of screenshots
(e.g., a clean version and a SoM annotated version) to ensure clarity and mitigate the risk of GUI
controls being obscured by annotations. This comprehensive representation of the environment is
vital for accurate decision-making.

4. Action Documents: This component outlines the available actions the agent can take, detailing
relevant documentation, function or tools names, schemata, arguments, return values, and any other
necessary parameters. Providing this information equips the LLM with the context needed to select
and generate appropriate actions for the task at hand.

5. Demonstrated Examples: Including example input/output pairs is essential to activate the
in-context learning Dong et al. (2022) capability of the LLM. These examples help the model
comprehend and generalize the task requirements, enhancing its performance in executing the GUI
agent’s responsibilities.

23

Published in Transactions on Machine Learning Research (06/2025)

LLMLLM

Action:

Click(button=“left”, double=False,

object = “Remove Background”)

Plan:

1. After clicking the “Remove Background”, I will click the

“Transparency” menu.

2. I will click the “Transparency 50%” to adjust the
transparency of the picture.

Output

Inference

Complementary Outputs:

Thought:
First I need to remove the background by

clicking the “Remove Background”.

Status:
Continue

...

ClickClick

Figure 13: An example of the LLM’s inference output in a GUI agent.

6. Complementary Information: Additional context that aids in planning and inference may also
be included. This can consist of historical data retrieved from the agent’s memory (as detailed in
Section 4.6) and external knowledge sources, such as documents obtained through retrieval-augmented
generation (RAG) methods Lewis et al. (2020); Gao et al. (2023). This supplemental information
can provide valuable insights that further refine the agent’s decision-making processes.

The construction of an effective prompt is foundational for the performance of LLM-powered GUI agents. By
systematically incorporating aforementioned information, the agent ensures that the LLM is equipped with
the necessary context and guidance to execute tasks accurately and efficiently.

4.4 Model Inference

The constructed prompt is submitted to the LLM for inference, where the LLM is tasked with generating
both a plan and the specific actions required to execute the user’s request. This inference process is critical
as it dictates how effectively the GUI agent will perform in dynamic environments. It typically involves
two main components: planning and action prediction, as well as the generation of complementary outputs.
Figure 13 shows an example of the LLM’s inference output.

4.4.1 Planning

Successful execution of GUI tasks often necessitates a series of sequential actions, requiring the agent to engage
in effective planning Zhang et al. (2024j). Analogous to human cognitive processes, thoughtful planning is
essential to organize tasks, schedule actions, and ensure successful completion Huang et al. (2024b); Cho et al.
(2024). The LLM must initially conceptualize a long-term goal while simultaneously focusing on short-term
actions to initiate progress toward that goal Dagan et al. (2023).

To effectively navigate the complexity of multi-step tasks, the agent should decompose the overarching task
into manageable subtasks and establish a timeline for their execution Khot et al. (2022). Techniques such as
CoT reasoning Wei et al. (2022) can be employed, enabling the LLM to develop a structured plan that guides
the execution of actions. This plan, which can be stored for reference during future inference steps, enhances
the organization and focus of the agent’s activities.

The granularity of planning may vary based on the nature of the task and the role of the agent Huang
et al. (2024b). For complex tasks, a hierarchical approach that combines global planning (identifying broad
subgoals) with local planning (defining detailed steps for those subgoals) can significantly improve the agent’s
ability to manage long-term objectives effectively Chen et al. (2024j).

24

Published in Transactions on Machine Learning Research (06/2025)

Table 5: Overview of actions for GUI agents.

Action Category Original Executor Examples Platform Environment Toolkit
Mouse actions GUI Operations Mouse Click, scroll,

hover, drag
Computer Windows GUI Au-

tomation 7,
Pywinauto
Sweigart
(2024)

Mouse actions GUI Operations Mouse Click, scroll,
hover, drag

Computer macOS AppleScript
10, Automa-
tor 11

Mouse actions GUI Operations Mouse Click, scroll,
hover, drag

Web Browser Selenium,
Puppeteer

Keyboard actions GUI Operations Keyboard Typing, key
presses, short-
cuts

Computer Windows GUI Au-
tomation 7,
Pywinauto
Sweigart
(2024)

Keyboard actions GUI Operations Keyboard Typing, key
presses, short-
cuts

Computer macOS AppleScript
10, Automa-
tor 11

Keyboard actions GUI Operations Keyboard Typing, key
presses, short-
cuts

Web Browser Selenium,
Puppeteer

Touch actions GUI Operations Touchscreen Tap, swipe,
pinch, zoom

Mobile Android Appium,
UIAutoma-
tor

Touch actions GUI Operations Touchscreen Tap, swipe,
pinch, zoom

Mobile iOS Appium,
XCUITest

Gesture actions GUI Operations User
hand

Rotate, multi-
finger gestures

Mobile Android, iOS Appium ,
Gesture-
Tools 12

Voice commands GUI Operations User
voice

Speech input,
voice commands

Mobile Android SpeechRecognizer
13

Voice commands GUI Operations User
voice

Speech input,
voice commands

Mobile iOS SiriKit 14

Clipboard operations GUI Operations System
clipboard

Copy, paste Cross-platform Cross-OS Pyperclip 15,
Clipboard.js
16

Screen interactions GUI Operations User Screen rotation,
shake

Mobile Android, iOS Device sen-
sors APIs 17

Shell Commands Native API Calls Command
Line In-
terface

File manipu-
lation, system
operations,
script execution

Computer Unix/Linux, macOS Bash, Termi-
nal

Application APIs Native API Calls Application
APIs

Send email, cre-
ate document,
fetch data

Computer Windows Microsoft
Office COM
APIs 18

Application APIs Native API Calls Application
APIs

Access calendar,
send messages

Mobile Android Android
SDK APIs 19

Application APIs Native API Calls Application
APIs

Access calendar,
send messages

Mobile iOS iOS SDK
APIs 20

System APIs Native API Calls System
APIs

File operations,
network requests

Computer Windows Win32 API
21

System APIs Native API Calls System
APIs

File operations,
network requests

Computer macOS Cocoa APIs
22

Web APIs Native API Calls Web Ser-
vices

Fetch data, sub-
mit forms

Web Browser Fetch API 23

, Axios 24

AI Models AI Tools AI Mod-
els

Screen un-
derstanding,
summarization,
image genera-
tion

Cross-platform Cross-OS DALL·E
Ramesh et al.
(2021) , Ope-
nAI APIs 26

10https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/
introduction/ASLR_intro.html

11https://www.macosxautomation.com/automator/
12https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/introduction/gesture_tools.html
13https://developer.android.com/reference/android/speech/SpeechRecognizer

25

https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://www.macosxautomation.com/automator/
https://docs.blender.org/manual/en/latest/sculpt_paint/sculpting/introduction/gesture_tools.html
https://developer.android.com/reference/android/speech/SpeechRecognizer

Published in Transactions on Machine Learning Research (06/2025)

4.4.2 Action Prediction

Action prediction is the core objective of the inference stage, as it translates the planning into executable tasks.
The inferred actions are typically expressed as function call strings, encompassing the function name and
relevant parameters. These strings can be readily converted into real-world interactions with the environment,
such as clicks, keyboard inputs, mobile gestures, or API calls. A detailed discussion of these action types is
presented in Section 4.5.

The input prompt must include a predefined set of actions available for the agent to select from. The
agent can choose an action from this set or, if allowed, generate custom code or API calls to interact with
the environment Tan et al. (2024a). This flexibility can enhance the agent’s adaptability to unforeseen
circumstances; however, it may introduce reliability concerns, as the generated code may be prone to errors.

4.4.3 Complementary Outputs

In addition to planning and action prediction, the LLM can also generate complementary outputs that
enhance the agent’s capabilities. These outputs may include reasoning processes that clarify the agent’s
decision-making (e.g., CoT reasoning), messages for user interaction, or communication with other agents
or systems, or the status of the task (e.g., continue or finished). The design of these functionalities can be
tailored to meet specific needs, thereby enriching the overall performance of the GUI agent. We note that that
such complementary outputs typically capture immediate reasoning, intermediate reflections (e.g., <think>
in DeepSeek-r1 Guo et al. (2025)), or communications directed at users or system components, rather than
representing a structured sequence of future actions as in explicit planning.

By effectively balancing planning and action prediction while incorporating complementary outputs, agents
can navigate complex tasks with a higher degree of organization and adaptability.

4.5 Actions Execution

Following the inference process, a crucial next step is for the GUI agent to execute the actions derived from
the inferred commands within the GUI environment and subsequently gather feedback. Although the term
“GUI agent” might suggest a focus solely on user interface actions, the action space can be greatly expanded
by incorporating various toolboxes that enhance the agent’s versatility. Broadly, the actions available to GUI
agents fall into three main categories: (i) GUI operations Li et al. (2020a), (ii) native API calls Gu et al.
(2016), and (iii) AI tools Masterman et al. (2024). Each category offers unique advantages and challenges,
enabling the agent to tackle a diverse range of tasks more effectively. We summarize the various actions
commonly used in GUI agents, categorized into distinct types, in Table 5, and provide detailed explanations
of each category below.

4.5.1 UI Operations

UI operations encompass the fundamental interactions that users typically perform with GUIs in software
applications. These operations include various forms of input, such as mouse actions (clicks, drags, hovers),
keyboard actions (key presses, combinations), touch actions (taps, swipes), and gestures (pinching, rotating).

14https://developer.apple.com/documentation/sirikit/
15https://pypi.org/project/pyperclip/
16https://clipboardjs.com/
17https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
18https://learn.microsoft.com/en-us/previous-versions/office/office-365-api/
19https://developer.android.com/reference
20https://developer.apple.com/ios/
21https://learn.microsoft.com/en-us/windows/win32/api/
22https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/

WhatIsCocoa.html
23https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
24https://axios-http.com/docs/api_intro
25https://platform.openai.com/docs/overview

26

https://developer.apple.com/documentation/sirikit/
https://pypi.org/project/pyperclip/
https://clipboardjs.com/
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://learn.microsoft.com/en-us/previous-versions/office/office-365-api/
https://developer.android.com/reference
https://developer.apple.com/ios/
https://learn.microsoft.com/en-us/windows/win32/api/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://axios-http.com/docs/api_intro
https://platform.openai.com/docs/overview

Published in Transactions on Machine Learning Research (06/2025)

The specifics of these actions may differ across platforms and applications, necessitating a tailored approach
for each environment.

While GUI operations form the foundation of agent interactions with the GUI, they can be relatively slow
due to the sequential nature of these tasks. Each operation must be executed step by step, which can lead to
increased latency, especially for complex workflows that involve numerous interactions. Despite this drawback,
GUI operations are crucial for maintaining a broad compatibility across various applications, as they leverage
standard user interface elements and interactions.

4.5.2 Native API Calls

In contrast to GUI operations, some applications provide native APIs that allow GUI agents to perform
actions more efficiently. These APIs offer direct access to specific functionalities within the application,
enabling the agent to execute complex tasks with a single command Lu et al. (2024a). For instance, calling
the Outlook API allows an agent to send an email in one operation, whereas using GUI operations would
require a series of steps, such as navigating through menus and filling out forms Song et al. (2024b).

While native APIs can significantly enhance the speed and reliability of action execution, their availability
is limited. Not all applications or platforms expose APIs for external use, and developing these interfaces
can require substantial effort and expertise. Consequently, while native APIs present a powerful means for
efficient task completion, they may not be as generalized across different applications as GUI operations.

4.5.3 AI Tools

The integration of AI tools into GUI agents represents a transformative advancement in their capabilities.
These tools can assist with a wide range of tasks, including content summarization from screenshots or text,
document enhancement, image or video generation (e.g., calling ChatGPT Wu et al. (2023c), DALL·E
Ramesh et al. (2021)), and even invoking other agents or Copilot tools for collaborative assistance. The
rapid development of generative AI technologies enables GUI agents to tackle complex challenges that were
previously beyond their capabilities.

By incorporating AI tools, agents can extend their functionality and enhance their performance in diverse
contexts. For example, a GUI agent could use an AI summarization tool to quickly extract key information
from a lengthy document or leverage an image generation tool to create custom visuals for user presentations.
This integration not only streamlines workflows but also empowers agents to deliver high-quality outcomes in
a fraction of the time traditionally required.

4.5.4 Summary

An advanced GUI agent should adeptly leverage all three categories of actions: GUI operations for broad
compatibility, native APIs for efficient execution, and AI tools for enhanced capabilities. This multifaceted
approach enables the agent to operate reliably across various applications while maximizing efficiency and
effectiveness. By skillfully navigating these action types, GUI agents can fulfill user requests more proficiently,
ultimately leading to a more seamless and productive user experience.

4.6 Memory

For a GUI agent to achieve robust performance in complex, multi-step tasks, it must retain memory, enabling it
to manage states in otherwise stateless environments. Memory allows the agent to track its prior actions, their
outcomes, and the task’s overall status, all of which are crucial for informed decision-making in subsequent
steps Lee et al. (2023). By establishing continuity, memory transforms the agent from a reactive system into
a proactive, stateful one, capable of self-adjustment based on accumulated knowledge. The agent’s memory is
generally divided into two main types: Short-Term Memory Lu et al. (2023) and Long-Term Memory Wang
et al. (2024n). We show an overview of different types of memory in GUI agents in Table 6.

27

Published in Transactions on Machine Learning Research (06/2025)

Long-term Memory:

Task 1: I just used Google to search for the “Recap of Arcane Season 1”, and play the top searched results on YouTube.

Task A: Play the Recap of Arcane Season 1. Task B: Download the game related to the video just played.

Plan 1:
(1) I need to use google to search

“Recap of Arcane Season 1”.
(2) Find the top searched result of video
and click.
(3) Play the video.

Plan 2:

(1) I need to click the “Arcane Season 1 |

Recap | Netflix”.
(2) Play the video just entered.

Plan 3:

(1) Click the “Play”button to play the
video.

Plan 1:
(1) The previous task play the video of

“Arcane”, which is related to the “League

of Legend”, which I should search for.
(2) Enter the official site of the game.
(3) Click Download.

Plan 2:

(1) I need to click the first result of “League of

Legend”to enter the website.
(2) Click Download.

Plan 3:
(1) Click Download for Windows to download
the game.

Short-term Memory:

Step 2Step 1

Input(“Arcane

Season1 Recap”)

Click(“Search”)

Click(“Arcane Season

1 | Recap | Netflix”)

Step 3

Click(“Play”)

Plan 1 Plan 2 Plan 3

GUI AgentGUI Agent

Step1

Step2

Step3

Step1

Step2

Step3

Short-term Memory:

Step 2Step 1

Input(“Arcane

Season1 Recap”)

Click(“Search”)

Step 3

Plan 1 Plan 2 Plan 3

Click(“League

of Legend”)
Click(“Download for

Windows”)

Figure 14: Illustration of short-term memory and long-term memory in an LLM-brained GUI agent.

Table 6: Summary of memory in GUI agents.

Memory Element Memory Type Description Storage Medium/Method
Action Short-term Historical actions trajectory taken in the environment In-memory, Context window
Plan Short-term Plan passed from previous step In-memory, Context window
Execution Results Short-term Return values, error traces, and other environmental feedback In-memory, Context window
Environment State Short-term Important environment state data, e.g., UI elements In-memory, Context window
Self-experience Long-term Task completion trajectories from historical tasks Database, Disk
Self-guidance Long-term Guidance and rules summarized from historical trajectories Database, Disk
External Knowledge Long-term Other external knowledge sources aiding task completion External Knowledge Base
Task Success Metrics Long-term Metrics from task success or failure rates across sessions Database, Disk

4.6.1 Short-Term Memory

Short-Term Memory (STM) provides the primary, ephemeral context used by the LLM during runtime Tack
et al. (2024). STM stores information pertinent to the current task, such as recent plans, actions, results,
and environmental states, and continuously updates to reflect the task’s ongoing status. This memory is
particularly valuable in multi-step tasks, where each decision builds on the previous one, requiring the agent
to maintain a clear understanding of the task’s trajectory. As illustrated in Figure 14, during the completion
of independent tasks, the task trajectory, comprising actions and plans—is stored in the STM. This allows
the agent to track task progress effectively and make more informed decisions.

However, STM is constrained by the LLM’s context window, limiting the amount of information it can
carry forward. To manage this limitation, agents can employ selective memory management strategies, such
as selectively discarding or summarizing less relevant details to prioritize the most impactful information.
Despite its limited size, STM is essential for ensuring coherent, contextually aware interactions and supporting
the agent’s capacity to execute complex workflows with immediate, relevant feedback.

4.6.2 Long-Term Memory

Long-Term Memory (LTM) serves as an external storage repository for contextual information that extends
beyond the immediate runtime Zhu et al. (2023a). Unlike STM, which is transient, LTM retains historical

28

Published in Transactions on Machine Learning Research (06/2025)

task data, including previously completed tasks, successful action sequences, contextual tips, and learned
insights. LTM can be stored on disk or in a database, enabling it to retain larger volumes of information
than what is feasible within the LLM’s immediate context window. In the example shown in Figure 14,
when the second task requests downloading a game related to the previous task, the agent retrieves relevant
information from its LTM. This enables the agent to accurately identify the correct game, facilitating efficient
task completion.

LTM contributes to the agent’s self-improvement over time by preserving examples of successful task
trajectories, operational guidelines, and common interaction patterns. When approaching a new task, the
agent can leverage RAG techniques to retrieve relevant historical data, which enhances its ability to adapt
strategies based on prior success. This is similar to the lifelong learning Zheng et al. (2025c), which makes
LTM instrumental in fostering an agent’s capacity to “learn” from experience, enabling it to perform tasks
with greater accuracy and efficiency as it accumulates insights across sessions. For instance, Zheng et al.
(2024d) provides an illustrative example of using past task trajectories stored in memory to guide and
enhance future decision-making, a technique that is highly adaptable for GUI agents. It also enables better
personalization by retaining information about previous tasks.

4.7 Advanced Enhancements

While most LLM-powered GUI agents incorporate fundamental components such as perception, planning,
action execution, and memory, several advanced techniques have been developed to significantly improve the
reasoning and overall capabilities of these agents. Here, we outline shared advancements widely adopted in
research to guide the development of more specialized and capable LLM-powered GUI agents.

4.7.1 Computer Vision-Based GUI Grounding

Although various tools (Section 4) enable GUI agents to access information like widget location, captions,
and properties, certain non-standard GUIs or widgets may not adhere to these tools’ protocols Zhan et al.
(2021), rendering their information inaccessible. Additionally, due to permission management, these tools are
not always usable. Such incomplete information can present significant challenges for GUI agents, as the
LLM may need to independently locate and interact with required widgets by estimating their coordinates to
perform actions like clicking—a task that is inherently difficult without precise GUI data.

CV models offer a non-intrusive solution for GUI grounding directly from screenshots, enabling the detection,
localization, segmentation, and even functional estimation of widgets Li et al. (2020b); White et al. (2019);
Wang et al. (2021); Bai et al. (2021). This approach allows agents to interpret the visual structure and
elements of the GUI without relying on system-level tools or internal metadata, which may be unavailable
or incomplete. CV-based GUI parsing provides agents with valuable insights into interactive components,
screen layout, and widget functionalities based solely on visual cues, enhancing their ability to recognize
and act upon elements on the screen. Figure 10 provides an illustrative example of how a CV-based GUI
parser works. While standard API-based detection captures predefined widgets, the CV model can identify
additional elements, such as thumbnails and canvases, which may not have explicit API representations in the
PowerPoint interface. This enhances widget recognition, allowing the agent to detect components beyond the
scope of API detection. We show an overview of related GUI grounding models and benchmarks in Table 7,
8, 9 and 10.

A notable example is OmniParser Lu et al. (2024d), which implements a multi-stage parsing technique
involving a fine-tuned model for detecting interactable icons, an OCR module for extracting text, and an
icon description model that generates localized semantic descriptions for each UI element. By integrating
these components, OmniParser constructs a structured representation of the GUI, enhancing an agent’s
understanding of interactive regions and functional elements. This comprehensive parsing strategy has shown
to significantly improve GPT-4V’s screen comprehension and interaction accuracy.

Such CV-based GUI grounding layers provide critical grounding information that significantly enhances an
agent’s ability to interact accurately and intuitively with diverse GUIs. This is particularly beneficial for
handling custom or non-standard elements that deviate from typical accessibility protocols. Additionally,

29

Published in Transactions on Machine Learning Research (06/2025)

Table 7: A summary of of GUI grounding models (Part I).

Model Platform Foundation
Model

Size Dataset Input Output Highlight Link

OmniParser
Lu et al.
(2024d)

Mobile,
Desktop,
and Web

BLIP-2
Li et al.
(2023c),
YOLOv8
Reis et al.
(2023)

/ 67,000 UI
screenshots with
bounding box
annotations
and 7,185 icon–
description pairs
generated using
GPT-4

UI screen-
shots

IDs, bound-
ing boxes,
and descrip-
tions of
interactable
elements

Introduces a purely
vision-based screen
parsing framework
for general UI
understanding
without external
information, signif-
icantly improving
action prediction
accuracy for LLM-
driven agents

https://
github.com/
microsoft/
OmniParser

Iterative
Nar-
rowing
Nguyen
(2024)

Mobile,
Web, and
Desktop

Qwen2-
VL and
OS-Atlas-
Base

/ ScreenSpot
Cheng et al.
(2024a)

A GUI
screenshot
and a natu-
ral language
query

(x,y) co-
ordinates
representing
the target
location in
the GUI

Progressively crops
regions of the GUI
to refine predictions,
enhancing precision
for GUI grounding
tasks

https:
//github.
com/ant-8/
GUI-Grounding-via-Iterative-Narrowing

Iris Ge
et al.
(2024)

Mobile
(iOS,
Android),
Desktop
(Win-
dows,
macOS),
and Web

Qwen-VL
Bai et al.
(2023b)

9.6B 850K GUI-
specific annota-
tions and 150K
vision–language
instructions

High-
resolution
GUI screen-
shots with
natural
language
instructions

Referring:
Generates
detailed de-
scriptions of
UI elements.
Grounding:
Locates UI
elements on
the screen.

Information-
Sensitive Crop-
ping for efficient
handling of high-
resolution GUI
images, and Self-
Refining Dual
Learning to iter-
atively enhance
GUI grounding
and referring tasks
without additional
annotations

/

Attention-
driven
Ground-
ing Xu
et al.
(2024b)

Mobile,
Web, and
Desktop

MiniCPM-
Llama3-
V 2.5

8.5B Mind2Web Deng
et al. (2023),
ScreenSpot
Cheng et al.
(2024a), Visual-
WebBench Liu
et al. (2024f)

GUI screen-
shots and
textual user
queries

Element
localization
via bounding
boxes, text-
to-image
mapping
for ground-
ing, and
actionable
descriptions
of GUI com-
ponents

Utilizes attention
mechanisms in
pre-trained MLLMs
without fine-tuning

https://
github.com/
HeimingX/
TAG

Aria-UI
Yang
et al.
(2024b)

Web,
Desktop,
and Mo-
bile

Aria Li
et al.
(2024b)

3.9B 3.9 million ele-
ments and 11.5
million samples

GUI screen-
shots, user
instructions,
and action
histories

Pixel co-
ordinates
for GUI
elements and
correspond-
ing actions

A purely vision-
based approach
avoiding reliance on
AXTree-like inputs

https:
//ariaui.
github.io

prompting methods like iterative narrowing have shown promise in improving the widget grounding capabilities
of VLMs Nguyen (2024). Together, these approaches pave the way for more adaptable and resilient GUI
agents, capable of operating effectively across a broader range of screen environments and application contexts.

Several works have introduced benchmarks to evaluate the GUI grounding capabilities of models and agents.
For instance, ScreenSpot Cheng et al. (2024a) serves as a pioneering benchmark designed to assess the GUI
grounding performance of LLM-powered agents across diverse platforms, including iOS, Android, macOS,
Windows, and web environments. It features a dataset with over 600 screenshots and 1,200 instructions,
focusing on complex GUI components such as widgets and icons. This benchmark emphasizes the importance of
GUI grounding in enhancing downstream tasks like web automation and mobile UI interaction. Building upon
this, ScreenSpot-Pro Li et al. (2025b) extends the scope to more professional, high-resolution environments.
This evolved version includes 1,581 tasks with high-quality annotations, encompassing domains such as

30

https://github.com/microsoft/OmniParser
https://github.com/microsoft/OmniParser
https://github.com/microsoft/OmniParser
https://github.com/microsoft/OmniParser
https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
https://github.com/HeimingX/TAG
https://github.com/HeimingX/TAG
https://github.com/HeimingX/TAG
https://github.com/HeimingX/TAG
https://ariaui.github.io
https://ariaui.github.io
https://ariaui.github.io

Published in Transactions on Machine Learning Research (06/2025)

Table 8: A summary of of GUI grounding models (Part II).

Model Platform Foundation
Model

Size Dataset Input Output Highlight Link

UGround
Gou et al.
(2024)

Web,
Desktop
(Win-
dows,
MacOS,
Linux),
Mobile
(Android,
iOS)

LLaVA-
NeXT-7B
Liu et al.
(2024b)

7B Web-Hybrid and
other existing
datasets

GUI screen-
shots, user
queries

Pixel coordi-
nates of GUI
elements

A universal GUI
grounding model
that relies solely
on vision, eliminat-
ing the need for
text-based represen-
tations

https://
osu-nlp-group.
github.io/
UGround/

GUI-Bee
Fan et al.
(2025)

Web SeeClick
Cheng
et al.
(2024a),
Qwen-
GUI
Chen
et al.
(2024i),
and UIX-
7B Liu
et al.
(2024e)

7B-13B NovelScreenSpot GUI screen-
shots, user
queries, ac-
cessibility
tree

GUI element
grounding
locations,
actions and
function
calls, navi-
gation steps,
predicted
GUI changes
after interac-
tion

Autonomously ex-
plores GUI envi-
ronments, with Q-
ICRL optimizing ex-
ploration efficiency
and enhancing data
diversity.

https:
//gui-bee.
github.io

RWKV-
UI Yang
& Hou
(2025)

Web 1.6B SIGLIP
Zhai et al.
(2023),
DINOv2
Oquab
et al.
(2023),
SAM Kir-
illov et al.
(2023)

Websight Lau-
rençon et al.
(2024b), WebUI-
7kbal Wu
et al. (2023b),
Web2Code Yun
et al. (2024)

High-
resolution
webpage
images

Element
grounding,
Action pre-
diction, CoT
reasoning

Introduces a
high-resolution
three-encoder archi-
tecture with visual
prompt engineering
and CoT reasoning.

/

TRISHUL
Singh
et al.
(2025)

Web,
Desk-
top, and
Mobile
platforms

/
(Training-
Free)

/
(Training-
Free)

/ (Training-
Free)

GUI Screen-
shots, user
instruction-
s/queries,
hierarchi-
cal screen
parsing out-
puts, OCR-
extracted
text descrip-
tors

Action
grounding,
functionality
descriptions
of GUI ele-
ments, GUI
referring,
and SoMs

Utilizes hierarchical
screen parsing and
spatially enhanced
element descrip-
tions to enhance
LVLMs without
additional training.

/

software development, creative tools, CAD, scientific applications, and office productivity. Key features of
ScreenSpot-Pro include authentic high-resolution screenshots and meticulous annotations provided by domain
experts.

These benchmarks provide critical evaluation criteria for assessing GUI grounding capabilities, thereby
advancing the development of GUI agents for improved GUI understanding and interaction.

4.7.2 Multi-Agent Framework

The adage “two heads are better than one” holds particular relevance for GUI automation tasks, where a single
agent, though capable, can be significantly enhanced within a multi-agent framework Li et al. (2023a); Chen
et al. (2024h). Multi-agent systems leverage the collective intelligence, specialized skills, and complementary
strengths of multiple agents to tackle complex tasks more effectively than any individual agent could alone. In
the context of GUI agents, multi-agent systems offer advanced capabilities through two primary mechanisms:
(i) specialization and (ii) inter-agent collaboration. Figure 15 illustrates an example of how an LLM-powered
multi-agent collaborates to create a desk.

31

https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://gui-bee.github.io
https://gui-bee.github.io
https://gui-bee.github.io

Published in Transactions on Machine Learning Research (06/2025)

Table 9: A summary of of GUI grounding models (Part III).

Model Platform Foundation
Model

Size Dataset Input Output Highlight Link

AutoGUI
Li et al.
(2025a)

Web, Mo-
bile

Qwen-
VL-10B
Bai et al.
(2023b),
SliME-8B
Zhang
et al.
(2024o)

10B / 8B AutoGUI-704k GUI screen-
shots, User
queries

Element
functionali-
ties, Element
locations

Automatically
labels UI ele-
ments based on
interaction-induced
changes, making
it scalable and
high-quality.

https://
autogui-project.
github.io/

Query
Inference
Wu et al.
(2025d)

Mobile
Android

Qwen2-
VL-7B-
Instruct
Wang
et al.
(2024j)

7B UIBERT Wu
et al. (2024f)

GUI screen-
shots

Action-
oriented
queries, Co-
ordinates

Improves reasoning
without requiring
large-scale training
data.

https:
//github.
com/ZrW00/
GUIPivot

WinClick
Hui et al.
(2025)

Windows
OS

Phi3-
Vision
Abdin
et al.
(2024)

4.2B WinSpot Bench-
mark

GUI screen-
shots, Natu-
ral language
instructions

Element loca-
tions

The first GUI
grounding model
specifically tailored
for Windows.

https://
github.com/
zackhuiiiii/
WinSpot

FOCUS
Tang et al.
(2025a)

Web,
mobile
applica-
tions, and
desktop

Qwen2-
VL-2B-
Instruct
Wang
et al.
(2024j)

2B GUICourse
Chen et al.
(2024i), Aguvis-
stage1 Xu
et al. (2024k),
Wave-UI Zheng
et al. (2024c),
Desktop-UI Lin
et al. (2024c)

GUI screen-
shot + task
instruction

Normalized
coordinates
(x, y)

A dual-system GUI
grounding archi-
tecture inspired by
human cognition,
which dynamically
switches between
fast (intuitive) and
slow (analytical)
grounding modes
based on task com-
plexity

https://
github.com/
sugarandgugu/
Focus

UI-E2I-
Synth
Liu et al.
(2025d)

Web,
Windows,
and An-
droid

InternVL2-
4B and
Qwen2-
VL-7B

4B and
7B

1.6M screen-
shots, 9.9M
instructions

GUI screen-
shot

Element co-
ordinates

Introduces a three-
stage synthetic data
pipeline for GUI
grounding with
both explicit and
implicit instruction
synthesis

https:
//colmon46.
github.io/
i2e-bench-leaderboard/

RegionFocus
Luo et al.
(2025b)

Web-
based and
Desktop
interfaces

UI-TARS
and
Qwen2.5-
VL

72B None (test-time
only)

GUI screen-
shots with a
point of inter-
est

Coordinate-
based actions

Introduces a visual
test-time scaling
framework that
zooms into salient
UI regions and
integrates an image-
as-map mechanism
to track history
and avoid repeated
mistakes—boosting
grounding accuracy
without model
retraining

https://
github.com/
tiangeluo/
RegionFocus

1. Specialization of Agents: In a multi-agent framework, each agent is designed to specialize in
a specific role or function, leveraging its unique capabilities to contribute to the overall task. As
illustrated in the Figure 15, specialization enables distinct agents to focus on different aspects of
the task pipeline. For instance, the “Document Extractor” specializes in extracting relevant content
from local documents, such as PDFs, while the “Web Retriever” focuses on gathering additional
information from online sources. Similarly, the “Designer” transforms the retrieved information into
visually appealing slides, and the "Evaluator" provides feedback to refine and improve the output.
This functional separation ensures that each agent becomes highly adept at its designated task,
leading to improved efficiency and quality of results Song et al. (2024d).

32

https://autogui-project.github.io/
https://autogui-project.github.io/
https://autogui-project.github.io/
https://github.com/ZrW00/GUIPivot
https://github.com/ZrW00/GUIPivot
https://github.com/ZrW00/GUIPivot
https://github.com/ZrW00/GUIPivot
https://github.com/zackhuiiiii/WinSpot
https://github.com/zackhuiiiii/WinSpot
https://github.com/zackhuiiiii/WinSpot
https://github.com/zackhuiiiii/WinSpot
https://github.com/sugarandgugu/Focus
https://github.com/sugarandgugu/Focus
https://github.com/sugarandgugu/Focus
https://github.com/sugarandgugu/Focus
https://colmon46.github.io/i2e-bench-leaderboard/
https://colmon46.github.io/i2e-bench-leaderboard/
https://colmon46.github.io/i2e-bench-leaderboard/
https://colmon46.github.io/i2e-bench-leaderboard/
https://github.com/tiangeluo/RegionFocus
https://github.com/tiangeluo/RegionFocus
https://github.com/tiangeluo/RegionFocus
https://github.com/tiangeluo/RegionFocus

Published in Transactions on Machine Learning Research (06/2025)

Table 10: A summary of of GUI grounding benchmarks.

Benchmark Platform Dataset Input Output Highlight Link
ScreenSpot
Cheng et al.
(2024a)

iOS, An-
droid, ma-
cOS, and
Windows

Over 600 screen-
shots and 1,200 in-
structions

GUI screenshots ac-
companied by user
instructions

Bounding
boxes or
coordinates
of action-
able GUI
elements

A realistic and di-
verse GUI ground-
ing benchmark cov-
ering multiple plat-
forms and a variety
of elements

https://github.
com/njucckevin/
SeeClick

ScreenSpot-
Pro Li et al.
(2025b)

Windows,
macOS,
and
Linux

1,581 instruction–
screenshot pairs
covering 23 appli-
cations across 5
industries and 3
operating systems

High-resolution
GUI screenshots
paired with natural
language instruc-
tions

Bounding
boxes for lo-
cating target
UI elements

Introduces a
high-resolution
benchmark for
professional envi-
ronments

https://
github.com/
likaixin2000/
ScreenSpot-Pro-GUI-Grounding

PixelWeb
Yang et al.
(2025c)

Web 100,000 webpages Rendered webpage
screenshots and
DOM information

BBox, mask,
contour

The first GUI
dataset to provide
pixel-level annota-
tions—including
mask and con-
tour—for web
UIs, enabling
high-precision GUI
grounding and
detection tasks

https://
huggingface.
co/datasets/
cyberalchemist/
PixelWeb

Document
Extractor

Web
Retriever

Designer

Creation

Feedback

Local DocumentsLocal Documents

WebpagesWebpages

Created Desk

Task: Create a desk for LLM-based multi-agent system.

Communication

EvaluatorEvaluator

Figure 15: An example of multi-agent system collaboration in creating a desk.

2. Collaborative Inter-Agent Dynamics: The multi-agent system shown in the Figure 15 exemplifies
how agents collaborate dynamically to handle complex tasks. The process begins with the “Document
Extractor” and “Web Retriever”, which work in parallel to collect information from local and online
sources. The retrieved data is communicated to the “Designer”, who synthesizes it into a cohesive
set of slides. Once the slides are created, the “Evaluator” reviews the output, providing feedback for
refinement. These agents share information, exchange context, and operate in a coordinated manner,
reflecting a human-like teamwork dynamic. For example, as depicted, the agents’ roles are tightly
integrated—each output feeds into the next stage, creating a streamlined workflow that mirrors
real-world collaborative environments Zhang et al. (2024a).

In such a system, agents can collectively engage in tasks requiring planning, discussion, and decision-making.
Through these interactions, the system taps into each agent’s domain expertise and latent potential for
specialization, maximizing overall performance across diverse, multi-step processes.

33

https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/likaixin2000/ScreenSpot-Pro-GUI-Grounding
https://github.com/likaixin2000/ScreenSpot-Pro-GUI-Grounding
https://github.com/likaixin2000/ScreenSpot-Pro-GUI-Grounding
https://github.com/likaixin2000/ScreenSpot-Pro-GUI-Grounding
https://huggingface.co/datasets/cyberalchemist/PixelWeb
https://huggingface.co/datasets/cyberalchemist/PixelWeb
https://huggingface.co/datasets/cyberalchemist/PixelWeb
https://huggingface.co/datasets/cyberalchemist/PixelWeb
https://huggingface.co/datasets/cyberalchemist/PixelWeb

Published in Transactions on Machine Learning Research (06/2025)

Task: Make Line Drawing effect to the figure in the page.

GUI Agent

I accessed the "Design" menu but
couldn't find an option to create a
line drawing effect on the screen.
Perhaps there's another approach
I should consider...

Step 1: Click(“Design”) Step 2: Click(“Picture Format”) Step 3: Click(“Artistic Effects”) Step 4: Click(“Line Drawing”)

Ah… After some reflection and experimentation, it seems I need to first
select the figure, then navigate to the “Picture Format” tab. There, I can
find the “Artistic Effects” menu, where the “Line Drawing” option is
hidden. Task complete!

Self-reflection

Figure 16: An example of self-reflection in task completion of an LLM-powered GUI agent.

4.7.3 Self-Reflection

“A fault confessed is half redressed”. In the context of GUI multi-agent systems, self-reflection refers to the
agents’ capacity to introspectively assess their reasoning, actions, and decisions throughout the task execution
process Renze & Guven (2024). This capability allows agents to detect potential mistakes, adjust strategies,
and refine actions, thereby improving the quality and robustness of their decisions, especially in complex or
unfamiliar GUI environments. By periodically evaluating their own performance, self-reflective agents can
adapt dynamically to produce more accurate and effective results Pan et al. (2024a).

Self-reflection is particularly critical for GUI agents due to the variable nature of user interfaces and the
potential for errors, even in human-operated systems. GUI agents frequently encounter situations that deviate
from expectations, such as clicking the wrong button, encountering unexpected advertisements, navigating
unfamiliar interfaces, receiving error messages from API calls, or even responding to user feedback on task
outcomes. To ensure task success, a GUI agent must quickly reflect on its actions, assess these feedback
signals, and adjust its plans to better align with the desired objectives.

As illustrated in Figure 16, when the agent initially fails to locate the “Line Drawing” option in the Design
menu, self-reflection enables it to reconsider and identify its correct location under Artistic Effects” in the
“Picture Format” menu, thereby successfully completing the task.

In practice, self-reflection techniques for GUI agents typically involve two main approaches: (i) ReAct Yao
et al. (2022b) and (ii) Reflexion Shinn et al. (2024).

1. ReAct (Reasoning and Acting): ReAct integrates self-reflection into the agent’s action chain
by having the agent evaluate each action’s outcome and reason about the next best step. In this
framework, the agent doesn’t simply follow a linear sequence of actions; instead, it adapts dynamically,
continuously reassessing its strategy in response to feedback from each action. For example, if a GUI
agent attempting to fill a form realizes it has clicked the wrong field, it can adjust by backtracking and
selecting the correct element. Through ReAct, the agent achieves higher consistency and accuracy,
as it learns to refine its behavior with each completed step.

2. Reflexion: Reflexion emphasizes language-based feedback, where agents receive and process feedback
from the environment as linguistic input, referred to as self-reflective feedback. This feedback is
contextualized and used as input in subsequent interactions, helping the agent to learn rapidly from
prior mistakes. For instance, if a GUI agent receives an error message from an application, Reflexion
enables the agent to process this message, update its understanding of the interface, and avoid similar
mistakes in future interactions. Reflexion’s iterative feedback loop promotes continuous improvement
and is particularly valuable for GUI agents navigating complex, multi-step tasks.

Overall, self-reflection serves as an essential enhancement in GUI multi-agent systems, enabling agents to
better navigate the variability and unpredictability of GUI environments. This introspective capability not

34

Published in Transactions on Machine Learning Research (06/2025)

Task 1: Summarize
the image content

Task 2: Read and
summarize the paper

Task 3: Read and extract
information from a webpage

Task Trajectory:
Webpages extraction

Guidance and Rules:
How to make a GUI
agent?

New Toolkits:
Image summarization

New Task: Learn to make a GUI
agent from a GitHub repository

Experience Pool

New
Trajectory

New
Guidance

Skill Set

New Tool
Tool 1

Tool 2

Evolve Completion

Figure 17: An example self-evolution in a LLM-powered GUI agent with task completion.

only boosts individual agent performance but also promotes resilience, adaptability, and long-term learning
in a collaborative setting.

4.7.4 Self-Evolution

Self-evolution Tao et al. (2024) is a crucial attribute that GUI agents should possess, enabling them to
enhance their performance progressively through accumulated experience. In the context of GUI multi-agent
systems, self-evolution allows not only individual agents to improve but also facilitates collective learning and
adaptation by sharing knowledge and strategies among agents. During task execution, GUI agents generate
detailed action trajectories accompanied by complementary information such as environment states, internal
reasoning processes (the agent’s thought processes), and evaluation results. This rich data serves as a valuable
knowledge base from which GUI agents can learn and evolve. The knowledge extracted from this experience
can be categorized into three main areas:

1. Task Trajectories: The sequences of actions executed by agents, along with the corresponding
environment states, are instrumental for learning Zhao et al. (2024a). These successful trajectories
can be leveraged in two significant ways. First, they can be used to fine-tune the core LLMs that
underpin the agent models with the state-action pairs Wang et al. (2024h). Fine-tuning with such
domain-specific and task-relevant data enhances the model’s ability to generalize and improves
performance on similar tasks in the future. Second, after summarized by LLMs Tao et al. (2024),
these trajectories can be utilized as demonstration examples to activate the in-context learning
capabilities of LLMs during prompt engineering. By including examples of successful task executions
in the prompts, agents can better understand and replicate the desired behaviors without additional
model training.
For instance, suppose an agent successfully completes a complex task that involves automating data
entry across multiple applications. The recorded action trajectory—comprising the steps taken,
decisions made, and contextual cues—can be shared with other agents. These agents can then use
this trajectory as a guide when faced with similar tasks, reducing the learning curve and improving
efficiency.

2. Guidance and Rules: From the accumulated experiences, agents can extract high-level rules
or guidelines that encapsulate best practices, successful strategies, and lessons learned from past

35

Published in Transactions on Machine Learning Research (06/2025)

Task: Make Line Drawing effect to the figure in the page.

Action 1': Click(“Design”)

Action 1: Click(“Picture Format”) Action 2: Click(“Artistic Effects”) Action 3: Click(“Line Drawing”)

Action 2': Click(“Designer”) Action 3': Click(“Format 3”)

State 1 State 2 State 3

State 1' State 2' State 3'

GUI AgentGUI Agent
Reward

Evaluator

Reward

Evaluator

Figure 18: An example of MDP modeling for task completion in a GUI agent.

mistakes Zhu et al. (2023b); Zhang et al. (2024p). Such guidance can be acquired by the LLM itself
through trajectory summarization Zhu et al. (2023b), or even via search-based algorithms, such as
Monte Carlo Tree Search (MCTS) Zhang et al. (2024p). This knowledge can be formalized into
policies or heuristics that agents consult during decision-making processes, thereby enhancing their
reasoning capabilities.

For example, if agents repeatedly encounter errors when attempting to perform certain actions without
proper prerequisites (e.g., trying to save a file before specifying a file path), they can formulate a
rule to check for these prerequisites before executing the action. This proactive approach reduces the
likelihood of errors and improves task success rates.

3. New Toolkits: Throughout their interactions, GUI agents may discover or develop more efficient
methods, tools, or sequences of actions that streamline task execution Tan et al. (2024a). These may
include optimized API calls, macros, or combinations of GUI operations that accomplish tasks more
effectively than previous approaches. LLMs can be leveraged to automatically analyze execution
trajectories in order to summarize, discover, and generate high-level shortcuts or frequently used fast
APIs, which can then be reused for future executions Jiang et al. (2025). By incorporating these new
tools into their repertoire, agents expand their capabilities and enhance overall efficiency.

As an example, an agent might find that using a batch processing API can automate repetitive tasks
more efficiently than performing individual GUI operations in a loop. This new approach can be
shared among agents within the multi-agent system, allowing all agents to benefit from the improved
method and apply it to relevant tasks.

Figure 17 illustrates how a GUI agent evolves through task completion. During its operations, the agent adds
new capabilities to its skill set, such as an image summarization toolkit, gains insights from reading a paper
on creating GUI agents, and stores task trajectories like webpage extraction in its experience pool. When
assigned a new task, such as “Learn to make a GUI agent from a GitHub repository”, the agent draws on its
acquired skills and past experiences to adapt and perform effectively.

This dynamic evolution highlights the agent’s ability to continually learn, grow, and refine its capabilities.
By leveraging past experiences, incorporating new knowledge, and expanding its toolset, GUI agents can
adapt to diverse challenges, improve task execution, and significantly enhance the overall performance of the
system, fostering a collaborative and ever-improving environment.

36

Published in Transactions on Machine Learning Research (06/2025)

4.7.5 Reinforcement Learning

Reinforcement Learning (RL) Kaelbling et al. (1996) has witnessed significant advancements in aligning LLMs
with desired behaviors Wang et al. (2023c), and has recently been employed in the development of LLM
agents Sun et al. (2024a); Zhai et al. (2024). In the context of GUI multi-agent systems, RL offers substantial
potential to enhance the performance, adaptability, and collaboration of GUI agents. GUI automation tasks
naturally align with the structure of a Markov Decision Process (MDP) Puterman (1990), making them
particularly well-suited for solutions based on RL. In this context, the state corresponds to the environment
perception (such as GUI screenshots, GUI element properties, and layout configurations), while actions map
directly to GUI operations, including mouse clicks, keyboard inputs, and API calls. Rewards can be explicitly
defined based on various performance metrics, such as task completion, efficiency, and accuracy, allowing the
agent to optimize its actions for maximal effectiveness. Figure 18 illustrates an example of MDP modeling
for task completion in a GUI agent, where state, action and reward are clearly defined.

By formulating GUI agent interactions as an MDP, we can leverage RL techniques to train agents that learn
optimal policies for task execution through trial and error Toyama et al. (2021a). This approach enables
agents to make decisions that maximize cumulative rewards over time, leading to more efficient and effective
task completion. For example, an agent learning to automate form filling in a web application can use RL to
discover the most efficient sequence of actions to input data and submit the form successfully, minimizing
errors and redundant steps. This process helps align the agents more closely with desired behaviors in
GUI automation tasks, especially in complex or ambiguous situations where predefined action sequences are
insufficient.

As a representative approach, Bai et al., introduce DigiRL Bai et al. (2024), a two-phase RL framework for
training GUI agents in dynamic environments. DigiRL begins with an offline RL phase that uses offline
data to initialize the agent model, followed by online fine-tuning, where the model interacts directly with
an environment to refine its strategies through live data within an Android learning environment using an
LLM evaluator that provides reliable reward signals. This adaptive setting enables the agent to learn and
respond effectively to the complexities of dynamic GUIs. Wang et al., propose DistRL Wang et al. (2024l),
an RL fine-tuning pipeline specifically designed for on-device mobile control agents operating within Android.
DistRL employs an asynchronous architecture, deploying RL fine-tuned agents across heterogeneous worker
devices and environments for decentralized data collection. By leveraging off-policy RL techniques, DistRL
enables centralized training with data gathered remotely from diverse environments, significantly enhancing
the scalability and robustness of the model. These representative methods illustrate the potential of RL to
improve GUI agents, demonstrating how both centralized and distributed RL frameworks can enable more
responsive, adaptable, and effective GUI automation models in real-world applications.

4.7.6 Summary & Takeaways

In conclusion, the advanced techniques significantly enhance the capabilities of LLM-brained GUI agents,
making them more versatile, efficient, and adaptive within multi-agent frameworks. Importantly, these
techniques are not mutually exclusive—many can be integrated to create more powerful agents. For instance,
incorporating self-reflection within a multi-agent framework allows agents to collaboratively improve task
strategies and recover from errors. By leveraging these advancements, developers can design LLM-brained
GUI agents that are not only adept at automating complex, multi-step tasks but also capable of continuously
improving through self-evolution, adaptability to dynamic environments, and effective inter-agent collaboration.
Future research is expected to yield even more sophisticated techniques, further extending the scope and
robustness of GUI automation.

4.8 From Foundations to Innovations: A Roadmap

Building robust, adaptable, and effective LLM-powered GUI agents is a multifaceted process that requires
careful integration of several core components. With a solid foundation in architecture, design, environment
interaction, and memory, as outlined in Section 4, we now shift our focus to the critical elements required for
deploying these agents in practical scenarios. This exploration begins with an in-depth review of state-of-the-art
LLM-powered GUI agent frameworks in Section 5, highlighting their advancements and unique contributions

37

Published in Transactions on Machine Learning Research (06/2025)

Table 11: Taxonomy of LLM-powered GUI agent frameworks by target platform.

Platform References
Web Zheng et al. (2024a); Song et al. (2024b); Chae et al. (2024); Gur et al. (2024);

Ma et al. (2024b); He et al. (2024b); Lai et al. (2024); Xie et al. (2023); Kil et al.
(2024); Abuelsaad et al. (2024); Koh et al. (2024b); Zhang et al. (2024n); Yang
et al. (2024a); Murty et al. (2024); Shahbandeh et al. (2024); Iong et al. (2024);
Tang & Shin (2024); Putta et al. (2024); Gu et al. (2024); Verma et al. (2024);
Kim et al. (2024b); Shen et al. (2024b); Zhou et al. (2024a); Liu et al. (2024c);
Huang et al. (2025b); Zhang et al. (2025e); Pahuja et al. (2025); Wornow et al.
(2024); Zhang et al. (2025c); Dammu (2025); Erdogan et al. (2025); Zheng et al.
(2025a); Wang et al. (2025g); Zhang et al. (2025f)

Mobile Zhang et al. (2023a); Wang et al. (2024e); Wen et al. (2024a); Zhang et al.
(2024g); Song et al. (2024c); Wen et al. (2024c); Ma et al. (2024d); Zhang &
Zhang (2024); Yan et al. (2023a); Li et al. (2024g); Wen et al. (2024b); Wang
et al. (2024d); Zhang et al. (2024e); Christianos et al. (2024); Zhu et al. (2024b);
Lee et al. (2024c); Wang et al. (2025e); Hoscilowicz et al. (2024); Wu et al.
(2025c); Wang et al. (2025c); Huang et al.; Wang et al. (2025b); Liu et al.
(2025g); Jiang et al. (2025); Zhou et al. (2025); Cheng et al. (2025a); Dai et al.
(2025); Liu et al. (2025a); Lai et al. (2025); Wang et al. (2023a); Kahlon et al.
(2025); Bishop et al. (2024)

Computer Zhang et al. (2024a); Tan et al. (2024a); Wu et al. (2024e); Li et al. (2024g);
Agashe et al. (2024); Wu et al. (2024b); Li et al. (2023d); He et al. (2024d); Liu
et al. (2025c); Aggarwal & Welleck (2025); Zhao et al. (2025a); Lu et al. (2025);
Zhang et al. (2025b); Yin et al. (2025)

Cross-
Platform

Liu et al. (2024h); Xu et al. (2024k); Pawlowski et al. (2024); Song et al. (2024d);
Su et al. (2025); He et al. (2025); Wang & Liu (2024); Jia et al. (2024); Wang
et al. (2024o); Liu et al. (2025e); Agashe et al. (2025); Hu et al. (2025); Huang
et al. (2025a)

to the field. Building on this, we delve into the methodologies for optimizing LLMs for GUI agents, starting
with data collection and processing strategies in Section 6, and progressing to model optimization techniques
in Section 7. To ensure robust development and validation, we then examine evaluation methodologies and
benchmarks in Section 8, which are essential for assessing agent performance and reliability. Finally, we
explore a diverse range of practical applications in Section 9, demonstrating the transformative impact of
these agents across various domains.

Note that we intentionally limit in-depth discussions in the main text (Sections 4–9) to a carefully curated
set of representative works. The selection criteria include demonstrated impact (e.g., citation count, GitHub
adoption), methodological novelty, and alignment with our core taxonomy. Works that are less mature or
narrower in scope—regardless of publication status—are instead cataloged in summary tables (Table 16–69),
which have been relocated to the appendix to improve readability and streamline the main narrative. Together,
these sections provide a comprehensive roadmap for advancing LLM-powered GUI agents from foundational
concepts to real-world implementation and innovation. This roadmap, spanning from foundational components
to real-world deployment, encapsulates the essential pipeline required to bring an LLM-powered GUI agent
concept from ideation to implementation.

5 LLM-Powered GUI Agent Framework

The integration of LLMs has unlocked new possibilities for constructing GUI agents, enabling them to interpret
user requests, analyze GUI components, and autonomously perform actions across diverse environments. By

38

Published in Transactions on Machine Learning Research (06/2025)

equipping these models with essential components and functionalities, as outlined in Section 4, researchers
have created sophisticated frameworks tailored to various platforms and applications. These frameworks
represent a rapidly evolving area of research, with each introducing innovative techniques and specialized
capabilities that push the boundaries of what GUI agents can achieve.

The landscape of GUI agent frameworks has seen notable advancements, particularly in terms of multi-agent
architectures, multimodal inputs, and enhanced action sets. These developments are laying the groundwork
for more versatile and powerful agents capable of handling complex, dynamic environments. Key takeaways
from recent advancements include:

1. Multi-Agent Synergy: Multi-agent systems, such as those in UFO Zhang et al. (2024a) and
MMAC-Copilot Song et al. (2024d), represent a significant trend in GUI agent development. By
assigning specialized roles to different agents within a framework, multi-agent systems can enhance
task efficiency, adaptability, and overall performance. As agents take on more complex tasks across
diverse platforms, the coordinated use of multiple agents is proving to be a powerful approach,
enabling agents to handle intricate workflows with greater precision and speed.

2. Multimodal Input Benefits: While some agents still rely solely on text-based inputs (e.g., DOM
structures or HTML), incorporating visual inputs, such as screenshots, has shown clear performance
advantages. Agents like WebVoyager He et al. (2024b) and SeeAct Zheng et al. (2024a) highlight how
visual data, combined with textual inputs, provides a richer representation of the environment state,
helping agents make better-informed decisions. This integration of multimodal inputs is essential
for accurate interpretation in visually complex or dynamic environments where text alone may not
capture all necessary context.

3. Expanding Action Sets Beyond UI Operations: Recent agents have expanded their action
sets beyond standard UI operations to include API calls and AI-driven actions, as seen in Hybrid
Agent Song et al. (2024b) and AutoWebGLM Lai et al. (2024). Incorporating diverse actions allows
agents to achieve higher levels of interaction and task completion, particularly in environments where
data can be directly retrieved or manipulated through API calls. This flexibility enhances agent
capabilities, making them more efficient and adaptable across a wider range of applications.

4. Emerging Techniques for Improved Decision-Making: Novel approaches such as world models
in WMA Chae et al. (2024) and search-based strategies in Search-Agent Koh et al. (2024b) represent
promising directions for more advanced decision-making. World models allow agents to simulate action
outcomes, reducing unnecessary interactions and improving efficiency, especially in long-horizon tasks.
Similarly, search-based algorithms like best-first and MCTS help agents explore action pathways
more effectively, enhancing their adaptability in complex, real-time environments.

5. Toward Cross-Platform Generalization: Cross-platform frameworks, such as AutoGLM Liu
et al. (2024h) and OSCAR Wang & Liu (2024), underscore the value of generalizability in GUI agent
design. These agents are pioneering efforts to create solutions that work seamlessly across mobile,
desktop, and web platforms, moving closer to the goal of a one-stop GUI agent that can operate
across multiple ecosystems. Cross-platform flexibility will be crucial for agents that aim to assist
users consistently across their digital interactions.

6. Pure Vision-Based Agent: To enable universal GUI control, pure vision-based frameworks have
emerged as a prominent solution. These agents rely solely on screenshots for decision-making,
eliminating the need for access to metadata such as widget trees or element properties. Notable
work like AGUVIS Xu et al. (2024k) exemplifies this approach. While pure vision-based methods
offer greater generalizability and bypass system API limitations, they require strong “grounding”
capabilities to accurately locate and interact with UI elements—an ability often lacking in many
foundational models. Fine-tuning models specifically for visual grounding and GUI understanding,
or integrating GUI parsing techniques like OmniParser Lu et al. (2024d), can address this challenge
and enhance the agent’s ability to perform precise interactions.

39

Published in Transactions on Machine Learning Research (06/2025)

(c) Dynamic Evaluation and Simulation

Netflix Article
Q=3

StartStart

Search Result
Q=6

. . .

Explorer

(
Video Play

Simulation & Evaluation

Appraiser)

YouTube
Q=9.6

(d) Maximal Value Backpropagation

Netflix Article
Q=3

StartStart

Search Result
Q=6 → 9.5

. . .

YouTube
Q=9.6

(b) Reflection-Enhanced Node Expansion

Netflix Article
Q=3

StartStart

Search Result
Q=6

YouTube
Q=9.6

(a) Goal-Oriented Selection

Netflix Article
Q=3

StartStart

Search Result
Q=6

Q

Q

.

Explorer

Explorer

Explorer

Explorer

Explorer

Explorer

Figure 19: An illustration of the local optimization stage in WebPilot Zhang et al. (2024n) using MCTS.
Figure adapted from the original paper.

Step 1 Step 2

LLM

LLM

LLM

Task: Play the video of
Arcane Season 1 1

2

3

v = 0.4

v = 0.3

v = 0.9

Plan:

(1) Click “YouTube Arcane Season

1 | Recap | Netflix”

(2) Click the “Play” Button

Execution

Task Completed

1

2

3

Figure 20: An example illustrating how WebDreamer Gu et al. (2024) uses an LLM to simulate the outcome
of each action. Figure adapted from the original paper.

We offer a detailed discussion of each framework, examining their foundational design principles, technical
advancements, and the specific challenges they address in the realm of GUI automation. By delving into these
aspects, we aim to provide deeper insights into how these agents are shaping the future of human-computer
interaction and task automation, and the critical role they play in advancing this transformative field. Before
delving into the details, we first present a taxonomy of LLM-powered GUI agent frameworks categorized by
target platform, as shown in Table 11.

5.1 Web GUI Agents

Advancements in web GUI agents have led to significant strides in automating complex tasks within diverse
and dynamic web environments. Recent frameworks have introduced innovative approaches that leverage
multimodal inputs, predictive modeling, and task-specific optimizations to enhance performance, adaptability,
and efficiency. In this subsection, we first summarize key web GUI agent frameworks in Tables 16, 17, 18, 19,

40

Published in Transactions on Machine Learning Research (06/2025)

Step 1 Step 1 Step n

Human Design Hardcode
Workflow

Human
Demonstration

Human
Demonstration

Video
Recording

Textual
Documentation

Textual
Documentation

GUI Agent

RPA

Agent-based

LLMLLM

1. Workflow construction and demonstration 2. Execution 3. Evaluation

Hard

Easy

Deterministic

Flexible

Manual

Automatic

Execution
logs

Execution
logs

LLM

Human

Validation

Validation

Figure 21: Comparison of RPA and agent based automation. Figure adapted from Wornow et al. (2024).

20 and 21, then delve into representative frameworks, highlighting their unique contributions and how they
collectively push the boundaries of web-based GUI automation.

One prominent trend is the integration of multimodal capabilities to improve interaction with dynamic web
content. For instance, SeeAct Zheng et al. (2024a) harnesses GPT-4V’s multimodal capacities to ground
actions on live websites effectively. By leveraging both visual data and HTML structure, SeeAct integrates
grounding techniques using image annotations, HTML attributes, and textual choices, optimizing interactions
with real-time web content. This approach allows SeeAct to achieve a task success rate of 51.1% on real-time
web tasks, highlighting the importance of dynamic evaluation in developing robust web agents.

Building upon the advantages of multimodal inputs, WebVoyager He et al. (2024b) advances autonomous
web navigation by supporting end-to-end task completion across real-world web environments. Utilizing
GPT-4V for both visual (screenshots) and textual (HTML elements) inputs, WebVoyager effectively interacts
with dynamic web interfaces, including those with dynamically rendered content and intricate interactive
elements. This multimodal capability allows WebVoyager to manage complex interfaces with a success rate
notably surpassing traditional text-only methods, setting a new benchmark in web-based task automation.

In addition to multimodal integration, some frameworks focus on parsing intricate web structures and
generating executable code to navigate complex websites. WebAgent Gur et al. (2024) employs a two-
tiered model approach by combining HTML-T5 for parsing long, complex HTML documents with Flan-
U-PaLM Chung et al. (2024) for program synthesis. This modular design enables WebAgent to translate
user instructions into executable Python code, autonomously handling complex, real-world websites through
task-specific sub-instructions. WebAgent demonstrates a 50% improvement in success rates on real websites
compared to traditional single-agent models, showcasing the advantages of integrating HTML-specific parsing
with code generation for diverse and dynamic web environments.

To enhance decision-making in web navigation, several frameworks introduce state-space exploration and
search algorithms. LASER Ma et al. (2024b) models web navigation as state-space exploration, allowing
flexible backtracking and efficient decision-making without requiring extensive in-context examples. By
associating actions with specific states and leveraging GPT-4’s function-calling feature for state-based action
selection, LASER minimizes errors and improves task success, particularly in e-commerce navigation tasks
such as WebShop and Amazon. This state-based approach provides a scalable and efficient solution, advancing
the efficiency of LLM agents in GUI navigation.

Similarly, Search-Agent Koh et al. (2024b) innovatively introduces a best-first search algorithm to en-
hance multi-step reasoning in interactive web environments. By exploring multiple action paths, this
approach improves decision-making, achieving up to a 39% increase in success rates across benchmarks
like WebArena Zhou et al.. Search-Agent’s compatibility with existing multimodal LLMs demonstrates the
effectiveness of search-based algorithms for complex, interactive web tasks.

Expanding on search-based strategies, WebPilotZhang et al. (2024n) employs a dual optimization strategy
combining global and local Monte Carlo Tree Search (MCTS) Browne et al. (2012) to improve adaptability

41

Published in Transactions on Machine Learning Research (06/2025)

in complex and dynamic environments. As illustrated in Figure 19, WebPilot decomposes overarching tasks
into manageable sub-tasks, with each undergoing localized optimization. This approach allows WebPilot to
continuously adjust its strategies in response to real-time observations, mimicking human-like decision-making
and flexibility. Extensive testing on benchmarks like WebArena Zhou et al. and MiniWoB++ Liu et al.
(2018) demonstrates WebPilot’s state-of-the-art performance, showcasing exceptional adaptability compared
to existing methods.

Furthering the concept of predictive modeling, the WMA Chae et al. (2024) introduces a world model to
simulate and predict the outcomes of UI interactions. By focusing on transition-based observations, WMA
allows agents to simulate action results before committing, reducing unnecessary actions and increasing
task efficiency. This predictive capability is particularly effective in long-horizon tasks that require high
accuracy, with WMA demonstrating strong performance on benchmarks such as WebArena Zhou et al. and
Mind2Web Deng et al. (2023).

Along similar lines, WebDreamerGu et al. (2024) introduces an innovative use of LLMs for model-based
planning in web navigation, as depicted in Figure 20. WebDreamer simulates and evaluates potential actions
and their multi-step outcomes using LLMs before execution Yao et al. (2024), akin to a “dreamer” that
envisions various scenarios. By preemptively assessing the potential value of different plans, WebDreamer
selects and executes the plan with the highest expected value. This approach addresses critical challenges in
web automation, such as safety concerns and the need for robust decision-making in complex and dynamic
environments, demonstrating superiority over reactive agents in benchmarks like VisualWebArena Koh et al.
(2024a) and Mind2Web-live Pan et al. (2024b).

Beyond predictive modeling, integrating API interactions into web navigation offers enhanced flexibility and
efficiency. The Hybrid Agent Song et al. (2024b) combines web browsing and API interactions, dynamically
switching between methods based on task requirements. By utilizing API calls for structured data interaction,
the Hybrid Agent reduces the time and complexity involved in traditional web navigation, achieving higher
accuracy and efficiency in task performance. This hybrid architecture underscores the benefits of integrating
both structured API data and human-like browsing capabilities in AI agent systems.

Addressing the challenges of complex web structures and cross-domain interactions, AutoWebGLM Lai
et al. (2024) offers an efficient solution by simplifying HTML to focus on key webpage components, thereby
improving task accuracy. Using reinforcement learning and rejection sampling for fine-tuning, AutoWebGLM
excels in complex navigation tasks on both English and Chinese sites. Its bilingual dataset and structured
action-perception modules make it practical for cross-domain web interactions, emphasizing the importance
of efficient handling in diverse web tasks.

ECLAIR Wornow et al. (2024) represents a pioneering application that replaces traditional RPA with a
foundation model-powered GUI agent for enterprise automation. Unlike conventional RPA, which relies on
manually programmed rules and rigid scripts, ECLAIR dynamically learns workflows from video demonstra-
tions and textual SOPs (Standard Operating Procedures), significantly reducing setup time and improving
adaptability. It operates on enterprise web applications, leveraging GPT-4V and CogAgent CogAgent Team
(2024) to perceive GUI elements, plan actions, and execute workflows, and validate automatically. By
eliminating the high maintenance costs and execution brittleness of RPA, ECLAIR introduces a more flexible
and scalable approach to GUI automation. We show a comparison of such agent-based vs. RPA automation in
Figure 21. This work establishes an important foundation for LLM-powered GUI automation, demonstrating
how multimodal foundation models can bridge the gap between process mining, RPA, and fully autonomous
enterprise workflows.

Summary Recent advances in web GUI agents have significantly broadened the design space of intelligent
web automation systems. Across the surveyed frameworks, we observe three dominant trends: (i) Multimodal
grounding, exemplified by SeeAct and WebVoyager, boosts success rates on dynamic websites by integrating
screenshots, HTML, and textual cues; (ii) Predictive planning and simulation, as employed by WMA and
WebDreamer, reduces action errors and improves long-horizon reasoning by modeling environment dynamics
before execution; and (iii) Search-based and hybrid control, as seen in LASER, Search-Agent, and WebPilot,

42

Published in Transactions on Machine Learning Research (06/2025)

enables robust decision-making via MCTS or state-based planning, achieving up to 39% improvement in
complex web benchmarks like WebArena and Amazon.

Overall, these frameworks collectively demonstrate how combining multimodal perception, planning, and
hybrid action strategies leads to marked gains in success rates (up to 51.1%), adaptability, and robustness
in real-world web environments. We envision future research further exploring generalization across unseen
domains, long-horizon task stability, and the integration of memory and self-correction mechanisms.

5.2 Mobile GUI Agents

The evolution of mobile GUI agents has been marked by significant advancements, leveraging multimodal
models, complex architectures, and adaptive planning to address the unique challenges of mobile environments.
These agents have progressed from basic interaction capabilities to sophisticated systems capable of dynamic,
context-aware operations across diverse mobile applications. We first provide an overview of mobile GUI
agent frameworks in Tables 22, 23, 24, 25 and 26.

Wang et al., Wang et al. (2023a) pioneer the use of LLMs to enable conversational interaction with mobile
UIs, establishing one of the earliest foundations for mobile GUI agents. Their approach involves directly
prompting foundation models such as PaLM using structured representations of Android view hierarchies,
which are transformed into HTML-like text to better align with the LLM’s training distribution. The authors
define and evaluate four core tasks, including Screen Summarization, Screen QA, Screen Question Generation,
and Instruction-to-UI Mapping—demonstrating that strong performance can be achieved with as few as two
prompt examples per task. Emphasizing practicality and accessibility, the work enables rapid prototyping
without model fine-tuning, and stands out as a seminal effort in prompt-based evaluation of LLM-powered
GUI agents for mobile applications.

Early efforts focused on enabling human-like GUI interactions without requiring backend system access.
One such pioneering framework is AppAgent Zhang et al. (2023a), which utilizes GPT-4V’s multimodal
capabilities to comprehend and respond to both visual and textual information. By performing actions
like tapping and swiping using real-time screenshots and structured XML data, AppAgent can interact
directly with the GUI across a variety of applications, from social media to complex image editing. Its unique
approach of learning through autonomous exploration and observing human demonstrations allows for rapid
adaptability to new apps, highlighting the effectiveness of multimodal capabilities in mobile agents.

Building upon this foundation, AppAgent-V2 Li et al. (2024g) advances the framework by enhancing
visual recognition and incorporating structured data parsing. This enables precise, context-aware interactions
and the ability to perform complex, multi-step operations across different applications. AppAgent-V2 also
introduces safety checks to handle sensitive data and supports cross-app tasks by tracking and adapting
to real-time interactions. This progression underscores the importance of advanced visual recognition and
structured data processing in improving task precision and safety in real-time mobile environments.

Parallel to these developments, vision-centric approaches emerged to further enhance mobile task automation
without relying on app-specific data. For instance, Mobile-Agent Wang et al. (2024e) leverages OCR, CLIP
Radford et al. (2021), and Grounding DINO Liu et al. (2023a) for visual perception. By using screenshots and
visual tools, Mobile-Agent performs operations ranging from app navigation to complex multitasking, following
instructions iteratively and adjusting for errors through a self-reflective mechanism. This vision-based method
positions Mobile-Agent as a versatile and adaptable assistant for mobile tasks.

To address challenges in long-sequence navigation and complex, multi-app scenarios, Mobile-Agent-v2 Wang
et al. (2024d) introduces a multi-agent architecture that separates planning, decision-making, and reflection.
By distributing responsibilities among three agents, this framework optimizes task progress tracking, retains
memory of task-relevant information, and performs corrective actions when errors occur. Integrated with
advanced visual perception tools like Grounding DINO Liu et al. (2023a) and Qwen-VL-Int4 Bai et al. (2023b),
Mobile-Agent-v2 showcases significant improvements in task completion rates on both Android and Harmony
OS, highlighting the potential of multi-agent systems for handling complex mobile tasks.

In addition to vision-centric methods, some frameworks focus on translating GUI states into language to
enable LLM-based action planning. VisionTasker Song et al. (2024c) combines vision-based UI interpretation

43

Published in Transactions on Machine Learning Research (06/2025)

with sequential LLM task planning by processing mobile UI screenshots into structured natural language.
Supported by YOLO-v8 Reis et al. (2023) and PaddleOCR29 for widget detection, VisionTasker allows
the agent to automate complex tasks across unfamiliar apps, demonstrating higher accuracy than human
operators on certain tasks. This two-stage design illustrates a versatile and adaptable framework, setting a
strong precedent in mobile automation.

Similarly, DroidBot-GPT Wen et al. (2024c) showcases an innovative approach by converting GUI states
into natural language prompts, enabling LLMs to autonomously decide on action sequences. By interpreting
the GUI structure and translating it into language that GPT models can understand, DroidBot-GPT
generalizes across various apps without requiring app-specific modifications. This adaptability underscores
the transformative role of LLMs in handling complex, multi-step tasks with minimal custom data.

To enhance action prediction and context awareness, advanced frameworks integrate perception and action
systems within a multimodal LLM. CoCo-Agent Ma et al. (2024d) exemplifies this by processing GUI
elements like icons and layouts through its Comprehensive Event Perception and Comprehensive Action
Planning modules. By decomposing actions into manageable steps and leveraging high-quality data from
benchmarks like Android in the Wild (AITW) Rawles et al. (2023) and META-GUI Sun et al. (2022),
CoCo-Agent demonstrates its ability to automate mobile tasks reliably across varied smartphone applications.

Further advancing this integration, CoAT Zhang et al. (2024g) introduces a chain-of-action-thought process
to enhance action prediction and context awareness. Utilizing sophisticated models such as GPT-4V and
set-of-mark tagging, CoAT addresses the limitations of traditional coordinate-based action recognition. By
leveraging the Android-In-The-Zoo (AITZ) dataset it builds, CoAT provides deep context awareness and
improves both action prediction accuracy and task completion rates, highlighting its potential for accessibility
and user convenience on Android platforms.

Addressing the need for efficient handling of multi-step tasks with lower computational costs, AutoDroid Wen
et al. (2024a) combines LLM-based comprehension with app-specific knowledge. Using an HTML-style GUI
representation and a memory-based approach, AutoDroid reduces dependency on extensive LLM queries.
Its hybrid architecture of cloud and on-device models enhances responsiveness and accessibility, making
AutoDroid a practical solution for diverse mobile tasks. AutoDroid-V2 Wen et al. (2024b) enhances its
predecessor AutoDroid, by utilizing on-device language models to generate and execute multi-step scripts for
user task automation. By transforming dynamic and complex GUI elements of mobile apps into structured
app documents, it achieves efficient and accurate automation without depending on cloud-based resources.
The script-based approach reduces computational overhead by minimizing query frequency, thereby improving
task efficiency and addressing the limitations of stepwise agents. This advancement enables privacy-preserving
and scalable task automation on mobile platforms.

MobileGPT Lee et al. (2024c) automates tasks on Android devices using a human-like app memory
system that emulates the cognitive process of task decomposition—Explore, Select, Derive, and Recall. This
approach results in highly efficient and accurate task automation. Its hierarchical memory structure supports
modular, reusable, and adaptable tasks and sub-tasks across diverse contexts. MobileGPT demonstrates
superior performance over state-of-the-art systems in task success rates, cost efficiency, and adaptability,
highlighting its potential for advancing mobile task automation.

In a more advanced distributed setting, FedMobileAgent Wang et al. (2025c) employs a federated
learning framework to train mobile automation agents using self-sourced data from users’ phone interactions.
It addresses the high cost and privacy concerns associated with traditional human-annotated datasets by
introducing Auto-Annotation, which leverages vision-language models (VLMs) to infer user intentions from
screenshots and actions. The system enables decentralized training through federated learning while preserving
user privacy, and its adaptive aggregation method enhances model performance under non-IID data conditions.
Experimental results on several mobile benchmarks demonstrate that FedMobileAgent achieves performance
comparable to human-annotated models at a fraction of the cost.

Summary In summary, mobile GUI agents have evolved significantly, progressing from single-agent systems
to complex, multi-agent frameworks capable of dynamic, context-aware operations. These innovations

29https://github.com/PaddlePaddle/PaddleOCR

44

https://github.com/PaddlePaddle/PaddleOCR

Published in Transactions on Machine Learning Research (06/2025)

HostAgentHostAgent

AppAgent nAppAgent nAppAgent 3AppAgent 3AppAgent 2AppAgent 2AppAgent 1AppAgent 1

Sub-tasks
Assignment

User RequestUser Request

PowerPoint Edge Browser Excel Word

...

Figure 22: The multi-agent architecture employed in UFO Zhang et al. (2024a). Figure adapted from the
original paper.

demonstrate that sophisticated architectures, multimodal processing, and advanced planning strategies are
essential in handling the diverse challenges of mobile environments. Notably, frameworks like AppAgent-V2
and Mobile-Agent-v2 emphasize strong real-time perception and multi-agent collaboration to enable robust
cross-app operations, achieving notable improvements in task completion accuracy and stability. Systems
such as VisionTasker and DroidBot-GPT further highlight the effectiveness of translating GUI states into
structured language to facilitate generalizable and instruction-following behavior without app-specific tuning.
Meanwhile, solutions like CoCo-Agent and CoAT integrate high-quality benchmark-driven training and
modular perception-action pipelines, leading to significant gains in action prediction accuracy and reliability
across unseen mobile apps. On the efficiency front, AutoDroid-V2 and MobileGPT push the boundary
by incorporating on-device models and reusable memory structures, demonstrating improvements not only
in success rates but also in latency and query efficiency—critical for practical deployment. Collectively,
these frameworks mark substantial progress in the field, revealing how combining vision-language reasoning,
hierarchical planning, and efficient execution mechanisms leads to higher task generalization, reduced
computational overhead, and improved real-world applicability of mobile GUI agents.

5.3 Computer GUI Agents

Computer GUI agents have evolved to offer complex automation capabilities across diverse operating systems,
addressing challenges such as cross-application interaction, task generalization, and high-level task planning.
They have led to the development of sophisticated frameworks capable of handling complex tasks across
desktop environments. These agents have evolved from simple automation tools to intelligent systems that
leverage multimodal inputs, advanced architectures, and adaptive learning to perform multi-application tasks
with high efficiency and adaptability. We provide an overview of computer GUI agent frameworks in Table 28,
29 and 30.

One significant development in this area is the introduction of multi-agent architectures that enhance task
management and execution. For instance, the UI-Focused Agent, UFO Zhang et al. (2024a) represents a
pioneering framework specifically designed for the Windows operating system. UFO redefines UI-focused
automation through its advanced dual-agent architecture, leveraging GPT-Vision to interpret GUI elements
and execute actions autonomously across multiple applications. The framework comprises a HostAgent,
responsible for global planning, task decomposition, and application selection, and an AppAgent, tasked
with executing assigned subtasks within individual applications, as illustrated in Figure 22. This centralized
structure enables UFO to manage complex, multi-application workflows such as aggregating information and
generating reports. Similar architectural approach has also been adopted by other GUI agent frameworks
AgentSeaƒ AI (2024); Zhu et al. (2024b); Zhang et al. (2024e). By incorporating safeguards and customizable

45

Published in Transactions on Machine Learning Research (06/2025)

Screenshot ScreenshotScreenshot

A11y infoA11y info

GUI Actions GUI actionsGUI actions

APIsAPIs

 Deep OS
Integration

 Shallow OS
Integration

Picture-in-Picture UX

Locking

(b) AgentOS

 (a) Traditional CUAs

Knowledge

Figure 23: The comparison of traditional CUAs and the Desktop AgentOS UFO2. Figure adapted from the
original paper.

actions, UFO ensures efficiency and security when handling intricate commands, positioning itself as a
cutting-edge assistant for Windows OS. Its architecture, exemplifies dynamic adaptability and robust task-
solving capabilities across diverse applications, demonstrating the potential of multi-agent systems in desktop
automation.

UFO2 Zhang et al. (2025b), the successor to UFO, elevates GUI automation from a vision-only prototype
to a deeply integrated, Windows-native AgentOS (Figure 23). It coordinates tasks through a centralized
HostAgent, which delegates subtasks to application-specialized AppAgents. A hybrid perception pipeline that
fuses Windows UI Automation (UIA) metadata with OmniParser-v2 visual grounding delivers robust control
identification even for custom widgets. Via a unified GUI–API action layer, AppAgents preferentially invoke
high-level application APIs and fall back to pixel-level clicks only when necessary, cutting both latency and
brittleness. A picture-in-picture virtual desktop cleanly isolates agent execution from the user’s main session,
enabling non-intrusive multitasking. Runtime performance is further boosted by retrieval-augmented help
documents and execution logs, coupled with speculative multi-action planning that executes several steps
per single LLM invocation. Tested on 20+ real Windows applications, UFO2 exceeds Operator OpenAI
(2025b) and other CUAs by more than 10 percentage points in success rate while halving LLM calls. Because
the framework is model-agnostic, swapping GPT-4o for a stronger LLM such as o1 yields additional gains
without code changes.

Building upon the theme of adaptability and generalist capabilities, Cradle Tan et al. (2024a) pushes the
boundaries of general computer control by utilizing VLMs for interacting with various software, ranging from
games to professional applications, without the need for API access. Cradle employs GPT-4o to interpret
screen inputs and perform low-level actions, making it versatile across different types of software environments.
Its six-module structure, covering functions such as information gathering and self-reflection, enables the
agent to execute tasks, reason about actions, and utilize past interactions to inform future decisions. Cradle’s
capacity to function in dynamic environments, including complex software, marks it as a significant step
toward creating generalist agents with broad applicability across desktop environments.

Extending the capabilities of computer GUI agents to multiple operating systems, OS-Copilot Wu et al.
(2024e) introduces a general-purpose framework designed to operate across Linux and macOS systems. Its
notable feature, FRIDAY, showcases the potential of self-directed learning by adapting to various applications
and performing tasks without explicit training for each app. Unlike application-specific agents, FRIDAY
integrates APIs, keyboard and mouse controls, and command-line operations, creating a flexible platform
that can autonomously generate and refine tools as it interacts with new applications. OS-Copilot’s ability
to generalize across unseen applications, validated by its performance on the GAIA benchmark, provides
a foundational model for OS-level agents capable of evolving in complex environments. This demonstrates
promising directions for creating adaptable digital assistants that can handle diverse desktop environments
and complex task requirements.

46

Published in Transactions on Machine Learning Research (06/2025)

In the emerging field of LLM-powered GUI agents for desktop environments, Programming with Pixels (PwP)
Aggarwal & Welleck (2025) introduces a compelling alternative to traditional tool-based software engineering
agents, as illustrated in Figure X. Rather than relying on predefined API calls, PwP enables agents to
interact directly with an IDE using visual perception, keyboard inputs, and mouse clicks, mimicking the way
human developers operate within an IDE. This approach allows for generalization beyond predefined APIs,
providing a highly expressive environment where agents can execute a wide range of software engineering tasks,
including debugging, UI generation, and code editing. Evaluations conducted on PwP-Bench demonstrate that
computer-use agents, despite lacking direct access to structured APIs, can match or even surpass traditional
tool-based approaches in certain scenarios.

Summary In summary, computer GUI agents have evolved significantly, progressing from single-task
automation tools to advanced multi-agent systems capable of performing complex, multi-application tasks
and learning from interactions. Frameworks such as UFO, Cradle, and OS-Copilot exemplify different
design philosophies, each addressing core challenges like cross-application control, adaptability to unseen
environments, and efficient long-horizon planning. UFO showcases a highly structured dual-agent architecture
that achieves robust task decomposition and accurate subtask execution within the Windows ecosystem,
demonstrating superior performance in cross-app workflows like document synthesis and report generation.
In contrast, Cradle focuses on generality and reasoning by leveraging a six-module pipeline with self-reflection
and memory to handle diverse software types, including games and creative tools—highlighting strong
adaptability without relying on application-specific APIs. Meanwhile, OS-Copilot pushes the boundaries of
platform generalization, achieving cross-OS compatibility (Linux/macOS) via a hybrid interaction approach
combining CLI, GUI, and API-level control, with demonstrated success on the GAIA benchmark for unseen
applications. Together, these systems illustrate a clear trend: the most effective computer GUI agents
integrate multimodal perception, modular reasoning, and dynamic learning mechanisms to balance generality
and performance, setting the foundation for future AgentOS frameworks that are scalable, OS-agnostic, and
capable of long-term autonomous operation in real-world desktop environments.

5.4 Cross-Platform GUI Agents

Cross-platform GUI agents have emerged as versatile solutions capable of interacting with various environments,
from desktop and mobile platforms to more complex systems. These frameworks prioritize adaptability
and efficiency, leveraging both lightweight models and multi-agent architectures to enhance cross-platform
operability. In this subsection, we first We overview cross-platform GUI agent frameworks in Table 31 and
32, then explore key frameworks that exemplify the advancements in cross-platform GUI automation.

A significant stride in this domain is represented by AutoGLM Liu et al. (2024h), which bridges the
gap between web browsing and Android control by integrating large multimodal models for seamless GUI
interactions across platforms. AutoGLM introduces an Intermediate Interface Design that separates planning
and grounding tasks, improving dynamic decision-making and adaptability. By employing a self-evolving
online curriculum with reinforcement learning, the agent learns incrementally from real-world feedback and
can recover from errors. This adaptability and robustness make AutoGLM ideal for real-world deployment
in diverse user applications, setting a new standard in cross-platform automation and offering promising
directions for future research in foundation agents.

While some frameworks focus on integrating advanced models for cross-platform interactions, others emphasize
efficiency and accessibility. TinyClick Pawlowski et al. (2024) addresses the need for lightweight solutions
by focusing on single-turn interactions within GUIs. Utilizing the Florence-2-Base Vision-Language Model,
TinyClick executes tasks based on user commands and screenshots with only 0.27 billion parameters.
Despite its compact size, it achieves high accuracy—73% on Screenspot Cheng et al. (2024a) and 58.3% on
OmniAct Kapoor et al. (2024) —outperforming larger multimodal models like GPT-4V while maintaining
efficiency. Its multi-task training and MLLM-based data augmentation enable precise UI element localization,
making it suitable for low-resource environments and addressing latency and resource constraints in UI
grounding and action execution.

In addition to lightweight models, multi-agent architectures play a crucial role in enhancing cross-platform
GUI interactions. OSCAR Wang & Liu (2024) exemplifies this approach by introducing a generalist GUI

47

Published in Transactions on Machine Learning Research (06/2025)

agent capable of autonomously navigating and controlling both desktop and mobile applications. By utilizing
a state machine architecture, OSCAR dynamically handles errors and adjusts its actions based on real-time
feedback, making it suitable for automating complex workflows guided by natural language. The integration
of standardized OS controls, such as keyboard and mouse inputs, allows OSCAR to interact with applications
in a generalized manner, improving productivity across diverse GUI environments. Its open-source design
promotes broad adoption and seamless integration, offering a versatile tool for cross-platform task automation
and productivity enhancement.

Expanding on the concept of multi-agent systems, AgentStore Jia et al. (2024) introduces a flexible and
scalable framework for integrating heterogeneous agents to automate tasks across operating systems. The
key feature of AgentStore is the MetaAgent, which uses the innovative AgentToken strategy to dynamically
manage a growing number of specialized agents. By enabling dynamic agent enrollment, the framework
fosters adaptability and scalability, allowing both specialized and generalist capabilities to coexist. This
multi-agent architecture supports diverse platforms, including desktop and mobile environments, leveraging
multimodal perceptions such as GUI structures and system states. AgentStore’s contributions highlight the
importance of combining specialization with generalist capabilities to overcome the limitations of previous
systems.

Further advancing cross-platform GUI interaction, MMAC-Copilot Song et al. (2024d) employs a multi-
agent, multimodal approach to handle tasks across 3D gaming, office, and mobile applications without
relying on APIs. By utilizing specialized agents like Planner, Viewer, and Programmer, MMAC-Copilot
collaborates to adapt to the complexities of visually rich environments. Using GPT-4V for visual recognition
and OCR for text analysis, it achieves high task completion rates in visually complex environments. The
framework’s integration with VIBench, a benchmark for non-API applications, underscores its real-world
relevance and adaptability. MMAC-Copilot’s robust foundation for dynamic interaction across platforms
extends applications to industries like gaming, healthcare, and productivity.

AGUVIS Xu et al. (2024k) leverages a pure vision approach to automate GUI interactions, overcoming
limitations of text-based systems like HTML or accessibility trees. Its platform-agnostic design supports
web, desktop, and mobile applications while reducing inference costs. AGUVIS employs a two-stage training
process: the first focuses on GUI grounding, and the second integrates planning and reasoning within a unified
model. This approach delivers state-of-the-art performance in both offline and online scenarios, streamlining
decision-making and execution.

Agent S2 Agashe et al. (2025) builds upon its predecessor, Agent S Agashe et al. (2024), by
introducing a hierarchical and compositional framework for GUI agents that integrates generalist models with
specialized grounding modules. Departing from monolithic architectures, it employs a Mixture of Grounding
(MoG) strategy to delegate fine-grained grounding tasks to expert modules, and adopts Proactive Hierarchical
Planning (PHP) to dynamically revise action plans based on evolving observations. Relying solely on GUI
screenshots, Agent S2 generalizes effectively across Ubuntu, Windows, and Android platforms. It demonstrates
strong scalability and consistently outperforms larger monolithic models by strategically distributing cognitive
responsibilities. The design of Agent S2 underscores the advantages of modular architectures for handling
long-horizon, high-fidelity GUI interactions.

Summary In summary, cross-platform GUI agents have demonstrated significant progress in bridging
heterogeneous environments through varied design choices—ranging from lightweight efficiency to multi-
agent scalability and robust multimodal perception. Frameworks such as AutoGLM and MMAC-Copilot
highlight the power of large multimodal models and curriculum-based reinforcement learning to achieve
high task success in diverse, visually rich environments without reliance on APIs. These systems exhibit
strong adaptability, error recovery, and high task completion rates across domains such as mobile control,
3D gaming, and office automation. In contrast, models like TinyClick illustrate the feasibility of achieving
competitive performance—surpassing even GPT-4V in some benchmarks—using highly compact architectures,
thus addressing latency and resource constraints critical for real-time or on-device applications. Meanwhile,
OSCAR and AgentStore exemplify the growing role of modular multi-agent systems, combining state tracking,
error correction, and flexible enrollment of specialized agents to achieve scalability and platform coverage.
These architectures enable dynamic agent composition, facilitating generalist behavior without sacrificing

48

Published in Transactions on Machine Learning Research (06/2025)

domain-specific precision. Notably, AGUVIS introduces a vision-only paradigm, unifying GUI grounding,
planning, and reasoning into a platform-agnostic model that generalizes across web, mobile, and desktop
systems. Collectively, these frameworks reflect a clear trend toward combining scalability, multimodal
grounding, and architectural efficiency to meet the demands of cross-platform GUI automation in increasingly
complex, real-world settings.

6 Data for Optimizing LLM-Powered GUI Agents

In the previous section, we explored general frameworks for LLM-powered GUI agents, most of which rely
on foundational LLMs such as GPT-4V and GPT-4o. However, to elevate these agents’ performance and
efficiency, optimizing their “brain”, the underlying model is crucial. Achieving this often involves fine-tuning
foundational models using large-scale, diverse, and high-quality contextual GUI datasets Li et al. (2024e),
which are specifically curated to enable these models to excel in GUI-specific tasks. Collecting such datasets,
particularly those rich in GUI screenshots, metadata, and interactions, necessitates an elaborate process
of data acquisition, filtering, and preprocessing, each requiring substantial effort and resources Chen et al.
(2024b).

As GUI agents continue to gain traction, researchers have focused on assembling datasets that represent
a broad spectrum of platforms and capture the diverse intricacies of GUI environments. These datasets
are pivotal in training models that can generalize effectively, thanks to their coverage of varied interfaces,
workflows, and user interactions. To ensure comprehensive representation, innovative methodologies have
been employed to collect and structure these data assets. In the sections that follow, we detail an end-to-end
pipeline for data collection and processing tailored to training GUI-specific LLMs. We also examine significant
datasets from various platforms, providing insights into their unique features, the methodologies used in their
creation, and their potential applications in advancing the field of LLM-powered GUI agents.

6.1 Data Collection

Data is pivotal in training a purpose-built GUI agent, yet gathering it requires substantial time and effort
due to the task’s complexity and the varied environments involved.

6.1.1 Data Composition and Sources

The essential data components for GUI agent training closely align with the agent’s perception and inference
requirements discussed in Sections 4.2.2 and 4.4. At a high level, this data comprises:

1. User Instructions: These provide the task’s overarching goal, purpose, and specific details, typically
in natural language, offering a clear target for the agent to accomplish, e.g., “change the font size of
all text to 12”.

2. Environment Perception: This typically includes GUI screenshots, often with various visual
augmentations, as well as optional supplementary data like widget trees and UI element properties
to enrich the context. This should encompass both the static assessment of environment states (Sec-
tion 4.2.2) and the dynamic environment feedback that captures post-action changes (Section 4.2.3),
thereby providing sufficient contextual information.

3. Task Trajectory: This contains the critical action sequence required to accomplish the task, along
with supplementary information, such as the agent’s plan. A trajectory usually involves multiple
steps and actions to navigate through the task.

While user instructions and environmental perception serve as the model’s input, the expected model output
is the task trajectory. This trajectory’s action sequence is then grounded within the environment to complete
the task.

For user instructions, it is crucial to ensure that they are realistic and reflective of actual user scenarios.
Instructions can be sourced in several ways: (i) directly from human designers, who can provide insights

49

Published in Transactions on Machine Learning Research (06/2025)

How to create an animation
on PowerPoint?

Increase the font size on
your desktop.

how to change the

font size?

Step 1: Select the third paragraph
for editing.
Action: SelectText(Paragraph(3))

Step 2: Click on the "Font Size"
dropdown in the Word toolbar.
Action: Click(Toolbar("Font Size"))

Step 3: From the dropdown
menu, select "20" as the font size.
Action: Click(Button("20"))

Step 4: Ensure the third paragraph's
font size is now set to 20.
Action: VerifyFontSize(Text, 20)

{Botton - Insert, ...}
{Botton - Chart, ...}
...

Task
Instantiation

Data Filtering
Data Augmentation

Task Execution

State-Action Data Collection

(Evaluation)

Instantiation Task:
Change the font size
of the third
paragraph in a Word
document
draft.docx to 20.

Screenshot Screenshot Screenshot Screenshot

HumanLLM
Public

Resources
Existing
Dataset

Prototypical
Instructions

HumanGUI AgentGUI AgentLLM Human

Widget Tree
UI Properties

Widget Tree
UI Properties

Widget Tree
UI Properties

Widget Tree
UI Properties

{Botton - Insert, ...}
{Botton - Chart, ...}
...

{Botton - Insert, ...}
{Botton - Chart, ...}
...

{Botton - Insert, ...}
{Botton - Chart, ...}
...

GUI Environments

Figure 24: A complete pipeline for data collection for training a GUI agent model.

based on real-world applications; (ii) extracted from existing, relevant datasets if suitable data is available;
(iii) sourcing from public materials, such as websites, application help documentation, and other publicly
available resources; and (iv) generated by LLMs, which can simulate a broad range of user requests across
different contexts. Additionally, LLMs can be employed for data augmentation Ding et al. (2024a), increasing
both the quality and diversity of instructions derived from the original data.

For gathering environment perception data, various toolkits—such as those discussed in Section 4.2.2—can
be used to capture the required GUI data. This can be done within an environment emulator (e.g., Android
Studio Emulator30, Selenium WebDriver31, Windows Sandbox32) or by directly interfacing with a real
environment to capture the state of GUI elements, including screenshots, widget trees, and other metadata
essential for the agent’s operation.

Collecting task trajectories, which represent the agent’s action sequence to complete a task, is often the
most challenging aspect. Task trajectories need to be accurate, executable, and well-validated. Collection
methods include (i) using programmatically generated scripts, which define action sequences for predefined
tasks, providing a highly controlled data source; (ii) employing human annotators, who complete tasks
in a crowdsourced manner with each step recorded, allowing for rich, authentic action data; and (iii)
leveraging model or agent bootstrapping Tan et al. (2024b), where an existing LLM or GUI agent attempts to
complete the task and logs its actions, though this method may require additional validation due to potential
inaccuracies. All these methods demand considerable effort, reflecting the complexities of gathering reliable,
task-accurate data for training GUI agents.

6.1.2 Collection Pipeline

Figure 24 presents a complete pipeline for data collection aimed at training a GUI agent model. The process
begins with gathering initial user instructions, which may come from various aforementioned sources. These
instructions are typically prototypical, not yet tailored or grounded to a specific environment Liu et al. (2024i).
For instance, an instruction like “how to change the font size?” from a general website lacks specificity and
doesn’t align with the concrete requests a user might make within a particular application. To address this,
an instantiation step is required Liu et al. (2024i), where instructions are contextualized within a specific
environment, making them more actionable. For example, the instruction might be refined to “Change the font
size of the third paragraph in a Word document of draft.docx to 20.”, giving it a clear, environment-specific
goal. This instantiation process can be conducted either manually by humans or programmatically with an
LLM.

30https://developer.android.com/studio
31https://www.selenium.dev/
32https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/

windows-sandbox/windows-sandbox-overview

50

https://developer.android.com/studio
https://www.selenium.dev/
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview

Published in Transactions on Machine Learning Research (06/2025)

Following instantiation, instructions may undergo a filtering step to remove low-quality data, ensuring only
relevant and actionable instructions remain. Additionally, data augmentation techniques can be applied to
expand and diversify the dataset, improving robustness. Both of these processes can involve human validation
or leverage LLMs for efficiency.

Once instruction refinement is complete, task trajectories and environment perceptions are collected simulta-
neously. As actions are performed within the environment, each step is logged, providing a record of the
environment’s state and the specific actions taken. After a full task trajectory is recorded, an evaluation
phase is necessary to identify and remove any failed or inaccurate sequences, preserving the quality of the
dataset. By iterating this pipeline, a high-quality dataset of GUI agent data can be compiled, which is crucial
for training optimized models.

Data collection and curation for LLM-powered GUI agents is an intensive process, often requiring substantial
human involvement, particularly for generating accurate action sequences and annotations. While early
datasets were limited in scale and task diversity, recent advancements have led to large-scale, multi-platform
datasets that support more complex and realistic GUI interactions. Key insights from these developments
include:

1. Scale and Diversity: High-quality, large-scale data is essential for training robust GUI agents
capable of handling diverse UI states and tasks. Datasets like MobileViews Gao et al. (2024e) and
ScreenAI Baechler et al. (2024) illustrate the importance of vast and varied data to accommodate the
dynamic nature of mobile and desktop applications, enhancing the agent’s resilience across different
environments.

2. Cross-Platform Flexibility: Cross-platform datasets such as VisualAgentBench Liu et al. (2024i)
and GUI-World Chen et al. (2024c) underscore the value of generalizability, enabling agents to
perform consistently across mobile, web, and desktop environments. This cross-platform adaptability
is a crucial step towards creating one-stop solutions where a single GUI agent can operate seamlessly
across multiple platforms.

3. Automated Data Collection: AI-driven data collection tools, as exemplified by OmniParser Lu
et al. (2024d) and MobileViews Gao et al. (2024e), showcase the potential to significantly reduce
manual efforts and accelerate scalable dataset creation. By automating the annotation process, these
tools pave the way for more efficient data pipelines, moving towards a future where AI supports AI
by expediting data gathering and labeling for complex GUI interactions.

4. Unified Data Formats and Protocols: xLAM’s unified data format is an essential innovation
that improves compatibility across diverse platforms Zhang et al. (2024d), addressing a significant
bottleneck in cross-platform GUI agent development. Establishing standardized protocols or action
spaces for data collection, particularly given the varied data formats, action spaces, and environment
representations across platforms, will be vital in furthering agent generalization and consistency.

In the following sections, we review existing GUI agent datasets across various platforms, offering insights
into current practices and potential areas for improvement. Before delving into the details, we first present a
taxonomy of LLM-powered GUI agent datasets, categorized by target platform, as shown in Table 12.

6.2 Web Agent Data

Web-based GUI agents demand datasets that capture the intricate complexity and diversity of real-world
web interactions. These datasets often encompass varied website structures, including DOM trees and
HTML content, as well as multi-step task annotations that reflect realistic user navigation and interaction
patterns. Developing agents that can generalize across different websites and perform complex tasks requires
comprehensive datasets that provide rich contextual information. We provide an overview of web-based GUI
agents dataset in Table 33 and 34.

Building upon this need, several significant datasets have been developed to advance web-based GUI agents.
Unlike traditional datasets focusing on narrow, predefined tasks, Mind2Web Deng et al. (2023) represents a

51

Published in Transactions on Machine Learning Research (06/2025)

Table 12: Taxonomy of LLM-powered GUI agent datasets by target platform.

Platform References
Web Deng et al. (2023); Chen et al. (2024e); Lu et al. (2024c); Pan et al. (2024b);

Xu et al. (2024j); Trabucco et al. (2025)
Mobile Li et al. (2020a); Zhang et al. (2024g); You et al. (2025); Wu et al. (2024c);

Meng et al. (2024); Deka et al. (2017); Burns et al. (2022); Sun et al. (2022);
Rawles et al. (2023); Lu et al. (2024b); Chai et al. (2024); Chen et al. (2024f);
Wang et al. (2024f); Xu et al. (2024i); Gao et al. (2024e); Sun et al. (2025b)

Computer Niu et al. (2024); Wang et al. (2024h); Xu et al. (2025)
Cross-Platform Lu et al. (2024d); Chen et al. (2024i); Gou et al. (2024); Sun et al. (2024b);

Chawla et al. (2024); Chen et al. (2024c); Zhang et al. (2024d); Shen et al.
(2024a); Liu et al. (2024i); Baechler et al. (2024); Chaimalas et al. (2025); Cheng
et al. (2025b)

significant step forward by emphasizing open-ended task descriptions, pushing agents to interpret high-level
goals independently. It offers over 2,350 human-annotated tasks across 137 diverse websites, capturing
complex interaction patterns and sequences typical in web navigation. This setup aids in evaluating agents’
generalization across unseen domains and serves as a benchmark for language grounding in web-based GUIs,
enhancing adaptability for real-world applications.

Similarly, WebVLN Chen et al. (2024e) expands on web GUI tasks by combining navigation with question-
answering. It provides agents with text-based queries that guide them to locate relevant web pages and
extract information. By leveraging both HTML and visual content from websites, WebVLN aligns with
real-world challenges of web browsing. This dataset is particularly valuable for researchers aiming to develop
agents capable of complex, human-like interactions in GUI-driven web spaces.

Moreover, WebLINX Lu et al. (2024c) focuses on conversational GUI agents, particularly emphasizing
real-world web navigation through multi-turn dialogue. Featuring over 2,300 expert demonstrations across
155 real-world websites, WebLINX creates a rich environment with DOM trees and screenshots for training
and evaluating agents capable of dynamic, user-guided navigation tasks. This dataset promotes agent
generalization across new sites and tasks, with comprehensive action and dialogue data that provide insights
into enhancing agent responsiveness in realistic web-based scenarios.

MultiUI Liu et al. (2024e) is a large-scale dataset designed to enhance GUI agents’ text-rich visual
understanding. It comprises 7.3 million multimodal instruction samples collected from 1 million websites,
covering key web UI tasks such as element grounding, action prediction, and interaction modeling. Unlike
traditional datasets that rely on raw HTML, MultiUI utilizes structured accessibility trees to generate
high-quality multimodal instructions. Models trained on MultiUI demonstrate substantial performance
improvements, achieving a 48% gain on VisualWebBench Liu et al. (2024f) and a 19.1% increase in element
accuracy on Mind2Web Deng et al. (2023).

InSTA Trabucco et al. (2025) is an Internet-scale dataset for training GUI-based web agents, generated
entirely through an automated LLM pipeline without human annotations. It covers 150k diverse websites
sourced from Common Crawl and includes rich web navigation tasks, trajectories in Playwright API calls,
and evaluations using LLM-based judges. The dataset highlights strong generalization capabilities and
data efficiency, significantly outperforming human-collected datasets like Mind2Web Deng et al. (2023) and
WebLINX Lu et al. (2024c) in zero-shot and low-resource settings. InSTA represents a key advancement in
scalable data curation for LLM-powered GUI agents, offering unprecedented coverage across real-world web
interfaces.

Collectively, these datasets represent essential resources that enable advancements in web agent capabilities,
supporting the development of adaptable and intelligent agents for diverse web applications.

52

Published in Transactions on Machine Learning Research (06/2025)

6.3 Mobile Agent Data

Mobile platforms are critical for GUI agents due to the diverse range of apps and unique user interactions
they involve. To develop agents that can effectively navigate and interact with mobile interfaces, datasets
must offer a mix of single and multi-step tasks, focusing on natural language instructions, UI layouts, and
user interactions. We first overview mobile GUI agents dataset in Tables 35, 36 and 37.

An early and foundational contribution in this domain is the Rico dataset Deka et al. (2017), which provides
over 72,000 unique UI screens and 10,811 user interaction traces from more than 9,700 Android apps. Rico
has been instrumental for tasks such as UI layout similarity, interaction modeling, and perceptual modeling,
laying the groundwork for mobile interface understanding and GUI agent development.

Building upon the need for grounding natural language instructions to mobile UI actions, PIXELHELP Li
et al. (2020a) introduces a dataset specifically designed for this purpose. It includes multi-step instructions,
screenshots, and structured UI element data, enabling detailed analysis of how verbal instructions can be
converted into mobile actions. This dataset has significant applications in accessibility and task automation,
supporting agents that autonomously execute tasks based on verbal cues.

Further expanding the scope, the Android in the Wild (AITW) dataset Rawles et al. (2023) offers
one of the most extensive collections of natural device interactions. Covering a broad spectrum of Android
applications and diverse UI states, AITW captures multi-step tasks emulating real-world device usage.
Collected through interactions with Android emulators, it includes both screenshots and action sequences,
making it ideal for developing GUI agents that navigate app interfaces without relying on app-specific APIs.
Due to its scale and diversity, AITW has become a widely used standard in the field.

In addition, META-GUI Sun et al. (2022) provides a unique dataset for mobile task-oriented dialogue
systems by enabling direct interaction with mobile GUIs, bypassing the need for API-based controls. This
approach allows agents to interact across various mobile applications using multi-turn dialogues and GUI
traces, broadening their capabilities in real-world applications without custom API dependencies. The
dataset’s support for complex interactions and multi-turn dialogue scenarios makes it valuable for building
robust conversational agents.

Recently, MobileViews Gao et al. (2024e) emerged as the largest mobile screen dataset to date, offering over
600,000 screenshot–view hierarchy pairs from 20,000 Android apps. Collected with an LLM-enhanced app
traversal tool, it provides a high-fidelity resource for mobile GUI agents in tasks such as screen summarization,
tappability prediction, and UI component identification. Its scale and comprehensive coverage of screen states
make MobileViews a key resource for advancing mobile GUI agent capabilities.

Collectively, mobile platforms currently boast the richest set of datasets due to their versatile tools, emulator
support, and diverse use cases, reflecting the demand for high-quality, adaptive GUI agents in mobile
applications.

6.4 Computer Agent Data

In contrast to mobile and web platforms, the desktop domain for GUI agents has relatively fewer dedicated
datasets, despite its critical importance for applications like productivity tools and enterprise software.
However, notable efforts have been made to support the development and evaluation of agents designed for
complex, multi-step desktop tasks. We show related dataset for computer GUI agents in Table 38.

A significant contribution in this area is ScreenAgent Niu et al. (2024), a dedicated dataset and model
designed to facilitate GUI control in Linux and Windows desktop environments. ScreenAgent provides a
comprehensive pipeline that enables agents to perform multi-step task execution autonomously, encompassing
planning, action, and reflection phases. By leveraging annotated screenshots and detailed action sequences,
it allows for high precision in UI element positioning and task completion, surpassing previous models in
accuracy. This dataset is invaluable for researchers aiming to advance GUI agent capabilities in the desktop
domain, enhancing agents’ decision-making accuracy and user interface interactions.

53

Published in Transactions on Machine Learning Research (06/2025)

The LAM Wang et al. (2024h) is specifically designed to train and evaluate Large Action Models (LAMs) for
GUI environments, bridging natural language task understanding and action execution. It comprises two core
components: Task-Plan data, detailing user tasks with step-by-step plans, and Task-Action data, translating
these plans into executable GUI actions. Sourced from application documentation, WikiHow articles, and
Bing search queries, the dataset is enriched and structured using GPT-4. Targeting the Windows OS, with
a focus on automating tasks in Microsoft Word, it includes 76,672 task-plan pairs and 2,688 task-action
trajectories, making it one of the largest collections for GUI-based action learning. Data quality is ensured
through a robust validation pipeline that combines LLM-based instantiation, GUI interaction testing, and
manual review. Each entry is complemented with GUI screenshots and metadata, enabling models to learn
both high-level task planning and low-level execution. The dataset’s modular design supports fine-tuning for
specific GUI tasks and serves as a replicable framework for building datasets in other environments, marking
a significant contribution to advancing GUI-based automation.

Although the desktop domain has fewer datasets compared to mobile and web, efforts like ScreenAgent and
LAMs highlight the growing interest and potential for developing sophisticated GUI agents for computer
systems.

6.5 Cross-Platform Agent Data

Cross-platform datasets play a pivotal role in developing versatile GUI agents that can operate seamlessly
across mobile, computer, and web environments. Such datasets support generalizability and adaptability,
enabling agents to handle varied interfaces and tasks in real-world applications. We provide an overview of
related dataset for cross-platform GUI agents in Table 39 and Table 40.

One significant contribution is ScreenAI Baechler et al. (2024), which extends the scope of data collection
to include both mobile and desktop interfaces. Covering tasks such as screen annotation, question-answering,
and navigation, ScreenAI offers hundreds of millions of annotated samples. Its comprehensive scale and
mixed-platform coverage make it a robust foundation for GUI agents that need to manage complex layouts
and interactions across diverse interfaces. By emphasizing element recognition and screen summarization,
ScreenAI advances the development of multi-platform GUI agents capable of handling varied visual structures.

Building upon the need for evaluating visual foundation models across environments, VisualAgentBench Liu
et al. (2024i) is a groundbreaking cross-platform benchmark designed to assess GUI agents in both mobile and
web settings. It emphasizes interaction-focused tasks, using environments like Android Virtual Device and
WebArena-Lite Zhou et al. to evaluate and improve agent responses to GUI layouts and user interface actions.
The dataset’s innovative collection method, which combines program-based solvers and large multimodal
model bootstrapping, facilitates robust training trajectories that enhance adaptability and error recovery in
GUI agent tasks.

Furthermore, GUI-World Chen et al. (2024c) spans multiple platforms, including desktop, mobile, and
XR environments, with over 12,000 annotated videos. Designed to address the challenges of dynamic and
sequential GUI tasks, GUI-World allows researchers to benchmark GUI agent capabilities across diverse
interfaces. By providing detailed action sequences and QA pairs, it sets a high standard for evaluating agents
in complex, real-world scenarios.

Additionally, xLAMZhang et al. (2024d) contributes significantly to actionable agent development by
providing a unified dataset format designed to support multi-turn interactions, reasoning, and function-calling
tasks. Sourced from datasets like WebShopYao et al. (2023), ToolBench Guo et al. (2024c), and AgentBoard
Ma et al. (2024a), xLAM standardizes data formats across diverse environments, addressing the common issue
of inconsistent data structures that hinder agent training and cross-environment compatibility. By offering a
consistent structure, xLAM enhances the adaptability and error detection capabilities of GUI agents, allowing
for more seamless integration and performance across different applications.

OS-Genesis Sun et al. (2024b) adopts a reverse task synthesis approach for the Android and web platforms.
It leverages GPT-4o to interactively explore the environment and generate instructions in a reverse manner.
This process constructs high-quality, diverse GUI trajectories without relying on human annotations or

54

Published in Transactions on Machine Learning Research (06/2025)

predefined tasks. By eliminating these dependencies, OS-Genesis achieves scalable and efficient training for
GUI agents while significantly enhancing the diversity and quality of the generated data.

Collectively, these cross-platform datasets contribute to building multi-platform GUI agents, paving the
way for agents that can seamlessly navigate and perform tasks across different interfaces, fostering more
generalized and adaptable systems.

7 Models for Optimizing LLM-Powered GUI Agents

LLMs act as the “brain” of GUI agents, empowering them to interpret user intents, comprehend GUI screens,
and execute actions that directly impact their environments. While several existing foundation models
are robust enough to serve as this core, they can be further fine-tuned and optimized to evolve into Large
Action Models (LAMs)—specialized models tailored to improve the performance and efficiency of GUI agents.
These LAMs bridge the gap between general-purpose capabilities and the specific demands of GUI-based
interactions.

The exploration of LAMs for GUI agents has revealed several key insights that are shaping the future of
intelligent interaction with graphical user interfaces:

1. Smaller Models for On-Device Inference: Many of the optimized LAMs are built from smaller
foundational models, often ranging from 1 billion to 7 billion parameters. This reduction in model size
enhances computational efficiency, making it feasible to deploy these models on resource-constrained
devices such as mobile phones and edge devices. The ability to perform on-device inference without
relying on cloud services addresses privacy concerns and reduces latency, leading to a more responsive
user experience.

2. Enhanced GUI Comprehension Reduces Reliance on Structured Data: Models like VGA
Meng et al. (2024) and OmniParser Lu et al. (2024d) emphasize the importance of visual grounding
and image-centric fine-tuning to reduce dependency on structured UI metadata. By improving
GUI comprehension directly from visual inputs, agents become more adaptable to different software
environments, including those where structured data may be inaccessible or inconsistent.

3. Reinforcement Learning Bridges Static and Dynamic Environments: The application of
reinforcement learning in models like DigiRL Bai et al. (2024) demonstrates the effectiveness of
bridging static training data with dynamic real-world environments. This approach allows agents to
learn from interactions, recover from errors, and adapt to changes, enhancing their robustness and
reliability in practical applications.

4. Unified Function-Calling Enhances Interoperability: Efforts to standardize data formats and
function-calling mechanisms, as seen in models like xLAM Zhang et al. (2024d), facilitate multi-turn
interactions and reasoning across different platforms. This unification addresses compatibility issues
and enhances the agent’s ability to perform complex tasks involving multiple APIs and services.

5. Inference-Time Computing and Reasoning Models: Recent work highlights the importance
of inference-time computing, where models plan, reason, and decompose tasks on the fly without
architectural changes. Techniques such as extended context windows and chain-of-thought prompting
(e.g., “o1-style” reasoning) enable more robust, long-horizon decision-making. UI-R1 Lu et al. (2025b),
GUI-R1 Xia & Luo (2025) and InfiGUI-R1 Liu et al. (2025f) are pioneering efforts in this direction.
There is also growing interest in rule-based rewards and cost functions that guide inference-time
behavior, integrating explicit heuristics to improve the stability, interpretability, and generalization
of GUI agents.

In this section, we first introduce the foundation models that currently form the backbone of GUI agents,
highlighting their strengths and limitations. We then delve into the concept of LAMs, discussing how these
models are fine-tuned with GUI-specific datasets to enhance their adaptability, accuracy, and action-orientation
in GUI environments. Through this exploration, we illustrate the progression from general-purpose LLMs

55

Published in Transactions on Machine Learning Research (06/2025)

Table 13: Taxonomy of LLM-powered GUI agent models by target platform.

Platform References
Foundation
Models

Wang et al. (2024j); Abdin et al. (2024); OpenAI (2025a); Li et al. (2023c);
Bai et al. (2023b); Team et al. (2023); Hurst et al. (2024); Anthropic (2024);
OpenAI (2023); Chen et al. (2024l;k); Wang et al. (2024m); You et al. (2023);
Liu et al. (2024b;a); Huang et al. (2025c)

Web Furuta et al. (2023); Putta et al. (2024); Fereidouni & Siddique (2024); Thil
et al. (2024); He et al. (2024c); Qi et al. (2024); Zhang et al. (2025d)

Mobile Chen et al. (2024f); Bai et al. (2024); You et al. (2025); Wu et al. (2024c); Meng
et al. (2024); Qian et al. (2024); Chen et al. (2024g); Chen & Li (2024a;b;c);
Nong et al. (2024); Li et al. (2024f); Wu et al. (2025b); Papoudakis et al. (2025);
Bai et al. (2025a); Zheng et al. (2025b); Wang et al. (2025f); Lu et al. (2025b);
Zhang et al. (2025d); Luo et al. (2025a)

Computer Niu et al. (2024); Yang et al. (2025b); Wang et al. (2024h); Jin et al. (2025)
Cross-Platform Hong et al. (2023); Cheng et al. (2024a); Shen et al. (2024a); Zhang et al.

(2023e); Lu et al. (2024d); Baechler et al. (2024); Zhang et al. (2024d); Li et al.
(2024j); Lin et al. (2024c); Wu et al. (2024f); Qin et al. (2025); Rahman et al.
(2024); Yang et al. (2025a); Huang et al. (2025c); Xia & Luo (2025); Liu et al.
(2025f)

to purpose-built LAMs, laying the foundation for advanced, intelligent GUI agents. Before delving into the
details, we first present a taxonomy of LLM-powered GUI agent models, categorized by target platform, as
shown in Table 13.

7.1 Foundation Models

Foundation models serve as the core of LLM-powered GUI agents, providing the essential capabilities for
understanding and interacting with graphical user interfaces. Recent advancements in both close-source
and open-source MLLMs have significantly enhanced the potential of GUI agents, offering improvements
in efficiency, scalability, and multimodal reasoning. This subsection explores these foundation models,
highlighting their innovations, contributions, and suitability for GUI agent applications. For a quick reference,
Table 41 and 42 present an overview of the key models and their characteristics.

7.1.1 Close-Source Models

While proprietary models are not openly available for customization, they offer powerful capabilities that can
be directly utilized as the “brain” of GUI agents.

Among these, GPT-4V OpenAI (2023) and GPT-4o Hurst et al. (2024) are most commonly used in existing
GUI agent frameworks due to their strong abilities, as discussed in Section 5. GPT-4V represents a significant
advancement in multimodal AI, combining text and image analysis to expand the functionality of traditional
LLMs. Its ability to understand and generate responses based on both textual and visual inputs makes
it well-suited for GUI agent tasks that require deep multimodal reasoning. Although its deployment is
limited due to safety and ethical considerations, GPT-4V underscores the potential of foundation models to
revolutionize GUI agent development with enhanced efficiency and flexibility.

Similarly, GPT-4o offers a unified multimodal autoregressive architecture capable of processing text, audio,
images, and video. This model excels in generating diverse outputs efficiently, achieving faster response times
at lower costs compared to its predecessors. Its rigorous safety and alignment practices make it reliable
for sensitive tasks, positioning it as a robust tool for intelligent GUI agents that require comprehensive
multimodal comprehension.

56

Published in Transactions on Machine Learning Research (06/2025)

The Gemini model family Team et al. (2023) advances multimodal AI modeling by offering versions
tailored for high-complexity tasks, scalable performance, and on-device efficiency. Notably, the Nano models
demonstrate significant capability in reasoning and coding tasks despite their small size, making them suitable
for resource-constrained devices. Gemini’s versatility and efficiency make it a compelling choice for powering
GUI agents that require both performance and adaptability.

Emphasizing industry investment in GUI automation, Claude 3.5 Sonnet (Computer Use) introduces a
pioneering approach by utilizing a vision-only paradigm for desktop task automation Anthropic (2024); Hu
et al. (2024a). It leverages real-time screenshots to observe the GUI state and generate actions, eliminating the
need for metadata or underlying GUI structure. This model effectively automates GUI tasks by interpreting
the screen, moving the cursor, clicking buttons, and typing text. Its unique architecture integrates a ReAct-
based Yao et al. (2022b) reasoning paradigm with selective observation, reducing computational overhead
by observing the environment only when necessary. Additionally, Claude 3.5 maintains a history of GUI
screenshots, enhancing task adaptability and enabling dynamic interaction with software environments in
a human-like manner. Despite challenges in handling dynamic interfaces and error recovery, this model
represents a significant step forward in creating general-purpose GUI agents. Its development highlights
substantial industry investment in this area, indicating a growing focus on leveraging LLMs for advanced
GUI automation.

The Operator model OpenAI (2025a;b), developed by OpenAI, represents a new frontier in Computer-Using
Agents (CUA), akin to Claude 3.5 Sonnet (Computer Use). Designed to interact with GUI environments
through LLM-powered reasoning and vision capabilities, Operator builds upon GPT-4o, integrating rein-
forcement learning to navigate and execute tasks across digital interfaces such as browsers, forms, and
applications. By perceiving screenshots, interpreting UI elements, and performing actions via a virtual cursor
and keyboard, Operator enables the automation of complex GUI-based workflows, including online purchases,
email management, and document editing. Notably, Operator excels in understanding and manipulating
digital environments, establishing itself as a powerful tool for human-computer interaction automation.
Its exceptional performance on various benchmarks underscores its leading capabilities in GUI-based task
automation.

7.1.2 Open-Source Models

Open-source models provide flexibility for customization and optimization, allowing developers to tailor GUI
agents with contextual data and deploy them on devices with limited resources.

The Qwen-VL series Bai et al. (2023b) is notable for its fine-grained visual understanding and multimodal
capabilities. With a Vision Transformer-based visual encoder and the Qwen-7B language model Bai et al.
(2023a), it achieves state-of-the-art results on vision-language benchmarks while supporting multilingual
interactions. Its efficiency and open-source availability, along with quantized versions for resource efficiency,
make it suitable for developing GUI agents that require precise visual comprehension.

Building upon this, Qwen2-VL Wang et al. (2024j) introduces innovations like Naive Dynamic Resolution
and Multimodal Rotary Position Embedding, enabling efficient processing of diverse modalities including
extended-length videos. The scalable versions of Qwen2-VL balance computational efficiency and performance,
making them adaptable for both on-device applications and complex multimodal tasks in GUI environments.

InternVL-2 Chen et al. (2024l;k) combines a Vision Transformer with a Large Language Model to handle
text, images, video, and medical data inputs. Its progressive alignment strategy and availability in various
sizes allow for flexibility in deployment. By achieving state-of-the-art performance in complex multimodal
tasks, InternVL-2 demonstrates powerful capabilities that are valuable for GUI agents requiring comprehensive
multimodal understanding.

Advancing efficient integration of visual and linguistic information, CogVLM Wang et al. (2024m) excels in
cross-modal tasks with a relatively small number of trainable parameters. Its ability to deeply integrate visual
and language features while preserving the full capabilities of large language models makes it a cornerstone
for GUI agent development, especially in applications where resource efficiency is critical.

57

Published in Transactions on Machine Learning Research (06/2025)

Enhancing spatial understanding and grounding, Ferret You et al. (2023) offers an innovative approach
tailored for GUI agents. By unifying referring and grounding tasks within a single framework and employing
a hybrid region representation, it provides precise interaction with graphical interfaces. Its robustness against
object hallucinations and efficient architecture make it ideal for on-device deployment in real-time GUI
applications.

The LLaVA model Liu et al. (2024b) integrates a visual encoder with a language decoder, facilitating
efficient alignment between modalities. Its lightweight projection layer and modular design enable quick
experimentation and adaptation, making it suitable for GUI agents that require fast development cycles
and strong multimodal reasoning abilities. Building on this, LLaVA-1.5 Liu et al. (2024a) introduces a
novel MLP-based cross-modal connector and scales to high-resolution image inputs, achieving impressive
performance with minimal training data. Its data efficiency and open-source availability pave the way for
widespread use in GUI applications requiring detailed visual reasoning.

BLIP-2 Li et al. (2023c) employs a compute-efficient strategy by leveraging frozen pre-trained models and
introducing a lightweight Querying Transformer. This design allows for state-of-the-art performance on
vision-language tasks with fewer trainable parameters. BLIP-2’s modularity and efficiency make it suitable
for resource-constrained environments, highlighting its potential for on-device GUI agents.

Finally, Phi-3.5-Vision Abdin et al. (2024) achieves competitive performance in multimodal reasoning
within a compact model size. Its innovative training methodology and efficient integration of image and text
understanding make it a robust candidate for GUI agents that require multimodal reasoning and on-device
inference without the computational overhead of larger models.

In summary, both close-source and open-source foundation models have significantly advanced the capabilities
of LLM-powered GUI agents. While proprietary models offer powerful out-of-the-box performance, open-
source models provide flexibility for customization and optimization, enabling tailored solutions for diverse
GUI agent applications. The innovations in multimodal reasoning, efficiency, and scalability across these
models highlight the evolving landscape of foundation models, paving the way for more intelligent and
accessible GUI agents.

7.2 Large Action Models

While general-purpose foundation LLMs excel in capabilities like multimodal understanding, task planning,
and tool utilization, they often lack the specialized optimizations required for GUI-oriented tasks. To address
this, researchers have introduced Large Action Models (LAMs)—foundation LLMs fine-tuned with contextual,
GUI-specific datasets (as outlined in Section 6) to enhance their action-driven capabilities. These models
represent a significant step forward in refining the “brain” of GUI agents for superior performance.

In the realm of GUI agents, LAMs provide several transformative advantages:

1. Enhanced Action Orientation: By specializing in action-oriented tasks, LAMs enable accurate
interpretation of user intentions and generation of precise action sequences. This fine-tuning ensures
that LAMs can seamlessly align their outputs with GUI operations, delivering actionable steps
tailored to user requests.

2. Specialized Planning for Long, Complex Tasks: LAMs excel in devising and executing intricate,
multi-step workflows. Whether the tasks span multiple applications or involve interdependent
operations, LAMs leverage their training on extensive action sequence datasets to create coherent,
long-term plans. This makes them ideal for productivity-focused tasks requiring sophisticated
planning across various tools.

3. Improved GUI Comprehension and Visual Grounding: Training on datasets that incorporate
GUI screenshots allows LAMs to advance their abilities in detecting, localizing, and interpreting UI
components such as buttons, menus, and forms. By utilizing visual cues instead of relying solely
on structured UI metadata, LAMs become highly adaptable, performing effectively across diverse
software environments.

58

Published in Transactions on Machine Learning Research (06/2025)

Foundation LLM

Optimized
LAM

Step 1: Select the note on Slide 1.
Step 2: Delete the selected note.
Step 3: Repeat for each slide until
all notes are delete.
...

Task: Delete all notes
on the slide deck

GUI Agent

Fine-tuning

Textual
Reply

Action
Execution

Fine-tuning Dataset

Widget TreeWidget TreeUser InstructionUser Instruction Action SequencesAction Sequences
{Botton – Insert, ...}
{Botton - Chart, ...}

{Menu – Design, ...}

{ListItem – Art, ...}
...

UI Properties
{Botton – Insert, ...}
{Botton - Chart, ...}

{Menu – Design, ...}

{ListItem – Art, ...}
...

UI Properties ScreenshotsScreenshots

Figure 25: The evolution from foundation LLMs to GUI agent-optimized LAM with fine-tuning.

4. Efficiency through Model Size Reduction: Many LAMs are built on smaller foundational
models—typically around 7 billion parameters—that are optimized for GUI-specific tasks. This
compact, purpose-driven design reduces computational overhead, enabling efficient operation even in
resource-constrained environments, such as on-device inference.

As illustrated in Figure 25, the process of developing a purpose-built LAM for GUI agents begins with
a robust, general-purpose foundation model, ideally with VLM capabilities. Fine-tuning these models on
comprehensive, specialized GUI datasets—including user instructions, widget trees, UI properties, action
sequences, and annotated screenshots—transforms them into optimized LAMs, effectively equipping them to
serve as the “brain” of GUI agents.

This optimization bridges the gap between planning and execution. A general-purpose LLM might provide
only textual plans or abstract instructions in response to user queries, which may lack precision. In contrast,
a LAM-empowered GUI agent moves beyond planning to actively and intelligently execute tasks on GUIs.
By interacting directly with application interfaces, these agents perform tasks with remarkable precision and
adaptability. This paradigm shift marks the evolution of GUI agents from passive task planners to active,
intelligent executors.

7.3 LAMs for Web GUI Agents

In the domain of web-based GUI agents, researchers have developed specialized LAMs that enhance interaction
and navigation within web environments. These models are tailored to understand the complexities of web
GUIs, including dynamic content and diverse interaction patterns. We present an analysis of LAMs tailored
for web GUI agents in Table 43.

Building upon the need for multimodal understanding, WebGUM Furuta et al. (2023) integrates HTML
understanding with visual perception through temporal and local tokens. It leverages Flan-T5 Chung et al.
(2024) for instruction fine-tuning and ViT Dosovitskiy et al. (2021) for visual inputs, enabling it to process
both textual and visual information efficiently. This multimodal grounding allows WebGUM to generalize

59

Published in Transactions on Machine Learning Research (06/2025)

tasks effectively, significantly outperforming prior models on benchmarks like MiniWoB++ Liu et al. (2018)
and WebShop Yao et al. (2023). With its data-efficient design and capacity for multi-step reasoning, WebGUM
underscores the importance of combining multimodal inputs in enhancing GUI agent performance.

Addressing the challenge of multi-step reasoning and planning in GUI environments, researchers have
introduced frameworks that incorporate advanced search and learning mechanisms. For instance, Agent
Q Putta et al. (2024) employs MCTS combined with self-critique mechanisms and Direct Preference
Optimization (DPO) Rafailov et al. (2024) to improve success rates in complex tasks such as product search
and reservation booking. By fine-tuning the LLaMA-3 70B model Dubey et al. (2024) to process HTML
DOM representations and generate structured action plans, thoughts, and environment-specific commands,
this framework showcases the power of integrating reasoning, search, and iterative fine-tuning for autonomous
agent development.

Leveraging smaller models for efficient web interaction, GLAINTEL Fereidouni & Siddique (2024) demon-
strates that high performance can be achieved without large computational resources. Utilizing the Flan-
T5 Chung et al. (2024) model with 780M parameters, it focuses on dynamic web environments like simulated
e-commerce platforms. The model incorporates RL to optimize actions such as query formulation and
navigation, effectively integrating human demonstrations and unsupervised learning. Achieving results
comparable to GPT-4-based methods at a fraction of the computational cost, GLAINTEL underscores the
potential of reinforcement learning in enhancing web-based GUI agents for task-specific optimization.

To enable continuous improvement and generalization across varied web domains, OpenWebVoyager He et al.
(2024c) combines imitation learning with an iterative exploration-feedback-optimization cycle. Leveraging
large multimodal models like Idefics2-8B Laurençon et al. (2024a), it performs autonomous web navigation
tasks. By training on diverse datasets and fine-tuning using trajectories validated by GPT-4 feedback, the
agent addresses real-world complexities without relying on synthetic environments. This approach significantly
advances GUI agent frameworks by demonstrating the capability to generalize across varied web domains
and tasks.

Moreover, tackling challenges such as sparse training data and policy distribution drift, WebRL Qi et al.
(2024) introduces a self-evolving curriculum and robust reward mechanisms for training LLMs as proficient
web agents. By dynamically generating tasks based on the agent’s performance, WebRL fine-tunes models
like Llama-3.1 Dubey et al. (2024) and GLM-4 GLM et al. (2024), achieving significant success rates in
web-based tasks within the WebArena environment. This framework outperforms both proprietary APIs and
other open-source models, highlighting the effectiveness of adaptive task generation and sustained learning
improvements in developing advanced GUI agents.

These advancements in LAMs for web GUI agents illustrate the importance of integrating multimodal inputs,
efficient model designs, and innovative training frameworks to enhance agent capabilities in complex web
environments.

7.4 LAMs for Mobile GUI Agents

Mobile platforms present unique challenges for GUI agents, including diverse screen sizes, touch interactions,
and resource constraints. Researchers have developed specialized LAMs to address these challenges, enhancing
interaction and navigation within mobile environments. We present an overview of LAMs tailored for mobile
GUI agents in Table 44, 45 and 46.

Focusing on detailed UI understanding, MobileVLM Wu et al. (2024c) introduces an advanced vision-
language model designed specifically for mobile UI manipulation tasks. Built on Qwen-VL-Chat Bai et al.
(2023b), it incorporates mobile-specific pretraining tasks for intra- and inter-UI comprehension. By leveraging
the Mobile3M dataset—a comprehensive corpus of 3 million UI pages and interaction traces organized into
directed graphs—the model excels in action prediction and navigation tasks. MobileVLM’s novel two-stage
pretraining framework significantly enhances its adaptability to mobile UIs, outperforming existing VLMs in
benchmarks like ScreenQA Hsiao et al. (2024) and Auto-UI Zhang & Zhang (2024). This work highlights the
effectiveness of tailored pretraining in improving mobile GUI agent performance.

60

Published in Transactions on Machine Learning Research (06/2025)

Screenshot State + Action

CLICK(50, 60) CLICK(30, 120)

VEM

State-Action
Values

Policy
Model

Exploration

PPO

Policy
Model

Figure 26: The PPO training process of VEM Zheng et al. (2025b). Figure adapted from the original paper.

Addressing the need for robust interaction in dynamic environments, DigiRL Bai et al. (2024) presents
a reinforcement learning-based framework tailored for training GUI agents in Android environments. By
leveraging offline-to-online RL, DigiRL adapts to real-world stochasticity, making it suitable for diverse,
multi-step tasks. Unlike prior models reliant on imitation learning, DigiRL autonomously learns from
interaction data, refining itself to recover from errors and adapt to new scenarios. The use of a pre-trained
Vision-Language Model with 1.3 billion parameters enables efficient processing of GUI screenshots and
navigation commands. Its performance on the AITW dataset demonstrates a significant improvement over
baseline methods, positioning DigiRL as a benchmark in the development of intelligent agents optimized for
complex GUI interactions.

Both Digi-Q Bai et al. (2025a) and VEM Zheng et al. (2025b) investigate the use of offline RL to enhance
the performance of GUI agents without requiring direct interaction with the environment. Digi-Q employs
temporal-difference learning to train a Q-function offline and derives policies through a Best-of-N selection
strategy based on the predicted Q-values. Similarly, VEM introduces an environment-free RL framework
tailored for training LLM-powered GUI agents using PPO. It directly estimates state-action values from
offline data by fine-tuning with annotated value data from GPT-4o, thereby enabling policy training without
real-time execution in a GUI environment. At inference time, only the policy model is utilized. Figure 26
illustrates the overall architecture of VEM. The study further demonstrates that offline RL with structured
credit assignment can achieve performance comparable to interactive RL models. Overall, VEM offers a
scalable and layout-agnostic approach for training GUI agents while minimizing interaction costs. Both works
underscore the potential of offline RL for GUI agent training.

To enhance GUI comprehension and reduce reliance on textual data, VGA Meng et al. (2024) employs
fine-tuned vision-language models that prioritize image-based cues such as shapes, colors, and positions.
Utilizing the RICO Deka et al. (2017) dataset for training, VGA is tailored for Android GUIs and employs
a two-stage fine-tuning process to align responses with both visual data and human intent. The model

61

Published in Transactions on Machine Learning Research (06/2025)

excels in understanding GUI layouts, predicting design intents, and facilitating precise user interactions. By
outperforming existing models like GPT-4V in GUI comprehension benchmarks, VGA sets a new standard
for accuracy and efficiency in mobile GUI agents.

In the context of lightweight and efficient models, UINav Li et al. (2024f) demonstrates a practical system
for training neural agents to automate UI tasks on mobile devices. It balances accuracy, generalizability,
and computational efficiency through macro actions and an error-driven demonstration collection process.
UINav uses a compact encoder-decoder architecture and SmallBERT Turc et al. (2019) for text and screen
element encoding, making it suitable for on-device inference. A key innovation is its ability to generalize
across diverse tasks and apps with minimal demonstrations, addressing key challenges in UI automation with
a versatile framework.

UI-R1 Lu et al. (2025b) introduces a RL–based training paradigm aimed at enhancing GUI action prediction
for multimodal large language models (MLLMs). The resulting model, UI-R1-3B, fine-tunes Qwen2.5-VL-3B
using a novel rule-based reward function that jointly evaluates action type correctness and click coordinate
accuracy, while also enabling o1-style Jaech et al. (2024) chain-of-thought (CoT) reasoning through structured
<think> tags. UI-R1 relies on only 136 high-quality samples selected via a three-stage filtering strategy.
Despite this limited supervision, UI-R1-3B achieves significant improvements on both in-domain and out-of-
domain benchmarks. By leveraging Group Relative Policy Optimization (GRPO) Shao et al. (2024), the
framework aligns policy optimization with the goals of GUI grounding and task execution. UI-R1 establishes
a scalable and data-efficient approach for training GUI agents via RL and paves the way for lightweight yet
effective agent design. Its methodology has also been successfully extended to cross-platform agents Xia &
Luo (2025); Liu et al. (2025f), demonstrating strong generalization capabilities.

In addition to action models, ViMo Luo et al. (2025a) introduces a novel generative visual world model for
GUI agents, aimed at improving App agent decision-making by predicting the next GUI state as an image
rather than a textual description. A key innovation of ViMo is the Symbolic Text Representation (STR),
which replaces GUI text regions with structured placeholders to facilitate accurate and legible text synthesis.
This decoupled design allows the system to handle GUI graphics generation using a fine-tuned diffusion model,
and text generation through an LLM, thereby achieving high visual fidelity and semantic precision. ViMo
significantly boosts both GUI prediction quality and downstream agent performance, with a reported 29.14%
relative improvement in GUI generation metrics and enhanced planning accuracy for long-horizon tasks. As
a forward simulator, ViMo represents a crucial advancement toward reliable world models for mobile GUI
agents, supporting more effective decision evaluation and trajectory planning in visual environments.

These models collectively advance the field of mobile GUI agents by addressing platform-specific challenges
through innovative training methods, efficient model architectures, and specialized datasets.

7.5 LAMs for Computer GUI Agents

For desktop and laptop environments, GUI agents must handle complex applications, multitasking, and
varied interaction modalities. Specialized LAMs for computer GUI agents enhance capabilities in these
settings, enabling more sophisticated task execution. We overview of LAMs for computer GUI agents across
in Table 47.

Integrating planning, acting, and reflecting phases, ScreenAgent Niu et al. (2024) is designed for autonomous
interaction with computer screens. Based on CogAgent Hong et al. (2023), it is fine-tuned using the
ScreenAgent Dataset, providing comprehensive GUI interaction data across diverse tasks. With inputs as
screenshots and outputs formatted in JSON for mouse and keyboard actions, ScreenAgent achieves precise
UI element localization and handles continuous multi-step tasks. Its capability to process real-time GUI
interactions using a foundation model sets a new benchmark for LLM-powered GUI agents, making it an
ideal reference for future research in building more generalized intelligent agents.

Bridging high-level planning with real-world manipulation, Octopus Yang et al. (2025b) represents a
pioneering step in embodied vision-language programming. Leveraging the MPT-7B MosaicML (2023)
and CLIP ViT-L/14 Radford et al. (2021), Octopus integrates egocentric and bird’s-eye views for visual
comprehension, generating executable action code. Trained using the OctoVerse suite, its datasets encompass

62

Published in Transactions on Machine Learning Research (06/2025)

richly annotated environments like OmniGibson, Minecraft, and GTA-V, covering routine and reasoning-
intensive tasks. Notably, Octopus innovates through Reinforcement Learning with Environmental Feedback,
ensuring adaptive planning and execution. Its vision-dependent functionality offers seamless task generalization
in unseen scenarios, underscoring its capability as a unified model for embodied agents operating in complex
GUI environments.

Wang et al., Wang et al. (2024h) present a comprehensive overview of LAMs, a new paradigm in AI
designed to perform tangible actions in GUI environments, using UFO Zhang et al. (2024a) at Windows OS
as a case study platform. Built on the Mistral-7B Jiang et al. (2023) foundation, LAMs advance beyond
traditional LLMs by integrating task planning with actionable outputs. Leveraging structured inputs from
tools like the UI Automation (UIA) API, LAMs generate executable steps for dynamic planning and adaptive
responses. A multi-phase training strategy—encompassing task-plan pretraining, imitation learning, self-
boosting exploration, and reinforcement learning—ensures robustness and accuracy. Evaluations on real-world
GUI tasks highlight LAMs’ superior task success rates compared to standard models. This innovation
establishes a foundation for intelligent GUI agents capable of transforming user requests into real-world
actions, driving significant progress in productivity and automation.

These developments in computer GUI agents highlight the integration of advanced visual comprehension,
planning, and action execution, paving the way for more sophisticated and capable desktop agents.

7.6 Cross-Platform Large Action Models

To achieve versatility across various platforms, cross-platform LAMs have been developed, enabling GUI
agents to operate seamlessly in multiple environments such as mobile devices, desktops, and web interfaces.
We provide an analysis of LAMs tailored for cross-platform GUI agents in Tables 48, 49 and 50.

CogAgent Hong et al. (2023) stands out as an advanced visual language model specializing in GUI
understanding and navigation across PC, web, and Android platforms. Built on CogVLM Wang et al.
(2024m), it incorporates a novel high-resolution cross-module to process GUI screenshots efficiently, enabling
detailed comprehension of GUI elements and their spatial relationships. Excelling in tasks requiring OCR and
GUI grounding, CogAgent achieves state-of-the-art performance on benchmarks like Mind2Web Deng et al.
(2023) and AITW Rawles et al. (2023). Its ability to generate accurate action plans and interface with GUIs
positions it as a pivotal step in developing intelligent agents optimized for GUI environments. CogAgent has
further evolved into its beta version, GLM-PC CogAgent Team (2024), offering enhanced control capabilities.

Focusing on universal GUI understanding, Ferret-UI 2 Li et al. (2024j) from Apple is a state-of-the-art
multimodal large language model designed to master UI comprehension across diverse platforms, including
iPhones, Android devices, iPads, web, and AppleTV. By employing dynamic high-resolution image encoding,
adaptive gridding, and high-quality multimodal training data generated through GPT-4, it outperforms its
predecessor and other competing models in UI referring, grounding, and interaction tasks. Ferret-UI 2’s
advanced datasets and innovative training techniques ensure high accuracy in spatial understanding and
user-centered interactions, setting a new benchmark for cross-platform UI adaptability and performance.

Advancing GUI automation, ShowUI Lin et al. (2024c) introduces a pioneering Vision-Language-Action model
that integrates high-resolution visual inputs with textual understanding to perform grounding, navigation, and
task planning. Optimized for web, desktop, and mobile environments, ShowUI leverages the Phi-3.5-vision-
instruct backbone and comprehensive datasets to achieve robust results across benchmarks like ScreenSpot
Cheng et al. (2024a) and GUI-Odyssey Lu et al. (2024b). Its ability to process multi-frame and dynamic visual
inputs alongside JSON-structured output actions highlights its versatility. With innovations in interleaved
image-text processing and function-calling capabilities, ShowUI sets a new standard for LLM-powered GUI
agents.

Addressing the need for a unified action space, OS-ATLAS Wu et al. (2024f) introduces a foundational action
model specifically designed for GUI agents across platforms like Windows, macOS, Linux, Android, and the
web. By leveraging a massive multi-platform dataset and implementing a unified action space, OS-ATLAS
achieves state-of-the-art performance in GUI grounding and out-of-distribution generalization tasks. Its
scalable configurations adapt to varying computational needs while maintaining versatility in handling natural

63

Published in Transactions on Machine Learning Research (06/2025)

language instructions and GUI elements. As a powerful open-source alternative to commercial solutions,
OS-ATLAS marks a significant step toward democratizing access to advanced GUI agents.

Magma Yang et al. (2025a) is a foundation model for multimodal AI agents that integrates LLMs with vision
and action understanding to complete UI navigation and robotic manipulation tasks. Unlike previous models
optimized for either UI automation or robotics, Magma jointly trains on a heterogeneous dataset (about 39M
samples) spanning UI screenshots, web navigation, robot trajectories, and instructional videos. It employs
SoM and Trace-of-Mark techniques, which enhance action grounding and prediction by labeling actionable
elements in GUI environments and tracking motion traces in robotic tasks.

UI-TARS Qin et al. (2025) is an advanced, vision-based Large Action Model (LAM) optimized for multi-
platform GUI agents. Unlike traditional approaches, it relies solely on GUI screenshots for perception,
eliminating the need for structured representations. By incorporating a unified action space, UI-TARS enables
seamless execution across Web, Windows, macOS, and Android environments. Built on Qwen-2-VL, it is
trained on 6 million GUI tutorials, large-scale screenshot datasets, and multiple open-source benchmarks.
A key innovation of UI-TARS is its System-2 reasoning capability, which allows it to generate explicit
reasoning steps before executing actions, enhancing decision-making in dynamic environments. Additionally,
it employs an iterative self-improvement framework, refining its performance through reflection-based learning.
Experimental results demonstrate that UI-TARS outperforms existing models, including GPT-4o and Claude,
in task execution benchmarks.

These cross-platform LAMs demonstrate the potential of unified models that can adapt to diverse environments,
enhancing the scalability and applicability of GUI agents in various contexts.

7.7 Emerging Trends Amid Rapid Improvements in LAM Capabilities

Recent breakthroughs in LAM have driven considerable innovation in GUI agent research. While these
large models excel at general reasoning, open-domain conversation, and multimodal interpretation, certain
longstanding challenges in GUI-based automation remain only partially addressed. In this subsection, we
outline three interrelated trends that are poised to remain central—even as baseline LAM capabilities continue
to rise—and discuss how these trends may benefit from, or be constrained by, ongoing advancements in
foundation models.

Live Environments and Data Coverage. A recurring challenge in GUI automation is acquiring rich,
diverse data that truly reflect the complexities of real user interfaces. Many LAM systems are trained on static
snapshots or curated datasets, which may not capture the dynamic, event-driven nature of GUI environments.
As these agents become more capable, the need for live environment interaction grows in importance.
Operating in a live environment allows agents to iteratively collect data and refine their understanding of
various apps, platforms, or usage contexts—thereby improving coverage of niche scenarios and rare interface
states. Nevertheless, live data collection can be both time-consuming and costly, raising questions about
how to balance on-device exploration with robust offline datasets. Expanding open-source benchmarks and
real-time simulators can help address coverage gaps without incurring prohibitive data-collection expenses,
ensuring that agent training encompasses both realistic and representative GUI states.

Reinforcement Learning for GUI Agents. A second trend persists in using Reinforcement Learning
(RL) to optimize agent behavior over extended interactions. With the advent of more powerful LAMs, RL can
integrate dynamic feedback signals—such as rewards or constraints derived from user feedback, success rates,
or time-to-completion. In online RL, agents interact with live systems to continually refine their policies,
though the exploration cost can be substantial if an agent must repeatedly trial-and-error in production
environments. Offline RL is a compelling alternative, enabling large-scale pretraining on recorded trajectories
or user logs to reduce reliance on potentially expensive or risky online exploration. These methods can
leverage improved baseline model capabilities to interpret and navigate complex UIs more effectively, while
learning from failures or suboptimal states without exposing end users to frequent disruptions or errors.

64

Published in Transactions on Machine Learning Research (06/2025)

Task 1: Change font size to 20 in the PPT page 2

Platform
Evaluation Metrics

Task List

GUI Agent

Screenshots

Actions

UI structure

Env State

Trajectory

Evaluation
Measurements

Metric Score

Task Success Rate 0.65

Step Success Rate 0.82

… …

…
Interaction

Figure 27: An illustrative example of evaluation of task completion by a GUI agent.

Inference-Time Computing and Reasoning Models. As LAM research accelerates, there is a growing
emphasis on inference-time computing—where models dynamically plan, reason, and decompose tasks without
extensive architectural modifications. Novel approaches (e.g., “R1-like” extended context windows or chain-
of-thought prompting) can deliver longer-horizon reasoning, thereby improving the accuracy and stability
of GUI interactions. This can be especially beneficial for long or multi-step tasks that require the agent to
keep track of evolving interface states and dependencies. In tandem, we see increased interest in rule-based
rewards or cost functions that guide inference-time decisions—for example, penalizing unnecessary clicks
or prioritizing user-facing safety checks. By integrating explicit heuristics with advanced model reasoning,
GUI agents can achieve more stable and interpretable behavior, despite the inherent open-endedness of
LLM-driven interactions.

8 Evaluation for LLM-Powered GUI Agents

In the domain of GUI agents, evaluation is crucial for enhancing both functionality and user experience Li
et al. (2024d); Huang & Zhang (2024) and should be conducted across multiple aspects. By systematically
assessing these agents’ effectiveness across various tasks, evaluation not only gauges their performance in
different dimensions but also provides a framework for their continuous improvement Liu et al. (2023b).
Furthermore, it encourages innovation by identifying areas for potential development, ensuring that GUI
agents evolve in tandem with advancements in LLMs and align with user expectations.

As illustrated in Figure 27, when a GUI agent completes a task, it produces an action sequence, captures
screenshots, extracts UI structures, and logs the resulting environment states. These outputs serve as
the foundation for evaluating the agent’s performance through various metrics and measurements across
diverse platforms. In the subsequent sections, we delve into these evaluation methodologies, discussing the
metrics and measurements used to assess GUI agents comprehensively. We also provide an overview of
existing benchmarks tailored for GUI agents across different platforms, highlighting their key features and
the challenges they address.

8.1 Evaluation Metrics

Evaluating GUI agents requires robust and multidimensional metrics to assess their performance across
various dimensions, including accuracy, efficiency, and compliance (e.g., safety). In a typical benchmarking
setup, the GUI agent is provided with a natural language instruction as input and is expected to autonomously
execute actions until the task is completed. During this process, various assets can be collected, such as the
sequence of actions taken by the agent, step-wise observations (e.g., DOM or HTML structures), screenshots,

65

Published in Transactions on Machine Learning Research (06/2025)

runtime logs, final states, and execution time. These assets enable evaluators to determine whether the task
has been completed successfully and to analyze the agent’s performance. In this section, we summarize the
key evaluation metrics commonly used for benchmarking GUI agents. Note that different research works may
use different names for these metrics, but with similar calculations. We align their names in this section.

1. Step Success Rate: Completing a task may require multiple steps. This metric measures the ratio
of the number of steps that are successful over the total steps within a task. A high step success
rate indicates precise and accurate execution of granular steps, which is essential for the reliable
performance of tasks involving multiple steps Deng et al. (2023); Pan et al. (2024b); Rawles et al.
(2023).

2. Turn Success Rate: A turn indicates a single interaction between the user and the agent. A turn
may consist of multiple steps, and completing a task may consist of multiple turns. This metric
measures the ratio of turns that successfully address the request in that interaction over all turns.
It focuses on the agent’s ability to understand and fulfill user expectations during interactive or
dialog-based tasks, ensuring the agent’s responsiveness and reliability across iterative interactions,
particularly in tasks requiring dynamic user-agent communication Lu et al. (2024c); Deng et al.
(2024b).

3. Task Success Rate: Task success rate measures the successful task completion over all tasks set in
the benchmark. It evaluates whether the final task completion state is achieved while ignoring the
intermediate steps. This metric provides an overall measure of end-to-end task completion, reflecting
the agent’s ability to handle complex workflows holistically Yao et al. (2023); Zhang et al. (2024c);
Xie et al. (2024b).

4. Efficiency Score: Efficiency score evaluates how effectively the agent completes tasks while
considering resource consumption, execution time, or total steps the agent might take. This metric
can be broken down into the following sub-metrics:

• Time Cost: Measures the time taken to complete tasks.
• Resource Cost: Measures the memory/CPU/GPU usage to complete tasks.
• LLM Cost: Evaluates the computational or monetary cost of LLM calls used during task

execution.
• Step Cost: Measures the total steps required to complete tasks.

Depending on the specific metrics used, the efficiency score can be interpreted differently in different
papers Chen et al. (2024d); Deng et al. (2024a).

5. Completion under Policy: This metric measures the rate at which tasks are completed successfully
while adhering to policy constraints. It ensures that the agent complies with user-defined or
organizational rules, such as security, ethical, safety, privacy, or business guidelines, during task
execution. This metric is particularly relevant for applications where compliance is as critical as task
success Levy et al. (2024).

6. Risk Ratio: Similar to the previous metric, the risk ratio evaluates the potential risk associated with
the agent’s actions during task execution. It identifies vulnerabilities, errors, or security concerns
that could arise during task handling. A lower risk ratio indicates higher trustworthiness and
reliability, while a higher ratio may suggest areas needing improvement to minimize risks and enhance
robustness Levy et al. (2024).

The implementation of metrics in each GUI agent benchmark might vary depending on the platform and the
task formulation. In all tables in this section, we mapped the original metrics used in the benchmarks, which
may possess different names, to the categories that we defined above.

66

Published in Transactions on Machine Learning Research (06/2025)

8.2 Evaluation Measurements

To effectively evaluate GUI agents, various measurement techniques are employed to assess their accuracy
and alignment with expected outputs. These measurements validate different aspects of agent performance,
ranging from textual and visual correctness to interaction accuracy and system state awareness, using code,
models, and even agents as evaluators Zhuge et al. (2024). Below, we summarize key measurement approaches
used in benchmarking GUI agents. Based on these measurements, the evaluation metrics defined beforehand
can be calculated accordingly.

1. Text Match: This measurement evaluates whether the text-based outputs of the agent match the
expected results. For example, whether a target product name is reached when the agent is browsing
an e-commerce website. It can involve different levels of strictness, including:

• Exact Match: Ensures the output perfectly matches the expected result.
• Partial or Fuzzy Match: Allows for approximate matches, which are useful for handling

minor variations such as typos or synonyms.
• Semantic Similarity: Measures deeper alignment in semantic meaning using techniques like

cosine similarity of text embeddings or other semantic similarity measures.
Text Match is widely applied in tasks involving textual selections, data entry, or natural language
responses.

2. Image Match: Image Match focuses on validating whether the agent acts or stops on the expected
page (e.g., webpage, app UI), or selects the right image. It involves comparing screenshots, selected
graphical elements, or visual outcomes against ground truth images using image similarity metrics
or visual question answering (VQA) methods. This measurement is particularly crucial for tasks
requiring precise visual identification.

3. Element Match: This measurement checks whether specific widget elements (e.g., those in HTML,
DOM, or application UI hierarchies) interacted with by the agent align with the expected elements.
These may include:

• HTML Tags and Attributes: Ensuring the agent identifies and interacts with the correct
structural elements.

• URLs and Links: Validating navigation-related elements.
• DOM Hierarchies: Confirming alignment with expected DOM structures in dynamic or

complex web interfaces.
• UI Controls and Widgets: Verifying interactions with platform-specific controls such as

buttons, sliders, checkboxes, dropdown menus, or other GUI components in desktop and mobile
applications.

• Accessibility Identifiers: Utilizing accessibility identifiers or resource IDs in mobile platforms
like Android and iOS to ensure correct element selection.

• View Hierarchies: Assessing alignment with expected view hierarchies in mobile applications,
similar to DOM hierarchies in web applications.

• System Controls and APIs: Ensuring correct interaction with operating system controls or
APIs, such as file dialogs, system menus, or notifications in desktop environments.

Element Match ensures robust interaction with user interface components across different platforms
during task execution.

4. Action Match: This measurement assesses the accuracy of the agent’s actions, such as clicks, scrolls,
or keystrokes, by comparing them against an expected sequence. It involves:

• Action Accuracy: Validates that each action (including action type and its arguments) is
performed correctly (e.g., clicking the correct button, typing the right input).

• Action Sequence Alignment: Ensures actions occur in the correct order to meet task
requirements.

67

Published in Transactions on Machine Learning Research (06/2025)

• Location Prediction: Checks that spatial actions, such as mouse clicks or touch gestures,
target the intended regions of the interface.

Action Match is vital for evaluating step-wise correctness in task completion.

5. State Information: State Information captures runtime data related to the system’s environment
during task execution. It provides insights into contextual factors that may influence the agent’s
behavior, such as:

• Application State: Information about the state of the application being interacted with (e.g.,
open files, active windows, saved files in given locations).

• System Logs: Detailed logs recording the agent’s decisions and interactions.
• Environment Variables: Contextual data about the operating system or runtime environment.

This measurement is valuable for debugging, performance analysis, and ensuring reliability under
diverse conditions.

Each of these measurement techniques contributes to a comprehensive evaluation framework, ensuring that
the agent not only completes tasks but does so with precision, efficiency, and adaptability. Together, they
help build trust in the agent’s ability to perform reliably in real-world scenarios while maintaining compliance
with policy constraints.

8.3 Evaluation Platforms

Evaluating GUI agents requires diverse platforms to capture the varying environments in which these agents
operate. The platforms span web, mobile, and desktop environments, each with unique characteristics,
challenges, and tools for evaluation. This section summarizes the key aspects of these platforms and their
role in benchmarking GUI agents.

1. Web: Web platforms are among the most common environments for GUI agents, reflecting their
prevalence in everyday tasks such as browsing, form filling, and data scraping. Key characteristics of
web platforms for evaluation include:

• Dynamic Content: Web applications often involve dynamic elements generated through
JavaScript, AJAX, or similar technologies, requiring agents to handle asynchronous updates
effectively.

• Diverse Frameworks: The variety of web technologies (e.g., HTML, CSS, JavaScript frame-
works) demands robust agents capable of interacting with a range of interface designs and
structures.

• Tools and Libraries: Evaluation often uses tools such as Selenium, Puppeteer, or Playwright
to emulate browser interactions, collect runtime information, and compare outcomes against
expected results.

• Accessibility Compliance: Metrics like WCAG (Web Content Accessibility Guidelines)
adherence can also be evaluated to ensure inclusivity.

2. Mobile: Mobile platforms, particularly Android and iOS, pose unique challenges for GUI agents due
to their constrained interfaces and touch-based interactions. Evaluating agents on mobile platforms
involves:

• Screen Size Constraints: Agents must adapt to limited screen real estate, ensuring interactions
remain accurate and efficient.

• Touch Gestures: Evaluating the agent’s ability to simulate gestures such as taps, swipes, and
pinches is essential.

• Platform Diversity: Android devices vary significantly in terms of screen sizes, resolutions,
and system versions, while iOS offers more standardized conditions.

68

Published in Transactions on Machine Learning Research (06/2025)

Table 14: Taxonomy of LLM-powered GUI agent benchmarks by target platform.

Platform References
Web Liu et al. (2024f); Shahbandeh et al. (2024); Lai et al. (2024); Xu et al. (2021);

Shi et al. (2017); Liu et al. (2018); Deng et al. (2023); Chen et al. (2024e); Lu
et al. (2024c); Zhou et al.; Koh et al. (2024a); Deng et al. (2024c); Zhang et al.
(2024s); Pan et al. (2024b); Levy et al. (2024); Furuta et al. (2024); Xu et al.
(2024e); Xie et al. (2024b); Drouin et al. (2024); Jang et al. (2024); Ma et al.
(2024c); Wornow et al.; Zheng et al. (2024b); Yao et al. (2023); Chezelles et al.
(2024); Wu et al. (2025a); Thomas et al. (2025); Tur et al. (2025); Kara et al.;
Xue et al. (2025); Zharmagambetov et al. (2025); Lù et al. (2025); Ye et al.
(2025); Garg et al. (2025); Song et al. (2025); Evtimov et al. (2025)

Mobile Rawles et al. (2023); Xu et al. (2024i); Wen et al. (2024a); Li et al. (2020a);
Toyama et al. (2021a); Wang et al. (2024e); Zhang et al. (2024c); Lee et al.
(2024b); Rawles et al. (2024); Xing et al. (2024); Deng et al. (2024a); Lee et al.
(2024a); Chen et al. (2024d); Zhang et al. (2024h); Wang et al. (2024i); Zhao
et al. (2024b); Chai et al. (2025); Ran et al. (2025); Chen et al. (2025c); Sun
et al. (2025a); Wang et al. (2025d)

Computer Gao et al. (2024b); Bonatti et al. (2024); Xie et al. (2024b); Cao et al. (2024);
Wang et al. (2024p); Zheng et al. (2024c); Zhao et al. (2025c); Nayak et al.
(2025); Wang et al. (2025a)

Cross-Platform Wu et al. (2024b); Liu et al. (2024i); Kapoor et al. (2024); Lin et al. (2024b);
Xu et al. (2024g); Cheng et al. (2024a); Fan et al. (2024)

• Evaluation Tools: Tools like Appium and Espresso (for Android) or XCTest (for iOS) and
emulators are commonly used for testing and evaluation.

3. Desktop: Desktop platforms provide a richer and more complex environment for GUI agents,
spanning multiple operating systems such as Windows, macOS, and Linux. Evaluations on desktop
platforms often emphasize:

• Application Diversity: Agents must handle a wide range of desktop applications, including
productivity tools, web browsers, and custom enterprise software.

• Interaction Complexity: Desktop interfaces often include advanced features such as keyboard
shortcuts, drag-and-drop, and context menus, which agents must handle correctly.

• Cross-Platform Compatibility: Evaluations may involve ensuring agents can operate across
multiple operating systems and versions.

• Automation Frameworks: Tools such as Windows UI Automation, macOS Accessibility APIs,
and Linux’s AT-SPI are used to automate and monitor agent interactions.

• Resource Usage: Memory and CPU usage are significant metrics, particularly for long-running
tasks or resource-intensive applications.

Each platform presents distinct challenges and opportunities for evaluating GUI agents. Web platforms
emphasize scalability and dynamic interactions, mobile platforms focus on touch interfaces and performance,
and desktop platforms require handling complex workflows and cross-application tasks. Some benchmarks
are cross-platform, requiring agents to be robust, adaptable, and capable of generalizing across different
environments. All the metrics, measurements, and platforms discussed are essential for a comprehensive
evaluation of GUI agents across multiple aspects. Most existing benchmarks rely on them for evaluation.

The evolution of GUI agent benchmarks reflects a broader shift towards more realistic, interactive, and
comprehensive evaluation environments:

69

Published in Transactions on Machine Learning Research (06/2025)

1. Towards More Interactive and Realistic Environments: Recent advancements in GUI
agent benchmarking emphasize the transition from synthetic scenarios to more interactive and
realistic environments. This shift is evident in the use of simulators, Docker containers, and real-
world applications to create "live" environments that better mimic genuine user interactions. Such
environments not only provide a more accurate assessment of agent capabilities but also pose new
challenges in terms of performance and robustness.

2. Cross-Platform Benchmarks: The emergence of cross-platform benchmarks that encompass
mobile, web, and desktop environments represents a significant step towards evaluating the generaliz-
ability of GUI agents. However, these benchmarks introduce fundamental challenges unique to each
platform. A unified interface for accessing platform-specific information, such as HTML and DOM
structures, could substantially streamline the benchmarking process and reduce implementation
efforts. Future work should focus on standardizing these interfaces to facilitate seamless agent
evaluation across diverse environments.

3. Increased Human Interaction and Realism: There is a growing trend towards incorporating
more human-like interactions in benchmarks, as seen in multi-turn and conversational scenarios. These
setups mirror real-world use cases more closely, thereby providing a rigorous test of an agent’s ability
to handle dynamic, iterative interactions. As GUI agents become more sophisticated, benchmarks
must continue to evolve to include these nuanced interaction patterns, ensuring agents can operate
effectively in complex, human-centric environments.

4. Scalability and Automation Challenges: Scalability remains a significant concern in bench-
marking GUI agents. The creation of realistic tasks and the development of evaluation methods for
individual cases often require substantial human effort. Automation of these processes could alleviate
some of the scalability issues, enabling more extensive and efficient benchmarking. Future research
should explore automated task generation and evaluation techniques to enhance scalability.

5. Emphasis on Safety, Privacy, and Compliance: There is a notable trend towards evaluating GUI
agents on safety, privacy, and compliance metrics. These considerations are increasingly important as
agents are integrated into sensitive and regulated domains. Encouraging this trend will help ensure
that agents not only perform tasks effectively but also adhere to necessary legal and ethical standards.
Future benchmarks should continue to expand on these dimensions, incorporating evaluations that
reflect real-world compliance and data security requirements.

In what follows, we first present a taxonomy of LLM-powered GUI agent benchmarks, categorized by target
platform, as shown in Table 14, and detail these benchmarks for GUI agents selectively.

8.4 Web Agent Benchmarks

Evaluating GUI agents in web environments necessitates benchmarks that capture the complexities and
nuances of web-based tasks. Over the years, several benchmarks have been developed, each contributing
unique perspectives and challenges to advance the field. We first provide an overview of these benchmarks in
Tables 51, 52, 53, 54, 55 and 56.

One of the pioneering efforts in this domain is MiniWoB++ Shi et al. (2017); Liu et al. (2018), focusing on
assessing reinforcement learning agents on web-based GUI tasks. It introduces realistic interaction scenarios,
including clicking, typing, and navigating web elements, and leverages workflow-guided exploration (WGE)
to improve efficiency in environments with sparse rewards. Agents are evaluated based on success rates,
determined by their ability to achieve final goal states, highlighting adaptability and robustness across various
complexities.

Building upon the need for more realistic environments, Mind2WebDeng et al. (2023) represents a significant
advancement by enabling agents to handle real-world HTML environments rather than simplified simulations.
Established after the advent of LLMsYan et al. (2023b), it offers a large dataset of over 2,000 tasks spanning
multiple domains, presenting challenges from basic actions to complex multi-page workflows. The benchmark

70

Published in Transactions on Machine Learning Research (06/2025)

emphasizes end-to-end task performance through metrics like Element Accuracy and Task Success Rate,
encouraging rigorous evaluation of agents.

Extending Mind2Web’s capabilities, MT-Mind2Web Deng et al. (2024c) introduces conversational web
navigation, requiring sophisticated interactions that span multiple turns with both users and the environment.
This advanced benchmark includes 720 web navigation conversation sessions with 3,525 instruction and
action sequence pairs, averaging five user-agent interactions per session, thereby testing agents’ conversational
abilities and adaptability.

To further enhance realism, WebArena Zhou et al. sets a new standard with its realistic web environment
that mimics genuine human interactions. Featuring 812 tasks across multiple domains, it requires agents
to perform complex, long-horizon interactions over multi-tab web interfaces. By focusing on functional
correctness rather than surface-level matches, WebArena promotes thorough assessment of agents’ practical
abilities.

Recognizing the importance of multimodal capabilities, VisualWebArena, an extension of WebArena Zhou
et al., was designed to assess agents on realistic visually grounded web tasks. Comprising 910 diverse tasks
in domains like Classifieds, Shopping, and Reddit, it adds new visual functions for measuring open-ended
tasks such as visual question answering and fuzzy image matching, thereby challenging agents in multimodal
understanding.

Similarly, VideoWebArena Jang et al. (2024) focuses on evaluating agents’ abilities to comprehend and
interact with video content on the web. It presents 74 videos across 2,021 tasks, challenging agents in
video-based information retrieval, contextual reasoning, and skill application. This benchmark highlights
critical deficiencies in current models, emphasizing the need for advancements in agentic reasoning and video
comprehension.

Complementing this, VisualWebBench Liu et al. (2024f) offers a multimodal benchmark that assesses
understanding, OCR, grounding, and reasoning across website, element, and action levels. Spanning 1.5K
samples from real-world websites, it identifies challenges such as poor grounding and subpar OCR with
low-resolution inputs, providing a crucial evaluation perspective distinct from general multimodal benchmarks.

Beyond the challenges of multimodality, understanding agents’ resilience to environmental distractions is
crucial. EnvDistraction Ma et al. (2024c) introduces a benchmark that evaluates the faithfulness of
multimodal GUI agents under non-malicious distractions, such as pop-ups and recommendations. The
study demonstrates that even advanced agents are prone to such distractions, revealing vulnerabilities that
necessitate robust multimodal perception for reliable automation.

Focusing on safety and trustworthiness, ST-WebAgentBench Levy et al. (2024) takes a unique approach
by emphasizing the management of unsafe behaviors in enterprise settings. It features a human-in-the-loop
system and a policy-driven hierarchy, introducing the Completion under Policy (CuP) metric to evaluate
agents’ compliance with organizational, user, and task-specific policies. This benchmark operates in web
environments using BrowserGym Chezelles et al. (2024) and includes 235 tasks with policies addressing
various safety dimensions, providing a comprehensive framework for evaluating agents in enterprise scenarios.

Addressing the automation of enterprise software tasks, WorkArena Drouin et al. (2024) offers a benchmark
emphasizing tasks commonly performed within the ServiceNow platform. With 19,912 unique instances
across 33 tasks, it highlights the significant performance gap between current state-of-the-art agents and
human capabilities in enterprise UI automation, setting a trajectory for future innovation.

BrowserGym Chezelles et al. (2024) builds ecosystem designed for web agent research. It unifies various
benchmarks like MiniWoB(++) Liu et al. (2018), WebArena Zhou et al., and WorkArena Drouin et al. (2024)
under a single framework, addressing the issue of fragmentation in web agent evaluation. By leveraging
standardized observation and action spaces, it enables consistent and reproducible experiments. BrowserGym’s
extensible architecture make it a vital tool for developing and testing GUI-driven agents powered by LLMs,
significantly accelerating innovation in web automation research.

In the realm of interacting with live websites, WebOlympus Zheng et al. (2024b) introduces an open
platform that enables web agents to interact with live websites through a Chrome extension-based interface.

71

Published in Transactions on Machine Learning Research (06/2025)

Supporting diverse tasks and integrating a safety monitor to prevent harmful actions, it promotes safer
automation of web-based tasks and provides a critical tool for evaluating agent performance in realistic
scenarios.

Collectively, these benchmarks have significantly contributed to advancing the evaluation of web-based GUI
agents, each addressing different aspects such as realism, multimodality, safety, and enterprise applicability.
Their developments reflect the evolving challenges and requirements in creating sophisticated agents capable
of complex web interactions.

8.5 Mobile Agent Benchmarks

Evaluating GUI agents on mobile platforms presents unique challenges due to the diversity of interactions and
the complexity of mobile applications. Several benchmarks have been developed to address these challenges,
each contributing to the advancement of mobile agent evaluation. We first provide an analysis for these
mobile benchmarks in Tables 57, 58, 59 and 60.

An early effort in this domain is PIXELHELP Li et al. (2020a), which focuses on grounding natural
language instructions to actions on mobile user interfaces. Addressing the significant challenge of interpreting
and executing complex, multi-step tasks, PIXELHELP provides a comprehensive dataset pairing English
instructions with human-performed actions on a mobile UI emulator. It comprises 187 multi-step instructions
across four task categories, offering a robust resource for evaluating models on task accuracy through metrics
like Complete Match and Partial Match.

Building upon the need for systematic evaluation, ANDROIDLAB Xu et al. (2024i) establishes a compre-
hensive framework for Android-based autonomous agents. It introduces both an action space and operational
modes that support consistent evaluations for text-only and multimodal models. By providing XML and
SoM operation modes, ANDROIDLAB allows LLMs and LMMs to simulate real-world interactions in equiv-
alent environments. The benchmark includes 138 tasks across nine apps, encompassing typical Android
functionalities, and evaluates agents using metrics such as Success Rate and Reversed Redundancy.

To further challenge agents in handling both API and UI operations, Mobile-Bench Deng et al. (2024a)
offers an innovative approach by combining these elements within a realistic Android environment. Its
multi-app setup and three distinct task categories test agents’ capabilities in handling simple and complex
mobile interactions, pushing beyond traditional single-app scenarios. The evaluation leverages CheckPoint
metrics, assessing agents at each key action step, providing insights into planning and decision-making skills.

Emphasizing safety in mobile device control, MobileSafetyBench Lee et al. (2024a) provides a structured
evaluation framework that prioritizes both helpfulness and safety. It rigorously tests agents across common
mobile tasks within an Android emulator, focusing on layered risk assessment, including legal compliance and
privacy. A distinctive feature is its indirect prompt injection test to probe agent robustness. The evaluation
ensures agents are scored on practical success while managing risks, advancing research in LLM reliability
and secure autonomous device control.

Expanding the scope to multiple languages and application scenarios, SPA-BENCH Chen et al. (2024d)
introduces an extensive benchmark for smartphone agents. It assesses both single-app and cross-app tasks in
a plug-and-play framework that supports seamless agent integration. With a diverse task collection across
Android apps, including system and third-party apps, SPA-BENCH offers a realistic testing environment
measuring agent capabilities in understanding UIs and handling app navigation through metrics like success
rate, efficiency, and resource usage.

Focusing on efficient and user-friendly evaluation, MobileAgentBench Wang et al. (2024i) presents a
benchmark tailored for agents on Android devices. It offers a fully autonomous testing process, leveraging
final UI state matching and real-time app event tracking. With 100 tasks across 10 open-source Android
applications categorized by difficulty, it accommodates multiple paths to success, enhancing reliability and
applicability. Comprehensive metrics, including task success rate, efficiency, latency, and token cost, provide
insights into agent performance.

72

Published in Transactions on Machine Learning Research (06/2025)

Complementing these efforts, LlamaTouch Zhang et al. (2024h) introduces a benchmark and testbed for
mobile UI task automation in real-world Android environments. Emphasizing essential state annotation, it
enables precise evaluation of tasks regardless of execution path variability or dynamic UI elements. With 496
tasks spanning 57 unique applications, LlamaTouch demonstrates scalability and fidelity through advanced
matching techniques, integrating pixel-level screenshots and textual screen hierarchies, reducing false negatives
and supporting diverse task complexities.

Zhao et al., introduce GTArena Zhao et al. (2024b), a formalized framework and benchmark designed to
advance autonomous GUI testing agents. GTArena provides a standardized evaluation environment tailored
for multimodal large language models. Central to its design is the novel Transition Tuple data structure,
which systematically captures and analyzes GUI defects. The benchmark assesses three core tasks—test
intention generation, task execution, and defect detection—using a diverse dataset comprising real-world,
artificially injected, and synthetic defects, establishing GTArena as a pioneering benchmark for GUI testing
agents.

Collectively, these benchmarks have significantly advanced the evaluation of mobile-based GUI agents,
addressing challenges in task complexity, safety, efficiency, and scalability. Their contributions are instrumental
in developing more capable and reliable agents for mobile platforms.

8.6 Computer Agent Benchmarks

Evaluating GUI agents on desktop computers involves diverse applications and complex workflows. Several
benchmarks have been developed to assess agents’ capabilities in these environments, each addressing specific
challenges and advancing the field. We overview benchmarks for computer GUI agents in Tables 61 and 62.

An early benchmark in this domain is Act2Cap Wu et al. (2024b), which focuses on capturing and narrating
GUI actions in video formats using a cursor as a pivotal visual guide. Act2Cap emphasizes the detailed
nuances of GUI interactions, particularly cursor-based actions like clicks and drags, essential for advancing
automation capabilities in GUI-intensive tasks. It includes a substantial dataset of 4,189 samples across
various Windows GUI environments, employing metrics based on element-wise Intersection over Union to
evaluate semantic accuracy and temporal and spatial precision.

To provide a scalable and genuine computer environment for multimodal agents, OSWorld Xie et al. (2024b)
introduces a pioneering framework that supports task setup, execution-based evaluation, and interactive
learning across multiple operating systems, including Ubuntu, Windows, and macOS. OSWorld serves as a
unified environment that mirrors the complexity and diversity of real-world computer use, accommodating
arbitrary applications and open-ended computer tasks. It includes a comprehensive suite of 369 tasks on
Ubuntu and 43 tasks on Windows, utilizing execution-based evaluation metrics like success rate for rigorous
assessment.

Building on OSWorld, WindowsArena Bonatti et al. (2024) adapts the framework to create over 150
diverse tasks specifically for the Windows operating system. Focusing on multi-modal, multi-step tasks,
it requires agents to demonstrate abilities in planning, screen understanding, and tool usage within a real
Windows environment. Addressing the challenge of slow evaluation times, WindowsArena enables parallelized
deployment in the Azure cloud, drastically reducing evaluation time and allowing for comprehensive testing
across various applications and web domains.

Focusing on office automation tasks, OFFICEBENCH Wang et al. (2024p) introduces a groundbreaking
framework for benchmarking LLM agents in realistic office workflows. Simulating intricate workflows across
multiple office applications like Word, Excel, and Email within a Linux Docker environment, it evaluates
agents’ proficiency in cross-application automation. The benchmark challenges agents with complex tasks
at varying difficulty levels, demanding adaptability to different complexities and use cases. Customized
metrics assess operation accuracy and decision-making, providing critical insights into agents’ capabilities in
managing multi-application office scenarios.

Addressing the automation of data science and engineering workflows, Spider2-V Cao et al. (2024) offers a
distinctive benchmark. It features 494 real-world tasks across 20 enterprise-level applications, spanning the
entire data science workflow from data warehousing to visualization. Assessing agents’ abilities to handle

73

Published in Transactions on Machine Learning Research (06/2025)

both code generation and complex GUI interactions within authentic enterprise software environments on
Ubuntu, it employs a multifaceted evaluation method that includes information-based validation, file-based
comparison, and execution-based verification.

In the realm of productivity software, AssistGUI Gao et al. (2024b) provides a pioneering framework for
evaluating agents’ capabilities. It introduces an Actor-Critic Embodied Agent framework capable of complex
hierarchical task planning, GUI parsing, and action generation. The dataset includes diverse tasks across
design, office work, and system settings, supported by project files for reproducibility. By emphasizing
outcome-driven evaluation with pixel-level precision and procedural adherence, AssistGUI highlights the
potential and limitations of current LLM-based agents in managing intricate desktop software workflows.

WorldGUI Zhao et al. (2025c) is a benchmark designed to evaluate GUI agents under dynamic conditions
on the Windows platform. Unlike previous static benchmarks, it introduces varied initial states to simulate
real-world interactions across both desktop and web applications. Rather than always starting from a fixed
default state, agents must adapt to changing UI layouts, user interactions, system settings, and pre-existing
conditions, requiring robust adaptability to perform effectively. The benchmark comprises 315 tasks spanning
10 popular software applications and incorporates instructional videos, project files, and multiple pre-action
scenarios, providing a comprehensive and realistic evaluation framework for assessing an agent’s ability to
handle complex task execution.

Computer Agent Arena Wang et al. (2025a) presents a new paradigm for benchmarking LLM-based
GUI agents through live, user-configured desktop environments. Unlike traditional static datasets, it provides
an interactive cloud-based infrastructure where agents are evaluated on tasks spanning web browsing,
programming, and productivity using real applications like Google Docs, VSCode, and Slack. Its innovation
lies in using head-to-head agent comparisons, human judgment, and Elo-based ranking to evaluate general-
purpose digital agents in realistic settings. The benchmark supports Windows and Ubuntu, with MacOS
support planned, and allows customized task scenarios with diverse software and website setups. By enabling
crowdsourced evaluations and planning open-source releases, it fosters community-driven improvements and
robust comparisons.

Collectively, these benchmarks provide comprehensive evaluation frameworks for GUI agents on desktop
platforms, addressing challenges in task complexity, cross-application automation, scalability, and fidelity.
Their contributions are instrumental in advancing the development of sophisticated agents capable of complex
interactions in desktop environments.

8.7 Cross-Platform Agent Benchmarks

To develop GUI agents capable of operating across multiple platforms, cross-platform benchmarks are
essential. These benchmarks challenge agents to adapt to different environments and interfaces, evaluating
their versatility and robustness. We provide an overview of benchmarks for cross-platform GUI agents in
Tables 63.

Addressing this need, VisualAgentBench (VAB) Liu et al. (2024i) represents a pioneering benchmark for
evaluating GUI and multimodal agents across a broad spectrum of realistic, interactive tasks. Encompassing
platforms such as Web (WebArena-Lite Zhou et al.), Android (VAB-Mobile Xu et al. (2024i)), and game
environments, VAB focuses on vision-based interaction and high-level decision-making tasks. The benchmark
employs a multi-level data collection strategy involving human demonstrations, program-based solvers, and
model bootstrapping. Evaluation metrics concentrate on success rates, ensuring comprehensive performance
assessments in tasks like navigation and content modification, thereby filling a significant gap in benchmarking
standards for GUI-based LLM agents.

Complementing this, CRAB Xu et al. (2024g) introduces an innovative benchmark by evaluating multimodal
language model agents in cross-environment interactions. It uniquely supports seamless multi-device task
execution, evaluating agents in scenarios where tasks span both Ubuntu Linux and Android environments.
By introducing a graph-based evaluation method that breaks down tasks into sub-goals and accommodates
multiple correct paths to completion, CRAB provides a nuanced assessment of planning, decision-making,

74

Published in Transactions on Machine Learning Research (06/2025)

and adaptability. Metrics such as Completion Ratio, Execution Efficiency, Cost Efficiency, and Success Rate
offer comprehensive insights into agent performance.

Focusing on GUI grounding for cross-platform visual agents, ScreenSpot Cheng et al. (2024a) offers a
comprehensive benchmark emphasizing tasks that rely on interpreting screenshots rather than structured
data. ScreenSpot includes over 600 screenshots and 1,200 diverse instructions spanning mobile (iOS, Android),
desktop (macOS, Windows), and web platforms. It evaluates click accuracy and localization precision by
measuring how effectively agents can identify and interact with GUI elements through visual cues alone. By
challenging models with a wide variety of UI elements, ScreenSpot addresses real-world complexities, making
it an essential resource for evaluating visual GUI agents across varied environments.

These cross-platform benchmarks collectively advance the development of GUI agents capable of operat-
ing seamlessly across multiple platforms. By providing comprehensive evaluation frameworks, they are
instrumental in assessing and enhancing the versatility and adaptability of agents in diverse environments.

9 Applications of LLM-Powered GUI Agents

As LLM-powered GUI agents continue to mature, a growing number of applications leverage this concept
to create more intelligent, user-friendly, and natural language-driven interfaces. These advancements are
reflected in research papers, open-source projects, and industry solutions. Typical applications encompass (i)
GUI testing, which has transitioned from traditional script-based approaches to more intuitive, natural
language-based interactions, and (ii) virtual assistants, which automate users’ daily tasks in a more adaptive
and responsive manner through natural language interfaces.

The application of LLM-powered GUI agents has ushered in new capabilities and interfaces for tasks such as
GUI testing and virtual assistance, introducing natural language interactions, enhanced automation, and
improved accessibility across platforms. These agents are transforming the way users interact with software
applications by simplifying complex tasks and making technology more accessible. However, despite these
advancements, LLM-powered GUI agents are still in their infancy, and several challenges need to be addressed
for them to reach maturity. Key insights from recent developments include:

1. Natural Language-Driven Interactions: LLM-powered GUI agents have enabled users to interact
with applications using natural language, significantly lowering the barrier to entry for non-expert
users. In GUI testing, tools like GPTDroid Liu et al. (2024k) and AUITestAgent Hu et al. (2024c)
allow testers to specify test cases and requirements in plain language, automating the execution and
verification processes. Similarly, virtual assistants like LLMPA Guan et al. (2024a) and ProAgent Ye
et al. (2023) interpret user commands to perform complex tasks, showcasing the potential of natural
language interfaces in simplifying user interactions across platforms.

2. Enhanced Automation of Complex Tasks: These agents have demonstrated the ability to
automate multi-step and intricate workflows without the need for manual scripting. Projects like
AutoTask Pan et al. (2023b) and GPTVoiceTasker Vu et al. (2024) autonomously explore and interact
with GUI environments, executing tasks based on high-level goals or voice commands. In GUI
testing, agents have improved coverage and efficiency by automating the generation of test inputs
and reproducing bugs from textual descriptions, as seen in CrashTranslator Huang et al. (2024c) and
AdbGPT Feng & Chen (2024).

3. Multimodal Perception and Interaction: Integrating visual and textual inputs has enhanced the
agents’ understanding of GUI contexts, leading to better decision-making and interaction accuracy.
Agents like VizAbility Gorniak et al. (2024) and OpenAdapt OpenAdapt AI (2024) utilize screenshots,
UI trees, and OCR to perceive the environment more comprehensively. This multimodal approach
is crucial for applications that require precise identification and manipulation of GUI elements,
especially in dynamic or visually complex interfaces.

4. Improved Accessibility and User Experience: LLM-powered GUI agents have contributed to
making technology more accessible to users with disabilities or limited technical proficiency. Tools like

75

Published in Transactions on Machine Learning Research (06/2025)

Table 15: Taxonomy of application scenarios for GUI agents.

Application Area References
GUI Testing Zimmermann & Koziolek (2023b); Liu et al. (2024k); Yoon et al. (2024); Hu

et al. (2024c); Liu et al. (2024l); Taeb et al. (2024); Cui et al. (2024); Liu
et al. (2023c); Huang et al. (2024c); Feng & Chen (2024); Ding et al. (2024b);
Beyzaei et al. (2024); Lu et al. (2025a); Ran et al. (2024); Li et al. (2024h);
Demissie et al. (2025); Yapağcı et al. (2025); Li et al. (2025c); Chevrot et al.
(2025); Rosenbach et al. (2025); Kong et al.; Feng et al. (2025)

Virtual Assis-
tants

Microsoft (2024); Gorniak et al. (2024); Ye et al. (2023); Guan et al. (2024a);
Vu et al. (2024); Pan et al. (2023b); Gao et al. (2024a); Huang et al. (2024a);
Gao et al. (2024g); OpenAdapt AI (2024); AgentSeaƒ AI (2024); Interpreter
(2024); MultiOn AI (2024); HONOR (2024); Srinivasan & Patapati (2025)

Test Case: Adjust the font size to 175% in the
Windows Settings and verify that all displayed
fonts across the interface scale up appropriately.

Step 1: Click on the "Accessibility" section
in the left-hand navigation menu.
Action: Click(MenuItem("Accessibility"))

Step 2: Click on "Text size" from the list
of options.
Action: Click(MenuItem("Text size"))

Step 3: Move the "Text size" slider to
adjust the font size to 175.
Action: SetSlider(Slider("Text size"), 175)

Step 4: Click the "Apply" button to
confirm the font size adjustment.
Action: Click(Button("Apply"))

Step 5: Wait for the screen to complete
and changes to apply.
Action: Wait(15)

Step 6: Verify that the font size has
been successfully adjusted and applied.
Action: VerifySetting("Text size", 175)

GUI Agent
Tester

Figure 28: An example of testing font size adjustment using an LLM-powered GUI agent.

VizAbility Gorniak et al. (2024) aid blind and low-vision users in understanding data visualizations,
while EasyAsk Gao et al. (2024g) assists older adults in navigating smartphone functions. By tailoring
interactions to the needs of diverse user groups, these agents enhance inclusivity and user experience.

Next, we present a taxonomy of application scenarios for GUI agents, categorized by application area, as
shown in Table 15, followed by a detailed discussion of representative works.

9.1 GUI Testing

GUI testing evaluates a software application’s graphical user interface to ensure compliance with specified
requirements, functionality, and user experience standards. It verifies interface elements like buttons, menus,
and windows, as well as their responses to user interactions. Initially conducted manually, GUI testing
evolved with the advent of automation tools such as Selenium and Appium, enabling testers to automate
repetitive tasks, increase coverage, and reduce testing time Wang et al. (2024c); Yu et al. (2023). However,
LLM-powered GUI agents have introduced a paradigm shift, allowing non-experts to test GUIs intuitively

76

Published in Transactions on Machine Learning Research (06/2025)

through natural language interfaces. These agents cover diverse scenarios, including general testing, input
generation, and bug reproduction, without the need for traditional scripting Wang et al. (2024c).

Figure 28 and illustrates the use of an LLM-powered GUI agent to test font size adjustment on Windows OS.
With only a natural language test case description, the agent autonomously performs the testing by executing
UI operations, navigating through the settings menu, and leveraging its screen understanding capabilities
to verify the final outcome of font size adjustment. This approach dramatically reduces the effort required
for human or script-based testing. Next, we detail the GUI testing works powered by GUI agents, and first
provide an overview Tables 64, 65 , 66 and 67.

9.1.1 General Testing

Early explorations demonstrated how LLMs like GPT-3 could automate GUI testing by interpreting natural
language test cases and programmatically executing them. For example, one approach integrates GUI
states with GPT-3 prompts, leveraging tools like Selenium and OpenCV to reduce manual scripting and
enable black-box testing Zimmermann & Koziolek (2023a). Building on this, a subsequent study employed
GPT-4 and Selenium WebDriver for web application testing, achieving superior branch coverage compared to
traditional methods like monkey testing Zimmermann & Koziolek (2023b). These advances highlight how
LLMs simplify GUI testing workflows while significantly enhancing coverage and efficiency.

Further pushing boundaries, GPTDroid reframed GUI testing as an interactive Q&A task. By extracting
structured semantic information from GUI pages and leveraging memory mechanisms for long-term exploration,
it increased activity coverage by 32%, uncovering critical bugs with remarkable precision Liu et al. (2024k).
This approach underscores the potential of integrating conversational interfaces with memory for comprehensive
app testing. For Android environments, DROIDAGENT introduced an intent-driven testing framework.
It automates task generation and execution by perceiving GUI states in JSON format and using LLMs for
realistic task planning. Its ability to set high-level goals and achieve superior feature coverage demonstrates
how intent-based testing can transform functional verification in GUI applications Yoon et al. (2024).

ProphetAgent Kong et al. introduces a novel approach to LLM-powered GUI testing by automatically
synthesizing Android application test scripts from natural language descriptions. Departing from previous
methods that directly apply LLMs to GUI screenshots or app behaviors, ProphetAgent builds a Clustered
UI Transition Graph (CUTG) enriched with semantic annotations. This structured representation enables
more accurate mapping between natural language test steps and GUI operations, leading to significant
improvements in completion rate (78.1%) and action accuracy (83.3%). The system employs a dual-agent
architecture: SemanticAgent handles semantic annotation, while GenerationAgent generates executable
scripts. ProphetAgent demonstrates strong scalability and real-world applicability—reducing tester workload
by over 70% at ByteDance. Its performance underscores the effectiveness of combining LLMs with explicit
semantic knowledge graphs in GUI-based environments.

AUITestAgent extended the capabilities of LLM-powered GUI testing by bridging natural language-driven
requirements and GUI functionality Hu et al. (2024c). Employing multi-modal analysis and dynamic agent
organization, it efficiently executes both simple and complex testing instructions. This framework highlights
the value of combining multi-source data extraction with robust language models to automate functional
testing in commercial apps. Incorporating vision-based methods, VisionDroid redefined GUI testing by
aligning screenshots with textual contexts to detect non-crash bugs Liu et al. (2024l). This innovation ensures
application reliability by identifying logical inconsistencies and exploring app functionalities that conventional
methods often overlook.

Accessibility testing has also benefited from LLM-powered agents. AXNav addresses challenges in iOS
accessibility workflows, automating tests for features like VoiceOver and Dynamic Type using natural language
instructions and pixel-based models. Its ability to generate annotated videos for interactive review positions
AXNav as a scalable and user-friendly solution for accessibility testing Taeb et al. (2024).

77

Published in Transactions on Machine Learning Research (06/2025)

9.1.2 Text Input generation

In the realm of text input generation, Cui et al., demonstrated how GPT-3.5 and GPT-4 could enhance
Android app testing by generating context-aware text inputs for UI fields Cui et al. (2024). By systematically
evaluating these inputs across multiple apps, they revealed the potential of LLMs in improving test coverage
and detecting unique bugs with minimal manual intervention. Similarly, QTypist formulated text input
generation as a fill-in-the-blank task, leveraging LLMs to improve activity and page coverage by up to 52%
Liu et al. (2023c).

9.1.3 Bug Replay

For bug reproduction, CrashTranslator automated the reproduction of crashes from stack traces by
integrating reinforcement learning with LLMs. Its iterative navigation and crash prediction steps significantly
reduced debugging time and outperformed state-of-the-art methods Huang et al. (2024c). Meanwhile,
AdbGPT demonstrated how few-shot learning and chain-of-thought reasoning could transform textual bug
reports into actionable GUI operations. By dynamically inferring GUI actions, AdbGPT provided an efficient
and lightweight solution for bug replay Feng & Chen (2024).

BugCraft Yapağcı et al. (2025) leverages LLM-powered GUI agents to automate bug reproduction in games,
specifically targeting the open-ended and complex environment of Minecraft. It employs GPT-4o as the
inference engine, integrating textual bug reports, visual GUI understanding through OmniParser Lu et al.
(2024d), and external knowledge from the Minecraft Wiki to generate and execute structured reproduction
steps. Actions are carried out via a custom Macro API, enabling robust interaction with both the game’s
GUI and environment. BugCraft’s ability to translate unstructured bug descriptions into executable in-game
behaviors highlights the strong potential of vision-enhanced LLM agents for advancing software testing and
debugging.

9.1.4 Verification

Finally, as a novel application in testing, MagicWand showcased the potential of LLMs in automating
“How-to” verifications. By extracting, executing, and refining instructions from search engines, it addressed
critical challenges in user-centric task automation, improving the reliability of GUI-driven workflows Ding
et al. (2024b).

In summary, LLM-powered GUI agents have revolutionized GUI testing by introducing natural language-
driven methods, vision-based alignment, and automated crash reproduction. These innovations have enhanced
test coverage, efficiency, and accessibility, setting new benchmarks for intelligent GUI testing frameworks.

9.2 Virtual Assistants

Virtual assistants, such as Siri33, are AI-driven applications that help users by performing tasks, answering
questions, and executing commands across various platforms, including web browsers, mobile phones, and
computers. Initially, these assistants were limited to handling simple commands via voice or text input,
delivering rule-based responses or running fixed workflows similar to RPA. They focused on basic tasks, such
as setting alarms or checking the weather.

With advancements in LLMs and agents, virtual assistants have evolved significantly. They now support
more complex, context-aware interactions on device GUIs through textual or voice commands and provide
personalized responses, catering to diverse applications and user needs on various platforms. This progression
has transformed virtual assistants from basic utilities into intelligent, adaptive tools capable of managing
intricate workflows and enhancing user productivity across platforms. Figure 29 presents a conceptual
example of a GUI agent-powered virtual assistant on a smartphone34. In this scenario, the agent enables
users to interact through chat, handling tasks such as setting up a screenshot shortcut on their behalf. This

33https://www.apple.com/siri/
34The application and scenario depicted in the figure are conceptual and fabricated. They do not reflect the actual functionality

of any specific smartphone. Readers should consult the phone manual or official guidance for accurate information on AI assistant
capabilities.

78

https://www.apple.com/siri/

Published in Transactions on Machine Learning Research (06/2025)

Can you set a shortcut for taking
screenshots on my phone? Sure! You can set a shortcut to take screenshots by

double-tapping or triple-tapping the back of your phone.
Would you like to set it to double-tap?

Can it be set to double-tap?

Absolutely! Let me take care of that for you.

The shortcut has been successfully set! You can now take
a screenshot by double-tapping the back of your phone.

...After setting up the shortcut...

GUI Agent
Virtual Assistant

UserUser

Figure 29: A conceptual example of a GUI agent-powered virtual assistant on a smartphone.

feature is particularly beneficial for users unfamiliar with the phone’s functionalities, simplifying complex
tasks into conversational commands.

To explore more real-world applications of virtual assistants powered by GUI agents, we provide an overview
of advancements across research, open-source initiatives, and production-level applications, as summarized in
Table 68 69 and 70.

9.2.1 Research

Recent research efforts have significantly advanced the capabilities of virtual assistants by integrating
LLM-powered GUI agents, enabling more intelligent and adaptable interactions within various applications.

Firstly, the integration of LLMs into GUI-based automation has been explored to enhance business process
automation. For instance, Ye et al. (2023) introduces Agentic Process Automation through the development
of ProAgent, which automates both the creation and execution of workflows in GUI environments. By
utilizing agents like ControlAgent and DataAgent, it supports complex actions such as dynamic branching
and report generation in applications like Slack and Google Sheets. This approach transcends traditional
RPA by enabling flexible, intelligent workflows, significantly reducing the need for manual intervention and
highlighting the transformative potential of LLM-powered agents in virtual assistants.

Building upon the idea of integrating LLMs with GUI environments, researchers have focused on mobile
platforms to automate complex tasks. LLMPA Guan et al. (2024a) is a pioneering framework that leverages
LLMs to automate multi-step tasks within mobile applications like Alipay. It interacts directly with app GUIs,
mimicking human actions such as clicks and typing, and employs UI tree parsing and object detection for
precise environment understanding. A unique controllable calibration module ensures logical action execution,
demonstrating the potential of LLM-powered virtual assistants to handle intricate workflows and real-world
impact in assisting users with diverse tasks.

Similarly, the automation of smartphone tasks through natural language prompts has been addressed by
PromptRPA Huang et al. (2024a). Utilizing a multi-agent framework, it automates tasks within smartphone
GUI environments, tackling challenges like interface updates and user input variability. Advanced perception
methods, including OCR and hierarchical GUI analysis, are employed to understand and interact with

79

Published in Transactions on Machine Learning Research (06/2025)

mobile interfaces. By supporting real-time feedback and iterative improvements, PromptRPA underscores
the importance of user-centered design in LLM-driven virtual assistants.

In the realm of accessibility, LLM-powered GUI agents have been instrumental in enhancing user experience
for individuals with disabilities. For example, VizAbility Gorniak et al. (2024) enhances the accessibility of
data visualizations for blind and low-vision users. By combining structured chart navigation with LLM-based
conversational interactions, users can ask natural language queries and receive insights on chart content and
trends. Leveraging frameworks like Olli35 and chart specifications such as Vega-Lite36, VizAbility allows
exploration of visual data without direct visual perception, addressing real-world accessibility challenges in
GUIs.

Furthermore, addressing the needs of older adults, EasyAsk Gao et al. (2024g) serves as a context-aware
in-app assistant that enhances usability for non-technical users. By integrating multi-modal inputs, combining
natural voice queries and touch interactions with GUI elements, it generates accurate and contextual
tutorial searches. EasyAsk demonstrates how GUI agents can enhance accessibility by integrating contextual
information and interactive tutorials, empowering users to navigate smartphone functions effectively.

Voice interaction has also been a focus area, with tools like GPTVoiceTasker Vu et al. (2024) facilitating
hands-free interaction with Android GUIs through natural language commands. It bridges the gap between
voice commands and GUI-based actions using real-time semantic extraction and a hierarchical representation
of UI elements. By automating multi-step tasks and learning from user behavior, it enhances task efficiency
and reduces cognitive load, highlighting the transformative potential of LLMs in improving accessibility and
user experience in mobile environments.

Expanding on voice-powered interactions, AutoTask Pan et al. (2023b) enables virtual assistants to execute
multi-step tasks in GUI environments without predefined scripts. It autonomously explores and learns
from mobile GUIs, effectively combining voice command interfaces with dynamic action engines to interact
with GUI elements. Utilizing trial-and-error and experience-driven learning, AutoTask adapts to unknown
tasks and environments, showcasing its potential in enhancing voice-driven virtual assistants for hands-free
interactions.

Finally, in the domain of creative workflows, AssistEditor Gao et al. (2024a) exemplifies a multi-agent
framework for automating video editing tasks. By interacting with GUI environments, it autonomously
performs complex workflows using dialogue systems and video understanding models to bridge user intent
with professional editing tasks. The innovative use of specialized agents ensures efficient task distribution
and execution, demonstrating the practical application of LLM-powered GUI agents in real-world scenarios
and expanding automation into creative domains.

These research endeavors collectively showcase significant advancements in LLM-powered GUI agents,
highlighting their potential to transform virtual assistants into intelligent, adaptable tools capable of handling
complex tasks across various platforms and user needs.

9.2.2 Open-Source Projects

In addition to research prototypes, open-source projects have contributed substantially to the development
and accessibility of LLM-brained GUI agents, enabling wider adoption and customization.

One such project is OpenAdapt OpenAdapt AI (2024), an open-source framework that utilizes large
multimodal models to automate tasks by observing and replicating user interactions within GUI environments.
It captures screenshots and records user inputs, employing computer vision techniques to understand and
execute standard UI operations. Designed to streamline workflows across various industries, OpenAdapt
learns from user demonstrations, thereby reducing the need for manual scripting and showcasing adaptability
in GUI-based task automation.

Similarly, AgentSea AgentSeaƒ AI (2024) offers a comprehensive and modular toolkit for creating intelligent
agents that can navigate and interact with various GUI environments across multiple platforms. Its flexibility

35https://mitvis.github.io/olli/
36https://vega.github.io/

80

https://mitvis.github.io/olli/
https://vega.github.io/

Published in Transactions on Machine Learning Research (06/2025)

is particularly beneficial for developing virtual assistants capable of automating complex tasks within
applications, enhancing user productivity. By adhering to the UNIX philosophy, AgentSea ensures that
each tool is specialized, promoting ease of use and extensibility. Its open-source nature fosters community
collaboration and innovation in AI-driven GUI automation.

Open Interpreter Interpreter (2024) further exemplifies the potential of open-source contributions by
leveraging large language models to execute code locally. Users can interact with their computer’s GUI
through natural language commands, supporting multiple programming languages and operating across
various platforms. By facilitating tasks such as data analysis, web automation, and system management,
Open Interpreter provides unrestricted access to system resources and libraries, enhancing flexibility and
control. Its customization capabilities make it a valuable asset for users aiming to streamline operations
through AI-powered virtual assistance.

These open-source projects not only advance the state of LLM-powered GUI agents but also democratize
access to intelligent virtual assistants, enabling developers and users to tailor solutions to specific needs and
applications.

9.2.3 Production

The integration of LLM-brained GUI agents into production environments demonstrates their practical
viability and impact on enhancing user experiences in commercial applications.

Power Automate Microsoft (2024) exemplifies an AI-powered GUI agent that enhances user interaction
with desktop applications. By allowing users to describe tasks in natural language while recording actions,
it translates these descriptions into automated workflows, effectively bridging the gap between user intent
and execution. Its ability to record and replicate user actions within the GUI streamlines the automation
of repetitive tasks, making it a valuable tool for increasing efficiency and highlighting advancements in
user-friendly automation solutions.

In the realm of web interactions, MultiOn MultiOn AI (2024) serves as a personal AI agent that autonomously
interacts with web-based GUIs to execute user-defined tasks. Leveraging large language models, it interprets
natural language commands and translates them into precise web actions, effectively automating complex
or repetitive tasks. MultiOn’s approach to perceiving and manipulating web elements enables seamless
functioning across various web platforms, enhancing user productivity and streamlining web interactions.

On mobile platforms, the YOYO Agent in MagicOS HONOR (2024) exemplifies an LLM-powered GUI
agent operating within the MagicOS 9.0 interface. Utilizing Honor’s MagicLM, it comprehends and executes
user commands across various applications, learning from user behavior to offer personalized assistance. This
integration demonstrates how large language models can enhance virtual assistants, enabling them to perform
complex tasks within GUI environments and improving user experience and productivity on mobile devices.

Eko AI (2025) serves as a prime example of a versatile and efficient tool for developing intelligent agents
capable of interacting with GUIs across various platforms. Its integration with multiple LLMs and the
innovative Visual-Interactive Element Perception (VIEP) technology highlight its capability to perform
complex tasks through natural language instructions. Eko’s comprehensive tool support make it a valuable
resource for developers aiming to create customizable and production-ready agent-based workflows. By
facilitating seamless interaction within GUI environments, Eko exemplifies the advancements in virtual
assistants powered by LLMs.

These production-level implementations highlight the practical applications and benefits of LLM-brained GUI
agents in enhancing automation, productivity, and user engagement across different platforms and industries.

10 Limitations, Challenges and Future Roadmap

Despite significant advancements in the development of LLM-brained GUI agents, it is important to acknowl-
edge that this field is still in its infancy. Several technical challenges and limitations hinder their widespread
adoption in real-world applications. Addressing these issues is crucial to enhance the agents’ effectiveness,

81

Published in Transactions on Machine Learning Research (06/2025)

safety, and user acceptance. In this section, we outline key limitations and propose future research directions
to overcome these challenges, providing concrete examples to illustrate each point.

10.1 Privacy Concerns

Privacy is a critical concern uniquely intensified in the context of LLM-powered GUI agents. These agents
often require access to sensitive user data—such as screenshots, interaction histories, personal credentials,
and confidential documents—to effectively perceive and interact with the GUI environment. In many cases,
this data must be transmitted to remote servers for model inference, especially when relying on cloud-based
LLMs Liao et al. (2024); He et al. (2024a); Gan et al. (2024). Such deployments raise significant privacy
risks, including data breaches, unauthorized access, and misuse of personal information. These concerns are
further amplified when sensitive inputs are routed through third-party APIs or processed off-device, creating
compliance and security vulnerabilities that can deter real-world adoption.

For instance, a GUI agent tasked with managing a user’s email inbox may need to read, classify, and respond
to messages containing highly personal or confidential content. Offloading this processing to the cloud
introduces risks of exposure, prompting hesitation among users and organizations due to potential privacy
violations Zharmagambetov et al. (2025); Yang et al. (2024c); Zhang et al. (2024l). Compared to traditional
LLM applications, GUI agents operate at a finer granularity of user activity and often require broader system
access, making privacy-preserving deployment strategies a critical and domain-specific challenge.

Potential Solutions: To mitigate privacy concerns, future research should focus on enabling on-device
inference, where the language model operates directly on the user’s device without uploading personal data Xu
et al. (2024d); Qu et al. (2024). Achieving this requires advancements in model compression techniques Lin
et al. (2024a), on-device optimization Liu et al. (2024j), and efficient inference algorithms Zhou et al. (2024b)
to accommodate the computational limitations of user devices. In addition, frameworks must incorporate
data redaction, secure communication channels, and explicit scoping of data usage within the agent’s context.
Furthermore, integration with system-level privacy controls and user consent mechanisms (e.g., runtime
permission dialogs or sandboxed execution) is essential for deployment in regulated domains.

From the technical perspective, implementing privacy-preserving techniques like federated learning Kuang
et al. (2024), differential privacy Mai et al. (2023), and homomorphic encryption de Castro et al. can enhance
data security while allowing the model to learn from user data. Furthermore, developers of GUI agents should
collaborate with privacy policymakers to ensure that user data and privacy are appropriately protected Wolff
et al. (2024). They should make the data handling processes transparent to users, clearly informing them
about what data are being transmitted and how they are used, and obtain explicit user consent Zhang et al.
(2024r).

10.2 Latency, Performance, and Resource Constraints

One challenge that is particularly salient for GUI agents—distinct from general LLM applications is the
issue of latency in interactive, multi-step execution environments. Since GUI agents rely on large language
models to plan and issue actions, their computational demands can lead to high latency and slow response
times, which directly impact user experience Li et al. (2024a). This is especially critical in time-sensitive or
interactive scenarios, where delays in action execution can cause user frustration or even trigger unintended
system behavior. Unlike single-shot LLM tasks, GUI agents typically operate over extended sequences of steps,
making latency cumulative and more disruptive over time. The problem is further amplified in on-device
deployments, where computational resources are limited. For example, running an LLM-powered agent
within a mobile app may result in sluggish performance or rapid battery depletion, significantly undermining
usability on resource-constrained platforms Xu et al. (2024f); Chen et al. (2024a); Krupp et al. (2025). These
concerns are uniquely pronounced in GUI agents due to their need for real-time perception, decision-making,
and UI control in dynamic environments Chen et al. (2024a).

Potential Solutions: Future work should aim to reduce inference latency by optimizing model architectures
for speed and efficiency Wan et al. (2023). Techniques such as model distillation can create smaller, faster
models without substantially compromising performance Xu et al. (2024h). Leveraging hardware accelerators

82

Published in Transactions on Machine Learning Research (06/2025)

like GPUs, TPUs, or specialized AI chips, and exploring parallel processing methods can enhance computational
efficiency Kachris (2024). Implementing incremental inference and caching mechanisms may also improve
responsiveness by reusing computations where applicable Lee et al. (2024d). Additionally, research into
model optimization and compression techniques, such as pruning Wang et al. (2019) and quantization
Lin et al. (2024a) can produce lightweight models suitable for deployment on resource-constrained devices.
Exploring edge computing Qu et al. (2024) and distributed inference Wu et al. (2023a) can help distribute
the computational load effectively.

Moreover, GUI agents should collaborate with application developers to encourage them to expose high-level
native APIs for different functionalities Song et al. (2024b); Lu et al. (2024a), which combine several UI
operations into single API calls. By integrating these APIs into the GUI agent, tasks can be completed with
fewer steps, making the process much faster and reducing cumulative latency.

10.3 Safety and Reliability

The real-world actuation capabilities of GUI agents introduce unique and significant safety and reliability
risks beyond those faced by general-purpose LLMs. Because GUI agents can directly manipulate user
interfaces—clicking buttons, deleting files, submitting forms, or initiating system-level operations—errors
in action generation can have irreversible consequences Anwar et al. (2024); Gan et al. (2024). These may
include data corruption, accidental message dispatches, application crashes, or unauthorized access to sensitive
system components Zhong & Wang (2023); Yuan et al. (2024). Such risks are compounded by the inherent
uncertainty and non-determinism in LLM outputs: agents may hallucinate actions, misinterpret UI contexts,
or behave inconsistently across sessions Zhang et al. (2024i); Zhao et al. (2025b); Zhang et al. (2023d); Chiang
et al. (2025); Chen et al. (2025a). For example, an agent automating financial transactions could mistakenly
execute the wrong transfer, leading to material losses. Furthermore, GUI agents expose a broader attack
surface than traditional LLM applications—they are susceptible to black-box adversarial attacks that could
manipulate their inputs or exploit their decision policies Xu et al. (2024a).

Unlike passive language models, GUI agents operate within dynamic software ecosystems where incorrect
actions can propagate across applications or escalate into system-wide disruptions. Integration challenges also
arise, including compatibility with evolving UI frameworks, user permission boundaries, and software-specific
safety constraints, and malicious attacks Yang et al. (2025d); Aichberger et al.. These concerns, coupled
with the lack of interpretability and formal guarantees, contribute to skepticism and reluctance from users
and developers alike. Addressing safety and reliability in GUI agents thus requires not only robust model
behavior but also runtime safeguards Lee et al. (2025), rollback mechanisms, and interface-aware verification
techniques tailored specifically to this interaction paradigm.

Potential Solutions: Ensuring safety and reliability necessitates robust error detection and handling
mechanisms Pan et al. (2023a). Future research should focus on integrating validation steps that verify the
correctness of inferred actions before execution Huang et al. (2023). Developing formal verification methods
Jha et al. (2023), implementing exception handling routines Zhang et al. (2023b), and establishing rollback
procedures Koo & Toueg (1986) are essential for preventing and mitigating the impact of errors. Additionally,
incorporating permission management Luo et al. (2017); Hao et al. (2013); Felt et al. (2011); Lutaaya (2018)
to limit the agent’s access rights can prevent unauthorized or harmful operations.

Furthermore, creating standardized interaction protocols can facilitate smoother and safer integration with
various applications and systems Xiang et al. (2024). Ensuring that agents comply with security best practices,
such as secure authentication and authorization protocols Berkovits et al. (1998), is essential.

10.4 Human-Agent Interaction

Human-agent interaction introduces distinct challenges in the context of GUI agents, where the agent and
user operate within the same dynamic interface. Any user intervention—such as moving the mouse, altering
window states, or modifying inputs—can inadvertently interfere with the agent’s ongoing execution, potentially
causing conflicts, unintended actions, or breakdowns in task flow Gao et al. (2024d); Bradshaw et al. (2017).

83

Published in Transactions on Machine Learning Research (06/2025)

GUI AgentGUI Agent

(a) Ask for manual invervention (b) Handle ambiguity (c) Request for confirmation

Sure! To proceed, could you please
log in to your Gmail account?

Great, I found two potential matches
for your recipient: “tom@abc.com”
and “tom_s@xyz.com” Could you
confirm which one is correct, or let
me know if it’s neither?

I have completed email draft, would
you like me to send this email?

(...User logs into their Gmail
account manually) It is“tom@abc.com”. Looks good, please send it.

Task: Draft an email to
congratulate Tom on his
paper about GUI agents
being accepted by a top
conference.

UserUser

tom@abc.com
tom_s@xyz.com

Figure 30: An illustrative example of human-agent interaction for completing an email sending request.

Designing robust collaboration protocols that govern when the agent should yield control, pause execution, or
defer to the user is a non-trivial problem specific to GUI-based automation.

Further complicating this interaction is the ambiguity of user instructions. Natural language commands may
be vague, under-specified, or context-dependent, leading to misinterpretations or incomplete task plans. GUI
agents may also encounter runtime uncertainties—such as unexpected popups, missing inputs, or conflicting
UI states—that require them to seek user clarification or feedback Zhang et al. (2024a); Feng et al. (2024).
Determining when and how an agent should request user input—whether for disambiguation, permission, or
verification—is critical for ensuring both reliability and user trust Amayuelas et al. (2023); Shi et al. (2025).

This challenge is exemplified in the fabricated scenario shown in Figure 30, where a GUI agent is instructed
to send an email to “Tom.” The agent must first prompt the user to log in securely, protecting credentials by
avoiding automated input. It then encounters ambiguity when multiple contacts named “Tom” are found,
and resolves it by prompting the user to select the intended recipient. Finally, before dispatching the email,
the agent requests explicit confirmation, recognizing that email-sending is a non-reversible action with privacy
implications Zhang et al. (2024a). Although the task appears simple, it reflects the complexity of real-world
human-GUI agent collaboration, involving privacy preservation, ambiguity resolution, and intentionality
confirmation Kim et al. (2024a). These are not generic LLM issues, but domain-specific challenges rooted in
shared interaction with software interfaces—underscoring the need for new design paradigms around shared
control, interruption handling, and proactive clarification in GUI agent systems.

Potential Solutions: Emphasizing user-centered design Lu et al. (2024e) principles can address user needs
and concerns, providing options for customization and control over the agent’s behavior Feng et al. (2024).
Equipping agents with the ability to engage in clarification dialogues when user instructions are unclear can
enhance task accuracy Wester et al. (2024). Natural language understanding components can detect ambiguity
and prompt users for additional information. For instance, the agent could ask, “There are two contacts
named John. Do you mean John Smith or John Doe?” Incorporating human-in-the-loop systems allows
for human intervention during task execution, enabling users to guide or correct the agent’s decisions when
necessary Wang et al. (2024b). Developing adaptive interaction models that facilitate seamless collaboration
between humans and agents is essential. Additionally, providing transparency and explainability in the agent’s
reasoning processes can build user trust and improve cooperation Cambria et al. (2024); Wu et al. (2024d);
Shi et al. (2025); Chen et al. (2025b).

Lastly, developing a virtual desktop environment for the agent to operate in—one that connects to the
user’s main desktop session without disrupting their workflow, can significantly enhance the user experience
(UX) in human-agent interaction. The picture-in-picture mode implemented in UFO2 Zhang et al. (2025b)

84

Published in Transactions on Machine Learning Research (06/2025)

Main Desktop

Virtual Desktop

Figure 31: The Picture-in-Picture interface in UFO2: a virtual desktop window enabling non-disruptive
automation. Figure adapted from Zhang et al. (2025b).

demonstrates this concept in practice, as illustrated in Figure 31. By allowing the agent to run within a
resizable and movable virtualized desktop, users can easily minimize or reposition the agent window as needed.
This flexibility improves both the usability and the overall UX of interacting with GUI-based agents.

10.5 Customization and Personalization

Effective GUI agents must go beyond generic task completion and provide experiences that are personalized to
individual users, adapting to their unique workflows, preferences, and behavioral patterns Li et al. (2024i); Cai
et al. (2024a). Unlike general LLM applications that operate in isolated prompts or conversations, GUI agents
work across software environments where user interaction styles can vary significantly. A one-size-fits-all agent
may fail to align with how a particular user edits documents, navigates interfaces, or organizes tasks—resulting
in friction, inefficiency, or user frustration Li et al. (2024c).

For instance, a GUI agent assisting with document editing must learn the user’s preferred tone, formatting
conventions, and vocabulary. Without this contextual understanding, the agent may offer irrelevant suggestions
or enforce formatting inconsistent with the user’s intent. Personalization in GUI agents thus requires
longitudinal learning, where the agent continually adapts based on prior interactions, fine-tunes its behavior
to match user expectations, and preserves consistency across sessions Li et al. (2023b).

However, this introduces new challenges. The high variability in user preferences—especially in free-form
GUI environments—makes it difficult to define universal personalization strategies. Moreover, collecting and
leveraging user-specific data must be done responsibly, raising critical concerns around privacy, data retention,
and on-device learning. Striking a balance between effective customization and user trust is particularly

85

Published in Transactions on Machine Learning Research (06/2025)

important for GUI agents, which often operate over sensitive documents, personal applications, or system-level
interfaces.

Potential Solutions: Future research should focus on developing mechanisms for user modeling Tan & Jiang
(2023) and preference learning Gao et al. (2024c), enabling agents to tailor their actions to individual users.
Techniques such as reinforcement learning from user feedback Kaufmann et al. (2023), collaborative filtering
Kim et al. (2024c), and context-aware computing Talukdar & Biswas (2024) can help agents learn user
preferences over time. Ensuring that personalization is achieved without compromising privacy is essential
Xiao & Tao (2006), potentially through on-device learning and anonymized data processing. In a more
futuristic, cyberpunk-inspired scenario, agents may inversely generate GUIs tailored to users’ needs, enabling
greater customization and personalization Hojo et al. (2025).

10.6 Ethical and Regulatory Challenges

LLM-powered GUI agents raise distinct ethical and regulatory concerns due to their ability to perform
real-world actions across software interfaces. Unlike traditional LLMs, these agents can autonomously trigger
operations, manipulate data, and interact with sensitive applications—amplifying risks around accountability,
fairness, and user consent Gan et al. (2024); Sarker (2024); Biswas & Talukdar (2023); Li et al. (2023e);
Zhang et al. (2025g).

A key concern is bias inherited from training data, which can lead to unfair behavior in sensitive workflows. For
example, a GUI agent assisting in hiring may unknowingly exhibit gender or racial bias Ferrara (2023); Yu et al.
(2024). These risks are harder to audit at the GUI level due to limited traceability across multi-application
actions. Regulatory compliance adds further complexity. GUI agents often operate across domains with strict
data protection laws, but lack standardized mechanisms for logging actions or securing user consent. This
makes it challenging to meet legal and ethical standards, especially when agents act in opaque or background
contexts. Addressing these issues requires tailored solutions for GUI agents, including permission controls,
runtime confirmations, and transparent activity logs—ensuring safe, fair, and compliant deployment across
diverse environments.

Potential Solutions: Addressing these concerns requires establishing clear ethical guidelines and regulatory
frameworks for the development and use of GUI agents Piñeiro-Martín et al. (2023). Future work should
focus on creating mechanisms for auditing and monitoring agent behavior Zheng et al. to ensure compliance
with ethical standards and legal requirements Chan et al. (2024). Incorporating bias detection and mitigation
strategies in language models can help prevent discriminatory or unfair actions Lin et al. (2024d). Providing
users with control over data usage and clear information about the agent’s capabilities can enhance transparency
and trust.

10.7 Scalability and Generalization

GUI agents often struggle to scale beyond specific applications or environments, limiting their generalization.
Each software interface features unique layouts, styles, and interaction patterns—even common UI elements
like pop-up windows can vary widely Zhang et al. (2024m). These variations make it difficult to design agents
that operate robustly across platforms without retraining or fine-tuning.

A further challenge is the dynamic nature of real-world GUIs. Frequent changes due to software updates,
A/B testing, or interface redesigns—such as repositioned buttons or modified widget hierarchies—can easily
break previously functional agents. For example, an agent trained on one version of a word processor may fail
when the layout changes, or when deployed on a different program with similar functionality but a different
interface structure. Even when GUIs share visual similarities, agents often fail to generalize without additional
exploration or adaptation Shekkizhar & Cosentino (2025). This lack of robustness restricts deployment in
practical settings and increases the cost of maintenance, requiring frequent updates or retraining to stay
aligned with evolving environments Grosse et al. (2023); Zhang et al. (2024k); Li & Waldo (2024). Overcoming
this challenge remains critical for developing truly scalable and adaptable GUI agents.

Potential Solutions: To enhance scalability and generalization, one solution from the dataset perspective is
to create comprehensive GUI agent datasets that cover a wide range of environments, user requests, GUI

86

Published in Transactions on Machine Learning Research (06/2025)

designs, platforms, and interaction patterns. By exposing the LLM to diverse data sources during training,
the model can learn common patterns and develop a more generalized understanding, enabling it to adapt to
infer the functionality of new interfaces based on learned similarities Song et al. (2024a).

To further enhance adaptability, research can focus on techniques such as transfer learning Weiss et al. (2016)
and meta-learning Chen et al. (2021b). Transfer learning involves pre-training a model on a large, diverse
dataset and then fine-tuning it on a smaller, task-specific dataset. In the context of GUI agents, this means
training the LLM on a wide array of GUI interactions before customizing it for a particular application or
domain. Meta-learning, enables the model to rapidly adapt to new tasks with minimal data by identifying
underlying structures and patterns across different tasks. These approaches enable agents to generalize from
limited data and adapt to new environments with minimal retraining.

However, even with these measures, the agent may still encounter difficulties in unfamiliar environments. To
address this, we advocate for developers to provide helpful knowledge bases, such as guidance documents,
application documentation, searchable FAQs, and even human demonstrations on how to use the application
Zhu et al. (2024a); Guan et al. (2024b); Hsieh et al. (2023). Techniques like RAG Gao et al. (2023) can be
employed, where the agent retrieves relevant information from a knowledge base at runtime to inform its
decisions Kagaya et al. (2024). For instance, if the agent encounters an unknown interface element, it can
query the documentation to understand its purpose and how to interact with it. This approach enhances the
agent’s capabilities without requiring extensive retraining. Implementing these solutions requires collaborative
efforts not only from agent developers but also from application or environment providers.

10.8 Summary

LLM-brained GUI agents hold significant promise for automating complex tasks and enhancing user produc-
tivity across various applications. However, realizing this potential requires addressing the outlined limitations
through dedicated research and development efforts. By addressing these challenges, the community can
develop more robust and widely adopted GUI agents.

Collaboration among researchers, industry practitioners, policymakers, and users is essential to navigate these
challenges successfully. Establishing interdisciplinary teams can foster innovation and ensure that GUI agents
are developed responsibly, with a clear understanding of technical, ethical, and societal implications. As the
field progresses, continuous evaluation and adaptation will be crucial to align technological advancements
with user needs and expectations, ultimately leading to more intelligent, safe, and user-friendly GUI agents.

11 Conclusion

The combination of LLMs and GUI automation marks a transformative moment in human-computer
interaction. LLMs provide the “brain” for natural language processing, comprehension, and GUI understanding,
while GUI automation tools serve as the “hands”, translating the agent’s cognitive abilities into actionable
commands within software environments. Together, they form LLM-powered GUI agents that introduce a
new paradigm in user interaction, allowing users to control applications through straightforward natural
language commands instead of complex, platform-specific UI operations. This synergy has shown remarkable
potential, with applications flourishing in both research and industry.

In this survey, we provide a comprehensive, systematic, and timely overview of the field of LLM-powered
GUI agents. Our work introduces the core components and advanced techniques that underpin these agents,
while also examining critical elements such as data collection, model development, frameworks, evaluation
methodologies, and real-world applications. Additionally, we explore the current limitations and challenges
faced by these agents and outline a roadmap for future research directions. We hope this survey serves as a
valuable handbook for those learning about LLM-powered GUI agents and as a reference point for researchers
aiming to stay at the forefront of developments in this field.

As we look to the future, the concept of LLM-brained GUI agents promises to become increasingly tangible,
fundamentally enhancing productivity and accessibility in daily life. With ongoing research and development,

87

Published in Transactions on Machine Learning Research (06/2025)

this technology stands poised to reshape how we interact with digital systems, transforming complex workflows
into seamless, natural interactions.

A Evolution and Progression of LLM-Powered GUI Agents

“Rome wasn’t built in a day.” The development of LLM-powered GUI agents has been a gradual journey,
grounded in decades of research and technical progress. Beginning with simple GUI testing scripts and rule-
based automation frameworks, the field has evolved significantly through the integration of machine learning
techniques, creating more intelligent and adaptive systems. The introduction of LLMs, especially multimodal
models, has transformed GUI automation by enabling natural language interactions and fundamentally
reshaping how users interact with software applications.

A.1 Early Automation Systems

In the initial stages of GUI automation, researchers relied on random-based, rule-based, and script-based
strategies. While foundational, these methods had notable limitations in terms of flexibility and adaptability.

A.1.1 Random-Based Automation

Random-based automation uses random sequences of actions within the GUI without relying on specific
algorithms or structured models using monkey test Wetzlmaier et al. (2016). This approach was widely used
in GUI testing to uncover potential issues by exploring unpredictable input sequences Zeng et al. (2016).
While effective at identifying edge cases and bugs, random-based methods were often inefficient due to a high
number of redundant or irrelevant trials.

A.1.2 Rule-Based Automation

Rule-based automation applies predefined rules and logic to automate tasks. In 2001, Memon et al., Memon
et al. (2001) introduced a planning approach that generated GUI test cases by transforming initial states
to goal states through a series of predefined operators. Hellmann et al., Hellmann & Maurer (2011) (2011)
demonstrated the potential of rule-based approaches in exploratory testing, enhancing bug detection. In the
RPA domain, SmartRPA Agostinelli et al. (2020) (2020) used rule-based processing to automate routine
tasks, illustrating the utility of rules for streamlining structured processes.

A.1.3 Script-Based Automation

Script-based automation relies on detailed scripts to manage GUI interactions. Tools like jRapture Steven
et al. (2000) (2000) record and replay Java-based GUI sequences using Java binaries and the JVM, enabling
consistent execution by precisely reproducing input sequences. Similarly, DART Memon et al. (2003a) (2003)
automated the GUI testing lifecycle, from structural analysis to test case generation and execution, offering a
comprehensive framework for regression testing.

A.1.4 Tools and Software

A range of software tools were developed for GUI testing and business process automation during this period.
Microsoft Power Automate Microsoft (2024) (2019) provides a low-code/no-code environment for creating
automated workflows within Microsoft applications. Selenium selenium (2024) (2004) supports cross-browser
web testing, while Appium appium (2024) (2012) facilitates mobile UI automation. Commercial tools like
TestComplete smartbear (2024) (1999), Katalon Studio katalon (2024) (2015), and Ranorex ranorex (2024)
(2007) allow users to create automated tests with cross-platform capabilities.

Although these early systems were effective for automating specific, predefined workflows, they lacked
flexibility and required manual scripting or rule-based logic. Nonetheless, they established the foundations of
GUI automation, upon which more intelligent systems were built.

88

Published in Transactions on Machine Learning Research (06/2025)

A.2 The Shift Towards Intelligent Agents

The incorporation of machine learning marked a major shift towards more adaptable and capable GUI agents.
Early milestones in this phase included advancements in machine learning, natural language processing,
computer vision, and reinforcement learning applied to GUI tasks.

A.2.1 Machine Learning and Computer Vision

RoScript Qian et al. (2020) (2020) was a pioneering system that introduced a non-intrusive robotic testing
system for touchscreen applications, expanding GUI automation to diverse platforms. AppFlow Hu et al.
(2018) (2018) used machine learning to recognize common screens and UI components, enabling modular
testing for broad categories of applications. Progress in computer vision also enabled significant advances in
GUI testing, with frameworks Chang et al. (2010) (2010) automating visual interaction tasks. Humanoid Li
et al. (2019) (2019) uses a deep neural network model trained on human interaction traces within the Android
system to learn how users select actions based on an app’s GUI. This model is then utilized to guide test
input generation, resulting in improved coverage and more human-like interaction patterns during testing.
Similarly, Deep GUI YazdaniBanafsheDaragh & Malek (2021) (2021) applies deep learning techniques to
filter out irrelevant parts of the screen, thereby enhancing black-box testing effectiveness in GUI testing by
focusing only on significant elements. These approaches demonstrate the potential of deep learning to make
GUI testing more efficient and intuitive by aligning it closely with actual user behavior.

Widget detection, as demonstrated by White et al., White et al. (2019) (2019), leverages computer vision to
accurately identify UI elements, serving as a supporting technique that enables more intelligent and responsive
UI automation. By detecting and categorizing interface components, this approach enhances the agent’s
ability to interact effectively with complex and dynamic GUIs Xie et al. (2020).

A.2.2 Natural Language Processing

Natural language processing capabilities introduced a new dimension to GUI automation. Systems like
RUSS Xu et al. (2021) (2021) and FLIN Mazumder & Riva (2020) (2020) allowed users to control GUIs
through natural language commands, bridging human language and machine actions. Datasets, such as those
in Li et al. (2020a) (2020), further advanced the field by mapping natural language instructions to mobile UI
actions, opening up broader applications in GUI control. However, these approaches are limited to handling
simple natural commands and are not equipped to manage long-term tasks.

A.2.3 Reinforcement Learning

The development of environments like World of Bits (WoB) Shi et al. (2017) (2017) enabled the training of web-
based agents using reinforcement learning (RL). Workflow-guided exploration Liu et al. (2018) (2018) improved
RL efficiency and task performance. DQT Lan et al. (2024) (2024) applied deep reinforcement learning to
automate Android GUI testing by preserving widget structures and semantics, while AndroidEnv Toyama
et al. (2021b) (2021) offered realistic simulations for agent training on Android. WebShop Yao et al. (2022a)
(2022) illustrated the potential for large-scale web interaction, underscoring the growing sophistication of
RL-driven GUI automation.

While these machine learning-based approaches were more adaptable than earlier rule-based systems Zhang
et al. (2019); Martins et al. (2020), they still struggled to generalize across diverse, unforeseen tasks. Their
dependence on predefined workflows and limited adaptability required retraining or customization for new
environments, and natural language control was still limited.

A.3 The Advent of LLM-Powered GUI Agents

The introduction of LLMs, particularly multimodal models like GPT-4o Hurst et al. (2024) (2023), has
radically transformed GUI automation by allowing intuitive interactions through natural language. Unlike
previous approaches that required integration of separate modules, LLMs provide an end-to-end solution for

89

Published in Transactions on Machine Learning Research (06/2025)

GUI automation, offering advanced capabilities in natural language understanding, visual recognition, and
reasoning.

LLMs present several unique advantages for GUI agents, including natural language understanding, multimodal
processing, planning, and generalization. These features make LLMs and GUI agents a powerful combination.
While there were earlier explorations, 2023 marked a pivotal year for LLM-powered GUI agents, with
significant developments across various platforms such as web, mobile, and desktop applications.

A.3.1 Web Domain

The initial application of LLMs in GUI automation was within the web domain, with early studies establishing
benchmark datasets and environments Yao et al. (2022a); Shi et al. (2017). A key milestone was WebAgent Gur
et al. (2023) (2023), which, alongside WebGUM Furuta et al. (2023) (2023), pioneered real-world web navigation
using LLMs. These advancements paved the way for further developments Ma et al. (2023); Zheng et al.
(2024a); Deng et al. (2024b), utilizing more specialized LLMs to enhance web-based interactions.

A.3.2 Mobile Devices

The integration of LLMs into mobile devices began with AutoDroid Wen et al. (2024a) (2023), which
combined LLMs with domain-specific knowledge for smartphone automation. Additional contributions like
MM-Navigator Yan et al. (2023b) (2023), AppAgent Zhang et al. (2023a) (2023), and Mobile-Agent Wang
et al. (2024e) (2023) enabled refined control over smartphone applications. Research has continued to improve
accuracy for mobile GUI automation through model fine-tuning Nong et al. (2024); Zhang et al. (2024f)
(2024).

A.3.3 Computer Systems

For desktop applications, UFO Zhang et al. (2024a) (2024) was one of the first systems to leverage GPT-4
with visual capabilities to fulfill user commands in Windows environments. Cradle Tan et al. (2024a)
(2024) extended these capabilities to software applications and games, while Wu et al., Wu et al. (2024e)
(2024) provided interaction across diverse desktop applications, including web browsers, code terminals, and
multimedia tools.

A.3.4 Industry Models

In industry, the Claude 3.5 Sonnet model Anthropic (2024) (2024) introduced a “computer use” feature
capable of interacting with desktop environments through UI operations Hu et al. (2024a). This signifies the
growing recognition of LLM-powered GUI agents as a valuable application in industry, with stakeholders
increasingly investing in this technology.

Undoubtedly, LLMs have introduced new paradigms and increased the intelligence of GUI agents in ways that
were previously unattainable. As the field continues to evolve, we anticipate a wave of commercialization,
leading to transformative changes in user interaction with GUI applications.

B Additional Summary in Tabular Form

While the major works have been discussed in detail in Sections XX–XX, we provide additional summary
tables (Table 16–70) for quick reference and ease of lookup. This table is intended to help readers conveniently
locate key references and insights associated with each section.

90

Published in Transactions on Machine Learning Research (06/2025)

Table 16: Overview of LLM-brained GUI agent frameworks on web platforms (Part I).

Agent Platform Perception Action Model Architecture Highlight Link
WMA Chae
et al. (2024)

Web Accessibility
tree from
DOM

UI operations,
e.g., clock,
type, and
hover

Llama-3.1-
8B-Instruct
Dubey et al.
(2024) for
predicting
observations
and GPT-4
for policy
modeling

Single-agent
with simulation-
based observa-
tion

Uses a world model to
predict state changes
before committing ac-
tions, improving task
success rates and mini-
mizing unnecessary in-
teractions with the en-
vironment

https://
github.com/
kyle8581/
WMA-Agents

WebAgent
Gur et al.
(2024)

Web HTML struc-
ture

UI interactions HTML-T5
for task
planning
and sum-
marization
and Flan-
U-PaLM
Chung et al.
(2024) for
code genera-
tion

Two-stage archi-
tecture for plan-
ning and pro-
gram synthesis

Leverages specialized
LLMs to achieve
HTML-based task
planning and program-
matic action execution

/

LASER Ma
et al. (2024b)

Web GUI struc-
ture of the
web envi-
ronment,
with defined
states

Defined per
state, such
as searching,
selecting items,
navigating
pages, and
finalizing a
purchase

GPT-4 Single-agent Uses a state-space ex-
ploration approach, al-
lowing it to handle
novel situations with
flexible backtracking

https://
github.com/
Mayer123/
LASER

WebVoyager
He et al.
(2024b)

Web Screenshots
with numeri-
cal labels on
interactive
elements

Standard UI
operations

GPT-4V Single-agent Integrates visual and
textual cues within real-
world, rendered web
pages, enhancing its
ability to navigate com-
plex web structures

https://
github.com/
MinorJerry/
WebVoyager

AutoWeb-
GLM Lai
et al. (2024)

Web Simplified
HTML and
OCR for text
recognition

UI operations
such as click-
ing, typing,
scrolling, and
selecting, and
advanced APIs
like jumping to
specific URLs

ChatGLM3-
6B GLM
et al. (2024)

Single-agent Its HTML simplifica-
tion method for effi-
cient webpage compre-
hension and its bilin-
gual benchmark

https:
//github.
com/THUDM/
AutoWebGLM

91

https://github.com/kyle8581/WMA-Agents
https://github.com/kyle8581/WMA-Agents
https://github.com/kyle8581/WMA-Agents
https://github.com/kyle8581/WMA-Agents
https://github.com/Mayer123/LASER
https://github.com/Mayer123/LASER
https://github.com/Mayer123/LASER
https://github.com/Mayer123/LASER
https://github.com/MinorJerry/WebVoyager
https://github.com/MinorJerry/WebVoyager
https://github.com/MinorJerry/WebVoyager
https://github.com/MinorJerry/WebVoyager
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM

Published in Transactions on Machine Learning Research (06/2025)

Table 17: Overview of LLM-brained GUI agent frameworks on web platforms (Part II).

Agent Platform Perception Action Model Architecture Highlight Link
OpenAgents
Xie et al.
(2023)

Web DOM ele-
ments

Standard UI
operations,
browser-based
actions con-
trolled, API
calls for tool
execution, and
structured
data manipula-
tion

GPT-4 and
Claude
Anthropic
(2024)

Multi-agent
architecture,
with distinct
agents (Data
Agent, Plugins
Agent, and Web
Agent)

Democratizes access
to language agents
by providing an open-
source, multi-agent
framework optimized
for real-world tasks

https://
github.com/
xlang-ai/
OpenAgents

SeeAct
Zheng et al.
(2024a)

Web Screenshot
images and
HTML struc-
ture

Standard UI
operations

GPT-4V Single-agent Its use of GPT-4V’s
multimodal capabilities
to integrate both vi-
sual and HTML infor-
mation, allowing for
more accurate task per-
formance on dynamic
web content

https://
github.com/
OSU-NLP-Group/
SeeAct

DUAL-VCR
Kil et al.
(2024)

Web HTML ele-
ments and
screenshots

Standard UI
operations

Flan-T5-
base Chung
et al. (2024)

Two-stage single-
agent architec-
ture

Dual-view contextual-
ization

/

Agent-E
Abuelsaad
et al. (2024)

Web DOM struc-
ture and
change obser-
vation

Standard UI
operations

GPT-4
Turbo

Hierarchical
multi-agent
architecture,
composed of a
planner agent
and a browser
navigation agent

Hierarchical archi-
tecture and adaptive
DOM perception

https://
github.com/
EmergenceAI/
Agent-E

Search-
Agent Koh
et al. (2024b)

Web Screenshot
and text
descriptions

Standard UI
operations

GPT-4 Single-agent
with search

Novel inference-time
search algorithm that
enhances the agent’s
ability to perform
multi-step planning
and decision-making

https://
jykoh.com/
search-agents

R2D2 Huang
et al. (2025b)

Web DOM Standard UI
operations

GPT-4o Single-agent Dynamically con-
structs an internal web
environment represen-
tation for more robust
decision-making. The
integration of a replay
buffer and error analy-
sis reduces navigation
errors and improves
task completion rates.

https:
//github.
com/AmenRa/
retriv

92

https://github.com/xlang-ai/OpenAgents
https://github.com/xlang-ai/OpenAgents
https://github.com/xlang-ai/OpenAgents
https://github.com/xlang-ai/OpenAgents
https://github.com/OSU-NLP-Group/SeeAct
https://github.com/OSU-NLP-Group/SeeAct
https://github.com/OSU-NLP-Group/SeeAct
https://github.com/OSU-NLP-Group/SeeAct
https://github.com/EmergenceAI/Agent-E
https://github.com/EmergenceAI/Agent-E
https://github.com/EmergenceAI/Agent-E
https://github.com/EmergenceAI/Agent-E
https://jykoh.com/search-agents
https://jykoh.com/search-agents
https://jykoh.com/search-agents
https://github.com/AmenRa/retriv
https://github.com/AmenRa/retriv
https://github.com/AmenRa/retriv
https://github.com/AmenRa/retriv

Published in Transactions on Machine Learning Research (06/2025)

Table 18: Overview of LLM-brained GUI agent frameworks on web platforms (Part III).

Agent Platform Perception Action Model Architecture Highlight Link
ScribeAgent
Shen et al.
(2024b)

Web HTML-
DOM

Standard UI
operations

Single-agent
architecture

Specialized
fine-tuning ap-
proach using
production-
scale workflow
data to outper-
form general-
purpose LLMs
like GPT-4 in
web navigation
tasks

https://github.
com/colonylabs/
ScribeAgent

PAE Zhou
et al. (2024a)

Web Screenshots Standard UI
Operations

Claude
3 Sonnet
Anthropic
(2024),
Qwen2VL-
7B Wang
et al. (2024j),
and LLaVa-
1.6 Liu et al.
(2024b)

A multi-agent
architecture
involving a task
proposer to
suggest tasks,
an agent policy
to perform
tasks, and an
autonomous
evaluator to
assess success
and provide
feedback using
RL.

Autonomous skill dis-
covery in real-world en-
vironments using task
proposers and reward-
based evaluation

https:
//yanqval.
github.io/
PAE/

WebPilot
Zhang et al.
(2024n)

Web Accessibility
trees and
dynamic
observations

Standard UI
operations

GPT-4 Multi-agent
architecture,
with Global
Optimization
and Local Opti-
mization

Dual optimization
strategy (Global and
Local) with Monte
Carlo Tree Search
(MCTS) Browne et al.
(2012), allowing dy-
namic adaptation to
complex, real-world
web environments

https:
//yaoz720.
github.io/
WebPilot/

Hybrid
Agent Song
et al. (2024b)

Web Accessibility
trees and
screenshots

Standard UI
operations,
API calls, and
generating
code

GPT-4 Multi-agent sys-
tem, combining
both API and
browsing capa-
bilities

Hybrid Agent seam-
lessly integrates web
browsing and API calls

https:
//github.
com/yueqis/
API-Based-Agent

AgentOccam
Yang et al.
(2024a)

Web HTML Standard UI
operations

GPT-4 Single-agent Simple design that op-
timizes the observation
and action spaces

/

NNetnav
Murty et al.
(2024)

Web DOM Standard UI
operations

GPT-4 Single-agent Trains web agents us-
ing synthetic demon-
strations, eliminating
the need for expensive
human input

https://
github.com/
MurtyShikhar/
Nnetnav

93

https://github.com/colonylabs/ScribeAgent
https://github.com/colonylabs/ScribeAgent
https://github.com/colonylabs/ScribeAgent
https://yanqval.github.io/PAE/
https://yanqval.github.io/PAE/
https://yanqval.github.io/PAE/
https://yanqval.github.io/PAE/
https://yaoz720.github.io/WebPilot/
https://yaoz720.github.io/WebPilot/
https://yaoz720.github.io/WebPilot/
https://yaoz720.github.io/WebPilot/
https://github.com/yueqis/API-Based-Agent
https://github.com/yueqis/API-Based-Agent
https://github.com/yueqis/API-Based-Agent
https://github.com/yueqis/API-Based-Agent
https://github.com/MurtyShikhar/Nnetnav
https://github.com/MurtyShikhar/Nnetnav
https://github.com/MurtyShikhar/Nnetnav
https://github.com/MurtyShikhar/Nnetnav

Published in Transactions on Machine Learning Research (06/2025)

Table 19: Overview of LLM-brained GUI agent frameworks on web platforms (Part IV).

Agent Platform Perception Action Model Architecture Highlight Link
NaviQAte
Shahbandeh
et al. (2024)

Web Screenshots Standard UI
operations

GPT-4 Single-agent sys-
tem

Frames web naviga-
tion as a question-and-
answer task

/

OpenWeb-
Agent Iong
et al. (2024)

Web HTML and
screenshots

UI operations,
Web APIs, and
self-generated
code

GPT-4 and
AutoWe-
bGLM Lai
et al. (2024)

Modular single-
agent

Modular design that
allows developers to
seamlessly integrate
various models to
automate web tasks

https:
//github.
com/THUDM/
OpenWebAgent/

Steward
Tang & Shin
(2024)

Web HTML and
screenshots

Standard UI
operations

GPT-4 Single-agent Ability to automate
web interactions using
natural language in-
structions

/

WebDreamer
Gu et al.
(2024)

Web Screenshots
combined
with SoM,
and HTML

Standard UI
operations and
navigation
actions

GPT-4o Model-based
single-agent
architecture

Pioneers the use of
LLMs as world models
for planning in complex
web environments

https://
github.com/
OSU-NLP-Group/
WebDreamer

Agent Q
Putta et al.
(2024)

Web DOM for tex-
tual input,
screenshots
for visual
feedback

UI interactions,
querying the
user for help

LLaMA-3
70B Dubey
et al. (2024)
for policy
learning and
execution,
GPT-V for
visual feed-
back

Single-agent
with MCTS and
RL

Combination of MCTS-
guided search and self-
critique mechanisms en-
ables iterative improve-
ment in reasoning and
task execution

https://
github.com/
sentient-engineering/
agent-q

Auto-Intent
Kim et al.
(2024b)

Web HTML struc-
ture

Standard UI
Operations

GPT-3.5,
GPT-4,
Llama-3
Dubey et al.
(2024) for
action in-
ference;
Mistral-7B
Jiang et al.
(2023) and
Flan-T5XL
Chung et al.
(2024) for
intent predic-
tion

Single-agent
with self-
exploration

Introduces a unique
self-exploration strat-
egy to generate seman-
tically diverse intent
hints

/

94

https://github.com/THUDM/OpenWebAgent/
https://github.com/THUDM/OpenWebAgent/
https://github.com/THUDM/OpenWebAgent/
https://github.com/THUDM/OpenWebAgent/
https://github.com/OSU-NLP-Group/WebDreamer
https://github.com/OSU-NLP-Group/WebDreamer
https://github.com/OSU-NLP-Group/WebDreamer
https://github.com/OSU-NLP-Group/WebDreamer
https://github.com/sentient-engineering/agent-q
https://github.com/sentient-engineering/agent-q
https://github.com/sentient-engineering/agent-q
https://github.com/sentient-engineering/agent-q

Published in Transactions on Machine Learning Research (06/2025)

Table 20: Overview of LLM-brained GUI agent frameworks on web platforms (Part V).

Agent Platform Perception Action Model Architecture Highlight Link
AdaptAgent
Verma et al.
(2024)

Web GUI screen-
shots with
HTML/-
DOM struc-
tures

Standard UI
Operations
and Playwright
scripts

GPT-4o and
CogAgent
Hong et al.
(2023)

Single-agent Adapts to unseen tasks
with just 1–2 multi-
modal human demon-
strations

/

WEPO Liu
et al. (2024c)

Web HTML and
DOM

Standard UI
Operations

Llama3-
8B Dubey
et al. (2024),
Mistral-7B
Jiang et al.
(2023), and
Gemma-2B
Team et al.
(2024)

Single-agent ar-
chitecture.

Incorporates a distance-
based sampling mech-
anism tailored to the
DOM tree structure,
enhancing preference
learning by distinguish-
ing between salient
and non-salient web
elements with DPO
Rafailov et al. (2024).

/

Agent-
Symbiotic
Zhang et al.
(2025e)

Web Accessible
tree struc-
ture of web
elements

Standard UI
operations

Large LLMs:
GPT-4o,
Claude-3.5.
Small LLMs:
LLaMA-
3 Dubey
et al. (2024),
DeepSeek-R1
Guo et al.
(2025)

Multi-agent it-
erative architec-
ture

Introduces an itera-
tive, symbiotic learning
process between large
and small LLMs for
web automation. En-
hances both data syn-
thesis and task perfor-
mance through spec-
ulative data synthe-
sis, multi-task learning,
and privacy-preserving
hybrid modes.

/

LiteWebAgent
Zhang et al.
(2025c)

Web DOM,
Screen-
shots

Standard UI
operations,
Playwright
script

Any LLM
and MLLM

Single-agent First open-source,
production-ready web
agent integrating tree
search for multi-step
task execution.

https://
github.com/
PathOnAI/
LiteWebAgent

ECLAIR
Wornow et al.
(2024)

Web Screenshots Standard UI
operations

GPT-4V,
GPT-4o,
CogAgent

Single-agent ar-
chitecture

Eliminates the high
setup costs, brittle ex-
ecution, and burden-
some maintenance asso-
ciated with traditional
RPA by learning from
video and text docu-
mentation.

https://
github.com/
HazyResearch/
eclair-agents

Dammu et
al., Dammu
(2025)

Web DOM el-
ements,
Webpage
accessibility
attributes

Standard UI
operations

Not specified Single-agent ar-
chitecture

User-aligned task exe-
cution, where the agent
adapts to individual
user preferences in an
ethical manner.

/

95

https://github.com/PathOnAI/LiteWebAgent
https://github.com/PathOnAI/LiteWebAgent
https://github.com/PathOnAI/LiteWebAgent
https://github.com/PathOnAI/LiteWebAgent
https://github.com/HazyResearch/eclair-agents
https://github.com/HazyResearch/eclair-agents
https://github.com/HazyResearch/eclair-agents
https://github.com/HazyResearch/eclair-agents

Published in Transactions on Machine Learning Research (06/2025)

Table 21: Overview of LLM-brained GUI agent frameworks on web platforms (Part VI).

Agent Platform Perception Action Model Architecture Highlight Link
Plan-and-
Act Erdogan
et al. (2025)

Web HTML Standard UI
operations

LLaMA-3.3-
70B-Instruct
Dubey et al.
(2024)

Two-stage modu-
lar architecture:
PLANNER +
EXECUTOR

Decouples planning
from execution in LLM-
based GUI agents and
introduces a scalable
synthetic data gen-
eration pipeline to
fine-tune each compo-
nent

/

SkillWeaver
Zheng et al.
(2025a)

Web GUI screen-
shots and
Accessibility
Tree

Standard UI
operations and
high-level skill
APIs

GPT-4o Single-agent Introduces a self-
improvement frame-
work for web agents
that autonomously
discover, synthesize,
and refine reusable
skill APIs through
exploration

https://
github.com/
OSU-NLP-Group/
SkillWeaver

ASI Wang
et al. (2025g)

Web Webpage
Accessibility
Tree

Standard GUI
actions

Claude-3.5-
Sonnet

Single-agent Introduces program-
matic skills that are
verified through ex-
ecution to ensure
quality and are used
as callable actions to
improve efficiency

https://
github.com/
zorazrw/
agent-skill-induction

Rollback
Agent Zhang
et al. (2025f)

Web Accessibility
trees

Standard GUI
actions

Multi-agent
architecture

Multi-module,
ReAct-inspired
agent architec-
ture

Introduces a modu-
lar rollback mechanism
that enables multi-step
rollback to avoid dead-
end states

/

96

https://github.com/OSU-NLP-Group/SkillWeaver
https://github.com/OSU-NLP-Group/SkillWeaver
https://github.com/OSU-NLP-Group/SkillWeaver
https://github.com/OSU-NLP-Group/SkillWeaver
https://github.com/zorazrw/agent-skill-induction
https://github.com/zorazrw/agent-skill-induction
https://github.com/zorazrw/agent-skill-induction
https://github.com/zorazrw/agent-skill-induction

Published in Transactions on Machine Learning Research (06/2025)

Table 22: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part I).

Agent Platform Perception Action Model Architecture Highlight Link
Wang et al.,
Wang et al.
(2023a)

Android Mo-
bile

Android view
hierarchy
structure

(1) Screen
Question Gen-
eration, (2)
Screen Sum-
marization,
(3) Screen
Question An-
swering, and
(4) Mapping
Instruction to
UI Action

PaLM Anil
et al. (2023)

Single-agent The first paper to study
Screen Question Gener-
ation and Screen QA
using LLMs

https://
github.com/
google-research/
google-research/
tree/
master/
llm4mobile

VisionTasker
Song et al.
(2024c)

Android mo-
bile devices

UI screen-
shots with
widget detec-
tion and text
extraction

UI operations
such as tap-
ping, swiping,
and entering
text

ERNIE Bot
Baidu Re-
search (2024)

Single-agent
with vision-
based UI
understanding
and sequential
task planning

Vision-based UI un-
derstanding approach,
which allows it to in-
terpret UI semantics di-
rectly from screenshots
without view hierarchy
dependencies

https://
github.com/
AkimotoAyako/
VisionTasker

DroidBot-
GPT Wen
et al. (2024c)

Android mo-
bile devices

Translates
the GUI
state in-
formation
of Android
applications
into natural
language
prompts

UI operations,
including ac-
tions like click,
scroll, check,
and edit

GPT Single-agent Automates Android ap-
plications without mod-
ifications to either the
app or the model

https://
github.com/
MobileLLM/
DroidBot-GPT

CoCo-Agent
Ma et al.
(2024d)

Android mo-
bile devices

GUI screen-
shots, OCR
layouts, and
historical ac-
tions

GUI actions,
such as click-
ing, scrolling,
and typing

CLIP Rad-
ford et al.
(2021) for
vision en-
coding and
LLaMA-2-
chat-7B for
language
processing

Single-agent Its dual approach of
Comprehensive Envi-
ronment Perception
and Conditional Action
Prediction

https:
//github.
com/xbmxb/
CoCo-Agent

Auto-GUI
Zhang &
Zhang (2024)

Android mo-
bile devices

GUI screen-
shots

GUI operations BLIP-2 vi-
sion encoder
Li et al.
(2023c) with
a FLAN-
Alpaca Wei
et al. (2021)

Single-agent
with chain-of-
action

Its direct interaction
with GUI elements. Its
chain-of-action mech-
anism enables it to
leverage both past and
planned actions

https:
//github.
com/cooelf/
Auto-GUI

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit

Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Hayfa Y Abuaddous, Ashraf Mousa Saleh, Odai Enaizan, Fahad Ghabban, and Anas Bassam Al-Badareen.
Automated user experience (ux) testing for mobile application: Strengths and limitations. International
Journal of Interactive Mobile Technologies, 16(4), 2022.

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.
Agent-e: From autonomous web navigation to foundational design principles in agentic systems, 2024. URL
https://arxiv.org/abs/2407.13032.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An open
agentic framework that uses computers like a human, 2024. URL https://arxiv.org/abs/2410.08164.

97

https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/AkimotoAyako/VisionTasker
https://github.com/AkimotoAyako/VisionTasker
https://github.com/AkimotoAyako/VisionTasker
https://github.com/AkimotoAyako/VisionTasker
https://github.com/MobileLLM/DroidBot-GPT
https://github.com/MobileLLM/DroidBot-GPT
https://github.com/MobileLLM/DroidBot-GPT
https://github.com/MobileLLM/DroidBot-GPT
https://github.com/xbmxb/CoCo-Agent
https://github.com/xbmxb/CoCo-Agent
https://github.com/xbmxb/CoCo-Agent
https://github.com/xbmxb/CoCo-Agent
https://github.com/cooelf/Auto-GUI
https://github.com/cooelf/Auto-GUI
https://github.com/cooelf/Auto-GUI
https://github.com/cooelf/Auto-GUI
https://arxiv.org/abs/2407.13032
https://arxiv.org/abs/2410.08164

Published in Transactions on Machine Learning Research (06/2025)

Table 23: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part II).

Agent Platform Perception Action Model Architecture Highlight Link
MobileGPT
Lee et al.
(2024c)

Android mo-
bile devices

Simplified
HTML repre-
sentation

Standard UI
operations and
navigation
actions

GPT-4-
turbo for
screen under-
standing and
reasoning,
GPT-3.5-
turbo for
slot-filling
sub-task
parameters

Single-agent ar-
chitecture aug-
mented by a hi-
erarchical mem-
ory structure

Introduces a human-
like app memory that
allows for task decom-
position into modular
sub-tasks

https://
mobile-gpt.
github.io

MM-
Navigator
Yan et al.
(2023a)

Mobile iOS
and Android

Smartphone
screenshots
with as-
sociated
set-of-mark
tags

Clickable UI
operations

GPT-4V Single-agent Using set-of-mark
prompting with GPT-
4V for precise GUI
navigation on smart-
phones

https:
//github.
com/zzxslp/
MM-Navigator

Prompt2Task
Huang et al.

Android mo-
bile devices

GUI struc-
ture and
layout hierar-
chy, full-page
textual de-
scriptions,
OCR-based
text extrac-
tion

Standard UI
operations

GPT-4 Multi-agent ar-
chitecture

Enables UI automation
through free-form tex-
tual prompts, eliminat-
ing the need for users
to script automation
tasks.

https://
github.com/
PromptRPA/
Prompt2TaskDataset

AppAgent
Zhang et al.
(2023a)

Android mo-
bile devices

Real-time
screenshots
and XML
files detailing
the interac-
tive elements

User-like ac-
tions, like Tap,
Long press,
Swipe, Text
input, Back
and Exit

GPT-4V Single-agent Its ability to perform
tasks on any smart-
phone app using a
human-like interaction
method

https://
appagent-official.
github.io/

AppAgent-
V2 Li et al.
(2024g)

Android mo-
bile devices

GUI screen-
shots with
annotated
elements,
OCR for
detecting
text and
icons, Struc-
tured XML
metadata

Standard UI
Operations:
Tap, text in-
put, long press,
swipe, back,
and stop

GPT-4 Multi-phase ar-
chitecture with
Exploration
Phase and De-
ployment Phase

Enhances adaptability
and precision in mobile
environments by com-
bining structured data
parsing with visual fea-
tures

/

98

https://mobile-gpt.github.io
https://mobile-gpt.github.io
https://mobile-gpt.github.io
https://github.com/zzxslp/MM-Navigator
https://github.com/zzxslp/MM-Navigator
https://github.com/zzxslp/MM-Navigator
https://github.com/zzxslp/MM-Navigator
https://github.com/PromptRPA/Prompt2TaskDataset
https://github.com/PromptRPA/Prompt2TaskDataset
https://github.com/PromptRPA/Prompt2TaskDataset
https://github.com/PromptRPA/Prompt2TaskDataset
https://appagent-official.github.io/
https://appagent-official.github.io/
https://appagent-official.github.io/

Published in Transactions on Machine Learning Research (06/2025)

Table 24: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part III).

Agent Platform Perception Action Model Architecture Highlight Link
AutoDroid
Wen et al.
(2024a)

Android mo-
bile devices

Simplified
HTML-style
representa-
tion

Standard UI
operations

GPT-3.5,
GPT-4, and
Vicuna-7B
Chiang et al.
(2023)

Single-agent ar-
chitecture

Its use of app-specific
knowledge and a multi-
granularity query opti-
mization module to re-
duce the computational
cost

https://
autodroid-sys.
github.io/

AutoDroid-
V2 Wen et al.
(2024b)

Android Mo-
bile Devices

Structured
GUI Repre-
sentations

Multi-step
scripts of
standard UI
operations and
API calls

Llama-3.1-
8B Dubey
et al. (2024)

Script-based ar-
chitecture.

Converts GUI task au-
tomation into a script
generation problem, en-
hancing efficiency and
task success rates.

/

CoAT Zhang
et al. (2024g)

Android mo-
bile devices

Screenshot-
based con-
text and
semantic
information

Standard UI
operations

GPT-4V Single-agent ar-
chitecture

The integration of
a chain-of-action-
thought process, which
explicitly maps each
action to screen de-
scriptions, reasoning
steps, and anticipated
outcomes

https://
github.com/
ZhangL-HKU/
CoAT

Mobile-
Agent-E
Wang et al.
(2025e)

Mobile An-
droid

GUI screen-
shots, OCR
for detecting
text and
icons

Standard UI
operations and
APIs

GPT-4o,
Claude-
3.5-Sonnet,
Gemini-1.5-
Pro

Hierarchical
Multi-Agent
System

Hierarchical multi-
agent framework that
separates planning
from execution for
improved long-term
reasoning and self-
evolution, enabling
the system to learn
reusable tips and
shortcuts

https:
//x-plug.
github.io/
MobileAgent

FedMobile-
Agent Wang
et al. (2025c)

Android mo-
bile devices

GUI Screen-
shots

Standard UI
operations

Qwen2-VL-
Instruct-7B
Wang et al.
(2024j)

Multi-agent fed-
erated learning

Introduces privacy-
preserving federated
learning for mobile
automation, enabling
large-scale training
without centralized
human annotation.

/

99

https://autodroid-sys.github.io/
https://autodroid-sys.github.io/
https://autodroid-sys.github.io/
https://github.com/ZhangL-HKU/CoAT
https://github.com/ZhangL-HKU/CoAT
https://github.com/ZhangL-HKU/CoAT
https://github.com/ZhangL-HKU/CoAT
https://x-plug.github.io/MobileAgent
https://x-plug.github.io/MobileAgent
https://x-plug.github.io/MobileAgent
https://x-plug.github.io/MobileAgent

Published in Transactions on Machine Learning Research (06/2025)

Table 25: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part IV).

Agent Platform Perception Action Model Architecture Highlight Link
ClickAgent
Hoscilowicz
et al. (2024)

Android Mo-
bile Devices

Screenshots Standard UI
operations

InternVL-
2.0 Chen
et al. (2024l),
TinyClick
Pawlowski
et al. (2024),
SeeClick
Cheng et al.
(2024a)

Single-agent Combines MLLM rea-
soning with a dedicated
UI location model to
enhance UI interaction
accuracy

https://
github.com/
Samsung/
ClickAgent

Mobile-
Agent Wang
et al. (2024e)

Mobile An-
droid

Screenshots
with icon
detection

Standard UI
operations

GPT-4V
with Ground-
ing DINO
Liu et al.
(2023a) and
CLIP Rad-
ford et al.
(2021) for
icon detec-
tion

Single-agent Vision-centric ap-
proach that eliminates
dependency on system-
specific data

https://
github.com/
X-PLUG/
MobileAgent

Mobile-
Agent-v2
Wang et al.
(2024d)

Mobile An-
droid OS and
Harmony OS

Screenshots
with text,
icon recog-
nition, and
description

Standard UI
operations on
mobile phones

GPT-4V
with Ground-
ing DINO
Liu et al.
(2023a) and
Qwen-VL-
Int4 Bai et al.
(2023a)

Multi-agent ar-
chitecture with
Planning Agent,
Decision Agent,
and Reflection
Agent

Multi-agent architec-
ture enhances task
navigation for long-
sequence operations

https://
github.com/
X-PLUG/
MobileAgent

MobA Zhu
et al. (2024b)

Mobile An-
droid

GUI struc-
tures, screen-
shots with
annotation

Standard UI
operations and
API function
calls

GPT-4 Two-level agent:
a Global Agent
and a Local
Agent

Two-level agent sys-
tem that separates task
planning and execu-
tion into two special-
ized agents

https://
github.com/
OpenDFM/
MobA

Mobile-
Experts
Zhang et al.
(2024e)

Mobile An-
droid

Interface
memory and
procedural
memory

Standard UI
operations and
code-combined
tool formula-
tion

VLMs Multi-agent
framework with
double-layer
planning

Code-combined tool
formulation method
and double-layer
planning mechanism
for collaborative task
execution

/

LiMAC
Christianos
et al. (2024)

Mobile An-
droid

Screenshots
and corre-
sponding
widget trees

Standard UI
operations

Lightweight
transformer
and fine-
tuned VLMs

Single-agent Balances computa-
tional efficiency and
natural language un-
derstanding

/

100

https://github.com/Samsung/ClickAgent
https://github.com/Samsung/ClickAgent
https://github.com/Samsung/ClickAgent
https://github.com/Samsung/ClickAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/OpenDFM/MobA
https://github.com/OpenDFM/MobA
https://github.com/OpenDFM/MobA
https://github.com/OpenDFM/MobA

Published in Transactions on Machine Learning Research (06/2025)

Table 26: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part V).

Agent Platform Perception Action Model Architecture Highlight Link
OS-Kairos
Cheng et al.
(2025a)

Mobile An-
droid

GUI screen-
shots

Standard UI
operations

OS-Atlas-
Pro-7B and
GPT-4o

Single-agent
with critic-in-
the-loop design

Introduces an adaptive
interaction framework
where each GUI action
is paired with a con-
fidence score, dynami-
cally deciding between
autonomous execution
and human interven-
tion

https://
github.com/
Wuzheng02/
OS-Kairos

V-Droid Dai
et al. (2025)

Mobile An-
droid

Android
Accessibility
Tree

Standard UI
operations

LLaMA-3.1-
8B-Instruct
Dubey et al.
(2024)

Verifier-Driven
Single-Agent
Architecture

Introduces a novel
verifier-driven architec-
ture where the LLM
does not generate
actions directly but
instead scores and
selects from a finite set
of extracted actions,
improving task success
rates and significantly
reducing latency

/

ReachAgent
Wu et al.
(2025c)

Android mo-
bile devices

GUI Screen-
shots, XML
document

Standard UI
operations

MobileVLM
Wu et al.
(2024c)

Single-agent,
two-stage train-
ing

Divides tasks into sub-
tasks: “Page Reaching”
(navigating to the cor-
rect screen) and “Page
Operation” (perform-
ing actions on the
screen), using RL with
preference-based train-
ing to improve long-
term task success.

/

Mobile-
Agent-V
Wang et al.
(2025b)

Mobile An-
droid

Video guid-
ance, XML
hierarchy

Standard UI
operations

GPT-4o Multi-agent sys-
tem

Introduces video-
guided learning,
allowing the agent to
acquire operational
knowledge efficiently.

https://
github.com/
X-PLUG/
MobileAgent

MobileSteward
Liu et al.
(2025g)

Mobile An-
droid

XML layouts,
Screenshots

Standard UI
interactions,
Code execution

GPT-4V,
GPT-4o

App-oriented
multi-agent
framework

Introduces an app-
oriented multi-agent
framework with self-
evolution, overcoming
the complexity of cross-
app interactions by
dynamically recruiting
specialized agents.

https:
//github.
com/XiaoMi/
MobileSteward

AppAgentX
Jiang et al.
(2025)

Mobile An-
droid

Screenshots Standard UI
operations

GPT-4o Single-agent ar-
chitecture

Introduces an evolu-
tionary mechanism
that enables dynamic
learning from past in-
teractions and replaces
inefficient low-level op-
erations with high-level
actions.

https://
appagentx.
github.io/

101

https://github.com/Wuzheng02/OS-Kairos
https://github.com/Wuzheng02/OS-Kairos
https://github.com/Wuzheng02/OS-Kairos
https://github.com/Wuzheng02/OS-Kairos
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/XiaoMi/MobileSteward
https://github.com/XiaoMi/MobileSteward
https://github.com/XiaoMi/MobileSteward
https://github.com/XiaoMi/MobileSteward
https://appagentx.github.io/
https://appagentx.github.io/
https://appagentx.github.io/

Published in Transactions on Machine Learning Research (06/2025)

Table 27: Overview of LLM-brained GUI agent frameworks on mobile platforms (Part VI).

Agent Platform Perception Action Model Architecture Highlight Link
CHOP Zhou
et al. (2025)

Mobile An-
droid

Screenshots Standard UI
operations

GPT-4o Multi-agent ar-
chitecture

Introduces a basis
subtask framework,
where subtasks are
predefined based on
human task decomposi-
tion patterns, ensuring
better executability
and efficiency.

https://
github.com/
Yuqi-Zhou/
CHOP

LearnAct Liu
et al. (2025a)

Mobile An-
droid

GUI screen-
shots, UI
trees, and
demon-
stration
trajectories

Standard GUI
actions

Gemini-
1.5-Pro,
UI-TARS-
7B-SFT,
Qwen2-VL-
7B

Multi-agent Introduces a struc-
tured, demonstration-
based learning pipeline
for mobile GUI agents.
It addresses long-tail
generalization via few-
shot demonstrations,
achieving substantial
performance gains on
complex real-world
mobile tasks

https:
//lgy0404.
github.io/
LearnAct

AndroidGen
Lai et al.
(2025)

Mobile An-
droid

XML UI
structure

Standard GUI
actions

GLM-4-9B
GLM et al.
(2024) /
LLaMA-3-
70B Dubey
et al. (2024)

Multi-module
single-agent

Innovatively addresses
data scarcity for An-
droid agents through
a self-improving ar-
chitecture, a zero
human-annotation
training pipeline, and
effective generalization
from easy to hard tasks

https:
//github.
com/THUDM/
AndroidGen

Agent-
Initiated
Interaction
Kahlon et al.
(2025)

Android Mo-
bile

Accessibility
tree and
screenshots

Standard GUI
operations

Gemini 1.5 Single-agent ar-
chitecture

Pioneers agent-
initiated interaction in
mobile UI automation

https://
github.com/
google-research/
google-research/
tree/
master/
android_
interaction

Latent State
Estimation
Bishop et al.
(2024)

Android Mo-
bile

Accessibility
tree

Standard GUI
operations

PaLM 2 Two-module
design with
Reasoner and
Grounder

First to formalize the
estimation of latent UI
states using LLMs to
support UI automation

/

102

https://github.com/Yuqi-Zhou/CHOP
https://github.com/Yuqi-Zhou/CHOP
https://github.com/Yuqi-Zhou/CHOP
https://github.com/Yuqi-Zhou/CHOP
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct
https://github.com/THUDM/AndroidGen
https://github.com/THUDM/AndroidGen
https://github.com/THUDM/AndroidGen
https://github.com/THUDM/AndroidGen
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction
https://github.com/google-research/google-research/tree/master/android_interaction

Published in Transactions on Machine Learning Research (06/2025)

Table 28: Overview of LLM-brained GUI agent frameworks on computer platforms (Part I).

Agent Platform Perception Action Model Architecture Highlight Link
UFO Zhang
et al. (2024a)

Windows
computer

Screenshots
with an-
notated
controls,
and widget
properties

Standard UI
operations
with additional
customized
operations

GPT-Vision Dual-agent
architecture,
consisting of a
HostAgent (for
application selec-
tion and global
planning) and
an AppAgent
(for specific task
execution within
applications)

Its dual-agent system
that seamlessly nav-
igates and interacts
with multiple applica-
tions to fulfill complex
user requests in natural
language on Windows
OS

https://
github.com/
microsoft/
UFO

UFO2 Zhang
et al. (2025b)

Windows
desktops

GUI screen-
shots and
textual
control prop-
erties list

Unified
GUI–API
action layer

GPT-4o (and
GPT-4V,
o1, Gemini-
Flash);
Vision
ground-
ing via
OmniParser-
v2

Centralized
HostAgent with
application-
specialized
AppAgents

Transforms a conven-
tional CUA into an
OS-native, pluggable
AgentOS with deep
Windows integration,
hybrid GUI–API ac-
tions, vision + UIA
perception, speculative
multi-action planning,
retrieval-augmented
knowledge, and a non-
intrusive PiP virtual
desktop

https://
github.com/
microsoft/
UFO/

ScreenAgent
Niu et al.
(2024)

Linux and
Windows
desktop

Screenshots Standard UI
operations

ScreenAgent
model

Single-agent Integrated planning-
acting-reflecting
pipeline that simulates
a continuous thought
process

https://
github.com/
niuzaisheng/
ScreenAgent

OS-Copilot
Wu et al.
(2024e)

Linux and
MacOS com-
puter

Unified in-
terface that
includes
mouse and
keyboard
control, API
calls, and
Bash or
Python inter-
preters

Standard UI
operations,
Bash and
Python com-
mands, as well
as API calls

GPT-4 Multi-
component
architecture
involving a
planner, configu-
rator, actor, and
critic modules

Self-directed learning
capability, allowing
it to adapt to new
applications by au-
tonomously generating
and refining tools

https://
os-copilot.
github.io/

103

https://github.com/microsoft/UFO
https://github.com/microsoft/UFO
https://github.com/microsoft/UFO
https://github.com/microsoft/UFO
https://github.com/microsoft/UFO/
https://github.com/microsoft/UFO/
https://github.com/microsoft/UFO/
https://github.com/microsoft/UFO/
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://os-copilot.github.io/
https://os-copilot.github.io/
https://os-copilot.github.io/

Published in Transactions on Machine Learning Research (06/2025)

Table 29: Overview of LLM-brained GUI agent frameworks on computer platforms (Part II).

Agent Platform Perception Action Model Architecture Highlight Link
Cradle Tan
et al. (2024a)

Windows
computer

Complete
screen videos
with Ground-
ing DINO
Liu et al.
(2023a) and
SAM Kirillov
et al. (2023)
for object de-
tection and
localization

Keyboard and
mouse actions

GPT-4 Modular single-
agent architec-
ture

Its generalizability
across various digital
environments, allowing
it to operate without
relying on internal
APIs

https://
baai-agents.
github.io/
Cradle/

Agent S
Agashe et al.
(2024)

Ubuntu and
Windows
computer

Screenshots
and accessi-
bility tree

Standard UI
operations and
system-level
controls

GPT-4 and
Claude-3.5
Sonnet
Anthropic
(2024)

Multi-agent ar-
chitecture com-
prising a Man-
ager and Worker
structure

Experience-augmented
hierarchical planning

https://
github.com/
simular-ai/
Agent-S

GUI Narra-
tor Wu et al.
(2024b)

Windows
computer

High-
resolution
screenshots

Standard UI
operations

GPT-4 and
QwenVL-7B
Bai et al.
(2023a)

Two-stage
architecture,
detecting the
cursor location
and selecting
keyframes, then
generating ac-
tion captions

Uses the cursor as a
focal point to improve
understanding of high-
resolution GUI actions

https:
//showlab.
github.io/
GUI-Narrator

PC Agent He
et al. (2024d)

Windows
Computer

Screenshots
and event-
based track-
ing

Standard UI
Operations

Qwen2-VL-
72B-Instruct
Wang et al.
(2024j) and
Molmo
Deitke et al.
(2024)

A planning
agent for
decision-making
combined with a
grounding agent
for executing
actions.

Human cognition trans-
fer framework, which
transforms raw interac-
tion data into cogni-
tive trajectories to en-
able complex computer
tasks.

https:
//gair-nlp.
github.io/
PC-Agent/

Zero-shot
Agent Li
et al. (2023d)

Computer HTML code
and DOM

Standard UI
operations

PaLM-2 Anil
et al. (2023)

Single-agent Zero-shot capability in
performing computer
control tasks

https://
github.com/
google-research/
google-research/
tree/
master/
zero_shot_
structured_
reflection

TaskMind
Yin et al.
(2025)

Windows
Computer

Standard
GUI actions

GPT-3.5 /
GPT-4

Single-agent
architecture

Introduces a
novel task graph
representation
with cognitive
dependen-
cies, enabling
LLMs to bet-
ter generalize
demonstrated
GUI tasks

https://github.com/
Evennaire/TaskMind

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A compositional
generalist-specialist framework for computer use agents. arXiv preprint arXiv:2504.00906, 2025.

AgentSeaƒ AI. Introduction to agentsea platform, 2024. URL https://www.agentsea.ai/. Accessed:
2024-10-26.

Pranjal Aggarwal and Sean Welleck. Programming with pixels: Computer-use meets software engineering.
arXiv preprint arXiv:2502.18525, 2025.

Mohamed Aghzal, Erion Plaku, Gregory J Stein, and Ziyu Yao. A survey on large language models for
automated planning. arXiv preprint arXiv:2502.12435, 2025.

104

https://baai-agents.github.io/Cradle/
https://baai-agents.github.io/Cradle/
https://baai-agents.github.io/Cradle/
https://baai-agents.github.io/Cradle/
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://gair-nlp.github.io/PC-Agent/
https://gair-nlp.github.io/PC-Agent/
https://gair-nlp.github.io/PC-Agent/
https://gair-nlp.github.io/PC-Agent/
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/google-research/google-research/tree/master/zero_shot_structured_reflection
https://github.com/Evennaire/TaskMind
https://github.com/Evennaire/TaskMind
https://www.agentsea.ai/

Published in Transactions on Machine Learning Research (06/2025)

Table 30: Overview of LLM-brained GUI agent frameworks on computer platforms (Part III).

Agent Platform Perception Action Model Architecture Highlight Link
PC-Agent
Liu et al.
(2025c)

Windows
computers

UI tree,
Screenshots

Standard UI
operations

GPT-4o Hierarchical
Multi-Agent

PC-Agent’s hierarchi-
cal multi-agent design
enables efficient decom-
position of complex
PC tasks. Its Ac-
tive Perception Module
enhances fine-grained
GUI understanding by
combining accessibility
structures, OCR, and
intention grounding.

https://
github.com/
X-PLUG/
MobileAgent/
tree/main/
PC-Agent

PwP Ag-
garwal &
Welleck
(2025)

VSCode-
based IDE in
Computers

Screenshots,
File sys-
tem access,
Terminal
outputs

Standard UI
interactions,
File operations,
Bash com-
mands, Tools
in VSCode

GPT-4o,
Claude-3.5
Sonnet,
Gemini-1.5

Single-agent ar-
chitecture

Shifts software engi-
neering agents from
API-based tool inter-
actions to direct GUI-
based computer use, al-
lowing agents to inter-
act with an IDE as a hu-
man developer would.

https://
programmingwithpixels.
com

COLA Zhao
et al. (2025a)

Windows
computers

GUI struc-
ture, prop-
erties and
screenshots

Standard UI
operations and
system APIs

GPT-4o Hierarchical
Multi-Agent

A dynamic task
scheduling mechanism
with a plug-and-play
agent pool, enabling
adaptive handling of
GUI tasks

https:
//github.
com/Alokia/
COLA-demo

STEVE Lu
et al. (2025)

Windows
Desktop

GUI screen-
shots and
A11y Tree

Standard UI
operations

Qwen2-VL
Wang et al.
(2024j) and
GPT-4o

Single-agent Introduces a scal-
able step verification
pipeline using GPT-4o
to generate binary
labels for agent actions,
and applies KTO
optimization to incor-
porate both positive
and negative actions
into agent learning

https://
github.com/
FanbinLu/
STEVE

Simone Agostinelli, Andrea Marrella, and Massimo Mecella. Research challenges for intelligent robotic process
automation. In Business Process Management Workshops: BPM 2019 International Workshops, Vienna,
Austria, September 1–6, 2019, Revised Selected Papers 17, pp. 12–18. Springer, 2019.

Simone Agostinelli, Marco Lupia, Andrea Marrella, and Massimo Mecella. Automated generation of executable
rpa scripts from user interface logs. In Business Process Management: Blockchain and Robotic Process
Automation Forum: BPM 2020 Blockchain and RPA Forum, Seville, Spain, September 13–18, 2020,
Proceedings 18, pp. 116–131. Springer, 2020.

Fellou AI. Eko - build production-ready agentic workflow with natural language. https://eko.fellou.ai/,
2025. Accessed: 2025-01-15.

Lukas Aichberger, Alasdair Paren, Yarin Gal, Philip Torr, and Adel Bibi. Attacking multimodal os agents
with malicious image patches. In ICLR 2025 Workshop on Foundation Models in the Wild.

Wajdi Aljedaani, Abdulrahman Habib, Ahmed Aljohani, Marcelo Medeiros Eler, and Yunhe Feng. Does chatgpt
generate accessible code? investigating accessibility challenges in llm-generated source code. In International
Cross-Disciplinary Conference on Web Accessibility, 2024. URL https://api.semanticscholar.org/
CorpusID:273550267.

Alfonso Amayuelas, Liangming Pan, Wenhu Chen, and William Wang. Knowledge of knowledge: Exploring
known-unknowns uncertainty with large language models. arXiv preprint arXiv:2305.13712, 2023.

Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. Task-oriented dialogue as dataflow synthesis. Transactions of
the Association for Computational Linguistics, 8:556–571, 2020.

105

https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://programmingwithpixels.com
https://programmingwithpixels.com
https://programmingwithpixels.com
https://github.com/Alokia/COLA-demo
https://github.com/Alokia/COLA-demo
https://github.com/Alokia/COLA-demo
https://github.com/Alokia/COLA-demo
https://github.com/FanbinLu/STEVE
https://github.com/FanbinLu/STEVE
https://github.com/FanbinLu/STEVE
https://github.com/FanbinLu/STEVE
https://eko.fellou.ai/
https://api.semanticscholar.org/CorpusID:273550267
https://api.semanticscholar.org/CorpusID:273550267

Published in Transactions on Machine Learning Research (06/2025)

Table 31: Overview of LLM-brained cross-platform GUI agent frameworks (Part I).

Agent Platform Perception Action Model Architecture Highlight Link
AutoGLM
Liu et al.
(2024h)

Web and Mo-
bile Android

Screenshots
with SoM
annotation
and OCR

Standard UI
operations,
Native API
interactions,
and AI-driven
actions

ChatGLM
GLM et al.
(2024)

Single-agent ar-
chitecture

Self-evolving online cur-
riculum RL framework,
which enables contin-
uous improvement by
interacting with real-
world environments

https:
//xiao9905.
github.io/
AutoGLM/

TinyClick
Pawlowski
et al. (2024)

Web, Mo-
bile, and
Windows
platforms

GUI screen-
shots

Standard UI
operations,
Native API
interactions,
and AI-driven
actions

Florence-2-
Base VLM
Xiao et al.
(2023)

Single-agent,
with single-turn
tasks

Compact size (0.27B
parameters) with high
performance

https://
huggingface.
co/Samsung/
TinyClick

OSCAR
Wang & Liu
(2024)

Desktop and
Mobile

Screenshots Standard UI
operations

GPT-4 Single-agent ar-
chitecture

Ability to adapt to real-
time feedback and dy-
namically adjust its ac-
tions

/

AgentStore
Jia et al.
(2024)

Desktop and
mobile envi-
ronments

GUI struc-
tures and
properties,
accessibil-
ity trees,
screenshots
and terminal
output etc

Standard UI
operations,
API calls

GPT-4o and
InternVL2-
8B Chen
et al. (2024l)

Multi-agent ar-
chitecture

Dynamically integrate
a wide variety of het-
erogeneous agents, en-
abling both specialized
and generalist capabili-
ties

https://
chengyou-jia.
github.io/
AgentStore-Home/

MMAC-
Copilot Song
et al. (2024d)

Windows
OS Desktop,
mobile appli-
cations, and
game envi-
ronments

Screenshots Standard UI
operations, Na-
tive APIs, and
Collaborative
multi-agent
actions

GPT-4V,
SeeClick
Cheng et al.
(2024a) and
Genimi
Vision for
different
agents

Multi-agent
architecture
with Planner,
Programmer,
Viewer, Mentor,
Video Analyst,
and Librarian

Collaborative multi-
agent architecture
where agents specialize
in specific tasks

/

AGUVIS Xu
et al. (2024k)

Web, desk-
top, and
mobile

Image-based
observations

Standard UI
operations

Fine-tuned
Qwen2-VL
Wang et al.
(2024j)

Single-agent ar-
chitecture

Pure vision-based ap-
proach for GUI interac-
tion, bypassing textual
UI representations and
enabling robust cross-
platform generalization

https://
aguvis-project.
github.io

Ponder &
Press Wang
et al. (2024o)

Web, An-
droid, iOS
Mobile, Win-
dows, and
macOS

Purely visual
inputs

Standard UI
operations

GPT-4o and
Claude 3.5
Sonnet for
high-level
task decom-
position, a
fine-tuned
Qwen2-VL-
Instruct
Wang et al.
(2024j) for
GUI element
grounding

Divide-and-
conquer archi-
tecture

Purely vision-based
GUI agent that does
not require non-visual
inputs

https://
invinciblewyq.
github.io/
ponder-press-page/

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey,
Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson,
Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan
Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele
Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer,
Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann,
Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey
Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei

106

https://xiao9905.github.io/AutoGLM/
https://xiao9905.github.io/AutoGLM/
https://xiao9905.github.io/AutoGLM/
https://xiao9905.github.io/AutoGLM/
https://huggingface.co/Samsung/TinyClick
https://huggingface.co/Samsung/TinyClick
https://huggingface.co/Samsung/TinyClick
https://huggingface.co/Samsung/TinyClick
https://chengyou-jia.github.io/AgentStore-Home/
https://chengyou-jia.github.io/AgentStore-Home/
https://chengyou-jia.github.io/AgentStore-Home/
https://chengyou-jia.github.io/AgentStore-Home/
https://aguvis-project.github.io
https://aguvis-project.github.io
https://aguvis-project.github.io
https://invinciblewyq.github.io/ponder-press-page/
https://invinciblewyq.github.io/ponder-press-page/
https://invinciblewyq.github.io/ponder-press-page/
https://invinciblewyq.github.io/ponder-press-page/

Published in Transactions on Machine Learning Research (06/2025)

Table 32: Overview of LLM-brained cross-platform GUI agent frameworks (Part II).

Agent Platform Perception Action Model Architecture Highlight Link
InfiGUIAgent
Liu et al.
(2025e)

Mobile, Web,
Desktop

Raw screen-
shots

Standard UI
operations.

Qwen2-VL-
2B Wang
et al. (2024j)

Single-agent
architecture
enhanced by
hierarchical
reasoning.

Introduces native
reasoning skills, such
as hierarchical and
expectation-reflection
reasoning, enabling
advanced and adaptive
task handling.

https://
github.com/
Reallm-Labs/
InfiGUIAgent

Learn-by-
Interact Su
et al. (2025)

Web, code
development,
and desktops

GUI screen-
shots with
SoM and
accessibility
tree

Standard UI in-
teractions and
code execution

Claude-
3.5-Sonnet,
Gemini-1.5-
Pro Team
et al. (2023),
CodeGemma-
7B,
CodeStral-
22B

Multi-agent Introduces a fully au-
tonomous data synthe-
sis process, eliminating
the need for human-
labeled agentic data

/

CollabUIAgents
He et al.
(2025)

Mobile An-
droid, Web

Screenshots,
UI trees

Standard UI
operations

Qwen2-7B
Wang et al.
(2024j),
GPT-4

Multi-agent sys-
tem

A multi-agent rein-
forcement learning
framework that in-
troduces a Credit
Re-Assignment (CR)
strategy, using LLMs
instead of environment-
specific rewards to
enhance performance
and generalization.

https://
github.com/
THUNLP-MT/
CollabUIAgents

Agent S2
Agashe et al.
(2025)

Ubuntu,
Windows,
Android

GUI screen-
shot

Standard UI
operations and
system APIs

Claude-
3.7-Sonnet,
Claude-
3.5-Sonnet,
GPT-4o (for
Manager
and Worker
roles), UI-
TARS-
72B-DPO,
Tesseract
OCR, and
UNO (for
grounding
experts)

Compositional
multi-agent
architecture
with a Manager
for planning,
a Worker for
execution, and
a Mixture of
Grounding ex-
perts

Features a Mixture of
Grounding technique
and Proactive Hierar-
chical Planning, en-
abling more accurate
grounding and adap-
tive replanning in long-
horizon tasks

https://
github.com/
simular-ai/
Agent-S

GuidNav Hu
et al. (2025)

Android and
Web

GUI screen-
shots

Standard UI
operations and
system APIs

GPT-4o,
Gemini 2.0
Flash, Qwen-
VL-Plus

Single-agent Introduces a novel pro-
cess reward model that
provides fine-grained,
step-level feedback to
enhance GUI task ac-
curacy and success

/

ScaleTrack
Huang et al.
(2025a)

Web, An-
droid Mobile,
and Desktop
Computers

GUI screen-
shots

Standard GUI
operations

Qwen2-VL-
7B

Single-agent First GUI agent frame-
work to introduce back-
tracking—learning not
only the next action
but also historical ac-
tion sequences

/

Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni,
Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric
Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan
Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar
Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha
Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John
Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. Palm 2 technical report,
2023. URL https://arxiv.org/abs/2305.10403.

107

https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/Reallm-Labs/InfiGUIAgent
https://github.com/THUNLP-MT/CollabUIAgents
https://github.com/THUNLP-MT/CollabUIAgents
https://github.com/THUNLP-MT/CollabUIAgents
https://github.com/THUNLP-MT/CollabUIAgents
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://github.com/simular-ai/Agent-S
https://arxiv.org/abs/2305.10403

Published in Transactions on Machine Learning Research (06/2025)

Table 33: Overview of datasets for optimizing LLMs tailored for web GUI agents (Part I).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

Mind2Web
Deng et al.
(2023)

Web Crowdsourced Task descrip-
tions, action
sequences, web-
page snapshots

2,350 tasks
from 137
websites

Human demon-
strations

Develops gener-
alist web agents
with diverse user
interactions on
real-world web-
sites

https://
osu-nlp-group.
github.io/
Mind2Web/

Mind2Web-
Live Pan
et al. (2024b)

Web Sampled and
re-annotated
from the
Mind2Web Deng
et al. (2023)

Textual task
descriptions,
intermediate
evaluation
states, action
sequences, and
metadata, GUI
screenshots

542 tasks,
with 4,550
detailed
annotation
steps.

Annotated by
human experts.

Emphasis on
dynamic evalua-
tion using “key
nodes”, which
represent criti-
cal intermediate
states in web
tasks.

https://
huggingface.
co/
datasets/
iMeanAI/
Mind2Web-Live

WebVLN
Chen et al.
(2024e)

Web Human-
designed,
LLM-
generated

Text instruc-
tions, plans,
GUI screen-
shots, HTML
content

8,990 naviga-
tion paths,
14,825 QA
pairs

WebVLN
simulator, LLM-
generated QA
pairs

Vision-and-
language nav-
igation for
human-like web
browsing

https:
//github.
com/WebVLN/
WebVLN

WebLINX
Lu et al.
(2024c)

Web From human
experts

Conversational
interactions,
action se-
quences, DOM
and screen-
shots

2,337 demon-
strations
with over
100,000 inter-
actions

Annotated by
human experts

The first large-
scale dataset de-
signed to eval-
uate agents in
real-world con-
versational web
navigation

https://
mcgill-nlp.
github.io/
weblinx/

AgentTrek
Xu et al.
(2024j)

Web Web tutori-
als

Task metadata,
step-by-step
instructions,
action se-
quences, visual
observations,
reproducible
native traces

4,902 trajec-
tories

VLM agent
guided by tu-
torials, with
Playwright cap-
turing the traces

Synthesizes
high-quality
trajectory data
by leveraging
web tutorials

/

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024. URL https:
//www.anthropic.com/news/3-5-models-and-computer-use. Accessed: 2024-10-26.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh
Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational challenges in assuring alignment
and safety of large language models. arXiv preprint arXiv:2404.09932, 2024.

appium. Appium: Cross-platform automation framework for all kinds of apps, 2024. URL https://appium.
io/docs/en/latest/. Accessed: 2024-11-05.

Yauhen Leanidavich Arnatovich and Lipo Wang. A systematic literature review of automated techniques for
functional gui testing of mobile applications. arXiv preprint arXiv:1812.11470, 2018.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for ui and
infographics understanding, 2024. URL https://arxiv.org/abs/2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, et al. Uibert:
Learning generic multimodal representations for ui understanding. arXiv preprint arXiv:2107.13731, 2021.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL https:
//arxiv.org/abs/2406.11896.

108

https://osu-nlp-group.github.io/Mind2Web/
https://osu-nlp-group.github.io/Mind2Web/
https://osu-nlp-group.github.io/Mind2Web/
https://osu-nlp-group.github.io/Mind2Web/
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://appium.io/docs/en/latest/
https://appium.io/docs/en/latest/
https://arxiv.org/abs/2402.04615
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2406.11896

Published in Transactions on Machine Learning Research (06/2025)

Table 34: Overview of datasets for optimizing LLMs tailored for web GUI agents (Part II).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

MultiUI Liu
et al. (2024e)

Web Combination
of human-
designed
instruc-
tions and
automated
extraction
from web
structures

Textual task
descriptions,
plans, action
sequences, GUI
screenshots, ac-
cessibility trees,
bounding box
annotations

7.3 million
instruction
samples from
1 million
websites

LLMs and Play-
wright

Supports a
broad range
of UI-related
tasks, including
GUI under-
standing, action
prediction, and
element ground-
ing.

https:
//neulab.
github.io/
MultiUI/

Explorer
Pahuja et al.
(2025)

Web Popular
URLs with
systematic
web explo-
ration by
LLMs

Textual task
descriptions,
Action se-
quences, GUI
screenshots,
Accessibility
trees, HTML
content

94K suc-
cessful web
trajectories,
49K unique
URLs, 720K
screenshots

Generated by
a multi-agent
LLM pipeline

Largest-scale
web trajectory
dataset to date;
dynamically
explores web
pages to create
contextually
relevant tasks

/

InSTA Tra-
bucco et al.
(2025)

Web Automatically
generated by
LLMs across
1M websites
from Com-
mon Crawl

Web navi-
gation tasks
in natural
language, task
plans and ac-
tion sequences,
HTML-based
observations
converted to
markdown,
and evalua-
tions from
LLM-based
judges

150,000
tasks across
150,000 web-
sites

Generated by
LLMs using
the Playwright
API and filtered
by LLM-based
judges

Presents a fully
automated
three-stage
data generation
pipeline—task
generation, ac-
tion execution,
and evalua-
tion—using
only language
models without
any human
annotations

https://
data-for-agents.
github.io

Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning q-value functions for
training device-control agents. arXiv preprint arXiv:2502.15760, 2025a.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen
technical report, 2023a. URL https://arxiv.org/abs/2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 2023b.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025b.

Baidu Research. ERNIE Bot: Baidu’s Knowledge-Enhanced Large Language Model Built on Full AI Stack
Technology, 2024. URL https://research.baidu.com/Blog/index-view?id=183. [Online; accessed
9-November-2024].

Mohammad Bajammal, Andrea Stocco, Davood Mazinanian, and Ali Mesbah. A survey on the use of
computer vision to improve software engineering tasks. IEEE Transactions on Software Engineering, 48(5):
1722–1742, 2020.

109

https://neulab.github.io/MultiUI/
https://neulab.github.io/MultiUI/
https://neulab.github.io/MultiUI/
https://neulab.github.io/MultiUI/
https://data-for-agents.github.io
https://data-for-agents.github.io
https://data-for-agents.github.io
https://arxiv.org/abs/2309.16609
https://research.baidu.com/Blog/index-view?id=183

Published in Transactions on Machine Learning Research (06/2025)

Table 35: Overview of datasets for optimizing LLMs tailored for mobile GUI agents (Part I).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

VGA Meng
et al. (2024)

Android Mo-
bile

Rico Deka
et al. (2017)

GUI screen-
shots, task
descriptions,
action se-
quences,
bounds, layout,
and functions
of GUI ele-
ments

63.8k in-
stances,
22.3k
instruction-
following
data pairs,
41.4k conver-
sation data
pairs

Generated by
GPT-4 models

Prioritizes vi-
sual content to
reduce inaccura-
cies

https://
github.com/
Linziyang1999/
Vision%
2DGUI%
2Dassistant

Rico Deka
et al. (2017)

Android Mo-
bile

Gathered
from real An-
droid apps
on Google
Play Store

Textual data,
screenshots, ac-
tion sequences,
UI structure,
annotated UI
representa-
tions

72,219
unique UI
screens,
10,811 user
interaction
traces

Crowdsourcing,
automated ex-
ploration

Comprehensive
dataset for
mobile UI de-
sign, interaction
modeling, layout
generation

http://www.
interactionmining.
org/

PixelHelp Li
et al. (2020a)

Android Mo-
bile

Human, web
“How-to”,
Rico UI cor-
pus synthetic

Natural lan-
guage instruc-
tions, action
sequences, GUI
screenshots,
structured UI
data

187 multi-
step in-
structions,
295,476
synthetic
single-step
commands

Human an-
notation and
synthetic gener-
ation

Pioneering
method for
grounding nat-
ural language
instructions to
executable mo-
bile UI actions

https://
github.com/
google-research/
google-research/
tree/
master/
seq2act

MoTIF Burns
et al. (2022)

Android Mo-
bile

Human-
written

Natural lan-
guage instruc-
tions, action
sequences, GUI
screenshots,
structured UI
data

6,100 tasks
across 125
Android
apps

Human annota-
tion

Task feasibility
prediction for in-
teractive GUI in
mobile apps

https://
github.com/
aburns4/
MoTIF

META-
GUI Sun
et al. (2022)

Android Mo-
bile

SMCalFlow An-
dreas et al.
(2020)

Dialogues, ac-
tion sequences,
screenshots,
Android view
hierarchies

1,125 dia-
logues and
4,684 turns

Human annota-
tion

Task-oriented
dialogue system
for mobile GUI
without relying
on back-end
APIs

https:
//x-lance.
github.io/
META-GU

AITW Rawles
et al. (2023)

Android Mo-
bile

Human-
generated
instruc-
tions, LLM-
generated
prompts

Natural lan-
guage instruc-
tions, UI
screenshots,
observation-
action pairs

715,142
episodes
and 30,378
unique in-
structions

Human raters
using Android
emulators

Large-scale
dataset for
device control
research with
extensive app
and UI diversity

https://
github.com/
google-research/
google-research/
tree/
master/
android_
in_the_
wild

Shimshon Berkovits, Joshua D. Guttman, and Vipin Swarup. Authentication for mobile agents. In Mobile
Agents and Security, 1998. URL https://api.semanticscholar.org/CorpusID:13987376.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim
Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al. Paligemma: A
versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Benyamin Beyzaei, Saghar Talebipour, Ghazal Rafiei, Nenad Medvidovic, and Sam Malek. Automated test
transfer across android apps using large language models. arXiv preprint arXiv:2411.17933, 2024.

William E Bishop, Alice Li, Christopher Rawles, and Oriana Riva. Latent state estimation helps ui agents to
reason. arXiv preprint arXiv:2405.11120, 2024.

Anjanava Biswas and Wrick Talukdar. Guardrails for trust, safety, and ethical development and deployment
of large language models (llm). Journal of Science & Technology, 4(6):55–82, 2023.

110

https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
https://github.com/Linziyang1999/Vision%2DGUI%2Dassistant
http://www.interactionmining.org/
http://www.interactionmining.org/
http://www.interactionmining.org/
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/aburns4/MoTIF
https://github.com/aburns4/MoTIF
https://github.com/aburns4/MoTIF
https://github.com/aburns4/MoTIF
https://x-lance.github.io/META-GU
https://x-lance.github.io/META-GU
https://x-lance.github.io/META-GU
https://x-lance.github.io/META-GU
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://api.semanticscholar.org/CorpusID:13987376

Published in Transactions on Machine Learning Research (06/2025)

Table 36: Overview of datasets for optimizing LLMs tailored for mobile GUI agents (Part II).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

GUI
Odyssey Lu
et al. (2024b)

Android Mo-
bile

Human
designers,
GPT-4

Textual tasks,
plans, action
sequences, GUI
screenshots

7,735
episodes
across 201
apps

Human demon-
strations

Focuses on cross-
app navigation
tasks on mobile
devices

https://
github.com/
OpenGVLab/
GUI-Odyssey

Amex Chai
et al. (2024)

Android Mo-
bile

Human-
designed,
ChatGPT-
generated

Text tasks, ac-
tion sequences,
high-res screen-
shots with
multi-level
annotations

104,000
screenshots,
1.6 million
interactive
elements,
2,946 instruc-
tions

Human an-
notations,
autonomous
scripts

Multi-level,
large-scale
annotations sup-
porting complex
mobile GUI
tasks

https://
yuxiangchai.
github.io/
AMEX/

Ferret-
UI You et al.
(2025)

iOS, Android
Mobile

Spotlight
dataset,
GPT-4

Text tasks, ac-
tion plans, GUI
element anno-
tations, bound-
ing boxes

40,000 el-
ementary
tasks, 10,000
advanced
tasks

GPT-generated Benchmark for
UI-centric tasks
with adjustable
screen aspect ra-
tios

https:
//github.
com/apple/
ml-ferret

AITZ Zhang
et al. (2024g)

Android Mo-
bile

AITW Rawles
et al. (2023)

Screen-action
pairs, action
descriptions

18,643
screen-
action pairs
across 70+
apps, 2,504
episodes

GPT-4V, icon
detection mod-
els

Structured
"Chain-
of-Action-
Thought" en-
hancing GUI
navigation

https://
github.com/
IMNearth/
CoAT

Octo-
planner Chen
et al. (2024f)

Android Mo-
bile

GPT-4 gener-
ated

Text tasks,
decomposed
plans, action
sequences

1,000 data
points

GPT-4 gener-
ated

Optimized for
task planning
with GUI ac-
tions

https://
huggingface.
co/
NexaAIDev/
octopus-planning

E-
ANT Wang
et al. (2024f)

Android tiny-
apps

Human be-
haviors

Task de-
scriptions,
screenshots, ac-
tion sequences,
page element
data

40,000+
traces,
10,000 action
intents

Human annota-
tion

First large-scale
Chinese dataset
for GUI naviga-
tion with real hu-
man interactions

/

111

https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/OpenGVLab/GUI-Odyssey
https://github.com/OpenGVLab/GUI-Odyssey
https://yuxiangchai.github.io/AMEX/
https://yuxiangchai.github.io/AMEX/
https://yuxiangchai.github.io/AMEX/
https://yuxiangchai.github.io/AMEX/
https://github.com/apple/ml-ferret
https://github.com/apple/ml-ferret
https://github.com/apple/ml-ferret
https://github.com/apple/ml-ferret
https://github.com/IMNearth/CoAT
https://github.com/IMNearth/CoAT
https://github.com/IMNearth/CoAT
https://github.com/IMNearth/CoAT
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning

Published in Transactions on Machine Learning Research (06/2025)

Table 37: Overview of datasets for optimizing LLMs tailored for mobile GUI agents (Part III).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

Mobile3M
Wu et al.
(2024c)

Android Mo-
bile

Real-world
interactions,
simulations

UI screenshots,
XML docu-
ments, action
sequences

3,098,786
UI pages,
20,138,332
actions

Simulation algo-
rithm

Large-scale
Chinese mobile
GUI dataset
with unique nav-
igation graph

https://
github.com/
Meituan-AutoML/
MobileVLM

AndroidLab
Xu et al.
(2024i)

Android Mo-
bile

Human
design,
LLM self-
exploration,
academic
datasets

Text instruc-
tions, action
sequences,
XML data,
screenshots

10.5k traces,
94.3k steps

Human annota-
tion, LLM self-
exploration

XML-based
interaction data
with unified
action space

https:
//github.
com/THUDM/
Android-Lab

MobileViews
Gao et al.
(2024e)

Android Mo-
bile

LLM-
enhanced
app traversal
tool

Screenshot-
view hierarchy
pairs

600,000
screenshots,
VH pairs
from 20,000+
apps

LLM-enhanced
crawler

Largest open-
source mobile
screen dataset

https://
huggingface.
co/
datasets/
mllmTeam/
MobileViews

FedMABench
Wang et al.
(2025d)

Android Mo-
bile

AndroidControl
Li et al.
(2024e),
AITW
Rawles et al.
(2023)

Textual task
descriptions,
action se-
quences, and
GUI screen-
shots

6 dataset se-
ries with over
30 subsets

Inferred from ex-
isting Android
datasets

The first dataset
designed to
benchmark
federated mobile
GUI agents

https://
github.com/
wwh0411/
FedMABench

GUI-Xplore
Sun et al.
(2025b)

Mobile An-
droid

Combination
of automated
exploration
and manual
design

Exploration
videos, textual
tasks, QA
pairs, view
hierarchies,
GUI screen-
shots, action
sequences, and
GUI transition
graphs

312 apps,
115 hours of
video, 32,569
QA pairs,
41,293 ac-
tions, about
200 pages
per app

Automated and
human explo-
ration

Introduces an
exploration-
based pretrain-
ing paradigm
that provides
rich app-specific
priors through
video data

https://
github.com/
921112343/
GUI-Xplore

112

https://github.com/Meituan-AutoML/MobileVLM
https://github.com/Meituan-AutoML/MobileVLM
https://github.com/Meituan-AutoML/MobileVLM
https://github.com/Meituan-AutoML/MobileVLM
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews
https://huggingface.co/datasets/mllmTeam/MobileViews
https://github.com/wwh0411/FedMABench
https://github.com/wwh0411/FedMABench
https://github.com/wwh0411/FedMABench
https://github.com/wwh0411/FedMABench
https://github.com/921112343/GUI-Xplore
https://github.com/921112343/GUI-Xplore
https://github.com/921112343/GUI-Xplore
https://github.com/921112343/GUI-Xplore

Published in Transactions on Machine Learning Research (06/2025)

Table 38: Overview of datasets for optimizing LLMs tailored for computer GUI agents.

Dataset Platform Source Content Scale Collection
Method

Highlight Link

ScreenAgent
Niu et al.
(2024)

Linux, Win-
dows OS

Human-
designed

GUI screen-
shots, action
sequences

273 task ses-
sions, 3,005
training
screenshots,
898 test
screenshots

Human annota-
tion

VLM-based
agent across
multiple desktop
environments

https://
github.com/
niuzaisheng/
ScreenAgent

LAM Wang
et al. (2024h)

Windows OS Application
documenta-
tion, Wiki-
How articles,
Bing search
queries

Task descrip-
tions in natural
language, step-
by-step plans,
action se-
quences, GUI
screenshots

76,672
task-plan
pairs, 2,192
task-action
trajectories

Instantiated us-
ing GPT-4, with
actions tested
and validated
in the Windows
environment us-
ing UFO Zhang
et al. (2024a)

Provides a struc-
tured pipeline
for collecting,
validating, and
augmenting
data, enabling
high-quality
training for
action-oriented
AI models.

https://
github.com/
microsoft/
UFO/tree/
main/
dataflow

DeskVision
Xu et al.
(2025)

Windows,
macOS, and
Linux desk-
tops

Internet GUI screen-
shots with
annotated
bounding
boxes for UI
elements and
detailed region
captions

54,855
screenshots
with 303,622
UI element
annotations

UI elements
detected using
OmniParser and
PaddleOCR

The first large-
scale, open-
source dataset
focusing on real-
world desktop
GUI scenarios
across operating
systems

/

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin
Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent arena: Evaluating
multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/2409.08264.

Mark A Boshart and Martha J Kosa. Growing a gui from an xml tree. ACM SIGCSE Bulletin, 35(3):223–223,
2003.

Jeffrey M Bradshaw, Paul J Feltovich, and Matthew Johnson. Human–agent interaction. In The handbook of
human-machine interaction, pp. 283–300. CRC Press, 2017.

Paul Brie, Nicolas Burny, Arthur Sluÿters, and Jean Vanderdonckt. Evaluating a large language model on
searching for gui layouts. Proceedings of the ACM on Human-Computer Interaction, 7(EICS):1–37, 2023.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlfsha-
gen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

Andreas Bruns, Andreas Kornstadt, and Dennis Wichmann. Web application tests with selenium. IEEE
software, 26(5):88–91, 2009.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A. Plummer.
A dataset for interactive vision-language navigation with unknown command feasibility, 2022. URL
https://arxiv.org/abs/2202.02312.

Hongru Cai, Yongqi Li, Wenjie Wang, Fengbin Zhu, Xiaoyu Shen, Wenjie Li, and Tat-Seng Chua. Large
language models empowered personalized web agents. arXiv preprint arXiv:2410.17236, 2024a.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture of
experts. arXiv preprint arXiv:2407.06204, 2024b.

Erik Cambria, Lorenzo Malandri, Fabio Mercorio, Navid Nobani, and Andrea Seveso. XAI meets llms: A
survey of the relation between explainable ai and large language models, 2024. URL https://arxiv.org/
abs/2407.15248.

113

https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2202.02312
https://arxiv.org/abs/2407.15248
https://arxiv.org/abs/2407.15248

Published in Transactions on Machine Learning Research (06/2025)

Table 39: Overview of datasets for optimizing LLMs tailored for cross-platform GUI agents (Part I).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

Visual-
AgentBench
Liu et al.
(2024i)

Android Mo-
bile, Web

VAB-Mobile:
Android
Virtual
Device, VAB-
WebArena-
Lite: We-
bArena Koh
et al. (2024a)

Task instruc-
tions, action
sequences,
screen observa-
tions

VAB-Mobile:
1,213 trajec-
tories, 10,175
steps; VAB-
WebArena-
Lite: 1,186
trajectories,
9,522 steps

Program-based
solvers, agent
bootstrapping,
human demon-
strations

Systematic eval-
uation of VLM
as a visual foun-
dation agent
across multiple
scenarios

https:
//github.
com/THUDM/
VisualAgentBench

GUICourse
Chen et al.
(2024i)

Android Mo-
bile, Web

Web scrap-
ing, simula-
tion, manual
design

GUI screen-
shots, action
sequences,
OCR tasks,
QA pairs

10 million
website page-
annotation
pairs, 67,000
action in-
structions

LLM-
based auto-
annotation,
crowd-sourcing

Dataset suite for
enhancing VLM
GUI navigation
on web and mo-
bile platforms

https:
//github.
com/yiye3/
GUICourse

GUI-
World Chen
et al. (2024c)

OS, Mobile,
Web, XR

Student
workers,
YouTube
instructional
videos

GUI videos,
human-
annotated
keyframes,
captions, QA
data, action
sequences

12,000
videos,
83,176
frames

Human annota-
tion

Designed for dy-
namic, sequen-
tial GUI tasks
with video data

https://
gui-world.
github.io/

ScreenAI
Baechler
et al. (2024)

Android,
iOS, Desk-
top/Web

Crawling
apps and
webpages,
synthetic QA

Screen an-
notation,
screen QA,
navigation,
summarization

Annotation:
hundreds
of millions;
QA: tens
of millions;
Navigation:
millions

Model, human
annotation

Comprehensive
pretraining and
fine-tuning for
GUI tasks across
platforms

https://
github.com/
google%
2Dresearch%
2Ddatasets/
screen_
annotation

Web-Hybrid
Gou et al.
(2024)

Web, An-
droid Mobile

Web-
synthetic
data

Screenshots,
text-based
referring ex-
pressions,
coordinates on
GUIs

10 mil-
lion GUI
elements,
1.3 million
screenshots

Rule-based syn-
thesis, LLMs for
referring expres-
sions

Largest dataset
for GUI visual
grounding

https://
osu-nlp-group.
github.io/
UGround/

GUIDE
Chawla et al.
(2024)

Computer
and Web

Direct sub-
missions
from busi-
nesses and
survey re-
sponses

Task descrip-
tions, GUI
screenshots, ac-
tion sequences,
CoT reasoning,
spatial ground-
ing

N/A Collected
through NEX-
TAG, an auto-
mated annota-
tion tool

Integrates im-
ages, action
sequences, task
descriptions,
and spatial
grounding into a
unified dataset

https://
github.com/
superagi/
GUIDE

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong,
Hanchong Zhang, Yuchen Mao, Wenjing Hu, Tianbao Xie, Hongshen Xu, Danyang Zhang, Sida Wang,
Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Victor Zhong, Lu Chen, Kai Yu, and Tao
Yu. Spider2-v: How far are multimodal agents from automating data science and engineering workflows?,
2024. URL https://arxiv.org/abs/2407.10956.

William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. In Proceedings of SDAIR-94,
3rd annual symposium on document analysis and information retrieval, volume 161175, pp. 14. Ann Arbor,
Michigan, 1994.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim, Sunghwan
Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and leveraging environment
dynamics in web navigation, 2024. URL https://arxiv.org/abs/2410.13232.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents, 2024. URL
https://arxiv.org/abs/2407.17490.

114

https://github.com/THUDM/VisualAgentBench
https://github.com/THUDM/VisualAgentBench
https://github.com/THUDM/VisualAgentBench
https://github.com/THUDM/VisualAgentBench
https://github.com/yiye3/GUICourse
https://github.com/yiye3/GUICourse
https://github.com/yiye3/GUICourse
https://github.com/yiye3/GUICourse
https://gui-world.github.io/
https://gui-world.github.io/
https://gui-world.github.io/
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://github.com/google%2Dresearch%2Ddatasets/screen_annotation
https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://osu-nlp-group.github.io/UGround/
https://github.com/superagi/GUIDE
https://github.com/superagi/GUIDE
https://github.com/superagi/GUIDE
https://github.com/superagi/GUIDE
https://arxiv.org/abs/2407.10956
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2407.17490

Published in Transactions on Machine Learning Research (06/2025)

Table 40: Overview of datasets for optimizing LLMs tailored for cross-platform GUI agents (Part II).

Dataset Platform Source Content Scale Collection
Method

Highlight Link

xLAM Zhang
et al. (2024d)

Web and
tools used

Synthesized
data, and
existing
dataset

Textual tasks,
action se-
quences,
function-
calling data

60,000 data
points

Collected using
AI models with
human verifica-
tion steps

Provides a
unified format
across diverse
environments,
enhancing gener-
alizability and
error detection
for GUI agents

https://
github.com/
SalesforceAIResearch/
xLAM

Insight-
UI Shen et al.
(2024a)

iOS, An-
droid, Win-
dows, Linux,
Web

Common
Crawl corpus

Textual tasks,
plans, action
sequences, GUI
screenshots

434,000
episodes,
1,456,000
images

Automatic
simulations
performed by a
browser API

Instruction-free
paradigm and
entirely auto-
generated

/

OS-Genesis
Sun et al.
(2024b)

Web and An-
droid

Reverse task
synthesis,
where the
GUI envi-
ronment is
explored
interactively
without pre-
defined tasks
or human
annotations.

High-level
instructions,
low-level in-
structions,
action se-
quences, and
environment
states.

1,000 synthe-
sized trajec-
tories.

Model-based
interaction-
driven approach
with GPT-4o.

Reverses the
conventional
task-driven data
collection pro-
cess by enabling
exploration-first
trajectory syn-
thesis.

https://
qiushisun.
github.io/
OS-Genesis-Home/

Navi-plus
Cheng et al.
(2025b)

Web and An-
droid

AndroidControl
Li et al.
(2024e) and
Mind2Web
Deng et al.
(2023)

Task de-
scriptions,
GUI action
trajectories,
low-level step
instructions,
screenshots,
and follow-up
ASK/SAY
interaction
pairs

/ LLM-
automated
with human
validation

Introduces a
Self-Correction
GUI Navigation
task featuring
the novel ASK
action for recov-
ering missing
information

/

Explorer
Chaimalas
et al. (2025)

Web and An-
droid

Automated
traversal of
real websites
and Android
apps

UI screenshots,
bounding
boxes of in-
teractable
elements,
screen similar-
ity labels, and
user actions

KhanAcademy
(Web): 2,841
interactables,
378 screen
similarity
samples;
Spotify (An-
droid): 1,207
interactables,
451 screen
similarity
samples

Automated
tools, HTML
parsing, Accessi-
bility Tree

Platform-
independent,
supports auto-
labeling, and
enables trace
recording and
voice-controlled
GUI navigation

https://
github.com/
varnelis/
Explorer

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu, Guozhi Wang, Shuai Ren, Siyuan Huang, and Hongsheng
Li. A3: Android agent arena for mobile gui agents, 2025. URL https://arxiv.org/abs/2501.01149.

Iason Chaimalas, Arnas VyĹĄniauskas, and Gabriel Brostow. Explorer: Robust collection of interactable gui
elements. arXiv preprint arXiv:2504.09352, 2025.

Tathagata Chakraborti, Vatche Isahagian, Rania Khalaf, Yasaman Khazaeni, Vinod Muthusamy, Yara
Rizk, and Merve Unuvar. From robotic process automation to intelligent process automation: –emerging
trends–. In Business Process Management: Blockchain and Robotic Process Automation Forum: BPM
2020 Blockchain and RPA Forum, Seville, Spain, September 13–18, 2020, Proceedings 18, pp. 215–228.
Springer, 2020.

Chi-Min Chan, Jianxuan Yu, Weize Chen, Chunyang Jiang, Xinyu Liu, Weijie Shi, Zhiyuan Liu, Wei Xue,
and Yike Guo. Agentmonitor: A plug-and-play framework for predictive and secure multi-agent systems.

115

https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://qiushisun.github.io/OS-Genesis-Home/
https://qiushisun.github.io/OS-Genesis-Home/
https://qiushisun.github.io/OS-Genesis-Home/
https://qiushisun.github.io/OS-Genesis-Home/
https://github.com/varnelis/Explorer
https://github.com/varnelis/Explorer
https://github.com/varnelis/Explorer
https://github.com/varnelis/Explorer
https://arxiv.org/abs/2501.01149

Published in Transactions on Machine Learning Research (06/2025)

Table 41: Overview of foundation models for LLM-brained GUI agents (Part I).

Model Modality Model Size Architecture Training Methods Highlights Open-
Source

Link

GPT-4o
Hurst et al.
(2024)

Text,
audio,
image,
and
video

- Multimodal autore-
gressive architec-
ture

Pre-trained on a mix
of public data, further
trained for alignment with
human preferences and
safety considerations

Unified multimodal archi-
tecture that seamlessly
processes and generates
outputs across text, au-
dio, image, and video, of-
fering faster and more cost-
effective operation than its
predecessors

No /

GPT-4V
OpenAI
(2023)

Text
and
image

- - Pre-trained on a large
dataset of text and im-
age data, followed by fine-
tuning with reinforcement
learning from human feed-
back (RLHF)

Notable for its multimodal
capabilities, allowing it to
analyze and understand
images alongside text

No /

Gemini
Team et al.
(2023)

Text,
image,
audio,
and
video

Nano
ver-
sions:
1.8B/3.25B

Enhanced Trans-
former decoders

Large-scale pre-training on
multimodal data, followed
by supervised fine-tuning,
reward modeling, and
RLHF

Achieves state-of-the-art
performance across mul-
timodal tasks, including
a groundbreaking 90% on
the MMLU benchmark,
and demonstrates capacity
for on-device deployment
with small model sizes

No /

Claude
3.5 Sonnet
(Computer
Use) An-
thropic
(2024); Hu
et al. (2024a)

Text
and
image

- ReAct-based reason-
ing

- Pioneering role in GUI au-
tomation as the first pub-
lic beta model to utilize
a vision-only paradigm for
desktop task automation

No /

Operator
OpenAI
(2025a;b)

Text
and
Image

- Built on GPT-4o Supervised learning and re-
inforcement learning

Trained to use a computer
like a human, achieving re-
markable performance on
benchmarks

No /

Qwen-VL
Bai et al.
(2023b)

Text
and
image

9.6B A Vision Trans-
former (ViT)
Dosovitskiy et al.
(2021) as the visual
encoder, with a
large language
model based on the
Qwen-7B architec-
ture

Two stages of pre-training
and a final stage of instruc-
tion fine-tuning

Achieves state-of-the-art
performance on vision-
language benchmarks and
supports fine-grained vi-
sual understanding

Yes httpss:
//github.
com/QwenLM/
Qwen-VL

Qwen2-VL
Wang et al.
(2024j)

Text,
image,
and
video

2B/7B/72B ViT Dosovitskiy
et al. (2021) as
the vision encoder,
paired with the
Qwen2 series of
language models

The ViT is trained with
image-text pairs; all pa-
rameters are unfrozen for
broader multimodal learn-
ing with various datasets;
fine-tuning the LLM on in-
struction datasets

Introduces Naive Dynamic
Resolution for variable res-
olution image processing
and Multimodal Rotary
Position Embedding for en-
hanced multimodal inte-
gration

Yes httpss:
//github.
com/QwenLM/
Qwen2-VL

arXiv preprint arXiv:2408.14972, 2024.

Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. Gui testing using computer vision. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 1535–1544, 2010.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

Rajat Chawla, Adarsh Jha, Muskaan Kumar, Mukunda NS, and Ishaan Bhola. Guide: Graphical user
interface data for execution. arXiv preprint arXiv:2404.16048, 2024.

Chaoran Chen, Zhiping Zhang, Bingcan Guo, Shang Ma, Ibrahim Khalilov, Simret A Gebreegziabher, Yanfang
Ye, Ziang Xiao, Yaxing Yao, Tianshi Li, et al. The obvious invisible threat: Llm-powered gui agents’
vulnerability to fine-print injections. arXiv preprint arXiv:2504.11281, 2025a.

116

httpss://github.com/QwenLM/Qwen-VL
httpss://github.com/QwenLM/Qwen-VL
httpss://github.com/QwenLM/Qwen-VL
httpss://github.com/QwenLM/Qwen-VL
httpss://github.com/QwenLM/Qwen2-VL
httpss://github.com/QwenLM/Qwen2-VL
httpss://github.com/QwenLM/Qwen2-VL
httpss://github.com/QwenLM/Qwen2-VL

Published in Transactions on Machine Learning Research (06/2025)

Table 42: Overview of foundation models for LLM-brained GUI agents (Part II).

Model Modality Model Size Architecture Training Methods Highlights Open-
Source

Link

InternVL-2
Chen et al.
(2024l;k)

Text,
image,
video,
and
medical
data

1B/2B/4B/
8B/26B/40B

ViT as the vision en-
coder and a LLM as
the language compo-
nent

Progressive alignment
strategy, starting with
coarse data and moving to
fine data

Demonstrates powerful
capabilities in handling
complex multimodal tasks
with various model sizes

Yes httpss:
//internvl.
github.
io/blog/
2024-07-02-InternVL-2.
0/

CogVLM
Wang et al.
(2024m)

Text
and
image

17B A ViT encoder,
a two-layer MLP
adapter, a pre-
trained large
language model,
and a visual expert
module

Stage 1 focuses on im-
age captioning; Stage 2
combines image caption-
ing and referring expres-
sion comprehension tasks

Achieves deep integration
of visual and language fea-
tures while preserving the
full capabilities of large
language models

Yes httpss:
//github.
com/THUDM/
CogVLM

Ferret You
et al. (2023)

Text
and
image

7B/13B Decoder-only archi-
tecture based on the
Vicuna model, com-
bined with a visual
encoder

A combination of super-
vised training and addi-
tional instruction tuning

Ability to handle free-form
region inputs via its hybrid
region representation, en-
abling versatile spatial un-
derstanding and grounding

Yes httpss:
//github.
com/apple/
ml-ferret

LLaVA Liu
et al. (2024b)

Text
and
image

7B/13B A vision encoder
(CLIP ViT-L/14),
a language decoder
(Vicuna)

Pre-training using filtered
image-text pairs, fine-
tuning with a multimodal
instruction-following
dataset

Its lightweight architecture
enables quick experimenta-
tion, demonstrating capa-
bilities close to GPT-4 in
multimodal reasoning

Yes httpss:
//llava-vl.
github.io

LLaVA-1.5
Liu et al.
(2024a)

Text
and
image

7B/13B A vision encoder
(CLIP-ViT) and
an encoder-decoder
LLM architecture
(e.g., Vicuna or
LLaMA)

Pre-training on vision-
language alignment with
image-text pairs; visual
instruction tuning with
specific task-oriented data

Notable for its data effi-
ciency and scaling to high-
resolution image inputs

Yes httpss:
//llava-vl.
github.io

BLIP-2 Li
et al. (2023c)

Text
and
image

3.4B/12.1B A frozen image en-
coder, a lightweight
Querying Trans-
former to bridge
the modality gap,
and a frozen large
language model

Vision-language represen-
tation learning: trains the
Q-Former with a frozen
image encoder; Vision-to-
language generative learn-
ing: connects the Q-
Former to a frozen LLM to
enable image-to-text gener-
ation

Achieves state-of-the-art
performance on various
vision-language tasks with
a compute-efficient strat-
egy by leveraging frozen
pre-trained models

Yes httpss://
github.com/
salesforce/
LAVIS/
tree/main/
projects/
blip2

Phi-3.5-
Vision Abdin
et al. (2024)

Text
and
image

4.2B Image encoder:
CLIP ViT-L/14
to process visual
inputs, and trans-
former decoder
based on the Phi-
3.5-mini model for
textual outputs

Pre-training on a combina-
tion of interleaved image-
text datasets, synthetic
OCR data, chart/table
comprehension data, and
text-only data; supervised
fine-tuning using large-
scale multimodal and text
datasets; Direct Preference
Optimization (DPO) to
improve alignment, safety,
and multimodal task per-
formance

Excels in reasoning over
visual and textual in-
puts, demonstrating com-
petitive performance on
single-image and multi-
image tasks while being
compact

Yes httpss://
github.com/
microsoft/
Phi-3CookBook/
tree/main

Chaoran Chen, Zhiping Zhang, Ibrahim Khalilov, Bingcan Guo, Simret A Gebreegziabher, Yanfang Ye, Ziang
Xiao, Yaxing Yao, Tianshi Li, and Toby Jia-Jun Li. Toward a human-centered evaluation framework for
trustworthy llm-powered gui agents. arXiv preprint arXiv:2504.17934, 2025b.

Daihang Chen, Yonghui Liu, Mingyi Zhou, Yanjie Zhao, Haoyu Wang, Shuai Wang, Xiao Chen, Tegawendé F
Bissyandé, Jacques Klein, and Li Li. Llm for mobile: An initial roadmap. arXiv preprint arXiv:2407.06573,
2024a.

Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang Xie,
Zhaoyang Liu, Jinyang Gao, et al. Data-juicer: A one-stop data processing system for large language
models. In Companion of the 2024 International Conference on Management of Data, pp. 120–134, 2024b.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong Wang,
Huichi Zhou, Yiqiang Li, Tianshuo Zhou, Yue Yu, Chujie Gao, Qihui Zhang, Yi Gui, Zhen Li, Yao Wan,

117

httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://internvl.github.io/blog/2024-07-02-InternVL-2.0/
httpss://github.com/THUDM/CogVLM
httpss://github.com/THUDM/CogVLM
httpss://github.com/THUDM/CogVLM
httpss://github.com/THUDM/CogVLM
httpss://github.com/apple/ml-ferret
httpss://github.com/apple/ml-ferret
httpss://github.com/apple/ml-ferret
httpss://github.com/apple/ml-ferret
httpss://llava-vl.github.io
httpss://llava-vl.github.io
httpss://llava-vl.github.io
httpss://llava-vl.github.io
httpss://llava-vl.github.io
httpss://llava-vl.github.io
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/salesforce/LAVIS/tree/main/projects/blip2
httpss://github.com/microsoft/Phi-3CookBook/tree/main
httpss://github.com/microsoft/Phi-3CookBook/tree/main
httpss://github.com/microsoft/Phi-3CookBook/tree/main
httpss://github.com/microsoft/Phi-3CookBook/tree/main
httpss://github.com/microsoft/Phi-3CookBook/tree/main

Published in Transactions on Machine Learning Research (06/2025)

Table 43: An overview of GUI-optimized models on web platforms.

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

Agent Q
Putta et al.
(2024)

Web LLaMA-3
70B Dubey
et al. (2024)

70B HTML DOM
representations

Plans,
thoughts,
actions, and
action expla-
nations

WebShop bench-
mark and
OpenTable
dataset

Combines Monte Carlo
Tree Search (MCTS) with
self-critique mechanisms,
leveraging reinforcement
learning to achieve excep-
tional performance

https://
github.com/
sentient%
2Dengineering/
agent-q

GLAINTEL
Fereidouni
& Siddique
(2024)

Web Flan-T5
Chung et al.
(2024)

780M User instruc-
tions and
observations of
webpage state

GUI actions 1.18M real-
world products,
12,087 crowd-
sourced natural
language intents,
1,010 human
demonstrations

Efficient use of smaller
LLMs, and integration of
RL and human demon-
strations for robust perfor-
mance

/

WebN-T5
Thil et al.
(2024)

Web T5 Raffel
et al. (2020)

- HTML and
DOM with
screenshots

Hierarchical
navigation
plans and
GUI interac-
tions

MiniWoB++,
13,000 human-
made demon-
strations

Combines supervised
learning and reinforce-
ment learning to address
limitations of previous
models in memorization
and generalization

/

OpenWeb-
Voyager He
et al. (2024c)

Web Idefics2-
8b-instruct
Laurençon
et al. (2024a)

8B GUI screenshots,
accessibility
trees

Actions on
GUI, plan-
ning and
thought,
answers to
queries

Mind2Web
and WebVoy-
ager datasets,
and generated
queries for
real-world web
navigation

Combining imitation learn-
ing with a feedback loop
for continuous improve-
ment

https://
github.com/
MinorJerry/
OpenWebVoyager

WebRL Qi
et al. (2024)

Web Llama-3.1
Dubey et al.
(2024) and
GLM-4 Du
et al. (2021)

8B/9B/
70B

Task instruc-
tions, action
history, HTML
content

Actions,
element
identifiers,
explanations
or notes

WebArena-Lite Introduces a self-evolving
online curriculum rein-
forcement learning frame-
work, which dynamically
generates tasks based on
past failures and adapts to
the agent’s skill level

https:
//github.
com/THUDM/
WebRL

WebGUM
Furuta et al.
(2023)

Web Flan-T5
Chung et al.
(2024) and
Vision Trans-
former (ViT)
Dosovitskiy
et al. (2021)

3B HTML, screen-
shots, interac-
tion history,
instructions

Web naviga-
tion actions
and free-form
text

MiniWoB++
and WebShop
benchmarks

Integrates temporal and lo-
cal multimodal perception,
combining HTML and vi-
sual tokens, and uses an
instruction-finetuned lan-
guage model for enhanced
reasoning and task gener-
alization

https:
//console.
cloud.
google.com/
storage/
browser/
gresearch/
webllm

Pan Zhou, Jianfeng Gao, and Lichao Sun. Gui-world: A dataset for gui-oriented multimodal llm-based
agents, 2024c. URL https://arxiv.org/abs/2406.10819.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.
Object detection for graphical user interface: Old fashioned or deep learning or a combination? In
proceedings of the 28th ACM joint meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1202–1214, 2020.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui Zhou,
Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone agent evaluation.
In NeurIPS 2024 Workshop on Open-World Agents, 2024d.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze Zhou, Hsiang-Ting Chen, and Qi Wu. Webvln: Vision-
and-language navigation on websites. Proceedings of the AAAI Conference on Artificial Intelligence, 38(2):
1165–1173, Mar. 2024e. doi: 10.1609/aaai.v38i2.27878. URL https://ojs.aaai.org/index.php/AAAI/
article/view/27878.

Wei Chen and Zhiyuan Li. Octopus v2: On-device language model for super agent, 2024a. URL https:
//arxiv.org/abs/2404.01744.

118

https://github.com/sentient%2Dengineering/agent-q
https://github.com/sentient%2Dengineering/agent-q
https://github.com/sentient%2Dengineering/agent-q
https://github.com/sentient%2Dengineering/agent-q
https://github.com/sentient%2Dengineering/agent-q
https://github.com/MinorJerry/OpenWebVoyager
https://github.com/MinorJerry/OpenWebVoyager
https://github.com/MinorJerry/OpenWebVoyager
https://github.com/MinorJerry/OpenWebVoyager
https://github.com/THUDM/WebRL
https://github.com/THUDM/WebRL
https://github.com/THUDM/WebRL
https://github.com/THUDM/WebRL
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm
https://arxiv.org/abs/2406.10819
https://ojs.aaai.org/index.php/AAAI/article/view/27878
https://ojs.aaai.org/index.php/AAAI/article/view/27878
https://arxiv.org/abs/2404.01744
https://arxiv.org/abs/2404.01744

Published in Transactions on Machine Learning Research (06/2025)

Table 44: An overview of GUI-optimized models on mobile platforms (Part I).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

Mobile-VLM
Wu et al.
(2024c)

Mobile An-
droid

Qwen-VL-
Chat Bai
et al. (2023b)

9.8B Screenshots and
structured XML
documents

Action pre-
dictions,
navigation
steps, and
element loca-
tions

Mobile3M, in-
cludes 3 million
UI pages, 20+
million actions,
and XML data
structured as
directed graphs

Mobile-specific pretraining
tasks that enhance intra-
and inter-UI understand-
ing, with a uniquely large
and graph-structured Chi-
nese UI dataset (Mo-
bile3M)

https:
//github.
com/XiaoMi/
mobilevlm

Octo-
planner
Chen et al.
(2024f)

Mobile de-
vices

Phi-3 Mini
Abdin et al.
(2024)

3.8B User queries and
available func-
tion descriptions

Execution
steps

1,000 data sam-
ples generated
using GPT-4

Optimized for resource-
constrained devices to en-
sure low latency, privacy,
and offline functionality

https://
huggingface.
co/
NexaAIDev/
octopus-planning

DigiRL Bai
et al. (2024)

Mobile An-
droid

AutoUI
Zhang &
Zhang (2024)

1.3B Screenshots GUI actions AiTW Offline-to-online reinforce-
ment learning, bridging
gaps in static and dynamic
environments

https://
github.com/
DigiRL-agent/
digirl

LVG Qian
et al. (2024)

Mobile An-
droid

Swin Trans-
former Liu
et al. (2021)
and BERT
Devlin
(2018)

- UI screenshots
and free-form
language expres-
sions

Bounding
box coordi-
nates

UIBert dataset
and synthetic
dataset

Unifies detection and
grounding tasks through
layout-guided contrastive
learning

/

Ferret-UI
You et al.
(2025)

Android and
iPhone plat-
forms

Ferret You
et al. (2023)

7B/13B Raw screen pix-
els, sub-images
divided for
finer resolution,
bounding boxes
and regional
annotations

Widget
bounding
boxes, text
from OCR
tasks, de-
scriptions of
UI elements
or overall
screen func-
tionality, UI
interaction
actions

Generated from
RICO (for An-
droid) and AMP
(for iPhone)

Multi-platform support
with high-resolution adap-
tive image encoding

https:
//github.
com/apple/
ml-ferret/
tree/main/
ferretui

AppVLM
Papoudakis
et al. (2025)

Android mo-
bile devices

Paligemma-
3B-896 Beyer
et al. (2024)

3B Annotated
screenshots with
bounding boxes
and UI labels

GUI actions AndroidControl
Li et al. (2024e),
AndroidWorld
Rawles et al.
(2024)

A lightweight model that
achieves near-GPT-4o per-
formance in Android con-
trol tasks while being 10×
faster and more resource-
efficient.

/

Digi-Q Bai
et al. (2025a)

Mobile An-
droid

LLaVA-1.5
Liu et al.
(2024a)

7B GUI screenshots GUI actions,
Q-values

AitW Rawles
et al. (2023)

Introduces a VLM-based
Q-function for GUI agent
training, enabling rein-
forcement learning without
online interactions.

https://
github.com/
DigiRL-agent/
digiq

VEM Zheng
et al. (2025b)

Mobile An-
droid

Qwen2VL
Wang et al.
(2024j)

7B GUI screenshots GUI actions,
Q-values

AitW Rawles
et al. (2023)

Unlike traditional RL
methods that require
environment interactions,
VEM enables training
purely on offline data
with a Value Environment
Model.

https://
github.com/
microsoft/
GUI-Agent-RL

Wei Chen and Zhiyuan Li. Octopus v3: Technical report for on-device sub-billion multimodal ai agent, 2024b.
URL https://arxiv.org/abs/2404.11459.

Wei Chen and Zhiyuan Li. Octopus v4: Graph of language models, 2024c. URL https://arxiv.org/abs/
2404.19296.

Wei Chen, Zhiyuan Li, Zhen Guo, and Yikang Shen. Octo-planner: On-device language model for planner-
action agents, 2024f. URL https://arxiv.org/abs/2406.18082.

Wei Chen, Zhiyuan Li, and Mingyuan Ma. Octopus: On-device language model for function calling of software
apis, 2024g. URL https://arxiv.org/abs/2404.01549.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing Xie,
Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents for collaborative
intelligence, 2024h. URL https://arxiv.org/abs/2407.07061.

119

https://github.com/XiaoMi/mobilevlm
https://github.com/XiaoMi/mobilevlm
https://github.com/XiaoMi/mobilevlm
https://github.com/XiaoMi/mobilevlm
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://huggingface.co/NexaAIDev/octopus-planning
https://github.com/DigiRL-agent/digirl
https://github.com/DigiRL-agent/digirl
https://github.com/DigiRL-agent/digirl
https://github.com/DigiRL-agent/digirl
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/apple/ml-ferret/tree/main/ferretui
https://github.com/DigiRL-agent/digiq
https://github.com/DigiRL-agent/digiq
https://github.com/DigiRL-agent/digiq
https://github.com/DigiRL-agent/digiq
https://github.com/microsoft/GUI-Agent-RL
https://github.com/microsoft/GUI-Agent-RL
https://github.com/microsoft/GUI-Agent-RL
https://github.com/microsoft/GUI-Agent-RL
https://arxiv.org/abs/2404.11459
https://arxiv.org/abs/2404.19296
https://arxiv.org/abs/2404.19296
https://arxiv.org/abs/2406.18082
https://arxiv.org/abs/2404.01549
https://arxiv.org/abs/2407.07061

Published in Transactions on Machine Learning Research (06/2025)

Table 45: An overview of GUI-optimized models on mobile platforms (Part II).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

Octopus
Chen et al.
(2024g)

Mobile de-
vices

CodeLlama-
7B Rozière
et al. (2024),
Google
Gemma 2B
Team et al.
(2024)

7B,
2B

API documenta-
tion examples

Function
names with
arguments
for API calls

RapidAPI Hub Use of conditional masking
to enforce correct output
formatting

/

Octopus v2
Chen & Li
(2024a)

Edge devices Gemma-2B
Team et al.
(2024)

2B User queries
and descriptions
of available
functions

Function
calls with
precise pa-
rameters

20 Android
APIs, with up
to 1,000 data
points generated
for training

Functional tokenization
strategy, which assigns
unique tokens to function
calls, significantly reduc-
ing the context length
required for accurate
prediction

/

Octopus v3
Chen & Li
(2024b)

Edge devices CLIP-based
model and
a causal
language
model

Less
than 1
billion
pa-
rame-
ters

Queries and
commands,
images and func-
tional tokens

Functional
tokens for
actions

Leveraged from
Octopus v2
Chen & Li
(2024a)

Introduction of functional
tokens for multimodal ap-
plications enables the rep-
resentation of any function
as a token, enhancing the
model’s flexibility

/

Octopus v4
Chen & Li
(2024c)

Serverless
cloud-based
platforms
and edge
devices

17 models Varies User queries Domain-
specific
answers,
actions

Synthetic
datasets similar
to Octopus v2

Graph-based framework in-
tegrating multiple special-
ized models for optimized
performance

https:
//github.
com/NexaAI/
octopus-v4

VGA Meng
et al. (2024)

Mobile An-
droid

LLaVA-v1.6-
mistral-7B
Liu et al.
(2024b)

7B GUI screenshots
with positional,
visual, and hier-
archical data

Actions and
function
calls, descrip-
tions of GUI
components,
navigation
and task
planning

63.8k-image
dataset con-
structed from
the RICO

Minimizes hallucinations
in GUI comprehen-
sion by employing an
image-centric fine-tuning
approach, ensuring bal-
anced attention between
text and visual content

https://
github.com/
Linziyang1999/
VGA%
2Dvisual%
2DGUI%
2Dassistant

MobileFlow
Nong et al.
(2024)

Mobile
phones

Qwen-VL-
Chat Bai
et al. (2023b)

21B GUI screenshots
with OCR tex-
tual information
and bounding
boxes

GUI actions
and question
answering

70k manually
labeled business-
specific data
spanning 10
business sectors,
and datasets
like RefCOCO,
ScreenQA,
Flickr30K

Hybrid visual encoder
capable of variable-
resolution input and
Mixture of Experts (MoE)
Cai et al. (2024b) for
enhanced performance
and efficiency

/

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong
Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse: From general
vision language models to versatile gui agents, 2024i. URL https://arxiv.org/abs/2406.11317.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil Mustafa,
Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision language models:
Smaller, faster, stronger. arXiv preprint arXiv:2310.09199, 2023.

Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and Dong Hoon Yi. Can we rely on llm agents to draft
long-horizon plans? let’s take travelplanner as an example. arXiv preprint arXiv:2408.06318, 2024j.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language model
in-context tuning. arXiv preprint arXiv:2110.07814, 2021b.

Yurun Chen, Xueyu Hu, Keting Yin, Juncheng Li, and Shengyu Zhang. Aeia-mn: Evaluating the robustness
of multimodal llm-powered mobile agents against active environmental injection attacks. arXiv preprint
arXiv:2502.13053, 2025c.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu,
Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models
with open-source suites. arXiv preprint arXiv:2404.16821, 2024k.

120

https://github.com/NexaAI/octopus-v4
https://github.com/NexaAI/octopus-v4
https://github.com/NexaAI/octopus-v4
https://github.com/NexaAI/octopus-v4
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://github.com/Linziyang1999/VGA%2Dvisual%2DGUI%2Dassistant
https://arxiv.org/abs/2406.11317

Published in Transactions on Machine Learning Research (06/2025)

Table 46: An overview of GUI-optimized models on mobile platforms (Part III).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

UINav Li
et al. (2024f)

Mobile An-
droid

SmallBERT
Turc et al.
(2019)

Agent
model:
320k,
Ref-
eree
model:
430k,
Small-
BERT
model:
17.6MB

UI elements, ut-
terance, screen
representation

Predicted ac-
tions and el-
ement to act
upon

43 tasks across
128 Android
apps and web-
sites, collecting
3,661 demon-
strations

Introduces a macro action
framework and an error-
driven demonstration col-
lection process, signifi-
cantly reducing training ef-
fort while enabling robust
task performance with
small, efficient models suit-
able for mobile devices

/

UI-R1 Lu
et al. (2025b)

Mobile An-
droid

Qwen2.5-VL-
3B

3B GUI screenshots Reasoning
text and GUI
actions

ScreenSpo and
AndroidControl

Introduces a rule-based re-
inforcement learning ap-
proach using GRPO to en-
hance reasoning and action
prediction in GUI tasks
with only 136 examples

https:
//github.
com/lll6gg/
UI-R1

ViMo Luo
et al. (2025a)

Mobile An-
droid

Pre-trained
Stable Diffu-
sion model
Rombach
et al. (2022)

/ Current GUI
image, user ac-
tion (in natural
language), GUI
text representa-
tion

GUI text rep-
resentation
of the next
state and re-
constructed
full GUI
image (visual
prediction
of the next
screen)

Android Control
and AITW

First GUI world model
that predicts future visual
GUI states

https://
ai-agents-2030.
github.io/
ViMo/

Table 47: An overview of GUI-optimized models on computer platforms.

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

Screen-
Agent Niu
et al. (2024)

Linux and
Windows
desktop

CogAgent
Hong et al.
(2023)

18B GUI screenshots Mouse and
keyboard
actions

273 task sessions Comprehensive pipeline of
planning, acting, and re-
flecting to handle real com-
puter screen operations au-
tonomously

https://
github.com/
niuzaisheng/
ScreenAgent

Octopus
Yang et al.
(2025b)

Desktop MPT-7B
MosaicML
(2023) and
CLIP ViT-
L/14 Rad-
ford et al.
(2021)

7B Visual im-
ages, scene
graphs con-
taining objects
and relations,
environment
messages

Executable
action code
and plans

OctoGibson:
476 tasks with
structured ini-
tial and goal
states; Oc-
toMC: 40 tasks
across biomes;
OctoGTA: 25
crafted tasks
spanning dif-
ferent game
settings

Incorporates reinforcement
learning with environmen-
tal feedback

https:
//choiszt.
github.io/
Octopus/

LAM Wang
et al. (2024h)

Windows OS Mistral-7B
Jiang et al.
(2023)

7B Task requests
in natural
language, appli-
cation environ-
mental data

Plans, ac-
tions

76,672 task-plan
pairs, 2,192 task-
action trajecto-
ries

The LAM model bridges
the gap between planning
and action execution in
GUI environments. It
introduces a multi-phase
training pipeline combin-
ing task planning, imita-
tion learning, self-boosting
exploration, and reward-
based optimization for ro-
bust action-oriented per-
formance.

https://
github.com/
microsoft/
UFO/tree/
main/
dataflow

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic
visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24185–24198, 2024l.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick:
Harnessing gui grounding for advanced visual gui agents, 2024a. URL https://arxiv.org/abs/2401.

121

https://github.com/lll6gg/UI-R1
https://github.com/lll6gg/UI-R1
https://github.com/lll6gg/UI-R1
https://github.com/lll6gg/UI-R1
https://ai-agents-2030.github.io/ViMo/
https://ai-agents-2030.github.io/ViMo/
https://ai-agents-2030.github.io/ViMo/
https://ai-agents-2030.github.io/ViMo/
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://github.com/niuzaisheng/ScreenAgent
https://choiszt.github.io/Octopus/
https://choiszt.github.io/Octopus/
https://choiszt.github.io/Octopus/
https://choiszt.github.io/Octopus/
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://github.com/microsoft/UFO/tree/main/dataflow
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935

Published in Transactions on Machine Learning Research (06/2025)

Table 48: An overview of GUI-optimized models on cross-platform agents (Part I).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

RUIG Zhang
et al. (2023e)

Mobile and
desktop

Swin Trans-
former Liu
et al. (2021)
and BART
Lewis (2019)

4 de-
coder
layers

UI screen-
shots and
text instruc-
tions

Bounding
box pre-
dictions in
linguistic
form

MoTIF dataset and
RicoSCA dataset
for mobile UI data
and Common Crawl
for desktop UI data

Innovatively uses policy
gradients to improve
the spatial decoding in
the pixel-to-sequence
paradigm

/

CogAgent
Hong et al.
(2023)

PC, web, and
Android plat-
forms

CogVLM-
17B Wang
et al.
(2024m)

18B GUI screen-
shots
combined
with OCR-
derived text

Task plans,
action se-
quences,
and textual
descriptions

CCS400K, text
recognition
datasets: 80M
synthetic text
images, visual
grounding datasets
and GUI dataset
Mind2Web and
AiTW

High-resolution cross-
module to balance
computational efficiency
and high-resolution input
processing

https:
//github.
com/THUDM/
CogVLM

SeeClick
Cheng et al.
(2024a)

iOS, An-
droid,
macOS,
Windows,
and web

Qwen-VL
Bai et al.
(2023b)

9.6B GUI screen-
shots and
textual in-
structions

GUI actions
and element
locations for
interaction

300k webpages
with text and icons,
RICO, and data
from LLaVA

Ability to perform GUI
tasks purely from screen-
shots and its novel GUI
grounding pre-training ap-
proach

https://
github.com/
njucckevin/
SeeClick

ScreenAI
Baechler
et al. (2024)

Mobile, desk-
top, and
tablet UIs

PaLI-3 Chen
et al. (2023)

5B GUI screen-
shots with
OCR text,
image cap-
tions, and
other visual
elements

Text-based
answers for
questions,
screen an-
notations
with bound-
ing box
coordinates
and labels,
navigation
instructions,
summaries
of screen
content

262M mobile web
screenshots and
54M mobile app
screenshots

Unified representation of
UIs and infographics, com-
bining visual and textual
elements

https://
github.com/
kyegomez/
ScreenAI

Ferret-UI
2 Li et al.
(2024j)

iPhone,
Android,
iPad, Web,
AppleTV

Vicuna-13B
Chiang
et al. (2023),
Gemma-
2B Team
et al. (2024),
Llama3-8B
Dubey et al.
(2024)

2B/8B/13BUI screen-
shots, an-
notated
bounding
boxes and
labels for
UI wid-
gets, OCR-
detected text
and bound-
ing boxes
for text
elements,
source
HTML hier-
archy trees
for web data

Descriptions
of UI el-
ements,
widget clas-
sification,
OCR, tapa-
bility, and
text/widget
location,
interaction
instruc-
tions and
multi-round
interaction-
based QA

Core-set,
GroundUI-18k,
GUIDE, Spotlight

Multi-platform support
with high-resolution adap-
tive image encoding

/

10935.

Pengzhou Cheng, Zheng Wu, Zongru Wu, Aston Zhang, Zhuosheng Zhang, and Gongshen Liu. Os-kairos:
Adaptive interaction for mllm-powered gui agents. arXiv preprint arXiv:2503.16465, 2025a.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao Wang, Zekai
Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelligent agents: Definitions,
methods, and prospects. arXiv preprint arXiv:2401.03428, 2024b.

Ziming Cheng, Zhiyuan Huang, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Navi-plus: Managing
ambiguous gui navigation tasks with follow-up. arXiv preprint arXiv:2503.24180, 2025b.

Antoine Chevrot, Alexandre Vernotte, Jean-Rémy Falleri, Xavier Blanc, and Bruno Legeard. Are autonomous
web agents good testers? arXiv preprint arXiv:2504.01495, 2025.

122

https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://github.com/THUDM/CogVLM
https://github.com/THUDM/CogVLM
https://github.com/THUDM/CogVLM
https://github.com/THUDM/CogVLM
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/kyegomez/ScreenAI
https://github.com/kyegomez/ScreenAI
https://github.com/kyegomez/ScreenAI
https://github.com/kyegomez/ScreenAI
https://arxiv.org/abs/2401.10935

Published in Transactions on Machine Learning Research (06/2025)

Table 49: An overview of GUI-optimized models on cross-platform agents (Part II).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

V-Zen Rah-
man et al.
(2024)

Computers
and Web

Vicuna-7B
Chiang
et al. (2023),
DINO Liu
et al. (2023a),
EVA-2-CLIP
Sun et al.
(2023)

7B Text, GUI
Images

Action Pre-
diction, GUI
Bounding
Box

GUIDE Chawla
et al. (2024)

Dual-resolution visual en-
coding for precise GUI
grounding and task execu-
tion

https://
github.com/
abdur75648/
V-Zen

ShowUI Lin
et al. (2024c)

Websites,
desktops,
and mobile
phones

Phi-3.5-
Vision Abdin
et al. (2024)

4.2B GUI screen-
shots with
OCR for
text-based
UI elements
and visual
grounding
for icons and
widgets

GUI actions,
navigation,
element loca-
tion

ScreenSpot, RICO,
GUIEnv, GUIAct,
AiTW, AiTZ, GUI-
World

Interleaved Vision-
Language-Action ap-
proach, allowing seamless
navigation, grounding,
and understanding of GUI
environments

https://
github.com/
showlab/
ShowUI

OS-ATLAS
Wu et al.
(2024f)

Windows,
macOS,
Linux, An-
droid, and
the web

InternVL-2
Chen et al.
(2024l) and
Qwen2-VL
Bai et al.
(2023b)

4B/7B GUI screen-
shots

GUI actions AndroidControl,
SeeClick, and
others annotated
with GPT-4, over
13 million GUI
elements and 2.3
million screenshots

The first foundation action
model designed for general-
ist GUI agents, supporting
cross-platform GUI tasks,
and introducing a unified
action space

https:
//osatlas.
github.io/

xLAM Zhang
et al. (2024d)

Diverse envi-
ronments

Mistral-7B
Jiang et al.
(2023) and
DeepSeek-
Coder-7B
Guo et al.
(2024a)

Range
from
1B to
8×22B

Unified
function-
calling data
formats

Function
calls,
thought
processes

Synthetic and
augmented data,
including over
60,000 high-quality
samples generated
using APIGen from
3,673 APIs across
21 categories

Excels in function-calling
tasks by leveraging unified
and scalable data pipelines

https://
github.com/
SalesforceAIResearch/
xLAM

De Chezelles, Thibault Le Sellier, Maxime Gasse, Alexandre Lacoste, Alexandre Drouin, Massimo Caccia,
Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, et al. The browsergym ecosystem for web agent
research. arXiv preprint arXiv:2412.05467, 2024.

Jeffrey Yang Fan Chiang, Seungjae Lee, Jia-Bin Huang, Furong Huang, and Yizheng Chen. Why are web ai
agents more vulnerable than standalone llms? a security analysis. arXiv preprint arXiv:2502.20383, 2025.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Junhee Cho, Jihoon Kim, Daseul Bae, Jinho Choo, Youngjune Gwon, and Yeong-Dae Kwon. Caap:
Context-aware action planning prompting to solve computer tasks with front-end ui only. arXiv preprint
arXiv:2406.06947, 2024.

Filippos Christianos, Georgios Papoudakis, Thomas Coste, Jianye Hao, Jun Wang, and Kun Shao. Lightweight
neural app control, 2024. URL https://arxiv.org/abs/2410.17883.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. Journal of
Machine Learning Research, 25(70):1–53, 2024.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

CogAgent Team. Cogagent: Cognitive ai agent platform. https://cogagent.aminer.cn/home, 2024.
Accessed: 2024-12-17.

Wikipedia contributors. Large language model — wikipedia, the free encyclopedia, 2024. URL https:
//en.wikipedia.org/wiki/Large_language_model. Accessed: 2024-11-25.

123

https://github.com/abdur75648/V-Zen
https://github.com/abdur75648/V-Zen
https://github.com/abdur75648/V-Zen
https://github.com/abdur75648/V-Zen
https://github.com/showlab/ShowUI
https://github.com/showlab/ShowUI
https://github.com/showlab/ShowUI
https://github.com/showlab/ShowUI
https://osatlas.github.io/
https://osatlas.github.io/
https://osatlas.github.io/
https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://github.com/SalesforceAIResearch/xLAM
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2410.17883
https://cogagent.aminer.cn/home
https://en.wikipedia.org/wiki/Large_language_model
https://en.wikipedia.org/wiki/Large_language_model

Published in Transactions on Machine Learning Research (06/2025)

Table 50: An overview of GUI-optimized models on cross-platform agents (Part III).

Model Platform Foundation
Model

Size Input Output Dataset Highlights Link

Falcon-
UI Shen et al.
(2024a)

iOS, An-
droid, Win-
dows, Linux,
Web

Qwen2-VL-
7B

7B Screenshots
of GUI
with node
information
and OCR
annotations
for visible
elements

GUI actions
and coor-
dinates or
bounding
boxes for
interaction
elements

Insight-UI dataset,
further fine-tuned
on datasets such as
AITW, AITZ, An-
droid Control, and
Mind2Web

Decouples GUI context
comprehension from
instruction-following tasks,
leveraging an instruction-
free pretraining approach.

/

UI-TARS
Qin et al.
(2025)

Web, Desk-
top (Win-
dows, ma-
cOS), and
Mobile (An-
droid)

Qwen-2-VL
7B and 72B
Wang et al.
(2024j)

7B /
72B

GUI screen-
shots

GUI actions GUI screenshots
and metadata
collected from
websites, apps,
and operating
systems; action
trace datasets
from various GUI
agent benchmarks;
6M GUI tutori-
als for reasoning
enhancement; mul-
tiple open-source
datasets

Pure vision-based percep-
tion with standardized
GUI actions across plat-
forms (Web, Mobile, Desk-
top).

https://
github.com/
bytedance/
UI-TARS

Magma Yang
et al. (2025a)

Web, Mobile,
Robotics

LLaMA-3-
8B Dubey
et al. (2024),
ConvNeXt-
Xxlarge Liu
et al. (2022)

8.6B GUI screen-
shots, tex-
tual task
descriptions

GUI actions,
robotic ma-
nipulation

UI, robotics data,
human instructional
videos

Jointly trains on hetero-
geneous datasets, enabling
generalization across digi-
tal and physical tasks

https://
microsoft.
github.io/
Magma/

SpiritSight
Huang et al.
(2025c)

Web, An-
droid, Win-
dows Desk-
top

InternVL
Chen et al.
(2024l)

2B,
8B,
and
26B

GUI screen-
shots

GUI actions AitW Rawles et al.
(2023), Common-
Crawl websites, and
custom annotations

Introduces a Universal
Block Parsing (UBP)
method to resolve po-
sitional ambiguity in
high-resolution visual
inputs.

https:
//hzhiyuan.
github.io/
SpiritSight-Agent

GUI-R1 Xia
& Luo (2025)

Windows,
Linux,
MacOS, An-
droid, and
Web

QwenVL2.5
Bai et al.
(2025b)

3B
and
7B

GUI screen-
shots

Reasoning
text and GUI
actions

Mixture of 3K high-
quality samples

First framework to apply
rule-based reinforcement
learning (RFT) to high-
level GUI tasks across plat-
forms.

https://
github.com/
ritzz-ai/
GUI-R1.git

InfiGUI-R1
Liu et al.
(2025f)

Web, Desk-
top, and An-
droid

Qwen2.5-VL-
3B-Instruct

3B GUI screen-
shots, Acces-
sibility Tree

Reasoning
text and GUI
actions

Diverse dataset mix-
ture

Two-stage training frame-
work Actor2Reasoner: (1)
Reasoning Injection via
Spatial Reasoning Distil-
lation, and (2) Delibera-
tion Enhancement via Re-
inforcement Learning with
Sub-goal Guidance and Er-
ror Recovery Scenario Con-
struction

https://
github.com/
Reallm-Labs/
InfiGUI-R1

Task Gen-
eralization
Zhang et al.
(2025d)

Web and
Android
(Mobile)

Qwen2-VL-
7B-Instruct
Wang et al.
(2024j)

7B GUI screen-
shots

Thoughts
and
grounded
coordinate-
based actions

11 domain datasets
with 56K GUI tra-
jectory samples

Introduces mid-training on
diverse non-GUI reasoning
tasks (particularly math
and code) to substantially
enhance GUI agent plan-
ning capabilities

https://
github.com/
hkust-nlp/
GUIMid

Chenhui Cui, Tao Li, Junjie Wang, Chunyang Chen, Dave Towey, and Rubing Huang. Large language models
for mobile gui text input generation: An empirical study. arXiv preprint arXiv:2404.08948, 2024.

Gautier Dagan, Frank Keller, and Alex Lascarides. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391, 2023.

Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu. Advancing
mobile gui agents: A verifier-driven approach to practical deployment. arXiv preprint arXiv:2503.15937,
2025.

Preetam Prabhu Srikar Dammu. Towards ethical and personalized web navigation agents: A framework
for user-aligned task execution. In Proceedings of the Eighteenth ACM International Conference on Web
Search and Data Mining, pp. 1074–1076, 2025.

124

https://github.com/bytedance/UI-TARS
https://github.com/bytedance/UI-TARS
https://github.com/bytedance/UI-TARS
https://github.com/bytedance/UI-TARS
https://microsoft.github.io/Magma/
https://microsoft.github.io/Magma/
https://microsoft.github.io/Magma/
https://microsoft.github.io/Magma/
https://hzhiyuan.github.io/SpiritSight-Agent
https://hzhiyuan.github.io/SpiritSight-Agent
https://hzhiyuan.github.io/SpiritSight-Agent
https://hzhiyuan.github.io/SpiritSight-Agent
https://github.com/ritzz-ai/GUI-R1.git
https://github.com/ritzz-ai/GUI-R1.git
https://github.com/ritzz-ai/GUI-R1.git
https://github.com/ritzz-ai/GUI-R1.git
https://github.com/Reallm-Labs/InfiGUI-R1
https://github.com/Reallm-Labs/InfiGUI-R1
https://github.com/Reallm-Labs/InfiGUI-R1
https://github.com/Reallm-Labs/InfiGUI-R1
https://github.com/hkust-nlp/GUIMid
https://github.com/hkust-nlp/GUIMid
https://github.com/hkust-nlp/GUIMid
https://github.com/hkust-nlp/GUIMid

Published in Transactions on Machine Learning Research (06/2025)

Table 51: Overview of web GUI agent benchmarks (Part I).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

MiniWoB++
Shi et al. (2017);
Liu et al. (2018)

2017 Yes Evaluates agents on ba-
sic web interactions like
clicking, typing, and
form navigation.

100 web
interac-
tion tasks

Task Success
Rate

Element
Match

https://
github.com/
Farama%
2DFoundation/
miniwob%
2Dplusplus

RUSS Xu et al.
(2021)

2021 No Uses ThingTalk for
mapping natural lan-
guage to web actions,
enabling precise web-
based task execution
in real HTML environ-
ments.

741
instruc-
tions

Task Success
Rate

Text Match,
Element
Match

https:
//github.
com/xnancy/
russ

WebShop Yao
et al. (2023)

2022 Yes Simulates e-commerce
navigation with real-
world products, chal-
lenging agents with in-
struction comprehen-
sion, multi-page naviga-
tion, and strategic ex-
ploration.

12,087
instruc-
tions

Task Success
Rate, Step
Success Rate

Text Match https://
webshop-pnlp.
github.io/

Mind2Web Deng
et al. (2023)

2023 No Tests adaptability on
real-world, dynamic
websites across do-
mains.

2,000
tasks

Step Success
Rate, Task
Success Rate

Element
Match, Ac-
tion Match

https://
github.com/
OSU-NLP-Group/
Mind2Web

Mind2Web-
Live Pan et al.
(2024b)

2024 Yes Provides intermediate
action tracking for
realistic task assess-
ment, along with an
updated Mind2Web-
Live dataset and tools
for annotation.

542 tasks Step Success
Rate, Task
Success Rate,
Efficiency
Score

Element
Match,
Text Match,
trajectory
length

https://
huggingface.
co/
datasets/
iMeanAI/
Mind2Web-Live

Mind2Web-
Live-Abstracted
Shahbandeh
et al. (2024)

2024 Yes Abstract the descrip-
tions by omitting
task-specific details
and user input infor-
mation in Mind2Web-
Live, which are more
streamlined and less
time-consuming to
compose.

104 sam-
ples

Task Success
Rate, Effi-
ciency Score

Text Match,
Image Match,
Element
Match, Path
Length

https://
anonymous.
4open.
science/r/
naviqate

WebArena Zhou
et al.

2023 Yes Simulates realistic,
multi-tab browsing
on Docker-hosted
websites, focusing on
complex, long-horizon
tasks that mirror real
online interactions.

812 long-
horizon
tasks

Step Success
Rate

Text Match https:
//webarena.
dev/

Leo de Castro, Antigoni Polychroniadou, and Daniel Escudero. Privacy-preserving large language model
inference via gpu-accelerated fully homomorphic encryption. In Neurips Safe Generative AI Workshop
2024.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin Bransom, Kiana
Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-Burch, Andrew Head,

125

https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/Farama%2DFoundation/miniwob%2Dplusplus
https://github.com/xnancy/russ
https://github.com/xnancy/russ
https://github.com/xnancy/russ
https://github.com/xnancy/russ
https://webshop-pnlp.github.io/
https://webshop-pnlp.github.io/
https://webshop-pnlp.github.io/
https://github.com/OSU-NLP-Group/Mind2Web
https://github.com/OSU-NLP-Group/Mind2Web
https://github.com/OSU-NLP-Group/Mind2Web
https://github.com/OSU-NLP-Group/Mind2Web
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live
https://anonymous.4open.science/r/naviqate
https://anonymous.4open.science/r/naviqate
https://anonymous.4open.science/r/naviqate
https://anonymous.4open.science/r/naviqate
https://anonymous.4open.science/r/naviqate
https://webarena.dev/
https://webarena.dev/
https://webarena.dev/

Published in Transactions on Machine Learning Research (06/2025)

Table 52: Overview of web GUI agent benchmarks (Part II).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

VisualWebArena
Koh et al.
(2024a)

2024 Yes Assesses multimodal
agents on visually
grounded tasks, re-
quiring both visual
and textual interaction
capabilities in web
environments.

910 tasks Step Success
Rate

Text Match,
Image Match

https:
//jykoh.
com/vwa

MT-Mind2Web
Deng et al.
(2024c)

2024 No Introduces conversa-
tional web navigation
with multi-turn inter-
actions, supported by a
specialized multi-turn
web dataset.

720 ses-
sions/3525
instruc-
tions

Step Success
Rate, Turn
Success Rate

Element
Match, Ac-
tion Match

https://
github.com/
magicgh/
self-map

MMInA Zhang
et al. (2024s)

2024 Yes Tests multihop, multi-
modal tasks on real-
world websites, requir-
ing agents to handle
cross-page information
extraction and reason-
ing for complex tasks.

1,050
tasks

Step Success
Rate, Task
Success Rate

Text Match,
Element
Match

https:
//mmina.
cliangyu.
com/

AutoWebBench
Lai et al. (2024)

2024 No Bilingual web brows-
ing benchmark with
10,000 browsing traces,
supporting evaluation
across language-
specific environments.

10,000
traces

Step Success
Rate, Effi-
ciency Score

Element
Match, Ac-
tion Match,
Time

https:
//github.
com/THUDM/
AutoWebGLM

WorkArena
Drouin et al.
(2024)

2024 Yes Focuses on real-world
enterprise software
interactions, targeting
tasks frequently per-
formed by knowledge
workers

19,912
unique
task in-
stances

Task Success
Rate, Effi-
ciency Score,
Completion
under Policy,
Turn Success
Rate

Element
Match,
Text Match,
Execution-
based Valida-
tion

https://
github.com/
ServiceNow/
WorkArena

VideoWebArena
Jang et al.
(2024)

2024 Yes Focuses on long-
context multimodal
agents using video
tutorials for task com-
pletion

74 videos
(approx.
4 hours),
2,021
tasks

Task Suc-
cess Rate,
Intermediate
Intent Suc-
cess Rate,
Efficiency
Scores

Element
Match, State
Information,
Exact and
Fuzzy Text
Matches

https:
//github.
com/ljang0/
videowebarena

EnvDistraction
Ma et al. (2024c)

2024 No Evaluates the “faith-
fulness” of multimodal
GUI agents by assess-
ing their susceptibility
to environmental dis-
tractions like pop-ups,
fake results, or mislead-
ing elements

1,198
tasks

Task Success
Rate

Text Match,
Element
Match, State
Information

https:
//github.
com/xbmxb/
EnvDistraction

Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne Chou, Arnavi Chheda, Jenna
Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron Bischoff, Pete Walsh, Chris Newell, Piper
Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Borchardt, Dirk Groeneveld, Crystal Nam, Sophie Lebrecht,
Caitlin Wittlif, Carissa Schoenick, Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh
Hajishirzi, Ross Girshick, Ali Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and
open data for state-of-the-art vision-language models, 2024. URL https://arxiv.org/abs/2409.17146.

126

https://jykoh.com/vwa
https://jykoh.com/vwa
https://jykoh.com/vwa
https://github.com/magicgh/self-map
https://github.com/magicgh/self-map
https://github.com/magicgh/self-map
https://github.com/magicgh/self-map
https://mmina.cliangyu.com/
https://mmina.cliangyu.com/
https://mmina.cliangyu.com/
https://mmina.cliangyu.com/
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/THUDM/AutoWebGLM
https://github.com/ServiceNow/WorkArena
https://github.com/ServiceNow/WorkArena
https://github.com/ServiceNow/WorkArena
https://github.com/ServiceNow/WorkArena
https://github.com/ljang0/videowebarena
https://github.com/ljang0/videowebarena
https://github.com/ljang0/videowebarena
https://github.com/ljang0/videowebarena
https://github.com/xbmxb/EnvDistraction
https://github.com/xbmxb/EnvDistraction
https://github.com/xbmxb/EnvDistraction
https://github.com/xbmxb/EnvDistraction
https://arxiv.org/abs/2409.17146

Published in Transactions on Machine Learning Research (06/2025)

Table 53: Overview of web GUI agent benchmarks (Part III).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

WebVLN-v1
Chen et al.
(2024e)

2024 No Combines navigation
and question-answering
on shopping sites, inte-
grating visual and tex-
tual content for unified
web interaction evalua-
tion.

8,990
paths and
14,825
QA pairs

Task Success
Rate, Effi-
ciency Score

Element
Match, Path
Length,
Trajectory
Length

https:
//github.
com/WebVLN/
WebVLN

WEBLINX Lu
et al. (2024c)

2024 No Focuses on conversa-
tional navigation, re-
quiring agents to fol-
low multi-turn user
instructions in realis-
tic, dialogue-based web
tasks.

100k
interac-
tions

Turn Success
Rate

Element
Match, Text
Match, Ac-
tion Match

https://
mcgill-nlp.
github.io/
weblinx/

ST-
WebAgentBench
Levy et al.
(2024)

2024 Yes Evaluates policy-driven
safety in web agents,
using the Completion
under Policy metric to
ensure compliance in
enterprise-like environ-
ments.

235 tasks Task Success
Rate, Com-
pletion under
Policy (CuP),
Risk Ratio

Element
Match, Ac-
tion Match,
Text Match

https:
//sites.
google.
com/view/
st-webagentbench/
home

CompWoB Fu-
ruta et al. (2024)

2023 No Tests agents on se-
quential, compositional
tasks that require
state management
across multiple steps,
simulating real-world
automation scenarios.

50 com-
positional
tasks

Task Success
Rate

Element
Match

https://
github.com/
google-research/
google-research/
tree/
master/
compositional_
rl/compwob

TURKING
BENCH Xu
et al. (2024e)

2024 Yes Uses natural HTML
tasks from crowdsourc-
ing to assess interaction
skills with real-world
web layouts and ele-
ments.

32.2K in-
stances

Task Success
Rate

Text Match,
Element
Match, Im-
age Match

https://
turkingbench.
github.io

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design applications. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pp.
845–854, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349819. doi:
10.1145/3126594.3126651. URL https://doi.org/10.1145/3126594.3126651.

Biniam Fisseha Demissie, Yan Naing Tun, Lwin Khin Shar, and Mariano Ceccato. Vlm-fuzz: Vision language
model assisted recursive depth-first search exploration for effective ui testing of android apps. arXiv preprint
arXiv:2504.11675, 2025.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,
Rui Yan, et al. Mobile-bench: An evaluation benchmark for llm-based mobile agents. arXiv preprint
arXiv:2407.00993, 2024a.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web:
Towards a generalist agent for the web. Advances in Neural Information Processing Systems, 36:28091–28114,
2023.

Yang Deng, Xuan Zhang, Wenxuan Zhang, Yifei Yuan, See-Kiong Ng, and Tat-Seng Chua. On the multi-turn
instruction following for conversational web agents. arXiv preprint arXiv:2402.15057, 2024b.

127

https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://github.com/WebVLN/WebVLN
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://mcgill-nlp.github.io/weblinx/
https://sites.google.com/view/st-webagentbench/home
https://sites.google.com/view/st-webagentbench/home
https://sites.google.com/view/st-webagentbench/home
https://sites.google.com/view/st-webagentbench/home
https://sites.google.com/view/st-webagentbench/home
https://sites.google.com/view/st-webagentbench/home
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://github.com/google-research/google-research/tree/master/compositional_rl/compwob
https://turkingbench.github.io
https://turkingbench.github.io
https://turkingbench.github.io
https://doi.org/10.1145/3126594.3126651

Published in Transactions on Machine Learning Research (06/2025)

Table 54: Overview of web GUI agent benchmarks (Part IV).

Benchmark Year Live Highlight Data Size Metric Measurement Link
VisualWebBench
Liu et al. (2024f)

2024 No Provides a fine-grained
assessment of multimodal
large language models
(MLLMs) on web-specific
tasks

1,534
instances
from
139 real
websites
across
87 sub-
domains

Task Success
Rate, Turn
Success Rate,
Efficiency
Metrics

Text Match,
Image Match,
Element
Match, Ac-
tion Match

https://
visualwebbench.
github.io/

WONDER-
BREAD Wornow
et al.

2024 No Focuses on business pro-
cess management (BPM)
tasks like documentation,
knowledge transfer, and
process improvement

2,928
human
demon-
strations
across 598
distinct
workflows

Task Success
Rate, Step
Success Rate,
Efficiency
Score, Com-
pletion under
Policy

Text Match,
Action
Match, State
Information

https://
github.com/
HazyResearch/
wonderbread

WebOlympus
Zheng et al. (2024b)

2024 Yes An open platform for web
agents that simplifies run-
ning demos, evaluations,
and data collection for web
agents on live websites

50 tasks Task Success
Rate, Step
Success Rate

Action
Match

/

BrowserGym
Chezelles et al.
(2024)

2024 Yes Provides a unified, exten-
sible, and open-source en-
vironment for evaluating
web agents with standard-
ized APIs and observations

Benchmarks
include
Mini-
WoB(++)
with 125
tasks, We-
bArena
with 812
tasks, and
WorkArena
with up
to 341
tasks per
level

Task Suc-
cess Rate,
Step Success
Rate, Turn
Success Rate,
Efficiency
Metrics

Text-based
matching
and element
match

https://
github.com/
ServiceNow/
BrowserGym

WebWalkerQA Wu
et al. (2025a)

2025 Yes Benchmarks the capacity
of LLMs to handle deep,
structured, and realistic
web-based navigation and
reasoning tasks

680 high-
quality
QA pairs

Task Success
Rate, Effi-
ciency Score

Text Match,
Action
Match

https://
github.com/
Alibaba-NLP/
WebWalker

Yang Deng, Xuan Zhang, Wenxuan Zhang, Yifei Yuan, See-Kiong Ng, and Tat-Seng Chua. On the multi-turn
instruction following for conversational web agents, 2024c. URL https://arxiv.org/abs/2402.15057.

Parth S Deshmukh, Saroj S Date, Parikshit N Mahalle, and Janki Barot. Automated gui testing for enhancing
user experience (ux): A survey of the state of the art. In International Conference on ICT for Sustainable
Development, pp. 619–628. Springer, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie Hu,
Luu Anh Tuan, and Shafiq Joty. Data augmentation using llms: Data perspectives, learning paradigms and
challenges. In Findings of the Association for Computational Linguistics ACL 2024, pp. 1679–1705, 2024a.

Lei Ding, Jeshwanth Bheemanpally, and Yi Zhang. Improving technical" how-to" query accuracy with
automated search results verification and reranking. arXiv preprint arXiv:2404.08860, 2024b.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan Rajmohan,
Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose triangle for thought
generation. arXiv preprint arXiv:2311.04254, 2023.

128

https://visualwebbench.github.io/
https://visualwebbench.github.io/
https://visualwebbench.github.io/
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/ServiceNow/BrowserGym
https://github.com/ServiceNow/BrowserGym
https://github.com/ServiceNow/BrowserGym
https://github.com/ServiceNow/BrowserGym
https://github.com/Alibaba-NLP/WebWalker
https://github.com/Alibaba-NLP/WebWalker
https://github.com/Alibaba-NLP/WebWalker
https://github.com/Alibaba-NLP/WebWalker
https://arxiv.org/abs/2402.15057

Published in Transactions on Machine Learning Research (06/2025)

Table 55: Overview of web GUI agent benchmarks (Part V).

Benchmark Year Live Highlight Data Size Metric Measurement Link
WebGames Thomas
et al. (2025)

2025 Yes A comprehensive bench-
mark designed to evaluate
the capabilities of general-
purpose web-browsing AI
agents through 50+ in-
teractive challenges. It
uniquely provides a her-
metic testing environment
with verifiable ground-
truth solutions.

50+ chal-
lenges

Task Success
Rate

Action
Match

https://
github.com/
convergence-ai/
webgames

SafeArena Tur et al.
(2025)

2025 Yes The first benchmark specif-
ically designed to evaluate
the deliberate misuse of
web agents by testing their
ability to complete both
safe and harmful tasks.

500 tasks Task Success
Rate, Com-
pletion under
Policy, Risk
Ratio

Text Match,
State Infor-
mation

https://
safearena.
github.io

WABER Kara et al. 2025 Yes Introduces two new eval-
uation metrics—Efficiency
and Reliability—that go
beyond standard success
rate measurements

655 tasks Task Success
Rate, Effi-
ciency Score

Action
Match, State
Information

https://
github.com/
SumanKNath/
WABER

Online-Mind2Web
Xue et al. (2025)

2025 Yes A real-world online evalu-
ation benchmark designed
to reflect actual user inter-
actions with live web inter-
faces

300 tasks
from 136
websites

Task Success
Rate, Effi-
ciency Score

Image
Match, Ac-
tion Match,
State In-
formation,
LLM-as-
a-Judge
Evaluation

https://
github.com/
OSU-NLP-Group/
Online-Mind2Web

AgentDAM Zhar-
magambetov et al.
(2025)

2025 Yes The first benchmark to
evaluate privacy leakage
risks in multimodal, real-
istic web environments us-
ing agentic models

246
human-
annotated
test cases

Task Success
Rate, Risk
Ratio

Action
Match, Text
Match

https://
github.com/
facebookresearch/
ai-agent-privacy

AgentReward-
Bench Lù et al.
(2025)

2025 No The first benchmark to
rigorously evaluate LLM-
based judges against hu-
man expert annotations
across multiple web agent
tasks

1,302 tra-
jectories,
351 tasks

Task Success
Rate, Com-
pletion under
Policy

Image Match,
Element/S-
tate Match

https://
agent-reward-bench.
github.io

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL https://arxiv.
org/abs/2010.11929.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty, Léo
Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are web agents
at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-scale api
calls. arXiv preprint arXiv:2402.04253, 2024.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: General
language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360, 2021.

129

https://github.com/convergence-ai/webgames
https://github.com/convergence-ai/webgames
https://github.com/convergence-ai/webgames
https://github.com/convergence-ai/webgames
https://safearena.github.io
https://safearena.github.io
https://safearena.github.io
https://github.com/SumanKNath/WABER
https://github.com/SumanKNath/WABER
https://github.com/SumanKNath/WABER
https://github.com/SumanKNath/WABER
https://github.com/OSU-NLP-Group/Online-Mind2Web
https://github.com/OSU-NLP-Group/Online-Mind2Web
https://github.com/OSU-NLP-Group/Online-Mind2Web
https://github.com/OSU-NLP-Group/Online-Mind2Web
https://github.com/facebookresearch/ai-agent-privacy
https://github.com/facebookresearch/ai-agent-privacy
https://github.com/facebookresearch/ai-agent-privacy
https://github.com/facebookresearch/ai-agent-privacy
https://agent-reward-bench.github.io
https://agent-reward-bench.github.io
https://agent-reward-bench.github.io
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

Published in Transactions on Machine Learning Research (06/2025)

Table 56: Overview of web GUI agent benchmarks (Part VI).

Benchmark Year Live Highlight Data Size Metric Measurement Link
RealWebAssist Ye
et al. (2025)

2025 No The first benchmark to
evaluate long-horizon web
assistance using real-world
users’ sequential instruc-
tions expressed in natural
and often ambiguous lan-
guage

1,885
instruc-
tions

Task Success
Rate, Step
Success Rate,
Efficiency
Score

Action
Match

https:
//scai.cs.
jhu.edu/
projects/
RealWebAssist/

REAL Garg et al.
(2025)

2025 Yes Fully deterministic,
high-fidelity replicas of
real-world websites (e.g.,
Airbnb, Amazon, Gmail),
enabling safe, repro-
ducible, and configurable
testing for multi-turn
GUI-based agents

112 tasks
across
11 deter-
ministic
websites

Task Success
Rate

Text Match,
Action
Match, State
Information
Match

https://
github.com/
agi-inc/
agisdk

BEARCUBS Song
et al. (2025)

2025 Yes Emphasizes interaction
with live web pages and
includes multimodal tasks
(e.g., video, audio, 3D)
that cannot be solved
by text-only methods,
addressing limitations of
prior benchmarks relying
on static or simulated
environments

111 ques-
tions

Task Success
Rate, Effi-
ciency Score

Text Match,
Action
Match

https://
bear-cubs.
github.io

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke
Noda, Demetri Terzopoulos, Yejin Choi, et al. Agent ai: Surveying the horizons of multimodal interaction.
arXiv preprint arXiv:2401.03568, 2024.

Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. Pios: Detecting privacy leaks in ios
applications. In NDSS, volume 2011, pp. 18th, 2011.

William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri. A study of android application
security. In USENIX security symposium, volume 2, 2011.

José Gonzalez Enríquez, Andres Jiménez-Ramírez, Francisco José Domínguez-Mayo, and Julián Alberto
García-García. Robotic process automation: a scientific and industrial systematic mapping study. IEEE
Access, 8:39113–39129, 2020.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anumanchipalli, Kurt
Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for long-horizon tasks. arXiv
preprint arXiv:2503.09572, 2025.

Ivan Evtimov, Arman Zharmagambetov, Aaron Grattafiori, Chuan Guo, and Kamalika Chaudhuri. Wasp:
Benchmarking web agent security against prompt injection attacks. arXiv preprint arXiv:2504.18575, 2025.

Yue Fan, Lei Ding, Ching-Chen Kuo, Shan Jiang, Yang Zhao, Xinze Guan, Jie Yang, Yi Zhang, and Xin Eric
Wang. Read anywhere pointed: Layout-aware gui screen reading with tree-of-lens grounding, 2024. URL
https://arxiv.org/abs/2406.19263.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee: Align gui action
grounding to novel environments via autonomous exploration, 2025. URL https://arxiv.org/abs/2501.
13896.

130

https://scai.cs.jhu.edu/projects/RealWebAssist/
https://scai.cs.jhu.edu/projects/RealWebAssist/
https://scai.cs.jhu.edu/projects/RealWebAssist/
https://scai.cs.jhu.edu/projects/RealWebAssist/
https://scai.cs.jhu.edu/projects/RealWebAssist/
https://github.com/agi-inc/agisdk
https://github.com/agi-inc/agisdk
https://github.com/agi-inc/agisdk
https://github.com/agi-inc/agisdk
https://bear-cubs.github.io
https://bear-cubs.github.io
https://bear-cubs.github.io
https://arxiv.org/abs/2406.19263
https://arxiv.org/abs/2501.13896
https://arxiv.org/abs/2501.13896

Published in Transactions on Machine Learning Research (06/2025)

Table 57: Overview of mobile GUI agent benchmarks (Part I).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

AndroidEnv
Toyama et al.
(2021a)

2021 Yes Provides an open-
source platform based
on the Android ecosys-
tem with over 100 tasks
across approximately
30 apps, focusing on
reinforcement learning
for various Android
interactions.

100+
tasks

NA NA https://
github.com/
google-deepmind/
android_
env

PIXELHELP Li
et al. (2020a)

2020 No Includes a corpus of
natural language in-
structions paired with
UI actions across four
task categories, aiding
in grounding language
to UI interactions.

187 multi-
step
instruc-
tions

Step Success
Rate

Element
Match, Ac-
tion Match

https://
github.com/
google-research/
google-research/
tree/
master/
seq2act

Mobile-Env
Zhang et al.
(2024c)

2024 Yes Comprehensive toolkit
for Android GUI bench-
marks to enable con-
trolled evaluations of
real-world app interac-
tions.

224 tasks Task Success
Rate, Step
Success Rate

Text Match,
Element
Match, Im-
age Match,
State Infor-
mation

https://
github.com/
X-LANCE/
Mobile-Env

B-MOCA Lee
et al. (2024b)

2024 Yes Benchmarks mobile
device control agents
on realistic tasks,
incorporating UI
layout and language
randomization to
evaluate generalization
capabilities.

131 tasks Task Success
Rate

Element
Match, State
Information

https:
//b-moca.
github.io/

AndroidWorld
Rawles et al.
(2024)

2024 Yes Offers a dynamic An-
droid environment, al-
lowing for diverse nat-
ural language instruc-
tion testing.

116 tasks Task Success
Rate

State Infor-
mation

https://
github.com/
google-research/
android_
world

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and communications security, pp.
627–638, 2011.

Sidong Feng and Chunyang Chen. Prompting is all you need: Automated android bug replay with large
language models. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering,
pp. 1–13, 2024.

Sidong Feng, Changhao Du, Huaxiao Liu, Qingnan Wang, Zhengwei Lv, Gang Huo, Xu Yang, and Chunyang
Chen. Agent for user: Testing multi-user interactive features in tiktok. arXiv preprint arXiv:2504.15474,
2025.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and Jiaxuan You.
How far are we from agi: Are llms all we need? Transactions on Machine Learning Research.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen. Large
language model-based human-agent collaboration for complex task solving. arXiv preprint arXiv:2402.12914,
2024.

Moghis Fereidouni and A. B. Siddique. Search beyond queries: Training smaller language models for web
interactions via reinforcement learning, 2024. URL https://arxiv.org/abs/2404.10887.

131

https://github.com/google-deepmind/android_env
https://github.com/google-deepmind/android_env
https://github.com/google-deepmind/android_env
https://github.com/google-deepmind/android_env
https://github.com/google-deepmind/android_env
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/X-LANCE/Mobile-Env
https://github.com/X-LANCE/Mobile-Env
https://github.com/X-LANCE/Mobile-Env
https://github.com/X-LANCE/Mobile-Env
https://b-moca.github.io/
https://b-moca.github.io/
https://b-moca.github.io/
https://github.com/google-research/android_world
https://github.com/google-research/android_world
https://github.com/google-research/android_world
https://github.com/google-research/android_world
https://github.com/google-research/android_world
https://arxiv.org/abs/2404.10887

Published in Transactions on Machine Learning Research (06/2025)

Table 58: Overview of mobile GUI agent benchmarks (Part II).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

Mobile-Eval
Wang et al.
(2024e)

2024 Yes Benchmark based on
mainstream Android
apps, and designed to
test common mobile
interactions.

30 in-
struc-
tions

Task Success
Rate, Step
Success Rate,
Efficiency
Score

Text Match,
Path Length

https://
github.com/
X-PLUG/
MobileAgent

DroidTask Wen
et al. (2024a)

2024 Yes Android Task Automa-
tion benchmark sup-
ports exploration and
task recording in real
apps with correspond-
ing GUI action traces.

158 tasks Step Success
Rate, Task
Success Rate

Element
Match, Ac-
tion Match

https://
github.com/
MobileLLM/
AutoDroid

AITW Rawles
et al. (2023)

2023 No A large-scale dataset,
which is partly inspired
by PIXELHELP, cover-
ing diverse Android in-
teractions.

715,142
episodes

Task Success
Rate, Step
Success Rate

Action
Match

https://
github.com/
google-research/
google-research/
tree/
master/
android_
in_the_
wild

AndroidArena
Xing et al.
(2024)

2024 Yes Focuses on daily cross-
app and constrained
tasks within the An-
droid ecosystem, pro-
viding single-app and
multi-app interaction
scenarios.

221 tasks Task Success
Rate, Step
Success Rate,
Efficiency
Score

Action
Match, Path
Length

https://
github.com/
AndroidArenaAgent/
AndroidArena

LearnGUI Liu
et al. (2025a)

2025 Yes The first bench-
mark to systemati-
cally study few-shot
demonstration-based
learning in mobile GUI
agents, featuring both
offline and online task
environments

Offline:
2,252
tasks
(k-shot
variants)
across
44 apps;
Online:
101 in-
teractive
tasks
across 20
apps

Task Success
Rate

Action
Match

https:
//lgy0404.
github.io/
LearnAct

Nádia Fernandes, Rui Lopes, and Luís Carriço. On web accessibility evaluation environments. In Proceedings
of the International Cross-Disciplinary Conference on Web Accessibility, pp. 1–10, 2011.

Emilio Ferrara. Should chatgpt be biased? challenges and risks of bias in large language models. arXiv
preprint arXiv:2304.03738, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane Gu, and
Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and Izzeddin Gur. Exposing limitations of language model
agents in sequential-task compositions on the web. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2024.

Orazio Gambino, Leonardo Rundo, Vincenzo Cannella, Salvatore Vitabile, and Roberto Pirrone. A framework
for data-driven adaptive gui generation based on dicom. Journal of biomedical informatics, 88:37–52, 2018.

132

https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/X-PLUG/MobileAgent
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/MobileLLM/AutoDroid
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/google-research/google-research/tree/master/android_in_the_wild
https://github.com/AndroidArenaAgent/AndroidArena
https://github.com/AndroidArenaAgent/AndroidArena
https://github.com/AndroidArenaAgent/AndroidArena
https://github.com/AndroidArenaAgent/AndroidArena
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct
https://lgy0404.github.io/LearnAct

Published in Transactions on Machine Learning Research (06/2025)

Table 59: Overview of mobile GUI agent benchmarks (Part III).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

ANDROIDLAB
Xu et al. (2024i)

2024 Yes Provides a structured
evaluation framework
with 138 tasks across
nine apps, supporting
both text-only and mul-
timodal agent evalua-
tions on Android.

138 tasks Task Success
Rate, Step
Success Rate,
Efficiency
Score

Element
Match, Im-
age Match

https:
//github.
com/THUDM/
Android-Lab

GTArena Zhao
et al. (2024b)

2024 No Introduces a Transition
Tuple for GUI defects,
enabling large-scale de-
fect dataset creation
and reproducible, end-
to-end automated test-
ing.

10,000+
GUI
display
and GUI
interac-
tions

Task Success
Rate, Step
Success Rate

Text Match,
Element
Match, Ac-
tion Match

https://
github.com/
ZJU-ACES-ISE/
ChatUITest

A3 Chai et al.
(2025)

2025 Yes Introduces a novel
business-level LLM-
based evaluation
process, significantly
reducing human labor
and coding expertise
requirements.

201 tasks
across 21
widely
used apps

Task Success
Rate

Element
Match, Ac-
tion Match

https://
yuxiangchai.
github.io/
Android-Agent-Arena/

LlamaTouch
Zhang et al.
(2024h)

2024 Yes Enables faithful and
scalable evaluations for
mobile UI task au-
tomation by matching
task execution traces
against annotated es-
sential states

496 tasks
covering
57 unique
Android
applica-
tions

Task Success
Rate, Step
Success Rate,
Efficiency
Score

Text Match,
Action
Match, State
Information
Match

https://
github.com/
LlamaTouch/
LlamaTouch

Mobile-
AgentBench
Wang et al.
(2024i)

2024 Yes Provides a fully au-
tonomous evaluation
process on real An-
droid devices and
flexibility in judging
success conditions
across multiple paths
to completion

100 tasks
across
10 open-
source
Android
applica-
tions

Task Success
Rate, Effi-
ciency Score,
Latency,
Token Cost

State Infor-
mation (UI
State Match-
ing)

https://
mobileagentbench.
github.io/

Erich Gamma. Design patterns: elements of reusable object-oriented software. Person Education Inc, 1995.

Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou, Songze Li,
Ting Wang, Yunjun Gao, Yingcai Wu, and Shouling Ji. Navigating the risks: A survey of security, privacy,
and ethics threats in llm-based agents, 2024. URL https://arxiv.org/abs/2411.09523.

Difei Gao, Siyuan Hu, Zechen Bai, Qinghong Lin, and Mike Zheng Shou. Assisteditor: Multi-agent
collaboration for gui workflow automation in video creation. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 11255–11257, 2024a.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen Zhang, Peiyi
Wang, Xiangwu Guo, et al. Assistgui: Task-oriented pc graphical user interface automation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13289–13298, 2024b.

Ge Gao, Alexey Taymanov, Eduardo Salinas, Paul Mineiro, and Dipendra Misra. Aligning llm agents by
learning latent preference from user edits. arXiv preprint arXiv:2404.15269, 2024c.

Jie Gao, Simret Araya Gebreegziabher, Kenny Tsu Wei Choo, Toby Jia-Jun Li, Simon Tangi Perrault, and
Thomas W Malone. A taxonomy for human-llm interaction modes: An initial exploration. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems, pp. 1–11, 2024d.

133

https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://github.com/THUDM/Android-Lab
https://github.com/ZJU-ACES-ISE/ChatUITest
https://github.com/ZJU-ACES-ISE/ChatUITest
https://github.com/ZJU-ACES-ISE/ChatUITest
https://github.com/ZJU-ACES-ISE/ChatUITest
https://yuxiangchai.github.io/Android-Agent-Arena/
https://yuxiangchai.github.io/Android-Agent-Arena/
https://yuxiangchai.github.io/Android-Agent-Arena/
https://yuxiangchai.github.io/Android-Agent-Arena/
https://github.com/LlamaTouch/LlamaTouch
https://github.com/LlamaTouch/LlamaTouch
https://github.com/LlamaTouch/LlamaTouch
https://github.com/LlamaTouch/LlamaTouch
https://mobileagentbench.github.io/
https://mobileagentbench.github.io/
https://mobileagentbench.github.io/
https://arxiv.org/abs/2411.09523

Published in Transactions on Machine Learning Research (06/2025)

Table 60: Overview of mobile GUI agent benchmarks (Part IV).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

Mobile-Bench
Deng et al.
(2024a)

2024 Yes Supports both UI and
API-based actions in
multi-app scenarios,
testing agents on
single and multi-task
structures with a
checkpoint-based evalu-
ation approach.

832 en-
tries
(200+
tasks)

Task Success
Rate, Step
Success Rate,
Efficiency
Score

Action
Match, Path
Length

https:
//github.
com/XiaoMi/
MobileBench

Mobile Safety
Bench Lee et al.
(2024a)

2024 Yes Prioritizes safety eval-
uation in mobile con-
trol tasks, with distinct
tasks focused on help-
fulness, privacy, and le-
gal compliance.

100 tasks Task Success
Rate, Risk
Mitigation
Success

Action
Match with
Safety Con-
sidered,
Element
Match, State
Information

https://
mobilesafetybench.
github.io/

SPA-BENCH
Chen et al.
(2024d)

2024 Yes Extensive evaluation
framework supporting
single-app and cross-
app tasks in English
and Chinese, providing
a plug-and-play struc-
ture for diverse task
scenarios.

340 tasks Task Success
Rate, Step
Success Rate,
Efficiency
Score

Action
Match, State
Information,
Time Spent,
API Cost

https://
spa-bench.
github.io

SPHINX Ran
et al. (2025)

2025 Yes Provides a fully au-
tomated benchmarking
suite and introduces a
multi-dimensional eval-
uation framework.

284 com-
mon tasks

Task Success
Rate, Effi-
ciency Score,
Completion
under Policy,
Turn Success
Rate

Text Match,
Image Match,
Element
Match, Ac-
tion Match

/

AEIA-MN Chen
et al. (2025c)

2025 Yes Introduces the Active
Environment Injec-
tion Attack (AEIA)
framework that manip-
ulates environmental
elements (e.g., noti-
fications) to mislead
LLM-powered agents.

61 tasks
(Android-
World) +
45 tasks
(AppA-
gent)

Task Success
Rate, Risk
Ratio, Effi-
ciency Score

Text Match,
State Info,
Action
Match

/

AutoEval Sun
et al. (2025a)

2025 Yes Fully autonomous
evaluation framework
for mobile agents,
removing manual
reward-signal defini-
tion and evaluation
coding.

93 tasks Task Success
Rate

Action
Match, State
Info

/

Longxi Gao, Li Zhang, Shihe Wang, Shangguang Wang, Yuanchun Li, and Mengwei Xu. Mobileviews: A
large-scale mobile gui dataset. arXiv preprint arXiv:2409.14337, 2024e.

Minghe Gao, Wendong Bu, Bingchen Miao, Yang Wu, Yunfei Li, Juncheng Li, Siliang Tang, Qi Wu, Yueting
Zhuang, and Meng Wang. Generalist virtual agents: A survey on autonomous agents across digital
platforms. arXiv preprint arXiv:2411.10943, 2024f.

Weiwei Gao, Kexin Du, Yujia Luo, Weinan Shi, Chun Yu, and Yuanchun Shi. Easyask: An in-app contextual
tutorial search assistant for older adults with voice and touch inputs. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 8(3):1–27, 2024g.

134

https://github.com/XiaoMi/MobileBench
https://github.com/XiaoMi/MobileBench
https://github.com/XiaoMi/MobileBench
https://github.com/XiaoMi/MobileBench
https://mobilesafetybench.github.io/
https://mobilesafetybench.github.io/
https://mobilesafetybench.github.io/
https://spa-bench.github.io
https://spa-bench.github.io
https://spa-bench.github.io

Published in Transactions on Machine Learning Research (06/2025)

Table 61: Overview of computer GUI agent benchmarks (Part I).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

OSWorld Xie
et al. (2024b)

2024 Yes Scalable, real com-
puter environment for
multimodal agents,
supporting task setup,
execution-based evalu-
ation, and interactive
learning across Ubuntu,
Windows, and macOS.

369
Ubuntu
tasks, 43
Windows
tasks

Task Success
Rate

Execution-
based State
Informa-
tion (such
as internal
file inter-
pretation,
permission
manage-
ment)

https:
//os-world.
github.io/

Windows Agent
Arena Bonatti
et al. (2024)

2024 Yes Adaptation of OS-
World focusing exclu-
sively on the Windows
OS with diverse multi-
step tasks, enabling
agents to use a wide
range of applications
and tools.

154 tasks Task Success
Rate

Same as
OSWorld,
scalable with
cloud paral-
lelization

https://
microsoft.
github.io/
WindowsAgentArena

OmniACT
Kapoor et al.
(2024)

2024 No Assesses agents’ capa-
bility to generate ex-
ecutable programs for
computer tasks across
desktop and web appli-
cations in various OS
environments, prioritiz-
ing multimodal chal-
lenges.

9,802
data
points

Task Success
Rate, Step
Success Rate

Action
Match

https://
huggingface.
co/
datasets/
Writer/
omniact

VideoGUI Lin
et al. (2024b)

2024 No Focuses on visual-
centric tasks from
instructional videos,
emphasizing planning
and action precision
in applications like
Adobe Photoshop and
Premiere Pro.

178 tasks,
463 sub-
tasks

Task Success
Rate

State Infor-
mation, Ac-
tion Match

https:
//showlab.
github.io/
videogui

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023.

Divyansh Garg, Shaun VanWeelden, Diego Caples, Andis Draguns, Nikil Ravi, Pranav Putta, Naman
Garg, Tomas Abraham, Michael Lara, Federico Lopez, et al. Real: Benchmarking autonomous agents on
deterministic simulations of real websites. arXiv preprint arXiv:2504.11543, 2025.

Jesse James Garrett et al. Ajax: A new approach to web applications. 2005.

Zhiqi Ge, Juncheng Li, Xinglei Pang, Minghe Gao, Kaihang Pan, Wang Lin, Hao Fei, Wenqiao Zhang, Siliang
Tang, and Yueting Zhuang. Iris: Breaking gui complexity with adaptive focus and self-refining, 2024. URL
https://arxiv.org/abs/2412.10342.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b to glm-4 all tools.
arXiv preprint arXiv:2406.12793, 2024.

Joshua Gorniak, Yoon Kim, Donglai Wei, and Nam Wook Kim. Vizability: Enhancing chart accessibility
with llm-based conversational interaction. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology, pp. 1–19, 2024.

135

https://os-world.github.io/
https://os-world.github.io/
https://os-world.github.io/
https://microsoft.github.io/WindowsAgentArena
https://microsoft.github.io/WindowsAgentArena
https://microsoft.github.io/WindowsAgentArena
https://microsoft.github.io/WindowsAgentArena
https://huggingface.co/datasets/Writer/omniact
https://huggingface.co/datasets/Writer/omniact
https://huggingface.co/datasets/Writer/omniact
https://huggingface.co/datasets/Writer/omniact
https://huggingface.co/datasets/Writer/omniact
https://huggingface.co/datasets/Writer/omniact
https://showlab.github.io/videogui
https://showlab.github.io/videogui
https://showlab.github.io/videogui
https://showlab.github.io/videogui
https://arxiv.org/abs/2412.10342

Published in Transactions on Machine Learning Research (06/2025)

Table 62: Overview of computer GUI agent benchmarks (Part II).

Benchmark Year Live Highlight Data
Size

Metric Measurement Link

Spider2-V Cao
et al. (2024)

2024 Yes Benchmarks agents
across data science and
engineering workflows
in authentic enterprise
software environments,
covering tasks from
data ingestion to
visualization.

494 tasks Task Success
Rate

Action
Match, State
Information

https://
spider2-v.
github.io

Act2Cap Wu
et al. (2024b)

2024 Yes Emphasizes GUI action
narration using cursor-
based prompts in video
format, covering a vari-
ety of GUI interactions
like clicks, typing, and
dragging.

4,189
samples

Step Success
Rate

Element
Match

https:
//showlab.
github.io/
GUI-Narrator

OFFICEBENCH
Wang et al.
(2024p)

2024 Yes Tests cross-application
automation in office
workflows with com-
plex multi-step tasks
across applications like
Word and Excel, assess-
ing operational integra-
tion in realistic scenar-
ios.

300 tasks Task Success
Rate

Action
Match, Text
Match, State
Information

https://
github.com/
zlwang-cs/
OfficeBench

AssistGUI Gao
et al. (2024b)

2024 Yes The first benchmark fo-
cused on task-oriented
desktop GUI automa-
tion

100 tasks
from 9
popular
applica-
tions

Task Success
Rate, Effi-
ciency Score

Element
Match, Ac-
tion Match

https:
//showlab.
github.io/
assistgui/

WorldGUI Zhao
et al. (2025c)

2025 Yes First GUI benchmark
designed to evaluate dy-
namic GUI interactions
by incorporating vari-
ous initial states.

315 total
tasks
from 10
Windows
applica-
tions

Task Success
Rate, Effi-
ciency Score

Image Match,
Element
Match, Ac-
tion Match

/

UI-Vision Nayak
et al. (2025)

2025 No The first large-scale
benchmark specifically
designed for desktop
GUI agents

8,227
query–label
pairs in
total

Task Success
Rate

Action
Match, Text
Match

https:
//uivision.
github.io

Computer Agent
Arena Wang
et al. (2025a)

2025 Yes The first large-scale,
open-ended evaluation
platform for multi-
modal LLM-based
agents in real desktop
computing environ-
ments

User-
proposed
tasks

Task Success
Rate

Human eval-
uators

https:
//arena.
xlang.ai/

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
Navigating the digital world as humans do: Universal visual grounding for gui agents, 2024. URL
https://arxiv.org/abs/2410.05243.

Robert Gove and Jorge Faytong. Machine learning and event-based software testing: classifiers for identifying
infeasible gui event sequences. In Advances in computers, volume 86, pp. 109–135. Elsevier, 2012.

Maria Fernanda Granda, Otto Parra, and Bryan Alba-Sarango. Towards a model-driven testing framework
for gui test cases generation from user stories. In ENASE, pp. 453–460, 2021.

136

https://spider2-v.github.io
https://spider2-v.github.io
https://spider2-v.github.io
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://showlab.github.io/GUI-Narrator
https://github.com/zlwang-cs/OfficeBench
https://github.com/zlwang-cs/OfficeBench
https://github.com/zlwang-cs/OfficeBench
https://github.com/zlwang-cs/OfficeBench
https://showlab.github.io/assistgui/
https://showlab.github.io/assistgui/
https://showlab.github.io/assistgui/
https://showlab.github.io/assistgui/
https://uivision.github.io
https://uivision.github.io
https://uivision.github.io
https://arena.xlang.ai/
https://arena.xlang.ai/
https://arena.xlang.ai/
https://arxiv.org/abs/2410.05243

Published in Transactions on Machine Learning Research (06/2025)

Table 63: Overview of cross-platform GUI agent benchmarks.

Benchmark Platform Year Live Highlight Data Size Metric Measurement Link
VisualAgent
Bench Liu
et al. (2024i)

Web, An-
droid, Game,
Virtual Em-
bodied.

2024 Yes First benchmark
designed for visual
foundation agents
across GUI and multi-
modal tasks, focusing
on vision-centric in-
teractions in Android,
web, and game environ-
ments.

4,482 tra-
jectories

Task Success
Rate

Text Match https:
//github.
com/THUDM/
VisualAgentBench/

SPR Bench-
mark Fan
et al. (2024)

Mobile, Web,
and Operat-
ing Systems

2024 Yes Evaluates GUI screen
readers’ ability to de-
scribe both content and
layout information

Includes
650
screen-
shots
anno-
tated
with
1,500 tar-
get points
and re-
gions

Task Success
Rate, Effi-
ciency Score

Text Match,
Element
Match

/

AgentStudio
Zheng et al.
(2024c)

Windows,
Linux, ma-
cOS

2024 Yes Open toolkit for creat-
ing and benchmarking
general-purpose virtual
agents, supporting com-
plex interactions across
diverse software appli-
cations.

NA Step Success
Rate

Action
Match, State
Information
and Image
Match

https://
computer-agents.
github.io/
agent-studio/

CRAB Xu
et al. (2024g)

Linux, An-
droid

2024 Yes Cross-environment
benchmark evaluating
agents across mobile
and desktop devices,
using a graph-based
evaluation method
to handle multiple
correct paths and task
flexibility.

120 tasks Step Suc-
cess Rate,
Effiency
Score

Action
Match

https://
github.com/
crab-benchmark

ScreenSpot
Cheng et al.
(2024a)

iOS, An-
droid,
macOS,
Windows,
Web.

2024 No Vision-based GUI
benchmark with pre-
trained GUI grounding,
assessing agents’ ability
to interact with GUI
elements across mobile,
desktop, and web
platforms using only
screenshots.

1,200
instruc-
tions

Step Success
Rate

Action
Match

https://
github.com/
njucckevin/
SeeClick

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep api learning. In Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp. 631–642,
2016.

Yu Gu, Boyuan Zheng, Boyu Gou, Kai Zhang, Cheng Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan
Sun, and Yu Su. Is your llm secretly a world model of the internet? model-based planning for web agents.
arXiv preprint arXiv:2411.06559, 2024.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, Longfei Li, Jinjie Gu, and
Chenyi Zhuang. Intelligent virtual assistants with llm-based process automation. ArXiv, abs/2312.06677,
2023. URL https://api.semanticscholar.org/CorpusID:266174422.

137

https://github.com/THUDM/VisualAgentBench/
https://github.com/THUDM/VisualAgentBench/
https://github.com/THUDM/VisualAgentBench/
https://github.com/THUDM/VisualAgentBench/
https://computer-agents.github.io/agent-studio/
https://computer-agents.github.io/agent-studio/
https://computer-agents.github.io/agent-studio/
https://computer-agents.github.io/agent-studio/
https://github.com/crab-benchmark
https://github.com/crab-benchmark
https://github.com/crab-benchmark
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://github.com/njucckevin/SeeClick
https://api.semanticscholar.org/CorpusID:266174422

Published in Transactions on Machine Learning Research (06/2025)

Table 64: Overview of GUI-testing with LLM-powered GUI agents (Part I).

Project Category Platform Model Perception Action Scenario Highlight Link
Daniel and
Anne Zim-
mermann
& Koziolek
(2023a)

General
testing

General-
purpose
plat-
forms

GPT-
3

GUI struc-
ture and
state

Standard
UI opera-
tions

Automates
the software
testing process
using natural
language test
cases

Applies GPT-3’s lan-
guage understanding ca-
pabilities to GUI-based
software testing, en-
abling natural interac-
tion through text-based
test case descriptions.

https:
//github.
com/
neuroevolution%
2Dai/
SoftwareTestingLanguageModels

Daniel and
Anne Zim-
mermann
& Koziolek
(2023b)

General
testing

Web
plat-
forms

GPT-
4

HTML
DOM
structure

Standard
UI opera-
tions

Automated
GUI testing
to enhance
branch cov-
erage and
efficiency

Performs end-to-end
GUI testing using GPT-
4’s natural language
understanding and
reasoning capabilities.

https:
//github.
com/
SoftwareTestingLLMs/
WebtestingWithLLMs

GPTDroid
Liu et al.
(2024k)

General
testing

Mobile
An-
droid

GPT-
3.5

UI view hi-
erarchy files

Standard
UI opera-
tions and
compound
actions

Automates
GUI testing
to improve
testing cov-
erage and
detect bugs
efficiently

Formulates GUI testing
as a Q& A task, utiliz-
ing LLM capabilities to
provide human-like in-
teraction.

https:
//github.
com/
franklinbill/
GPTDroid

DROID-
AGENT
Yoon et al.
(2024)

General
testing

Mobile
An-
droid

GPT-
3.5,
GPT-
4

JSON rep-
resentation
of the GUI
state

Standard
UI op-
erations,
higher-level
APIs, and
custom
actions

Semantic,
intent-driven
automation of
GUI testing

Autonomously gen-
erates and executes
high-level, realistic
tasks for Android GUI
testing based on app-
specific functionalities.

https:
//github.
com/
coinse/
droidagent

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, and Chenyi Zhuang.
Intelligent agents with llm-based process automation. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 5018–5027, 2024a.

Yanchu Guan, Dong Wang, Yan Wang, Haiqing Wang, Renen Sun, Chenyi Zhuang, Jinjie Gu, and Zhixuan Chu.
Explainable behavior cloning: Teaching large language model agents through learning by demonstration.
arXiv preprint arXiv:2410.22916, 2024b.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu,
YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise of code
intelligence. arXiv preprint arXiv:2401.14196, 2024a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest, and
Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. arXiv
preprint arXiv:2402.01680, 2024b.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of large language
models, 2024c.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra
Faust. A real-world webagent with planning, long context understanding, and program synthesis. arXiv
preprint arXiv:2307.12856, 2023.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra
Faust. A real-world webagent with planning, long context understanding, and program synthesis, 2024.
URL https://arxiv.org/abs/2307.12856.

138

https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/neuroevolution%2Dai/SoftwareTestingLanguageModels
https://github.com/SoftwareTestingLLMs/WebtestingWithLLMs
https://github.com/SoftwareTestingLLMs/WebtestingWithLLMs
https://github.com/SoftwareTestingLLMs/WebtestingWithLLMs
https://github.com/SoftwareTestingLLMs/WebtestingWithLLMs
https://github.com/SoftwareTestingLLMs/WebtestingWithLLMs
https://github.com/franklinbill/GPTDroid
https://github.com/franklinbill/GPTDroid
https://github.com/franklinbill/GPTDroid
https://github.com/franklinbill/GPTDroid
https://github.com/franklinbill/GPTDroid
https://github.com/coinse/droidagent
https://github.com/coinse/droidagent
https://github.com/coinse/droidagent
https://github.com/coinse/droidagent
https://github.com/coinse/droidagent
https://arxiv.org/abs/2307.12856

Published in Transactions on Machine Learning Research (06/2025)

Table 65: Overview of GUI-testing with LLM-powered GUI agents (Part II).

Project Category Platform Model Perception Action Scenario Highlight Link
AUITest-
Agent Hu
et al. (2024c)

General
testing

Mobile
An-
droid

GPT-
4

GUI screen-
shots, UI
hierar-
chy files,
and CV-
enhanced
techniques
like Vision-
UI

Standard
UI opera-
tions

Automated
functional
testing of
GUIs

Features dynamic agent
organization for step-
oriented testing and a
multi-source data ex-
traction strategy for pre-
cise function verifica-
tion.

https:
//github.
com/
bz-lab/
AUITestAgent

VisionDroid
Liu et al.
(2024l)

General
testing

Mobile
An-
droid

GPT-
4

GUI screen-
shots with
annotated
bounding
boxes, View
hierarchy
files

Standard
UI opera-
tions

Identifies non-
crash bugs

Integrates vision-driven
prompts and GUI text
alignment with vision-
language models to en-
hance understanding of
GUI contexts and app
logic.

https:
//github.
com/
testtestA6/
VisionDroid

AXNav Taeb
et al. (2024)

Accessibility
testing

iOS mo-
bile de-
vices

GPT-
4

GUI screen-
shots, UI
element
detection
model, and
OCR

Gestures,
capturing
screenshots,
and high-
lighting
potential
accessibil-
ity issues

Automates
accessibil-
ity testing
workflows,
including test-
ing features
like VoiceOver,
Dynamic
Type, Bold
Text, and But-
ton Shapes

Adapts to natural lan-
guage test instructions
and generates anno-
tated videos to visually
and interactively review
accessibility test results.

/

LLMigrate
Beyzaei et al.
(2024)

General
testing

Mobile
An-
droid

GPT-
4o

DOM and
screenshots

Standard
UI opera-
tions

Automates
the transfer of
usage-based
UI tests be-
tween Android
apps

Leverages multimodal
LLMs to perform UI
test transfers without re-
quiring source code ac-
cess

/

Cui et al.,
Cui et al.
(2024)

Test in-
put gen-
eration

Mobile
An-
droid

GPT-
3.5,
GPT-
4

GUI struc-
tures and
contextual
information

Entering
text inputs

Generating
and validating
text inputs
for Android
applications

Demonstrates the
effectiveness of various
LLMs in generating
context-aware text
inputs, improving UI
test coverage, and
identifying previously
unreported bugs.

/

QTypist Liu
et al. (2023c)

Test in-
put gen-
eration

Mobile
An-
droid

GPT-
3

UI hierar-
chy files

Generates
semantic
text inputs

Automates
mobile GUI
testing by
generating
appropriate
text inputs

Formulates text input
generation as a cloze-
style fill-in-the-blank
language task.

/

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm multi-agent
systems: Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Hao Hao, Vicky Singh, and Wenliang Du. On the effectiveness of api-level access control using bytecode
rewriting in android. In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, pp. 25–36, 2013.

Robert Hardy and Enrico Rukzio. Touch & interact: touch-based interaction of mobile phones with displays.
In Proceedings of the 10th international conference on Human computer interaction with mobile devices
and services, pp. 245–254, 2008.

Feng He, Tianqing Zhu, Dayong Ye, Bo Liu, Wanlei Zhou, and Philip S Yu. The emerged security and privacy
of llm agent: A survey with case studies. arXiv preprint arXiv:2407.19354, 2024a.

139

https://github.com/bz-lab/AUITestAgent
https://github.com/bz-lab/AUITestAgent
https://github.com/bz-lab/AUITestAgent
https://github.com/bz-lab/AUITestAgent
https://github.com/bz-lab/AUITestAgent
https://github.com/testtestA6/VisionDroid
https://github.com/testtestA6/VisionDroid
https://github.com/testtestA6/VisionDroid
https://github.com/testtestA6/VisionDroid
https://github.com/testtestA6/VisionDroid

Published in Transactions on Machine Learning Research (06/2025)

Table 66: Overview of GUI-testing with LLM-powered GUI agents (Part III).

Project Category Platform Model Perception Action Scenario Highlight Link
Crash-
Translator
Huang et al.
(2024c)

Bug re-
play

Mobile
An-
droid

GPT-
3

Crash-
related
stack trace
information
and GUI
structure

Standard
UI opera-
tions

Automates the
reproduction
of mobile
application
crashes

Leverages LLMs for it-
erative GUI navigation
and crash reproduction
from stack traces, inte-
grating a reinforcement
learning-based scoring
system to optimize ex-
ploration steps.

https:
//github.
com/
wuchiuwong/
CrashTranslator

AdbGPT
Feng & Chen
(2024)

Bug re-
play

Mobile
An-
droid

GPT-
3.5

GUI struc-
ture and hi-
erarchy

Standard
UI opera-
tions

Automates
bug repro-
duction by
extracting
S2R (Steps to
Reproduce)
entities

Combines prompt engi-
neering with few-shot
learning and chain-of-
thought reasoning to
leverage LLMs for GUI-
based tasks.

https:
//github.
com/
sidongfeng/
AdbGPT

MagicWand
Ding et al.
(2024b)

Verrification Mobile
An-
droid

GPT-
4V

UI screen-
shots and
hierarchical
UI control
tree

Standard
UI opera-
tions

Automates the
verification
of “How-to”
instructions
from a search
engine

Features a three-stage
process: extracting
instructions, executing
them in a simulated
environment, and
reranking search results
based on execution
outcomes.

/

UXAgent Lu
et al. (2025a)

Usability
testing
for web
design

Web Self-
designed

Simplified
HTML
representa-
tions

Standard
UI opera-
tions

Automated us-
ability testing
of web applica-
tions

Enables LLM-powered
automated usability
testing by simulating
thousands of user
interactions, collecting
both qualitative and
quantitative data, and
providing researchers
with early feedback
before real-user studies.

https:
//uxagent.
hailab.io

Guardian
Ran et al.
(2024)

GUI
Testing

Mobile
An-
droid

GPT-
3.5

GUI struc-
ture, Prop-
erties

Standard
UI opera-
tions

Autonomously
explores
mobile ap-
plications,
interacting
with the UI to
validate core
functionali-
ties.

Improves LLM-driven
UI testing by offloading
planning tasks to an ex-
ternal runtime system.

/

Test-Agent
Li et al.
(2024h)

GUI
Testing

Android,
iOS,
Har-
mony
OS

Not
Men-
tioned

GUI screen-
shots, UI
structure
information

Standard
UI opera-
tions

Cross-
platform
mobile testing

Eliminates the need for
pre-written test scripts
by leveraging LLMs and
multimodal perception
to generate and execute
test cases automatically.

/

VLM-Fuzz
Demissie
et al. (2025)

GUI
Testing

Android
(Mo-
bile)

GPT-
4o

GUI screen-
shots
and UI
structure
information

Standard
UI op-
erations,
system-
level ac-
tions

Automated
Android app
testing for
detection of
crashes and
bugs

Integrates vision-
language reasoning
with heuristic-based
depth-first search (DFS)
to systematically ex-
plore complex Android
UIs, achieving signif-
icantly higher code
coverage

/

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models, 2024b. URL
https://arxiv.org/abs/2401.13919.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong Lan, and
Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world exploration, feedback
and optimization, 2024c. URL https://arxiv.org/abs/2410.19609.

140

https://github.com/wuchiuwong/CrashTranslator
https://github.com/wuchiuwong/CrashTranslator
https://github.com/wuchiuwong/CrashTranslator
https://github.com/wuchiuwong/CrashTranslator
https://github.com/wuchiuwong/CrashTranslator
https://github.com/sidongfeng/AdbGPT
https://github.com/sidongfeng/AdbGPT
https://github.com/sidongfeng/AdbGPT
https://github.com/sidongfeng/AdbGPT
https://github.com/sidongfeng/AdbGPT
https://uxagent.hailab.io
https://uxagent.hailab.io
https://uxagent.hailab.io
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2410.19609

Published in Transactions on Machine Learning Research (06/2025)

Table 67: Overview of GUI-testing with LLM-powered GUI agents (Part IV).

Project Category Platform Model Perception Action Scenario Highlight Link
BugCraft Ya-
pağcı et al.
(2025)

Bug
Repro-
duction

Windows
Com-
puter

BugCraft
based
on
GPT-
4o

GUI screen-
shots

Standard
UI opera-
tions

Automatically
reproduces
crash bugs in
Minecraft by
reading user-
submitted
bug reports,
generating
structured
steps, and
executing
them to cause
a crash

First end-to-end frame-
work that automates
crash bug reproduction
in a complex open-world
game (Minecraft) us-
ing LLM-driven agents,
vision-based UI parsing,
and structured action
execution

https://
bugcraft2025.
github.
io/

ReuseDroid
Li et al.
(2025c)

GUI
Testing

Mobile
An-
droid

ReuseDroid
based
on
GPT-
4o

GUI screen-
shots and
widget
properties

Standard
UI opera-
tions

Migrates GUI
test cases be-
tween Android
apps that
share similar
functionality
but differ in
operational
logic

Leverages visual con-
texts and dynamic feed-
back mechanisms to sig-
nificantly boost migra-
tion success rates com-
pared to prior mapping-
and LLM-based meth-
ods

/

SeeAct-ATA
and PinATA
Chevrot et al.
(2025)

GUI
Testing

Web SeeAct
Zheng
et al.
(2024a)

GUI struc-
ture and
DOM

Standard
UI opera-
tions

Automates
manual end-to-
end (E2E) web
application
testing

First open-source at-
tempt to adapt LLM-
powered Autonomous
Web Agents into Au-
tonomous Test Agents
(ATA) for web testing

/

GERALLT
Rosenbach
et al. (2025)

GUI
Testing

Desktop
(Win-
dows/Linux)

GPT-
4o

GUI screen-
shots
and UI
structure
information

Standard
UI opera-
tions

Finds unintu-
itive behavior,
inconsisten-
cies, and
functional
errors in GUIs
without pre-
defined test
scripts

Pioneers LLM-driven
testing on real-world
desktop GUI appli-
cations (not web or
mobile), combining
structured GUI parsing
with LLM-based control
and evaluation

https:
//github.
com/
DLR-SC/
GERALLT

ProphetAgent
Kong et al.

GUI
Testing

Android
Mobile

GPT-
4o

XML UI
trees

Executable
UI test
scripts

Automates
GUI test case
generation
from natural
language for
regression and
compatibility
testing in
mobile apps

Innovatively combines
LLM reasoning with a
semantically enriched
GUI graph (CUTG),
significantly improving
GUI test synthesis per-
formance and efficiency
over state-of-the-art
tools

https:
//github.
com/
prophetagent/
Home

Agent for
User Feng
et al. (2025)

GUI
Testing

Android
Mobile

GPT-
4

XML view
hierarchy

Standard
UI opera-
tions

Automated
testing of
multi-user
interactive
features

Introduces a multi-
agent LLM framework
where each agent simu-
lates a user on a virtual
device

/

Jiang He, I-Ling Yen, Tu Peng, Jing Dong, and Farokh Bastani. An adaptive user interface generation
framework for web services. In 2008 IEEE Congress on Services Part II (services-2 2008), pp. 175–182.
IEEE, 2008.

Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei Liu.
Pc agent: While you sleep, ai works – a cognitive journey into digital world, 2024d. URL https:
//arxiv.org/abs/2412.17589.

Zhitao He, Zijun Liu, Peng Li, May Fung, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. Enhancing language
multi-agent learning with multi-agent credit re-assignment for interactive environment generalization. arXiv
preprint arXiv:2502.14496, 2025.

141

https://bugcraft2025.github.io/
https://bugcraft2025.github.io/
https://bugcraft2025.github.io/
https://bugcraft2025.github.io/
https://github.com/DLR-SC/GERALLT
https://github.com/DLR-SC/GERALLT
https://github.com/DLR-SC/GERALLT
https://github.com/DLR-SC/GERALLT
https://github.com/DLR-SC/GERALLT
https://github.com/prophetagent/Home
https://github.com/prophetagent/Home
https://github.com/prophetagent/Home
https://github.com/prophetagent/Home
https://github.com/prophetagent/Home
https://arxiv.org/abs/2412.17589
https://arxiv.org/abs/2412.17589

Published in Transactions on Machine Learning Research (06/2025)

Table 68: Overview of virtual assistants with LLM-powered GUI agents (Part I).

Project Type Platform Model Perception Action Scenario Highlight Link
ProAgent Ye
et al. (2023)

Research Web
and
Desk-
top

GPT-4 Task de-
scriptions
and struc-
tured
application
data

Standard
UI opera-
tions and
dynamic
branching

Automates
business pro-
cesses such as
data analysis,
report gen-
eration, and
notifications
via GUI-based
tools

Introduces dynamic
workflows where agents
interpret and execute
tasks flexibly, surpass-
ing traditional RPA
systems

https:
//github.
com/
OpenBMB/
ProAgent

LLMPA
Guan et al.
(2024a)

Research Mobile
(An-
droid)

AntLLM-
10b

UI tree
structures,
visual
modeling,
and text
extraction
modules

Standard
UI opera-
tions

Automates
user interac-
tions within
mobile apps,
such as ticket
booking

Integrates LLM reason-
ing capabilities with a
modular design that
supports task decompo-
sition, object detection,
and robust action pre-
diction in GUI environ-
ments

/

VizAbility
Gorniak et al.
(2024)

Research Desktop GPT-
4V

Keyboard-
navigable
tree views

Navigates
chart struc-
tures and
generates
answers

Assists blind
and low-vision
users in explor-
ing and under-
standing data
visualizations

Integrates structured
chart navigation with
LLM-powered conver-
sational capabilities,
enabling visually im-
paired users to query in
natural language

https:
//dwr.
bc.edu/
vizability/

GPTVoice-
Tasker Vu
et al. (2024)

Research Mobile
(An-
droid)

GPT-4 Android Ac-
cessibility
Tree

Standard
UI opera-
tions

Automates
user inter-
actions on
mobile devices
through voice
commands

Integrates LLMs for nat-
ural command inter-
pretation and real-time
GUI interactions, us-
ing a graph-based local
database to record and
replicate interactions

https:
//github.
com/
vuminhduc796/
GPTVoiceTasker

Theodore D Hellmann and Frank Maurer. Rule-based exploratory testing of graphical user interfaces. In
2011 Agile Conference, pp. 107–116. IEEE, 2011.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Nobukatsu Hojo, Kazutoshi Shinoda, Yoshihiro Yamazaki, Keita Suzuki, Hiroaki Sugiyama, Kyosuke Nishida,
and Kuniko Saito. Generativegui: Dynamic gui generation leveraging llms for enhanced user interaction
on chat interfaces. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in
Computing Systems, pp. 1–9, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language
model for gui agents, 2023. URL https://arxiv.org/abs/2312.08914.

HONOR. Honor introduces magicos 9.0, 2024. URL https://www.fonearena.com/blog/438680/
honor-magicos-9-0-features.html. Accessed: 2024-11-16.

Jakub Hoscilowicz, Bartosz Maj, Bartosz Kozakiewicz, Oleksii Tymoshchuk, and Artur Janicki. Clickagent:
Enhancing ui location capabilities of autonomous agents. arXiv preprint arXiv:2410.11872, 2024.

Yu-Chung Hsiao, Fedir Zubach, Gilles Baechler, Victor Carbune, Jason Lin, Maria Wang, Srinivas Sunkara,
Yun Zhu, and Jindong Chen. Screenqa: Large-scale question-answer pairs over mobile app screenshots,
2024. URL https://arxiv.org/abs/2209.08199.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay
Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large language models.
arXiv preprint arXiv:2308.00675, 2023.

142

https://github.com/OpenBMB/ProAgent
https://github.com/OpenBMB/ProAgent
https://github.com/OpenBMB/ProAgent
https://github.com/OpenBMB/ProAgent
https://github.com/OpenBMB/ProAgent
https://dwr.bc.edu/vizability/
https://dwr.bc.edu/vizability/
https://dwr.bc.edu/vizability/
https://dwr.bc.edu/vizability/
https://github.com/vuminhduc796/GPTVoiceTasker
https://github.com/vuminhduc796/GPTVoiceTasker
https://github.com/vuminhduc796/GPTVoiceTasker
https://github.com/vuminhduc796/GPTVoiceTasker
https://github.com/vuminhduc796/GPTVoiceTasker
https://arxiv.org/abs/2312.08914
https://www.fonearena.com/blog/438680/honor-magicos-9-0-features.html
https://www.fonearena.com/blog/438680/honor-magicos-9-0-features.html
https://arxiv.org/abs/2209.08199

Published in Transactions on Machine Learning Research (06/2025)

Table 69: Overview of virtual assistants with LLM-powered GUI agents (Part II).

Project Type Platform Model Perception Action Scenario Highlight Link
AutoTask
Pan et al.
(2023b)

Research Mobile
(An-
droid)

GPT-4 Android Ac-
cessibility
Tree

Standard
UI opera-
tions

Automates
multi-step
tasks on
mobile devices

Operates without prede-
fined scripts or config-
urations, autonomously
exploring GUI environ-
ments

https:
//github.
com/
BowenBryanWang/
AutoTask

AssistEditor
Gao et al.
(2024a)

Research Windows UniVTG
Lin
et al.
(2023)

GUI ele-
ments, user
require-
ments, and
video data

Standard
UI opera-
tions

Automates
video editing
workflows

Employs a multi-agent
collaboration frame-
work where agents
specialize in roles to
integrate user require-
ments into video editing
workflows

/

PromptRPA
Huang et al.
(2024a)

Research Mobile
(An-
droid)

GPT-4
and
GPT-
3.5
Turbo

Layout hier-
archy and
screenshots
with OCR

Standard
UI opera-
tions and
application-
level func-
tionalities

Automates
smartphone
tasks and
creates in-
teractive
tutorials

Integrates user feedback
loops for continuous im-
provement, addressing
interface evolution and
task variability

/

EasyAsk Gao
et al. (2024g)

Research Mobile
(An-
droid)

GPT-4 Android Ac-
cessibility
Tree

Highlights
specific UI
elements
for user
interaction

Assists older
adults in
learning and
navigating
smartphone
functions
through
in-app interac-
tive tutorials

Combines voice and
touch inputs, supple-
menting incomplete or
ambiguous queries with
in-app contextual infor-
mation

/

WebNav
Srinivasan
& Patapati
(2025)

Research Web Gemini
2.0
Flash
Think-
ing

Standard
UI opera-
tions

GUI screen-
shots and
DOM

Assistive tech-
nology for
visually im-
paired users,
enabling
voice-based
navigation
of complex
websites

Combines a ReAct-style
reasoning loop, real-
time DOM labeling, and
voice-driven interaction
to support intelligent
web navigation for visu-
ally impaired users

/

143

https://github.com/BowenBryanWang/AutoTask
https://github.com/BowenBryanWang/AutoTask
https://github.com/BowenBryanWang/AutoTask
https://github.com/BowenBryanWang/AutoTask
https://github.com/BowenBryanWang/AutoTask

Published in Transactions on Machine Learning Research (06/2025)

Table 70: Overview of virtual assistants with LLM-powered GUI agents (Part III).

Project Type Platform Model Perception Action Scenario Highlight Link
OpenAdapt
Ope-
nAdapt
AI
(2024)

Open-
source

Desktop LLM,
VLM
(e.g.,
GPT-4,
ACT-1)

Screenshots
with CV
tools for
GUI pars-
ing

Standard
UI opera-
tions

Automates
repetitive
tasks across
industries

Learns task automation
by observing user in-
teractions, eliminating
manual scripting

https:
//github.
com/
OpenAdaptAI/
OpenAdapt

AgentSea
AgentSeaƒ
AI
(2024)

Open-
source

Desktop
and
Web

LLM,
VLM

Screenshots
with CV
tools for
GUI pars-
ing

Standard
UI opera-
tions

Automates
tasks within
GUI environ-
ments

Offers a modular toolkit
adhering to the UNIX
philosophy, allowing de-
velopers to create cus-
tom AI agents for di-
verse GUI environments

https:
//www.
agentsea.
ai/

Open
Inter-
preter
Inter-
preter
(2024)

Open-
source

Desktop,
Web,
Mobile
(An-
droid)

LLM System per-
ception via
command-
line

Shell com-
mands,
code, and
native APIs

Automates
tasks, con-
ducts data
analysis, man-
ages files, and
controls web
browsers for
research

Executes code locally,
providing full access to
system resources and li-
braries, overcoming lim-
itations of cloud-based
services

https:
//github.
com/
OpenInterpreter/
open-interpreter

MultiOn
Mul-
tiOn AI
(2024)

Production Web LLM / Standard
UI opera-
tions

Automates
web-based
tasks

Performs autonomous
web actions via natural
language commands

https:
//www.
multion.
ai/

YOYO
Agent
in Magi-
cOS
HONOR
(2024)

Production Mobile
(Magi-
cOS
9.0)

MagicLM GUI con-
text

Executes
in-app and
cross-app
operations

Automates
daily tasks,
enhancing
productivity

Leverages MagicLM to
understand and execute
complex tasks across ap-
plications, learning user
habits to provide per-
sonalized assistance

/

Power
Auto-
mate
Mi-
crosoft
(2024)

Production Windows LLM,
VLM

Records
user interac-
tions with
the GUI

Standard
UI opera-
tions

Automates
repetitive
tasks and
streamlines
workflows

Translates natural lan-
guage descriptions of de-
sired automations into
executable workflows

https:
//learn.
microsoft.
com/
en-us/
power-automate/
desktop-flows/
create%
2Dflow-using%
2Dai-recorder

Eko AI
(2025)

Production Web
browsers
and
com-
puter
environ-
ments

ChatGPT
and
Claude
3.5

Visual-
Interactive
Element
Perception
(VIEP)
technol-
ogy for
interacting
with GUI
elements.

Standard
UI opera-
tions.

Automates
tasks by han-
dling diverse
workflows.

Decomposes natural lan-
guage task descriptions
into executable work-
flows, enabling seamless
integration of natural
language and program-
ming logic in agent de-
sign.

https:
//eko.
fellou.
ai/

144

https://github.com/OpenAdaptAI/OpenAdapt
https://github.com/OpenAdaptAI/OpenAdapt
https://github.com/OpenAdaptAI/OpenAdapt
https://github.com/OpenAdaptAI/OpenAdapt
https://github.com/OpenAdaptAI/OpenAdapt
https://www.agentsea.ai/
https://www.agentsea.ai/
https://www.agentsea.ai/
https://www.agentsea.ai/
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://www.multion.ai/
https://www.multion.ai/
https://www.multion.ai/
https://www.multion.ai/
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create%2Dflow-using%2Dai-recorder
https://eko.fellou.ai/
https://eko.fellou.ai/
https://eko.fellou.ai/
https://eko.fellou.ai/

Published in Transactions on Machine Learning Research (06/2025)

Gang Hu, Linjie Zhu, and Junfeng Yang. Appflow: using machine learning to synthesize robust, reusable ui
tests. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, pp. 269–282, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450355735. doi: 10.1145/3236024.3236055.
URL https://doi.org/10.1145/3236024.3236055.

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary case
study with claude 3.5 computer use, 2024a. URL https://arxiv.org/abs/2411.10323.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao, Xiangxin
Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general computing devices use.
2024b.

Yongxiang Hu, Xuan Wang, Yingchuan Wang, Yu Zhang, Shiyu Guo, Chaoyi Chen, Xin Wang, and
Yangfan Zhou. Auitestagent: Automatic requirements oriented gui function testing, 2024c. URL https:
//arxiv.org/abs/2407.09018.

Zhiyuan Hu, Shiyun Xiong, Yifan Zhang, See-Kiong Ng, Anh Tuan Luu, Bo An, Shuicheng Yan, and
Bryan Hooi. Guiding vlm agents with process rewards at inference time for gui navigation, 2025. URL
https://arxiv.org/abs/2504.16073.

Jiaxing Huang and Jingyi Zhang. A survey on evaluation of multimodal large language models. arXiv preprint
arXiv:2408.15769, 2024.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. arXiv
preprint arXiv:2212.10403, 2022.

Jing Huang, Zhixiong Zeng, Wenkang Han, Yufeng Zhong, Liming Zheng, Shuai Fu, Jingyuan Chen, and Lin
Ma. Scaletrack: Scaling and back-tracking automated gui agents, 2025a. URL https://arxiv.org/abs/
2505.00416.

Tenghao Huang, Kinjal Basu, Ibrahim Abdelaziz, Pavan Kapanipathi, Jonathan May, and Muhao Chen. R2d2:
Remembering, reflecting and dynamic decision making for web agents. arXiv preprint arXiv:2501.12485,
2025b.

Tian Huang, Chun Yu, Weinan Shi, Zijian Peng, David Yang, Weiqi Sun, and Yuanchun Shi. Prompt2task:
Automating ui tasks on smartphones from textual prompts. ACM Transactions on Computer-Human
Interaction.

Tian Huang, Chun Yu, Weinan Shi, Zijian Peng, David Yang, Weiqi Sun, and Yuanchun Shi. Promptrpa: Gen-
erating robotic process automation on smartphones from textual prompts. arXiv preprint arXiv:2404.02475,
2024a.

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gao Jin, Yizhen Dong, Changshun Wu, Saddek Bensalem,
Ronghui Mu, Yi Qi, Xingyu Zhao, Kaiwen Cai, Yanghao Zhang, Sihao Wu, Peipei Xu, Dengyu Wu,
André Freitas, and Mustafa A. Mustafa. A survey of safety and trustworthiness of large language
models through the lens of verification and validation. Artif. Intell. Rev., 57:175, 2023. URL https:
//api.semanticscholar.org/CorpusID:258823083.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruiming Tang,
and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv preprint arXiv:2402.02716,
2024b.

Yuchao Huang, Junjie Wang, Zhe Liu, Yawen Wang, Song Wang, Chunyang Chen, Yuanzhe Hu, and Qing
Wang. Crashtranslator: Automatically reproducing mobile application crashes directly from stack trace. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, pp. 1–13, 2024c.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent: Advanced
gui agent with one look. arXiv preprint arXiv:2503.03196, 2025c.

145

https://doi.org/10.1145/3236024.3236055
https://arxiv.org/abs/2411.10323
https://arxiv.org/abs/2407.09018
https://arxiv.org/abs/2407.09018
https://arxiv.org/abs/2504.16073
https://arxiv.org/abs/2505.00416
https://arxiv.org/abs/2505.00416
https://api.semanticscholar.org/CorpusID:258823083
https://api.semanticscholar.org/CorpusID:258823083

Published in Transactions on Machine Learning Research (06/2025)

Zheng Hui, Yinheng Li, Dan zhao, Tianyi Chen, Colby Banbury, and Kazuhito Koishida. Winclick: Gui
grounding with multimodal large language models, 2025. URL https://arxiv.org/abs/2503.04730.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276,
2024.

Open Interpreter. Open interpreter: A natural language interface for computers. GitHub repository, 2024.
URL https://github.com/OpenInterpreter/open-interpreter. Accessed: 2024-10-27.

Iat Long Iong, Xiao Liu, Yuxuan Chen, Hanyu Lai, Shuntian Yao, Pengbo Shen, Hao Yu, Yuxiao Dong, and Jie
Tang. Openwebagent: An open toolkit to enable web agents on large language models. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations),
pp. 72–81, 2024.

Lucija Ivančić, Dalia Suša Vugec, and Vesna Bosilj Vukšić. Robotic process automation: systematic literature
review. In Business Process Management: Blockchain and Central and Eastern Europe Forum: BPM 2019
Blockchain and CEE Forum, Vienna, Austria, September 1–6, 2019, Proceedings 17, pp. 280–295. Springer,
2019.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720,
2024.

Lawrence Jang, Yinheng Li, Charles Ding, Justin Lin, Paul Pu Liang, Dan Zhao, Rogerio Bonatti, and
Kazuhito Koishida. Videowebarena: Evaluating long context multimodal agents with video understanding
web tasks. arXiv preprint arXiv:2410.19100, 2024.

Bernard Jim Jansen. The graphical user interface. ACM SIGCHI Bull., 30:22–26, 1998. URL https:
//api.semanticscholar.org/CorpusID:18416305.

Susmit Jha, Sumit Kumar Jha, Patrick Lincoln, Nathaniel D. Bastian, Alvaro Velasquez, and Sandeep
Neema. Dehallucinating large language models using formal methods guided iterative prompting. 2023
IEEE International Conference on Assured Autonomy (ICAA), pp. 149–152, 2023. URL https://api.
semanticscholar.org/CorpusID:260810131.

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and Zhiyong
Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist computer assistant.
arXiv preprint arXiv:2410.18603, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, and Chi Zhang. Appagentx: Evolving gui agents as
proficient smartphone users. arXiv preprint arXiv:2503.02268, 2025.

Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin, Yu Kang, Yingnong Dang,
Saravan Rajmohan, Qingwei Lin, et al. Xpert: Empowering incident management with query recommen-
dations via large language models. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, pp. 1–13, 2024.

Yiqiao Jin, Stefano Petrangeli, Yu Shen, and Gang Wu. Screenllm: Stateful screen schema for efficient action
understanding and prediction, 2025.

Kristiina Jokinen. User interaction in mobile navigation applications. In Map-based Mobile Services: Design,
Interaction and Usability, pp. 168–197. Springer, 2008.

Christoforos Kachris. A survey on hardware accelerators for large language models. arXiv preprint
arXiv:2401.09890, 2024.

146

https://arxiv.org/abs/2503.04730
https://github.com/OpenInterpreter/open-interpreter
https://api.semanticscholar.org/CorpusID:18416305
https://api.semanticscholar.org/CorpusID:18416305
https://api.semanticscholar.org/CorpusID:260810131
https://api.semanticscholar.org/CorpusID:260810131

Published in Transactions on Machine Learning Research (06/2025)

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285, 1996.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Kinose, Koki
Oguri, Felix Wick, and Yang You. Rap: Retrieval-augmented planning with contextual memory for
multimodal llm agents. arXiv preprint arXiv:2402.03610, 2024.

Noam Kahlon, Guy Rom, Anatoly Efros, Filippo Galgani, Omri Berkovitch, Sapir Caduri, William E
Bishop, Oriana Riva, and Ido Dagan. Agent-initiated interaction in phone ui automation. arXiv preprint
arXiv:2503.19537, 2025.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh, and
Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist autonomous
agents for desktop and web, 2024. URL https://arxiv.org/abs/2402.17553.

Su Kara, Fazle Faisal, and Suman Nath. Waber: Web agent benchmarking for efficiency and reliability. In
ICLR 2025 Workshop on Foundation Models in the Wild.

katalon. Katalon studio: Easy test automation for web, api, mobile, and desktop, 2024. URL https:
//katalon.com/katalon-studio. Accessed: 2024-11-05.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement learning from
human feedback. arXiv preprint arXiv:2312.14925, 2023.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal.
Decomposed prompting: A modular approach for solving complex tasks. arXiv preprint arXiv:2210.02406,
2022.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view visual
contextualization for web navigation, 2024. URL https://arxiv.org/abs/2402.04476.

Callie Y Kim, Christine P Lee, and Bilge Mutlu. Understanding large-language model (llm)-powered human-
robot interaction. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction, pp. 371–380, 2024a.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks, 2023. URL
https://arxiv.org/abs/2303.17491.

Jaekyeom Kim, Dong-Ki Kim, Lajanugen Logeswaran, Sungryull Sohn, and Honglak Lee. Auto-intent:
Automated intent discovery and self-exploration for large language model web agents. arXiv preprint
arXiv:2410.22552, 2024b.

Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung Park. Large
language models meet collaborative filtering: An efficient all-round llm-based recommender system. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1395–1406,
2024c.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks, 2024a. URL https://arxiv.org/abs/2401.13649.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language model
agents. arXiv preprint arXiv:2407.01476, 2024b.

147

https://arxiv.org/abs/2402.17553
https://katalon.com/katalon-studio
https://katalon.com/katalon-studio
https://arxiv.org/abs/2402.04476
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2401.13649

Published in Transactions on Machine Learning Research (06/2025)

Qichao Kong, Zhengwei Lv, Yiheng Xiong, Jingling Sun, Ting Su, Dingchun Wang, Letao Li, Xu Yang, and
Gang Huo. Prophetagent: Automatically synthesizing gui tests from test cases in natural language for
mobile apps.

Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE Transac-
tions on Software Engineering, SE-13:23–31, 1986. URL https://api.semanticscholar.org/CorpusID:
206777989.

Lars Krupp, Daniel Geißler, Paul Lukowicz, and Jakob Karolus. Towards sustainable web agents: A plea for
transparency and dedicated metrics for energy consumption. arXiv preprint arXiv:2502.17903, 2025.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang
Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for fine-tuning large
language models in federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5260–5271, 2024.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen Zhang,
Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large language
model-based web navigating agent, 2024. URL https://arxiv.org/abs/2404.03648.

Hanyu Lai, Junjie Gao, Xiao Liu, Yifan Xu, Shudan Zhang, Yuxiao Dong, and Jie Tang. Androidgen:
Building an android language agent under data scarcity. arXiv preprint arXiv:2504.19298, 2025.

Yuanhong Lan, Yifei Lu, Zhong Li, Minxue Pan, Wenhua Yang, Tian Zhang, and Xuandong Li. Deeply
reinforcing android gui testing with deep reinforcement learning. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, pp. 1–13, 2024.

Z Lan. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-language
models? arXiv preprint arXiv:2405.02246, 2024a.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into html
code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024b.

Hansoo Lee, Joonyoung Park, and Uichin Lee. A systematic survey on android api usage for data-driven
analytics with smartphones. ACM Computing Surveys, 55(5):1–38, 2022.

Jungjae Lee, Dongjae Lee, Chihun Choi, Youngmin Im, Jaeyoung Wi, Kihong Heo, Sangeun Oh, Sunjae
Lee, and Insik Shin. Safeguarding mobile gui agent via logic-based action verification. arXiv preprint
arXiv:2503.18492, 2025.

Juyong Lee, Dongyoon Hahm, June Suk Choi, W Bradley Knox, and Kimin Lee. Mobilesafetybench:
Evaluating safety of autonomous agents in mobile device control. arXiv preprint arXiv:2410.17520, 2024a.

Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking mobile device
control agents across diverse configurations, 2024b. URL https://arxiv.org/abs/2404.16660.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y Ko, Sangeun Oh, and
Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory for mobile task
automation. arXiv preprint arXiv:2312.03003, 2023.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and Insik
Shin. Mobilegpt: Augmenting llm with human-like app memory for mobile task automation. In Proceedings
of the 30th Annual International Conference on Mobile Computing and Networking, pp. 1119–1133, 2024c.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative inference of
large language models with dynamic {KV} cache management. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pp. 155–172, 2024d.

148

https://api.semanticscholar.org/CorpusID:206777989
https://api.semanticscholar.org/CorpusID:206777989
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2404.16660

Published in Transactions on Machine Learning Research (06/2025)

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-webagentbench: A
benchmark for evaluating safety and trustworthiness in web agents. arXiv preprint arXiv:2410.06703, 2024.

M Lewis. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh Tiwari. Llm inference serving: Survey of recent
advances and opportunities. arXiv preprint arXiv:2407.12391, 2024a.

Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Guoyin Wang,
Bei Chen, and Junnan Li. Aria: An open multimodal native mixture-of-experts model. arXiv preprint
arXiv:2410.05993, 2024b.

Eric Li and Jim Waldo. Websuite: Systematically evaluating why web agents fail. arXiv preprint
arXiv:2406.01623, 2024.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for "mind" exploration of large language model society. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023a.

Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again! llm-powered
personalized agent for long-term dialogue. arXiv preprint arXiv:2406.05925, 2024c.

Haoyuan Li, Hao Jiang, Tianke Zhang, Zhelun Yu, Aoxiong Yin, Hao Cheng, Siming Fu, Yuhao Zhang, and
Wanggui He. Traineragent: Customizable and efficient model training through llm-powered multi-agent
system. arXiv preprint arXiv:2311.06622, 2023b.

Hongxin Li, Jingfan Chen, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. Autogui: Scaling gui
grounding with automatic functionality annotations from llms. arXiv preprint arXiv:2502.01977, 2025a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. In International conference on machine learning,
pp. 19730–19742. PMLR, 2023c.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and Tat-Seng
Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use, 2025b.

Kanglin Li and Mengqi Wu. Effective GUI testing automation: Developing an automated GUI testing tool.
John Wiley & Sons, 2006.

Lin Li, Guikun Chen, Hanrong Shi, Jun Xiao, and Long Chen. A survey on multimodal benchmarks: In the
era of large ai models. arXiv preprint arXiv:2409.18142, 2024d.

Tao Li, Gang Li, Zhiwei Deng, Bryan Wang, and Yang Li. A zero-shot language agent for computer control
with structured reflection. arXiv preprint arXiv:2310.08740, 2023d.

Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. Screen2vec: Semantic embedding
of gui screens and gui components. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–15, 2021.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, and Oriana
Riva. On the effects of data scale on computer control agents. arXiv preprint arXiv:2406.03679, 2024e.

Wei Li, Fu-Lin Hsu, William Bishop, Folawiyo Campbell-Ajala, Max Lin, and Oriana Riva. Uinav: A
practical approach to train on-device automation agents. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 6: Industry Track), pp. 36–51, 2024f.

149

Published in Transactions on Machine Learning Research (06/2025)

Xiaolei Li, Jialun Cao, Yepang Liu, Shing-Chi Cheung, and Hailong Wang. Reusedroid: A vlm-empowered
android ui test migrator boosted by active feedback. arXiv preprint arXiv:2504.02357, 2025c.

Xuan Li. Gui testing for android applications: a survey. In 2023 7th International Conference on Computer,
Software and Modeling (ICCSM), pp. 6–10. IEEE, 2023.

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei. Appagent
v2: Advanced agent for flexible mobile interactions, 2024g. URL https://arxiv.org/abs/2408.11824.

Yang Li and Otmar Hilliges. Artificial intelligence for human computer interaction: a modern approach.
Springer, 2021.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language instructions to
mobile ui action sequences. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8198–8210, 2020a.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning: Generating
natural language description for mobile user interface elements. arXiv preprint arXiv:2010.04295, 2020b.

Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. A survey on fairness in large language models.
arXiv preprint arXiv:2308.10149, 2023e.

Youwei Li, Yangyang Li, and Yangzhao Yang. Test-agent: A multimodal app automation testing framework
based on the large language model. In 2024 IEEE 4th International Conference on Digital Twins and
Parallel Intelligence (DTPI), pp. 609–614. IEEE, 2024h.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Humanoid: A deep learning-based approach to
automated black-box android app testing. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1070–1073. IEEE, 2019.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing Xu,
Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the capability, efficiency and
security. arXiv preprint arXiv:2401.05459, 2024i.

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya Moorthy,
Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface understanding
across platforms. arXiv preprint arXiv:2410.18967, 2024j.

Zongxia Li, Xiyang Wu, Hongyang Du, Huy Nghiem, and Guangyao Shi. Benchmark evaluations, applications,
and challenges of large vision language models: A survey. arXiv preprint arXiv:2501.02189, 2025d.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei Xiao, Yuan Tian, Bo Li, and Huan
Sun. Eia: Environmental injection attack on generalist web agents for privacy leakage. arXiv preprint
arXiv:2409.11295, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine Learning and Systems, 6:87–100, 2024a.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jinpeng Wang, Rui
Yan, and Mike Zheng Shou. Univtg: Towards unified video-language temporal grounding. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 2794–2804, 2023.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen WU, Mingyi Yan, Zhengyuan Yang, Lijuan Wang, and
Mike Zheng Shou. Videogui: A benchmark for gui automation from instructional videos, 2024b. URL
https://arxiv.org/abs/2406.10227.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan
Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual agent, 2024c. URL
https://arxiv.org/abs/2411.17465.

150

https://arxiv.org/abs/2408.11824
https://arxiv.org/abs/2406.10227
https://arxiv.org/abs/2411.17465

Published in Transactions on Machine Learning Research (06/2025)

Luyang Lin, Lingzhi Wang, Jinsong Guo, and Kam-Fai Wong. Investigating bias in llm-based bias detection:
Disparities between llms and human perception. arXiv preprint arXiv:2403.14896, 2024d.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement learning on
web interfaces using workflow-guided exploration, 2018. URL https://arxiv.org/abs/1802.08802.

Guangyi Liu, Pengxiang Zhao, Liang Liu, Zhiming Chen, Yuxiang Chai, Shuai Ren, Hao Wang, Shibo He,
and Wenchao Meng. Learnact: Few-shot mobile gui agent with a unified demonstration benchmark, 2025a.
URL https://arxiv.org/abs/2504.13805.

Guangyi Liu, Pengxiang Zhao, Liang Liu, Yaxuan Guo, Han Xiao, Weifeng Lin, Yuxiang Chai, Yue Han,
Shuai Ren, Hao Wang, et al. Llm-powered gui agents in phone automation: Surveying progress and
prospects. arXiv preprint arXiv:2504.19838, 2025b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36, 2024b.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng Yuan,
Changsheng Xu, Weiming Hu, et al. Pc-agent: A hierarchical multi-agent collaboration framework for
complex task automation on pc. arXiv preprint arXiv:2502.14282, 2025c.

Jiarun Liu, Jia Hao, Chunhong Zhang, and Zheng Hu. Wepo: Web element preference optimization for
llm-based web navigation, 2024c. URL https://arxiv.org/abs/2412.10742.

Jun Liu, Chaoyun Zhang, Jiaxu Qian, Minghua Ma, Si Qin, Chetan Bansal, Qingwei Lin, Saravan Rajmohan,
and Dongmei Zhang. Large language models can deliver accurate and interpretable time series anomaly
detection. arXiv preprint arXiv:2405.15370, 2024d.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham Neubig,
and Xiang Yue. Harnessing webpage uis for text-rich visual understanding. arXiv preprint arXiv:2410.13824,
2024e.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang Yue. Visual-
webbench: How far have multimodal llms evolved in web page understanding and grounding?, 2024f. URL
https://arxiv.org/abs/2404.05955.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling Lou. Large
language model-based agents for software engineering: A survey. arXiv preprint arXiv:2409.02977, 2024g.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei
Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen Men,
Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023b.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv preprint
arXiv:2411.00820, 2024h.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi
Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng,
Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan Zeng,
Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. Visualagentbench: Towards large
multimodal models as visual foundation agents, 2024i. URL https://arxiv.org/abs/2408.06327.

151

https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2504.13805
https://arxiv.org/abs/2412.10742
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/2408.06327

Published in Transactions on Machine Learning Research (06/2025)

Xinyi Liu, Xiaoyi Zhang, Ziyun Zhang, and Yan Lu. Ui-e2i-synth: Advancing gui grounding with large-scale
instruction synthesis. arXiv preprint arXiv:2504.11257, 2025d.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
364, 2019.

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang, Xiaotian Han,
Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with native reasoning and
reflection, 2025e. URL https://arxiv.org/abs/2501.04575.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, and Fei
Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative reasoners, 2025f.
URL https://arxiv.org/abs/2504.14239.

Yuxuan Liu, Hongda Sun, Wei Liu, Jian Luan, Bo Du, and Rui Yan. Mobilesteward: Integrating multiple
app-oriented agents with self-evolution to automate cross-app instructions. arXiv preprint arXiv:2502.16796,
2025g.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong,
Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing sub-billion
parameter language models for on-device use cases. arXiv preprint arXiv:2402.14905, 2024j.

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and Qing Wang. Fill in the
blank: Context-aware automated text input generation for mobile gui testing. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pp. 1355–1367. IEEE, 2023c.

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che, Dandan Wang, and Qing Wang.
Make llm a testing expert: Bringing human-like interaction to mobile gui testing via functionality-aware
decisions. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pp.
1–13, 2024k.

Zhe Liu, Cheng Li, Chunyang Chen, Junjie Wang, Boyu Wu, Yawen Wang, Jun Hu, and Qing Wang.
Vision-driven automated mobile gui testing via multimodal large language model, 2024l. URL https:
//arxiv.org/abs/2407.03037.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11976–11986, 2022.

Fanbin Lu, Zhisheng Zhong, Ziqin Wei, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Steve: Astep verification
pipeline for computer-use agent training. arXiv preprint arXiv:2503.12532, 2025.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng Wu.
Memochat: Tuning llms to use memos for consistent long-range open-domain conversation. arXiv preprint
arXiv:2308.08239, 2023.

Junting Lu, Zhiyang Zhang, Fangkai Yang, Jue Zhang, Lu Wang, Chao Du, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. Turn every application into an agent: Towards efficient human-agent-
computer interaction with api-first llm-based agents. arXiv preprint arXiv:2409.17140, 2024a.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng
Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui navigation on
mobile devices, 2024b. URL https://arxiv.org/abs/2406.08451.

Xing Han Lu, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-turn
dialogue. In International Conference on Machine Learning, pp. 33007–33056. PMLR, 2024c.

152

https://arxiv.org/abs/2501.04575
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2407.03037
https://arxiv.org/abs/2407.03037
https://arxiv.org/abs/2406.08451

Published in Transactions on Machine Learning Research (06/2025)

Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejandra Zambrano,
Karolina Stańczak, Peter Shaw, Christopher J Pal, and Siva Reddy. Agentrewardbench: Evaluating
automatic evaluations of web agent trajectories. arXiv preprint arXiv:2504.08942, 2025.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based gui agent.
arXiv preprint arXiv:2408.00203, 2024d.

Yuwen Lu, Yuewen Yang, Qinyi Zhao, Chengzhi Zhang, and Toby Jia-Jun Li. Ai assistance for ux: A
literature review through human-centered ai. arXiv preprint arXiv:2402.06089, 2024e.

Yuxuan Lu, Bingsheng Yao, Hansu Gu, Jing Huang, Jessie Wang, Laurence Li, Jiri Gesi, Qi He, Toby Jia-Jun
Li, and Dakuo Wang. Uxagent: An llm agent-based usability testing framework for web design. arXiv
preprint arXiv:2502.12561, 2025a.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and Hongsheng Li.
Ui-r1: Enhancing action prediction of gui agents by reinforcement learning. arXiv preprint arXiv:2503.21620,
2025b.

Dezhao Luo, Bohan Tang, Kang Li, Georgios Papoudakis, Jifei Song, Shaogang Gong, Jianye Hao, Jun
Wang, and Kun Shao. Vimo: A generative visual gui world model for app agent, 2025a. URL https:
//arxiv.org/abs/2504.13936.

Tiange Luo, Lajanugen Logeswaran, Justin Johnson, and Honglak Lee. Visual test-time scaling for gui agent
grounding, 2025b. URL https://arxiv.org/abs/2505.00684.

Yang Luo, Qixun Zhang, Qingni Shen, Hongzhi Liu, and Zhonghai Wu. Android multi-level system
permission management approach. ArXiv, abs/1712.02217, 2017. URL https://api.semanticscholar.
org/CorpusID:20909985.

Michael Lutaaya. Rethinking app permissions on ios. In Extended Abstracts of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1–6, 2018.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng Kong,
and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents. arXiv preprint
arXiv:2401.13178, 2024a.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser: Llm agent
with state-space exploration for web navigation. arXiv preprint arXiv:2309.08172, 2023.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser: Llm agent
with state-space exploration for web navigation, 2024b. URL https://arxiv.org/abs/2309.08172.

Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, and Hai Zhao. Caution
for the environment: Multimodal agents are susceptible to environmental distractions, 2024c. URL
https://arxiv.org/abs/2408.02544.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Coco-agent: A comprehensive cognitive mllm agent for
smartphone gui automation, 2024d. URL https://arxiv.org/abs/2402.11941.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large language
model inference with local differential privacy. arXiv preprint arXiv:2310.09130, 2023.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 1, 2020.

Pedro Martins, Filipe Sá, Francisco Morgado, and Carlos Cunha. Using machine learning for cognitive robotic
process automation (rpa). In 2020 15th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1–6. IEEE, 2020.

153

https://arxiv.org/abs/2504.13936
https://arxiv.org/abs/2504.13936
https://arxiv.org/abs/2505.00684
https://api.semanticscholar.org/CorpusID:20909985
https://api.semanticscholar.org/CorpusID:20909985
https://arxiv.org/abs/2309.08172
https://arxiv.org/abs/2408.02544
https://arxiv.org/abs/2402.11941

Published in Transactions on Machine Learning Research (06/2025)

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging ai agent architectures
for reasoning, planning, and tool calling: A survey. arXiv preprint arXiv:2404.11584, 2024.

Sahisnu Mazumder and Oriana Riva. Flin: A flexible natural language interface for web navigation. arXiv
preprint arXiv:2010.12844, 2020.

Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. Design and Applications, 5(64-67):2, 2001.

A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan. Dart: a framework for regression testing "nightly/daily
builds" of gui applications. In International Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., pp. 410–419, 2003a. doi: 10.1109/ICSM.2003.1235451.

Atif M Memon, Martha E Pollack, and Mary Lou Soffa. Hierarchical gui test case generation using automated
planning. IEEE transactions on software engineering, 27(2):144–155, 2001.

Atif M Memon, Ishan Banerjee, and Adithya Nagarajan. Gui ripping: reverse engineering of graphical user
interfaces for testing. In WCRE, volume 3, pp. 260, 2003b.

Ziyang Meng, Yu Dai, Zezheng Gong, Shaoxiong Guo, Minglong Tang, and Tongquan Wei. Vga: Vision gui
assistant – minimizing hallucinations through image-centric fine-tuning, 2024. URL https://arxiv.org/
abs/2406.14056.

Rafał Michalski, Jerzy Grobelny, and Waldemar Karwowski. The effects of graphical interface design
characteristics on human-computer interaction task efficiency. ArXiv, abs/1211.6712, 2006. URL https:
//api.semanticscholar.org/CorpusID:14695409.

Microsoft. Create desktop flows using record with copilot (preview), 2024. URL https://learn.microsoft.
com/en-us/power-automate/desktop-flows/create-flow-using-ai-recorder. Accessed: 2024-11-16.

Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 37(3):311–324, 2007.

Kevin Moran, Cody Watson, John Hoskins, George Purnell, and Denys Poshyvanyk. Detecting and summa-
rizing gui changes in evolving mobile apps. In Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering, pp. 543–553, 2018.

MosaicML. Mosaicml: Mpt-7b, 2023. URL https://www.mosaicml.com/blog/mpt-7b. Accessed: 2024-11-
19.

Thiago Santos de Moura, Everton LG Alves, Hugo Feitosa de Figueirêdo, and Cláudio de Souza Baptista.
Cytestion: Automated gui testing for web applications. In Proceedings of the XXXVII Brazilian Symposium
on Software Engineering, pp. 388–397, 2023.

MultiOn AI. Multion ai: Ai agents that act on your behalf, 2024. URL https://www.multion.ai/. Accessed:
2024-10-26.

Shikhar Murty, Dzmitry Bahdanau, and Christopher D Manning. Nnetscape navigator: Complex demonstra-
tions for web agents without a demonstrator. arXiv preprint arXiv:2410.02907, 2024.

Michel Nass, Emil Alégroth, and Robert Feldt. Why many challenges with gui test automation (will) remain.
Information and Software Technology, 138:106625, 2021.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. arXiv preprint
arXiv:2307.06435, 2023.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul Awal, Nicolas
Chapados, M Tamer Özsu, Aishwarya Agrawal, David Vazquez, et al. Ui-vision: A desktop-centric gui
benchmark for visual perception and interaction. arXiv preprint arXiv:2503.15661, 2025.

154

https://arxiv.org/abs/2406.14056
https://arxiv.org/abs/2406.14056
https://api.semanticscholar.org/CorpusID:14695409
https://api.semanticscholar.org/CorpusID:14695409
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create-flow-using-ai-recorder
https://learn.microsoft.com/en-us/power-automate/desktop-flows/create-flow-using-ai-recorder
https://www.mosaicml.com/blog/mpt-7b
https://www.multion.ai/

Published in Transactions on Machine Learning Research (06/2025)

Anthony Nguyen. Improved gui grounding via iterative narrowing, 2024. URL https://arxiv.org/abs/
2411.13591.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu,
Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie, Sungchul Kim,
Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon, Lina Yao,
Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, and Franck Dernoncourt.
Gui agents: A survey, 2024. URL https://arxiv.org/abs/2412.13501.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao Qu, Yujuan Ding, Wenqi Fan, Xiao-yong Wei, Shanru
Lin, Hui Liu, Philip S Yu, et al. A survey of webagents: Towards next-generation ai agents for web
automation with large foundation models. arXiv preprint arXiv:2503.23350, 2025.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent, 2024. URL https:
//arxiv.org/abs/2402.07945.

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu. Mobileflow:
A multimodal llm for mobile gui agent, 2024. URL https://arxiv.org/abs/2407.04346.

Juho-Jaakko Oksanen. Test automation for windows gui application. 2023.

OpenAdapt AI. OpenAdapt: Open Source Generative Process Automation, 2024. URL https://github.
com/OpenAdaptAI/OpenAdapt. Accessed: 2024-10-26.

OpenAI. Gpt-4v(ision) system card. Technical report, OpenAI, September 2023. URL https://cdn.openai.
com/papers/GPTV_System_Card.pdf.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital world.
2025a. URL https://openai.com/index/computer-using-agent.

OpenAI. Operator system card, January 2025b. Released on January 23, 2025.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su, and
Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multimodal web
agents. arXiv preprint arXiv:2502.11357, 2025.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous evaluation
and refinement of digital agents. In First Conference on Language Modeling, 2024a.

Liangming Pan, Michael Stephen Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction strategies.
ArXiv, abs/2308.03188, 2023a. URL https://api.semanticscholar.org/CorpusID:260682695.

Lihang Pan, Bowen Wang, Chun Yu, Yuxuan Chen, Xiangyu Zhang, and Yuanchun Shi. Autotask: Executing
arbitrary voice commands by exploring and learning from mobile gui. arXiv preprint arXiv:2312.16062,
2023b.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, and Zhengyang Wu. Webcanvas: Benchmarking web agents in online environments,
2024b. URL https://arxiv.org/abs/2406.12373.

155

https://arxiv.org/abs/2411.13591
https://arxiv.org/abs/2411.13591
https://arxiv.org/abs/2412.13501
https://arxiv.org/abs/2402.07945
https://arxiv.org/abs/2402.07945
https://arxiv.org/abs/2407.04346
https://github.com/OpenAdaptAI/OpenAdapt
https://github.com/OpenAdaptAI/OpenAdapt
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openai.com/index/computer-using-agent
https://api.semanticscholar.org/CorpusID:260682695
https://arxiv.org/abs/2406.12373

Published in Transactions on Machine Learning Research (06/2025)

Georgios Papoudakis, Thomas Coste, Zhihao Wu, Jianye Hao, Jun Wang, and Kun Shao. Appvlm: A
lightweight vision language model for online app control. arXiv preprint arXiv:2502.06395, 2025.

Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Sebastien
Postansque, and Jakub Hoscilowicz. Tinyclick: Single-turn agent for empowering gui automation. arXiv
preprint arXiv:2410.11871, 2024.

Andrés Piñeiro-Martín, Carmen García-Mateo, Laura Docío-Fernández, and Maria Del Carmen Lopez-Perez.
Ethical challenges in the development of virtual assistants powered by large language models. Electronics,
12(14):3170, 2023.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management science,
2:331–434, 1990.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Xinyue Yang, Jiadai Sun, Yu Yang, Shuntian
Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. Webrl: Training llm web agents via self-evolving
online curriculum reinforcement learning, 2024. URL https://arxiv.org/abs/2411.02337.

Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. Roscript: A visual script driven truly
non-intrusive robotic testing system for touch screen applications. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pp. 297–308, 2020.

Ju Qian, Yingwei Ma, Chenghao Lin, and Lin Chen. Accelerating ocr-based widget localization for test
automation of gui applications. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pp. 1–13, 2022.

Yijun Qian, Yujie Lu, Alexander Hauptmann, and Oriana Riva. Visual grounding for user interfaces. In
Yi Yang, Aida Davani, Avi Sil, and Anoop Kumar (eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
6: Industry Track), pp. 97–107, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.naacl-industry.9. URL https://aclanthology.org/2024.naacl-industry.9.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue Zhang,
Lu Wang, et al. Taskweaver: A code-first agent framework. arXiv preprint arXiv:2311.17541, 2023.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu,
Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen
Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng,
Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction with native agents, 2025. URL
https://arxiv.org/abs/2501.12326.

Guanqiao Qu, Qiyuan Chen, Wei Wei, Zheng Lin, Xianhao Chen, and Kaibin Huang. Mobile edge intelligence
for large language models: A contemporary survey. arXiv preprint arXiv:2407.18921, 2024.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

156

https://arxiv.org/abs/2411.02337
https://aclanthology.org/2024.naacl-industry.9
https://arxiv.org/abs/2501.12326

Published in Transactions on Machine Learning Research (06/2025)

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Abdur Rahman, Rajat Chawla, Muskaan Kumar, Arkajit Datta, Adarsh Jha, Mukunda NS, and Ishaan
Bhola. V-zen: Efficient gui understanding and precise grounding with a novel multimodal llm. arXiv
preprint arXiv:2405.15341, 2024.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, pp.
8821–8831. Pmlr, 2021.

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei Yang, and Tao Xie. Guardian:
A runtime framework for llm-based ui exploration. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 958–970, 2024.

Dezhi Ran, Mengzhou Wu, Hao Yu, Yuetong Li, Jun Ren, Yuan Cao, Xia Zeng, Haochuan Lu, Zexin Xu,
Mengqian Xu, et al. Beyond pass or fail: A multi-dimensional benchmark for mobile ui navigation. arXiv
preprint arXiv:2501.02863, 2025.

ranorex. Ranorex studio: Test automation for gui testing, 2024. URL https://www.ranorex.com/. Accessed:
2024-11-05.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Androidinthewild: A
large-scale dataset for android device control. Advances in Neural Information Processing Systems, 36:
59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry, Divya Tyamagundlu,
Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking environment for autonomous
agents, 2024. URL https://arxiv.org/abs/2405.14573.

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. Real-time flying object detection with
yolov8. arXiv preprint arXiv:2305.09972, 2023.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving performance.
arXiv preprint arXiv:2405.06682, 2024.

Jorge Ribeiro, Rui Lima, Tiago Eckhardt, and Sara Paiva. Robotic process automation and artificial
intelligence in industry 4.0–a literature review. Procedia Computer Science, 181:51–58, 2021.

Fernando Pastor Ricós, Rick Neeft, Beatriz Marín, Tanja EJ Vos, and Pekka Aho. Using gui change detection
for delta testing. In International Conference on Research Challenges in Information Science, pp. 509–517.
Springer, 2023.

Olivia Rodríguez-Valdés, Tanja EJ Vos, Pekka Aho, and Beatriz Marín. 30 years of automated gui testing:
a bibliometric analysis. In Quality of Information and Communications Technology: 14th International
Conference, QUATIC 2021, Algarve, Portugal, September 8–11, 2021, Proceedings 14, pp. 473–488. Springer,
2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

157

https://www.ranorex.com/
https://arxiv.org/abs/2405.14573

Published in Transactions on Machine Learning Research (06/2025)

Tim Rosenbach, David Heidrich, and Alexander Weinert. Automated testing of the gui of a real-life
engineering software using large language models. In 2025 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 103–110. IEEE, 2025.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve.
Code llama: Open foundation models for code, 2024. URL https://arxiv.org/abs/2308.12950.

Nicole Rupp, Katrin Peschke, Michael Köppl, David Drissner, and Thole Zuchner. Establishment of low-cost
laboratory automation processes using autoit and 4-axis robots. SLAS technology, 27(5):312–318, 2022.

Pascal J Sager, Benjamin Meyer, Peng Yan, Rebekka von Wartburg-Kottler, Layan Etaiwi, Aref Enayati,
Gabriel Nobel, Ahmed Abdulkadir, Benjamin F Grewe, and Thilo Stadelmann. Ai agents for computer use:
A review of instruction-based computer control, gui automation, and operator assistants. arXiv preprint
arXiv:2501.16150, 2025.

Kabir S Said, Liming Nie, Adekunle A Ajibode, and Xueyi Zhou. Gui testing for mobile applications:
objectives, approaches and challenges. In Proceedings of the 12th Asia-Pacific Symposium on Internetware,
pp. 51–60, 2020.

Harini Sampath, Alice Merrick, and Andrew Peter Macvean. Accessibility of command line interfaces.
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021. URL https:
//api.semanticscholar.org/CorpusID:233987139.

Iqbal H Sarker. Llm potentiality and awareness: a position paper from the perspective of trustworthy and
responsible ai modeling. Discover Artificial Intelligence, 4(1):40, 2024.

selenium. Selenium: Browser automation, 2024. URL https://www.selenium.dev/. Accessed: 2024-11-05.

Mobina Shahbandeh, Parsa Alian, Noor Nashid, and Ali Mesbah. Naviqate: Functionality-guided web
application navigation. arXiv preprint arXiv:2409.10741, 2024.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):50–64,
1951.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Sarath Shekkizhar and Romain Cosentino. Agi is coming... right after ai learns to play wordle, 2025. URL
https://arxiv.org/abs/2504.15434.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang, Yu Zhou, Can Ma, and Xiangyang Ji. Falcon-ui:
Understanding gui before following user instructions. arXiv preprint arXiv:2412.09362, 2024a.

Junhong Shen, Atishay Jain, Zedian Xiao, Ishan Amlekar, Mouad Hadji, Aaron Podolny, and Ameet
Talwalkar. Scribeagent: Towards specialized web agents using production-scale workflow data, 2024b. URL
https://arxiv.org/abs/2411.15004.

Zhuocheng Shen. Llm with tools: A survey. arXiv preprint arXiv:2409.18807, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An open-
domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 3135–3144. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/shi17a.html.

Yucheng Shi, Wenhao Yu, Wenlin Yao, Wenhu Chen, and Ninghao Liu. Towards trustworthy gui agents: A
survey. arXiv preprint arXiv:2503.23434, 2025.

158

https://arxiv.org/abs/2308.12950
https://api.semanticscholar.org/CorpusID:233987139
https://api.semanticscholar.org/CorpusID:233987139
https://www.selenium.dev/
https://arxiv.org/abs/2504.15434
https://arxiv.org/abs/2411.15004
https://proceedings.mlr.press/v70/shi17a.html

Published in Transactions on Machine Learning Research (06/2025)

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Brian Sierkowski. Achieving web accessibility. In Proceedings of the 30th annual ACM SIGUCCS conference
on User services, pp. 288–291, 2002.

Kunal Singh, Shreyas Singh, and Mukund Khanna. Trishul: Towards region identification and screen hierarchy
understanding for large vlm based gui agents, 2025. URL https://arxiv.org/abs/2502.08226.

smartbear. Testcomplete: Automated ui testing tool, 2024. URL https://smartbear.com/product/
testcomplete/. Accessed: 2024-11-05.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and
Sujian Li. Agentbank: Towards generalized llm agents via fine-tuning on 50000+ interaction trajectories.
arXiv preprint arXiv:2410.07706, 2024a.

Yixiao Song, Katherine Thai, Chau Minh Pham, Yapei Chang, Mazin Nadaf, and Mohit Iyyer. Bearcubs: A
benchmark for computer-using web agents. arXiv preprint arXiv:2503.07919, 2025.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web agents. arXiv
preprint arXiv:2410.16464, 2024b.

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile task
automation using vision based ui understanding and llm task planning. In Proceedings of the 37th Annual
ACM Symposium on User Interface Software and Technology, UIST ’24, pp. 1–17. ACM, October 2024c.
doi: 10.1145/3654777.3676386. URL http://dx.doi.org/10.1145/3654777.3676386.

Zirui Song, Yaohang Li, Meng Fang, Zhenhao Chen, Zecheng Shi, Yuan Huang, and Ling Chen. Mmac-copilot:
Multi-modal agent collaboration operating system copilot. arXiv preprint arXiv:2404.18074, 2024d.

Trisanth Srinivasan and Santosh Patapati. Webnav: An intelligent agent for voice-controlled web navigation.
arXiv preprint arXiv:2503.13843, 2025.

Zinovia Stefanidi, George Margetis, Stavroula Ntoa, and George Papagiannakis. Real-time adaptation of
context-aware intelligent user interfaces, for enhanced situational awareness. IEEE Access, 10:23367–23393,
2022.

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A capture/replay tool for
observation-based testing. SIGSOFT Softw. Eng. Notes, 25(5):158–167, August 2000. ISSN 0163-5948. doi:
10.1145/347636.348993. URL https://doi.org/10.1145/347636.348993.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O. Arık. Learn-by-interact: A
data-centric framework for self-adaptive agents in realistic environments, 2025. URL https://arxiv.org/
abs/2501.10893.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent reinforcement learning: Current
and future directions. arXiv preprint arXiv:2405.11106, 2024a.

Jiahui Sun, Zhichao Hua, and Yubin Xia. Autoeval: A practical framework for autonomous evaluation of
mobile agents. arXiv preprint arXiv:2503.02403, 2025a.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards multi-modal
conversational agents on mobile gui, 2022. URL https://arxiv.org/abs/2205.11029.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory construction via
reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training techniques for
clip at scale. arXiv preprint arXiv:2303.15389, 2023.

159

https://arxiv.org/abs/2502.08226
https://smartbear.com/product/testcomplete/
https://smartbear.com/product/testcomplete/
http://dx.doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/347636.348993
https://arxiv.org/abs/2501.10893
https://arxiv.org/abs/2501.10893
https://arxiv.org/abs/2205.11029

Published in Transactions on Machine Learning Research (06/2025)

Yuchen Sun, Shanhui Zhao, Tao Yu, Hao Wen, Samith Va, Mengwei Xu, Yuanchun Li, and Chongyang Zhang.
Gui-xplore: Empowering generalizable gui agents with one exploration. arXiv preprint arXiv:2503.17709,
2025b.

Al Sweigart. Pyautogui: A cross-platform gui automation python module. GitHub repository, 2024. URL
https://github.com/asweigart/pyautogui. Accessed: 2024-10-27.

Rehan Syed, Suriadi Suriadi, Michael Adams, Wasana Bandara, Sander JJ Leemans, Chun Ouyang, Arthur HM
Ter Hofstede, Inge Van De Weerd, Moe Thandar Wynn, and Hajo A Reijers. Robotic process automation:
contemporary themes and challenges. Computers in Industry, 115:103162, 2020.

Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, and Jonathan Richard Schwarz. Online
adaptation of language models with a memory of amortized contexts. arXiv preprint arXiv:2403.04317,
2024.

Maryam Taeb, Amanda Swearngin, Eldon Schoop, Ruijia Cheng, Yue Jiang, and Jeffrey Nichols. Axnav:
Replaying accessibility tests from natural language. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, pp. 1–16, 2024.

Wrick Talukdar and Anjanava Biswas. Improving large language model (llm) fidelity through context-aware
grounding: A systematic approach to reliability and veracity. arXiv preprint arXiv:2408.04023, 2024.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng Yue,
Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yujie Wu, Xiaoqiang Chai,
Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chaojie Wang, Xinrun Wang,
Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle: Empowering foundation agents
towards general computer control, 2024a. URL https://arxiv.org/abs/2403.03186.

Zhaoxuan Tan and Meng Jiang. User modeling in the era of large language models: Current research and
future directions. arXiv preprint arXiv:2312.11518, 2023.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Mansooreh
Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation: A survey.
arXiv preprint arXiv:2402.13446, 2024b.

Brian Tang and Kang G Shin. Steward: Natural language web automation. arXiv preprint arXiv:2409.15441,
2024.

Fei Tang, Yongliang Shen, Hang Zhang, Siqi Chen, Guiyang Hou, Wenqi Zhang, Wenqiao Zhang, Kaitao
Song, Weiming Lu, and Yueting Zhuang. Think twice, click once: Enhancing gui grounding via fast and
slow systems. arXiv preprint arXiv:2503.06470, 2025a.

Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang, Guiyang Hou, Zeqi
Tan, Yuchen Yan, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, and Yueting Zhuang. A survey on
(m)llm-based gui agents, 2025b. URL https://arxiv.org/abs/2504.13865.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models. arXiv preprint
arXiv:2404.14387, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

160

https://github.com/asweigart/pyautogui
https://arxiv.org/abs/2403.03186
https://arxiv.org/abs/2504.13865

Published in Transactions on Machine Learning Research (06/2025)

Lucas-Andrei Thil, Mirela Popa, and Gerasimos Spanakis. Navigating webai: Training agents to complete web
tasks with large language models and reinforcement learning. In Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing, volume 30 of SAC ’24, pp. 866–874. ACM, April 2024. doi: 10.1145/
3605098.3635903. URL http://dx.doi.org/10.1145/3605098.3635903.

George Thomas, Alex J Chan, Jikun Kang, Wenqi Wu, Filippos Christianos, Fraser Greenlee, Andy Toulis,
and Marvin Purtorab. Webgames: Challenging general-purpose web-browsing ai agents. arXiv preprint
arXiv:2502.18356, 2025.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed, Tyler
Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning platform for android,
2021a. URL https://arxiv.org/abs/2105.13231.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed, Tyler
Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning platform for android.
arXiv preprint arXiv:2105.13231, 2021b.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Towards internet-
scale training for agents. arXiv preprint arXiv:2502.06776, 2025.

Ada Defne Tur, Nicholas Meade, Xing Han Lù, Alejandra Zambrano, Arkil Patel, Esin Durmus, Spandana
Gella, Karolina Stańczak, and Siva Reddy. Safearena: Evaluating the safety of autonomous web agents,
2025. URL https://arxiv.org/abs/2503.04957.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better: On the
importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Gaurav Verma, Rachneet Kaur, Nishan Srishankar, Zhen Zeng, Tucker Balch, and Manuela Veloso. Adaptagent:
Adapting multimodal web agents with few-shot learning from human demonstrations. arXiv preprint
arXiv:2411.13451, 2024.

Minh Duc Vu, Han Wang, Zhuang Li, Jieshan Chen, Shengdong Zhao, Zhenchang Xing, and Chunyang Chen.
Gptvoicetasker: Llm-powered virtual assistant for smartphone. arXiv preprint arXiv:2401.14268, 2024.

Abdul Wali, Saipunidzam Mahamad, and Suziah Sulaiman. Task automation intelligent agents: A review.
Future Internet, 15(6):196, 2023.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu,
Quanlu Zhang, et al. Efficient large language models: A survey. arXiv preprint arXiv:2312.03863, 2023.

Bowen Wang, Xinyuan Wang, Jiaqi Deng, Tianbao Xie, Ryan Li, Yanzhe Zhang, Gavin Li, Toh Jing Hua, Ion
Stoica, Wei-Lin Chiang, Diyi Yang, Yu Su, Yi Zhang, Zhiguo Wang, Victor Zhong, and Tao Yu. Computer
agent arena: Compare & test computer use agents on crowdsourced real-world tasks, 2025a.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang Li. Screen2words: Automatic
mobile ui summarization with multimodal learning. In The 34th Annual ACM Symposium on User Interface
Software and Technology, pp. 498–510, 2021.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large language
models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17,
2023a.

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li,
Junjie Xu, Xianfeng Tang, Qi He, Yao Ma, Ming Huang, and Suhang Wang. A comprehensive survey
of small language models in the era of large language models: Techniques, enhancements, applications,
collaboration with llms, and trustworthiness, 2024a. URL https://arxiv.org/abs/2411.03350.

161

http://dx.doi.org/10.1145/3605098.3635903
https://arxiv.org/abs/2105.13231
https://arxiv.org/abs/2503.04957
https://arxiv.org/abs/2411.03350

Published in Transactions on Machine Learning Research (06/2025)

Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi Yang, Yiheng
Liu, Songyao Zhang, et al. Review of large vision models and visual prompt engineering. Meta-Radiology,
pp. 100047, 2023b.

Jiayin Wang, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie. Understanding user experience in large
language model interactions. arXiv preprint arXiv:2401.08329, 2024b.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software testing with
large language models: Survey, landscape, and vision. IEEE Transactions on Software Engineering, 2024c.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via multi-agent
collaboration, 2024d. URL https://arxiv.org/abs/2406.01014.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
Mobile-agent: Autonomous multi-modal mobile device agent with visual perception, 2024e. URL https:
//arxiv.org/abs/2401.16158.

Junyang Wang, Haiyang Xu, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and Jitao Sang. Mobile-agent-
v: Learning mobile device operation through video-guided multi-agent collaboration. arXiv preprint
arXiv:2502.17110, 2025b.

Ke Wang, Tianyu Xia, Zhangxuan Gu, Yi Zhao, Shuheng Shen, Changhua Meng, Weiqiang Wang, and Ke Xu.
E-ant: A large-scale dataset for efficient automatic gui navigation, 2024f. URL https://arxiv.org/abs/
2406.14250.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):186345, 2024g.

Lu Wang, Fangkai Yang, Chaoyun Zhang, Junting Lu, Jiaxu Qian, Shilin He, Pu Zhao, Bo Qiao, Ray
Huang, Si Qin, Qisheng Su, Jiayi Ye, Yudi Zhang, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. Large action models: From inception to implementation, 2024h. URL
https://arxiv.org/abs/2412.10047.

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen, and Shoufa
Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm agents, 2024i. URL
https://arxiv.org/abs/2406.08184.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution, 2024j. URL https://arxiv.org/abs/2409.12191.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan, Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun Shao,
Yasheng Wang, and Ruiming Tang. Gui agents with foundation models: A comprehensive survey, 2024k.
URL https://arxiv.org/abs/2411.04890.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An asynchronous
distributed reinforcement learning framework for on-device control agents. arXiv preprint arXiv:2410.14803,
2024l.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao,
Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang. Cogvlm: Visual
expert for pretrained language models, 2024m. URL https://arxiv.org/abs/2311.03079.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augmenting
language models with long-term memory. Advances in Neural Information Processing Systems, 36, 2024n.

162

https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2406.14250
https://arxiv.org/abs/2406.14250
https://arxiv.org/abs/2412.10047
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2311.03079

Published in Transactions on Machine Learning Research (06/2025)

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian Jin, Siheng Chen, and Yanfeng Wang. Fedmo-
bileagent: Training mobile agents using decentralized self-sourced data from diverse users. arXiv preprint
arXiv:2502.02982, 2025c.

Wenhao Wang, Zijie Yu, Rui Ye, Jianqing Zhang, Siheng Chen, and Yanfeng Wang. Fedmabench: Bench-
marking mobile agents on decentralized heterogeneous user data. arXiv preprint arXiv:2503.05143, 2025d.

Xiaoqiang Wang and Bang Liu. Oscar: Operating system control via state-aware reasoning and re-planning.
arXiv preprint arXiv:2410.18963, 2024.

Yiqin Wang, Haoji Zhang, Jingqi Tian, and Yansong Tang. Ponder & press: Advancing visual gui agent
towards general computer control, 2024o. URL https://arxiv.org/abs/2412.01268.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang, Xin Jiang,
and Qun Liu. Aligning large language models with human: A survey. arXiv preprint arXiv:2307.12966,
2023c.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and Heng Ji.
Mobile-agent-e: Self-evolving mobile assistant for complex tasks, 2025e. URL https://arxiv.org/abs/
2501.11733.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv preprint
arXiv:1910.04732, 2019.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang. Officebench:
Benchmarking language agents across multiple applications for office automation, 2024p. URL https:
//arxiv.org/abs/2407.19056.

Ziwei Wang, Weizhi Chen, Leyang Yang, Sheng Zhou, Shengchu Zhao, Hanbei Zhan, Jiongchao Jin, Liangcheng
Li, Zirui Shao, and Jiajun Bu. Mp-gui: Modality perception with mllms for gui understanding. arXiv
preprint arXiv:2503.14021, 2025f.

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing programmatic skills for
agentic tasks. arXiv preprint arXiv:2504.06821, 2025g.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big data,
3:1–40, 2016.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In Proceedings of the
30th Annual International Conference on Mobile Computing and Networking, pp. 543–557, 2024a.

Hao Wen, Shizuo Tian, Borislav Pavlov, Wenjie Du, Yixuan Li, Ge Chang, Shanhui Zhao, Jiacheng Liu,
Yunxin Liu, Ya-Qin Zhang, and Yuanchun Li. Autodroid-v2: Boosting slm-based gui agents via code
generation, 2024b. URL https://arxiv.org/abs/2412.18116.

Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. Droidbot-gpt: Gpt-powered ui automation for
android, 2024c. URL https://arxiv.org/abs/2304.07061.

Joel Wester, Tim Schrills, Henning Pohl, and Niels van Berkel. “as an ai language model, i cannot”:
Investigating llm denials of user requests. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pp. 1–14, 2024.

163

https://arxiv.org/abs/2412.01268
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2407.19056
https://arxiv.org/abs/2407.19056
https://arxiv.org/abs/2412.18116
https://arxiv.org/abs/2304.07061

Published in Transactions on Machine Learning Research (06/2025)

Thomas Wetzlmaier, Rudolf Ramler, and Werner Putschögl. A framework for monkey gui testing. In 2016
IEEE international conference on software testing, verification and validation (ICST), pp. 416–423. IEEE,
2016.

Thomas D White, Gordon Fraser, and Guy J Brown. Improving random gui testing with image-based widget
detection. In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and
analysis, pp. 307–317, 2019.

Josephine Wolff, William Lehr, and Christopher S Yoo. Lessons from gdpr for ai policymaking. Virginia
Journal of Law & Technology, 27(4):2, 2024.

Michael Wornow, Avanika Narayan, Benjamin Viggiano, Ishan S Khare, Tathagat Verma, Tibor Thompson,
Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla, et al. Wonderbread:
A benchmark for evaluating multimodal foundation models on business process management tasks. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam Shah, and Christopher
Re. Automating the enterprise with foundation models. Proceedings of the VLDB Endowment, 17(11):
2805–2812, 2024.

Biao Wu, Yanda Li, Meng Fang, Zirui Song, Zhiwei Zhang, Yunchao Wei, and Ling Chen. Foundations and
recent trends in multimodal mobile agents: A survey. arXiv preprint arXiv:2411.02006, 2024a.

Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast distributed inference
serving for large language models. arXiv preprint arXiv:2305.05920, 2023a.

Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey P Bigham. Webui: A dataset
for enhancing visual ui understanding with web semantics. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pp. 1–14, 2023b.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Deyu Zhou, Pengjun Xie,
and Fei Huang. Webwalker: Benchmarking llms in web traversal, 2025a. URL https://arxiv.org/abs/
2501.07572.

Qinchen Wu, Difei Gao, Kevin Qinghong Lin, Zhuoyu Wu, Xiangwu Guo, Peiran Li, Weichen Zhang, Hengxu
Wang, and Mike Zheng Shou. Gui action narrator: Where and when did that action take place?, 2024b.
URL https://arxiv.org/abs/2406.13719.

Qingyuan Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Vsc-rl: Advancing autonomous
vision-language agents with variational subgoal-conditioned reinforcement learning. arXiv preprint
arXiv:2502.07949, 2025b.

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, and Shuo
Shang. Mobilevlm: A vision-language model for better intra- and inter-ui understanding, 2024c. URL
https://arxiv.org/abs/2409.14818.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. Reachagent: Enhancing mobile agent via page reaching
and operation. arXiv preprint arXiv:2502.02955, 2025c.

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. A brief overview
of chatgpt: The history, status quo and potential future development. IEEE/CAA Journal of Automatica
Sinica, 10(5):1122–1136, 2023c.

Xiongfei Wu, Jiaming Ye, Ke Chen, Xiaofei Xie, Yujing Hu, Ruochen Huang, Lei Ma, and Jianjun Zhao.
Widget detection-based testing for industrial mobile games. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 173–184. IEEE,
2023d.

164

https://arxiv.org/abs/2501.07572
https://arxiv.org/abs/2501.07572
https://arxiv.org/abs/2406.13719
https://arxiv.org/abs/2409.14818

Published in Transactions on Machine Learning Research (06/2025)

Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng Shi, Fan Yang, Tianming Liu, Xiaoming Zhai, Wenlin
Yao, Jundong Li, Mengnan Du, et al. Usable xai: 10 strategies towards exploiting explainability in the llm
era. arXiv preprint arXiv:2403.08946, 2024d.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement, 2024e. URL
https://arxiv.org/abs/2402.07456.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding,
Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024f.

Zongru Wu, Pengzhou Cheng, Zheng Wu, Tianjie Ju, Zhuosheng Zhang, and Gongshen Liu. Smoothing
grounding and reasoning for mllm-powered gui agents with query-oriented pivot tasks. arXiv preprint
arXiv:2503.00401, 2025d.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

Xiaobo Xia and Run Luo. Gui-r1: A generalist r1-style vision-language action model for gui agents. arXiv
preprint arXiv:2504.10458, 2025.

Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong, Chulin
Xie, Carl Yang, et al. Guardagent: Safeguard llm agents by a guard agent via knowledge-enabled reasoning.
arXiv preprint arXiv:2406.09187, 2024.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu, and
Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks, 2023. URL
https://arxiv.org/abs/2311.06242.

Xiaokui Xiao and Yufei Tao. Personalized privacy preservation. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pp. 229–240, 2006.

Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A survey.
arXiv preprint arXiv:2402.15116, 2024a.

Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen. Uied: a hybrid tool for
gui element detection. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1655–1659, 2020.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong, and Tao Yu.
Openagents: An open platform for language agents in the wild, 2023. URL https://arxiv.org/abs/
2310.10634.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents for open-ended tasks in real
computer environments, 2024b. URL https://arxiv.org/abs/2404.07972.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the weakness
of large language model agents within a complex android environment. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061–6072, 2024.

Chejian Xu, Mintong Kang, Jiawei Zhang, Zeyi Liao, Lingbo Mo, Mengqi Yuan, Huan Sun, and Bo Li.
Advweb: Controllable black-box attacks on vlm-powered web agents. arXiv preprint arXiv:2410.17401,
2024a.

165

https://arxiv.org/abs/2402.07456
https://arxiv.org/abs/2311.06242
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2310.10634
https://arxiv.org/abs/2404.07972

Published in Transactions on Machine Learning Research (06/2025)

Hai-Ming Xu, Qi Chen, Lei Wang, and Lingqiao Liu. Attention-driven gui grounding: Leveraging pretrained
multimodal large language models without fine-tuning, 2024b. URL https://arxiv.org/abs/2412.10840.

Jia Xu, Weilin Du, Xiao Liu, and Xuejun Li. Llm4workflow: An llm-based automated workflow model
generation tool. Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering, 2024c. URL https://api.semanticscholar.org/CorpusID:273465368.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling. On-device language models:
A comprehensive review. arXiv preprint arXiv:2409.00088, 2024d.

Kevin Xu, Yeganeh Kordi, Tanay Nayak, Ado Asija, Yizhong Wang, Kate Sanders, Adam Byerly, Jingyu
Zhang, Benjamin Van Durme, and Daniel Khashabi. Tur [k] ingbench: A challenge benchmark for web
agents. arXiv preprint arXiv:2403.11905, 2024e.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao,
Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024f.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Monica S Lam.
Grounding open-domain instructions to automate web support tasks, 2021. URL https://arxiv.org/
abs/2103.16057.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie, Yongchao Chen,
Shilong Liu, Bochen Qian, Philip Torr, Bernard Ghanem, and Guohao Li. Crab: Cross-environment agent
benchmark for multimodal language model agents, 2024g. URL https://arxiv.org/abs/2407.01511.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, and
Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint arXiv:2402.13116,
2024h.

Yibin Xu, Liang Yang, Hao Chen, Hua Wang, Zhi Chen, and Yaohua Tang. Deskvision: Large scale desktop
region captioning for advanced gui agents. arXiv preprint arXiv:2503.11170, 2025.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang, Jie Tang, and
Yuxiao Dong. Androidlab: Training and systematic benchmarking of android autonomous agents, 2024i.
URL https://arxiv.org/abs/2410.24024.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2024j. URL
https://arxiv.org/abs/2412.09605.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2024k. URL
https://arxiv.org/abs/2412.04454.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su. An
illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382, 2025.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation, 2023a. URL https://arxiv.org/abs/2311.07562.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for zero-shot
smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023b.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.

166

https://arxiv.org/abs/2412.10840
https://api.semanticscholar.org/CorpusID:273465368
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2407.01511
https://arxiv.org/abs/2410.24024
https://arxiv.org/abs/2412.09605
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2311.07562

Published in Transactions on Machine Learning Research (06/2025)

Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu, Mu Cai,
Seonghyeon Ye, Joel Jang, et al. Magma: A foundation model for multimodal ai agents. arXiv preprint
arXiv:2502.13130, 2025a.

Jiaxi Yang and Haowen Hou. Rwkv-ui: Ui understanding with enhanced perception and reasoning. arXiv
preprint arXiv:2502.03971, 2025.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Haoran Tan, Chencheng Jiang, Jiamu Kang,
Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer from environmental
feedback. In European Conference on Computer Vision, pp. 20–38. Springer, 2025b.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and Huzefa
Rangwala. Agentoccam: A simple yet strong baseline for llm-based web agents, 2024a. URL https:
//arxiv.org/abs/2410.13825.

Qi Yang, Weichen Bi, Haiyang Shen, Yaoqi Guo, and Yun Ma. Pixelweb: The first web gui dataset with
pixel-wise labels, 2025c. URL https://arxiv.org/abs/2504.16419.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui: Visual
grounding for gui instructions, 2024b. URL https://arxiv.org/abs/2412.16256.

Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao Lin, Zhengyu Zhao, Chao Shen, and Tianwei Zhang.
Security matrix for multimodal agents on mobile devices: A systematic and proof of concept study. arXiv
preprint arXiv:2407.09295, 2024c.

Yulong Yang, Xinshan Yang, Shuaidong Li, Chenhao Lin, Zhengyu Zhao, Chao Shen, and Tianwei Zhang.
Systematic categorization, construction and evaluation of new attacks against multi-modal mobile gui
agents, 2025d. URL https://arxiv.org/abs/2407.09295.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents. Advances in Neural Information Processing Systems, 35:
20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents, 2023. URL https://arxiv.org/abs/2207.01206.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Eray Yapağcı, Yavuz Alp Sencer Öztürk, and Eray Tüzün. Bugcraft: End-to-end crash bug reproduction
using llm agents in minecraft. arXiv preprint arXiv:2503.20036, 2025.

Faraz YazdaniBanafsheDaragh and Sam Malek. Deep gui: Black-box gui input generation with deep learning.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 905–916.
IEEE, 2021.

Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen, Yinxing Xue, and Jianjun
Zhao. An empirical study of gui widget detection for industrial mobile games. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 1427–1437, 2021.

Suyu Ye, Haojun Shi, Darren Shih, Hyokun Yun, Tanya Roosta, and Tianmin Shu. Realwebassist: A
benchmark for long-horizon web assistance with real-world users. arXiv preprint arXiv:2504.10445, 2025.

167

https://arxiv.org/abs/2410.13825
https://arxiv.org/abs/2410.13825
https://arxiv.org/abs/2504.16419
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2407.09295
https://arxiv.org/abs/2207.01206

Published in Transactions on Machine Learning Research (06/2025)

Yining Ye, Xin Cong, Shizuo Tian, Jiannan Cao, Hao Wang, Yvu2024gptvoicetaskerujia Qin, Yaxi Lu, Heyang
Yu, Huadong Wang, Yankai Lin, et al. Proagent: From robotic process automation to agentic process
automation. arXiv preprint arXiv:2311.10751, 2023.

Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. Sikuli: using gui screenshots for search and automation.
In Proceedings of the 22nd annual ACM symposium on User interface software and technology, pp. 183–192,
2009.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal
large language models. arXiv preprint arXiv:2306.13549, 2023.

Yiwen Yin, Yu Mei, Chun Yu, Toby Jia-Jun Li, Aamir Khan Jadoon, Sixiang Cheng, Weinan Shi, Mohan
Chen, and Yuanchun Shi. From operation to cognition: Automatic modeling cognitive dependencies from
user demonstrations for gui task automation. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems, pp. 1–24, 2025.

Juyeon Yoon, Robert Feldt, and Shin Yoo. Intent-driven mobile gui testing with autonomoufs large language
model agents. In 2024 IEEE Conference on Software Testing, Verification and Validation (ICST), pp.
129–139. IEEE, 2024.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity. arXiv preprint
arXiv:2310.07704, 2023.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. In European Conference
on Computer Vision, pp. 240–255. Springer, 2025.

Shengcheng Yu, Chunrong Fang, Ziyuan Tuo, Quanjun Zhang, Chunyang Chen, Zhenyu Chen, and Zhendong
Su. Vision-based mobile app gui testing: A survey. arXiv preprint arXiv:2310.13518, 2023.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming Shen, and
Chao Zhang. Large language model as attributed training data generator: A tale of diversity and bias.
Advances in Neural Information Processing Systems, 36, 2024.

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu, Binglin Zhou,
Fangqi Li, Zhuosheng Zhang, et al. R-judge: Benchmarking safety risk awareness for llm agents. arXiv
preprint arXiv:2401.10019, 2024.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang, Mingkai
Deng, Jinhong Wang, Tianhua Tao, Junbo Li, et al. Web2code: A large-scale webpage-to-code dataset and
evaluation framework for multimodal llms. arXiv preprint arXiv:2406.20098, 2024.

Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei Yang, and Tao Xie. Automated
test input generation for android: are we really there yet in an industrial case? In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, pp.
987–992, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342186. doi:
10.1145/2950290.2983958. URL https://doi.org/10.1145/2950290.2983958.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-
training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11975–11986,
2023.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement
learning. arXiv preprint arXiv:2405.10292, 2024.

Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen, Xiapu Luo, and Yang Liu. Research on third-party
libraries in android apps: A taxonomy and systematic literature review. IEEE Transactions on Software
Engineering, 48(10):4181–4213, 2021.

168

https://doi.org/10.1145/2950290.2983958

Published in Transactions on Machine Learning Research (06/2025)

Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile and wireless networking: A
survey. IEEE Communications surveys & tutorials, 21(3):2224–2287, 2019.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei Lin,
Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A UI-Focused Agent for Windows OS Interaction.
arXiv preprint arXiv:2402.07939, 2024a.

Chaoyun Zhang, Zicheng Ma, Yuhao Wu, Shilin He, Si Qin, Minghua Ma, Xiaoting Qin, Yu Kang, Yuyi
Liang, Xiaoyu Gou, et al. Allhands: Ask me anything on large-scale verbatim feedback via large language
models. arXiv preprint arXiv:2403.15157, 2024b.

Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang. Api agents vs. gui
agents: Divergence and convergence. arXiv preprint arXiv:2503.11069, 2025a.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang, Pu Zhao,
Chao Du, et al. Ufo2: The desktop agentos. arXiv preprint arXiv:2504.14603, 2025b.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users, 2023a. URL https://arxiv.org/abs/2312.13771.

Danqing Zhang, Balaji Rama, Jingyi Ni, Shiying He, Fu Zhao, Kunyu Chen, Arnold Chen, and Junyu Cao.
Litewebagent: The open-source suite for vlm-based web-agent applications. arXiv preprint arXiv:2503.02950,
2025c.

Danyang Zhang, Zhennan Shen, Rui Xie, Situo Zhang, Tianbao Xie, Zihan Zhao, Siyuan Chen, Lu Chen,
Hongshen Xu, Ruisheng Cao, and Kai Yu. Mobile-env: Building qualified evaluation benchmarks for
llm-gui interaction, 2024c. URL https://arxiv.org/abs/2305.08144.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai agent systems.
arXiv preprint arXiv:2409.03215, 2024d.

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, Ming He, and Jianping Fan. Mobileexperts: A
dynamic tool-enabled agent team in mobile devices, 2024e. URL https://arxiv.org/abs/2407.03913.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713, 2024f.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
Android in the zoo: Chain-of-action-thought for gui agents, 2024g. URL https://arxiv.org/abs/2403.
02713.

Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, and Junxian He. Breaking
the data barrier–building gui agents through task generalization. arXiv preprint arXiv:2504.10127, 2025d.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and Mengwei
Xu. Llamatouch: A faithful and scalable testbed for mobile ui task automation, 2024h. URL https:
//arxiv.org/abs/2404.16054.

Liang Zhang, Qin Jin, Haoyang Huang, Dongdong Zhang, and Furu Wei. Respond in my language: Mitigating
language inconsistency in response generation based on large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4177–4192,
2024i.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bo-Chen Yu, Weisong Sun, and Zhenyu Chen. A
critical review of large language model on software engineering: An example from chatgpt and automated
program repair. ArXiv, abs/2310.08879, 2023b. URL https://api.semanticscholar.org/CorpusID:
264127977.

169

https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2305.08144
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2404.16054
https://arxiv.org/abs/2404.16054
https://api.semanticscholar.org/CorpusID:264127977
https://api.semanticscholar.org/CorpusID:264127977

Published in Transactions on Machine Learning Research (06/2025)

Ruichen Zhang, Mufan Qiu, Zhen Tan, Mohan Zhang, Vincent Lu, Jie Peng, Kaidi Xu, Leandro Z Agudelo,
Peter Qian, and Tianlong Chen. Symbiotic cooperation for web agents: Harnessing complementary strengths
of large and small llms. arXiv preprint arXiv:2502.07942, 2025e.

Shaoqing Zhang, Zhuosheng Zhang, Kehai Chen, Xinbe Ma, Muyun Yang, Tiejun Zhao, and Min Zhang.
Dynamic planning for llm-based graphical user interface automation. arXiv preprint arXiv:2410.00467,
2024j.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu,
Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792, 2023c.

Xingxuan Zhang, Jiansheng Li, Wenjing Chu, Junjia Hai, Renzhe Xu, Yuqing Yang, Shikai Guan, Jiazheng
Xu, and Peng Cui. On the out-of-distribution generalization of multimodal large language models. arXiv
preprint arXiv:2402.06599, 2024k.

Xinyu Zhang, Huiyu Xu, Zhongjie Ba, Zhibo Wang, Yuan Hong, Jian Liu, Zhan Qin, and Kui Ren. Privacyasst:
Safeguarding user privacy in tool-using large language model agents. IEEE Transactions on Dependable
and Secure Computing, 2024l.

Yanzhe Zhang, Tao Yu, and Diyi Yang. Attacking vision-language computer agents via pop-ups, 2024m.
URL https://arxiv.org/abs/2411.02391.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and autonomous
multi-agent system for web task execution with strategic exploration. arXiv preprint arXiv:2408.15978,
2024n.

Yi-Fan Zhang, Qingsong Wen, Chaoyou Fu, Xue Wang, Zhang Zhang, Liang Wang, and Rong Jin. Beyond
llava-hd: Diving into high-resolution large multimodal models. arXiv preprint arXiv:2406.08487, 2024o.

Yudi Zhang, Pei Xiao, Lu Wang, Chaoyun Zhang, Meng Fang, Yali Du, Yevgeniy Puzyrev, Randolph Yao,
Si Qin, Qingwei Lin, Mykola Pechenizkiy, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Ruag:
Learned-rule-augmented generation for large language models, 2024p. URL https://arxiv.org/abs/
2411.03349.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi. Siren’s song in the ai
ocean: A survey on hallucination in large language models, 2023d. URL https://arxiv.org/abs/2309.
01219.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv preprint
arXiv:2404.13501, 2024q.

Zhiping Zhang, Michelle Jia, Hao-Ping Lee, Bingsheng Yao, Sauvik Das, Ada Lerner, Dakuo Wang, and
Tianshi Li. “it’s a fair game”, or is it? examining how users navigate disclosure risks and benefits when using
llm-based conversational agents. In Proceedings of the CHI Conference on Human Factors in Computing
Systems, pp. 1–26, 2024r.

Zhisong Zhang, Tianqing Fang, Kaixin Ma, Wenhao Yu, Hongming Zhang, Haitao Mi, and Dong Yu.
Enhancing web agents with explicit rollback mechanisms. arXiv preprint arXiv:2504.11788, 2025f.

Zhizheng Zhang, Wenxuan Xie, Xiaoyi Zhang, and Yan Lu. Reinforced ui instruction grounding: Towards a
generic ui task automation api, 2023e. URL https://arxiv.org/abs/2310.04716.

Zhuohao Zhang, Eldon Schoop, Jeffrey Nichols, Anuj Mahajan, and Amanda Swearngin. From interaction to
impact: Towards safer ai agent through understanding and evaluating mobile ui operation impacts. In
Proceedings of the 30th International Conference on Intelligent User Interfaces, pp. 727–744, 2025g.

170

https://arxiv.org/abs/2411.02391
https://arxiv.org/abs/2411.03349
https://arxiv.org/abs/2411.03349
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2310.04716

Published in Transactions on Machine Learning Research (06/2025)

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents, 2024. URL
https://arxiv.org/abs/2309.11436.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop multimodal
internet agents, 2024s. URL https://arxiv.org/abs/2404.09992.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm agents
are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19632–19642, 2024a.

Di Zhao, Longhui Ma, Siwei Wang, Miao Wang, and Zhao Lv. Cola: A scalable multi-agent framework for
windows ui task automation. arXiv preprint arXiv:2503.09263, 2025a.

Haoren Zhao, Tianyi Chen, and Zhen Wang. On the robustness of gui grounding models against image
attacks. arXiv preprint arXiv:2504.04716, 2025b.

Henry Hengyuan Zhao, Difei Gao, and Mike Zheng Shou. Worldgui: Dynamic testing for comprehensive
desktop gui automation, 2025c. URL https://arxiv.org/abs/2502.08047.

Kangjia Zhao, Jiahui Song, Leigang Sha, HaoZhan Shen, Zhi Chen, Tiancheng Zhao, Xiubo Liang, and
Jianwei Yin. Gui testing arena: A unified benchmark for advancing autonomous gui testing agent. arXiv
preprint arXiv:2412.18426, 2024b.

Pengyu Zhao, Zijian Jin, and Ning Cheng. An in-depth survey of large language model-based artificial
intelligence agents. arXiv preprint arXiv:2309.14365, 2023a.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang,
Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223,
2023b.

Arman Zharmagambetov, Chuan Guo, Ivan Evtimov, Maya Pavlova, Ruslan Salakhutdinov, and Kama-
lika Chaudhuri. Agentdam: Privacy leakage evaluation for autonomous web agents. arXiv preprint
arXiv:2503.09780, 2025.

Boyuan Zheng, Zeyuan Liu, Scott Salisbury, Zheng Du, Xuyan Huang, Qinyuan Zheng, Lee Davis, Michael
Lin, Xiaolong Jin, Huan Sun, et al. Agentmonitor: Towards a generalist guardrail for web agent.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web agent, if
grounded, 2024a. URL https://arxiv.org/abs/2401.01614.

Boyuan Zheng, Boyu Gou, Scott Salisbury, Zheng Du, Huan Sun, and Yu Su. Webolympus: An open platform
for web agents on live websites. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 187–197, 2024b.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song, Yu Gu,
Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can self-improve by
discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025a.

Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lingrui Mei, Wenjie Yin, Qingwei Lin, Dongmei
Zhang, Saravan Rajmohan, and Qi Zhang. Vem: Environment-free exploration for training gui agent with
value environment model. arXiv preprint arXiv:2502.18906, 2025b.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and Qianli Ma.
Lifelong learning of large language model based agents: A roadmap. arXiv preprint arXiv:2501.07278,
2025c.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan. Agentstudio: A
toolkit for building general virtual agents, 2024c. URL https://arxiv.org/abs/2403.17918.

171

https://arxiv.org/abs/2309.11436
https://arxiv.org/abs/2404.09992
https://arxiv.org/abs/2502.08047
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2403.17918

Published in Transactions on Machine Learning Research (06/2025)

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar prompting
with memory for computer control, 2024d. URL https://arxiv.org/abs/2306.07863.

Li Zhong and Zilong Wang. A study on robustness and reliability of large language model code generation.
arXiv preprint arXiv:2308.10335, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous agents.
In The Twelfth International Conference on Learning Representations.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine, and Erran Li.
Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation model internet agents, 2024a.
URL https://arxiv.org/abs/2412.13194.

Yuqi Zhou, Shuai Wang, Sunhao Dai, Qinglin Jia, Zhaocheng Du, Zhenhua Dong, and Jun Xu. Chop:
Mobile operating assistant with constrained high-frequency optimized subtask planning. arXiv preprint
arXiv:2503.03743, 2025.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv preprint
arXiv:2404.14294, 2024b.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world environments via
large language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023a.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang, Jinjie
Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning for llm-based agents. arXiv preprint
arXiv:2403.03101, 2024a.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and Hanjun Dai. Large
language models can learn rules. arXiv preprint arXiv:2310.07064, 2023b.

Zichen Zhu, Hao Tang, Yansi Li, Kunyao Lan, Yixuan Jiang, Hao Zhou, Yixiao Wang, Situo Zhang, Liangtai
Sun, Lu Chen, et al. Moba: A two-level agent system for efficient mobile task automation. arXiv preprint
arXiv:2410.13757, 2024b.

Mingchen Zhuge, Changsheng Zhao, Dylan R. Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas Chandra,
and Jurgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents. 2024. URL https://api.
semanticscholar.org/CorpusID:273350802.

Daniel Zimmermann and Anne Koziolek. Automating gui-based software testing with gpt-3. In 2023 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 62–65,
2023a. doi: 10.1109/ICSTW58534.2023.00022.

Daniel Zimmermann and Anne Koziolek. Gui-based software testing: An automated approach using gpt-4
and selenium webdriver. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW), pp. 171–174. IEEE, 2023b.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A
survey. Proceedings of the IEEE, 111(3):257–276, 2023.

172

https://arxiv.org/abs/2306.07863
https://arxiv.org/abs/2412.13194
https://api.semanticscholar.org/CorpusID:273350802
https://api.semanticscholar.org/CorpusID:273350802

	Introduction
	Motivation for LLM-Powered GUI agents
	Scope of the Survey

	Related Work
	Survey on GUI Automation
	Surveys on LLM Agents

	Background
	Large Language Models: Foundations and Capabilities
	LLM Agents: From Language to Action
	GUI Automation: Tools, Techniques, and Challenges
	Evolution to LLM-Powered GUI Agents
	GUI Agent vs. API-Based Agent
	OS-Integrated Agents: Opportunities and Challenges

	LLM-Brained GUI Agents: Foundations and Design
	Architecture and Workflow In a Nutshell
	Operating Environment
	Platform
	Environment State Perception
	Environment Feedback

	Prompt Engineering
	Model Inference
	Planning
	Action Prediction
	Complementary Outputs

	Actions Execution
	UI Operations
	Native API Calls
	AI Tools
	Summary

	Memory
	Short-Term Memory
	Long-Term Memory

	Advanced Enhancements
	Computer Vision-Based GUI Grounding
	Multi-Agent Framework
	Self-Reflection
	Self-Evolution
	Reinforcement Learning
	Summary & Takeaways

	From Foundations to Innovations: A Roadmap

	LLM-Powered GUI Agent Framework
	Web GUI Agents
	Mobile GUI Agents
	Computer GUI Agents
	Cross-Platform GUI Agents

	Data for Optimizing LLM-Powered GUI Agents
	Data Collection
	Data Composition and Sources
	Collection Pipeline

	Web Agent Data
	Mobile Agent Data
	Computer Agent Data
	Cross-Platform Agent Data

	Models for Optimizing LLM-Powered GUI Agents
	Foundation Models
	Close-Source Models
	Open-Source Models

	Large Action Models
	LAMs for Web GUI Agents
	LAMs for Mobile GUI Agents
	LAMs for Computer GUI Agents
	Cross-Platform Large Action Models
	Emerging Trends Amid Rapid Improvements in LAM Capabilities

	Evaluation for LLM-Powered GUI Agents
	Evaluation Metrics
	Evaluation Measurements
	Evaluation Platforms
	Web Agent Benchmarks
	Mobile Agent Benchmarks
	Computer Agent Benchmarks
	Cross-Platform Agent Benchmarks

	Applications of LLM-Powered GUI Agents
	GUI Testing
	General Testing
	Text Input generation
	Bug Replay
	Verification

	Virtual Assistants
	Research
	Open-Source Projects
	Production

	Limitations, Challenges and Future Roadmap
	Privacy Concerns
	Latency, Performance, and Resource Constraints
	Safety and Reliability
	Human-Agent Interaction
	Customization and Personalization
	Ethical and Regulatory Challenges
	Scalability and Generalization
	Summary

	Conclusion
	Evolution and Progression of LLM-Powered GUI Agents
	Early Automation Systems
	Random-Based Automation
	Rule-Based Automation
	Script-Based Automation
	Tools and Software

	The Shift Towards Intelligent Agents
	Machine Learning and Computer Vision
	Natural Language Processing
	Reinforcement Learning

	The Advent of LLM-Powered GUI Agents
	Web Domain
	Mobile Devices
	Computer Systems
	Industry Models

	Additional Summary in Tabular Form

