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ABSTRACT

We initiate the study of adversarial attacks on models for binary (i.e. black and
white) image classification. Although there has been a great deal of work on
attacking models for colored and grayscale images, little is known about attacks
on models for binary images. Models trained to classify binary images are used in
text recognition applications such as check processing, license plate recognition,
invoice processing, and many others. In contrast to colored and grayscale images,
the search space of attacks on binary images is extremely restricted and noise
cannot be hidden with minor perturbations in each pixel. Thus, the optimization
landscape of attacks on binary images introduces new fundamental challenges.

In this paper we introduce a new attack algorithm called SCAR, designed to fool
classifiers of binary images. We show that SCAR significantly outperforms existing
Ly attacks applied to the binary setting and use it to demonstrate the vulnerability
of real-world text recognition systems. SCAR’s strong performance in practice
contrasts with hardness results that show the existence of worst-case classifiers
for binary images that are robust to large perturbations. In many cases, altering a
single pixel is sufficient to trick Tesseract, a popular open-source text recognition
system, to misclassify a word as a different word in the English dictionary. We also
demonstrate the vulnerability of check recognition by fooling commercial check
processing systems used by major US banks for mobile deposits. These systems
are substantially harder to fool since they classify both the handwritten amounts
in digits and letters, independently. Nevertheless, we generalize SCAR to design
attacks that fool state-of-the-art check processing systems using unnoticeable
perturbations that lead to misclassification of deposit amounts. Consequently, this
is a powerful method to perform financial fraud.

1 INTRODUCTION

In this paper we study adversarial attacks on models designed to classify binary (i.e. black and white)
images. Models for binary image classification are heavily used across a variety of applications that
include receipt processing, passport recognition, check processing, and license plate recognition, just
to name a few. In such applications, the text recognition system typically binarizes the input image
(e.g. check processing (Jayadevan et al., 2012), document extraction (Gupta et al., 2007)) and trains a
model to classify binary images.

In recent years there has been an overwhelming interest in understanding the vulnerabilities of Al
systems. In particular, a great deal of work has designed attacks on image classification models (e.g.
(Szegedy et al., 2013; Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016;
Papernot et al., 2016; Madry et al., 2017; Carlini & Wagner, 2017; Chen et al., 2017; Ilyas et al.,
2018a;b; Tu et al., 2019; Guo et al., 2019; Li et al., 2019)). Such attacks distort images in a manner
that is virtually imperceptible to the human eye and yet cause state-of-the-art models to misclassify
these images. Although there has been a great deal of work on attacking image classification models,
these attacks are designed for colored and grayscale images. These attacks hide the noise in the
distorted images by making minor perturbations in the color values of each pixel.

Somewhat surprisingly, when it comes to binary images, the vulnerability of state-of-the-art models is
poorly understood. In contrast to colored and grayscale images, the search space of attacks on binary
images is extremely restricted and noise cannot be hidden with minor perturbations of color values in
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each pixel. As a result, existing attack algorithms on machine learning systems do not apply to binary
inputs. Since binary image classifiers are used in high-stakes decision making and are heavily used in
banking and other multi-billion dollar industries, the natural question is:

Are models for binary image classification used in industry vulnerable to adversarial attacks?

In this paper we initiate the study of attacks on binary image classifiers. We develop an attack
algorithm, called SCAR, designed to fool binary image classifiers. SCAR carefully selects pixels to
flip to the opposite color in a query efficient manner, which is a central challenge when attacking
black-box models. We first show that SCAR outperforms existing attacks that we apply to the binary
setting on multiple models trained over the MNIST and EMNIST datasets, as well as models for
handwritten strings and printed word recognition. We then use SCAR to demonstrate the vulnerability
of text recognition systems used in industry. We fool commercial check processing systems used by
US banks for mobile check deposits. One major challenge in attacking these systems, whose software
we licensed from providers, is that there are two independent classifiers, one for the amount written in
words and one for the amount written in numbers, that must be fooled with the same wrong amount.
Check fraud is a major concern for US banks, accounting for $1.3 billion in losses in 2018 (American
Bankers Association, 2020). Since check fraud occurs at large scale, we believe that the vulnerability
of check processing systems to adversarial attacks raises a serious concern.

We also show that no attack can obtain reasonable guarantees on the number of pixel inversions
needed to cause misclassification as there exist simple classifiers that are provably robust to large
perturbations. There exist classifiers for d-dimensional binary images such that every class contains
some image that requires 2(d) pixel inversions (Lg distance) to change the label of that image and

such that for every class, a random image in that class requires Q(\/ﬁ) pixel inversions in expectation.

Related work. The study of adversarial attacks was initiated in the seminal work by Szegedy et al.
(2013) that showed that models for image classification are susceptible to minor perturbations in the
input. There has since then been a long line of work developing attacks on colored and greyscale
images. Most relevant to us are L attacks, which iteratively make minor perturbations in carefully
chosen pixels to minimize the total number of pixels that have been modified (Papernot et al., 2016;
Carlini & Wagner, 2017; Schott et al., 2018; Guo et al., 2019). We compare our attack to two Lg
attacks that are applicable in the black-box binary setting (Schott et al., 2018; Guo et al., 2019).
Another related area of research focuses on developing attacks that query the model as few times as
possible (Chen et al., 2017; Ilyas et al., 2018a;b; Guo et al., 2019; Li et al., 2019; Tu et al., 2019;
Al-Dujaili & O’Reilly, 2019). We discuss below why most of these attacks cannot be applied to the
binary setting. There has been previous work on attacking OCR systems (Song & Shmatikov, 2018),
but the setting deals with grayscale images and white-box access to the model.

Attacks on colored and grayscale images employ continuous optimization techniques and are fun-
damentally different than attacks on binary images which, due to the binary nature of each pixel,
employ combinatorial optimization approaches. Previous work has formulated adversarial attack
settings as combinatorial optimization problems, but in drastically different settings. Lei et al. (2018)
consider attacks on text classification for tasks such as sentiment analysis and fake news detection,
which is a different domain than OCR. Moon et al. (2019) formulate L, attacks on colored image
classification as a combinatorial optimization problem where the search space for the change in each
pixel is {—¢, €} instead of [—¢, ¢]. Finally, we also note that binarization, i.e. transforming colored
or grayscale images into black and white images, has been studied as a technique to improve the
robustness of models (Schott et al., 2018; Schmidt et al., 2018; Ding et al., 2019).

Previous attacks are ineffective in the binary setting. Previous attacks on grayscale (or colored)
images are not directly applicable to our setting since they cause small perturbations in pixel values,
which is not possible with binary images. One potential approach to use previous attacks is to relax
the binary values to be in the grayscale range. However, the issue with this approach is that small
changes in the relaxed grayscale domain are lost when rounding the pixel values back to being a valid
binary input for the classifier. Another approach is to increase the step size of an attack such that a
small change in a grayscale pixel value instead causes a binary pixel value to flip. This approach is
most relevant to Ly attacks since they perturb a smaller number of pixels. However, even for the two
Ly attacks which can be applied to the binary setting with this approach (Guo et al., 2019; Schott
et al., 2018), this results in a large and visible number of pixel inversions, as shown in Section 6.
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2 PROBLEM FORMULATION

Binary images and OCR systems. Binary images x € {0,1}¢ are d-dimensional images such
that each pixel is either black or white. An m-class classifier F' maps x to a probability distribution
F(x) € [0,1]™ where F(x); corresponds to the confidence that image x belongs to class i. The
predicted label y of x is the class with the highest confidence, i.e., y = arg max; F(x);. Optical
Character Recognition (OCR) systems convert images of handwritten or printed text to strings of
characters. Typically, a preprocessing step of OCR systems is to convert the input to a binary format.
To formalize the problem of attacking OCR systems, we consider a classifier /' where the labels
are strings of characters. Given a binary image x with label y, we wish to produce an adversarial
example x’ which is similar to x, but has a predicted label y’ = y. For example, given an image x
of license plate 23FCBA, our goal is to produce a similar image x’ that is recognized as a different
license plate number. We measure the similarity of an adversarial image x’ to the original image
x with a perceptibility metric Dy (x’). For binary images, a natural metric is the number of pixels
where x and x’ differ, which corresponds to the L distance between the two images. Finding an
adversarial example can thus be formulated as the following optimization problem:

min  F(x),
x'€{0,1}¢
llx—x"llo<k

where k is the maximum dissimilarity tolerated for adversarial image x’. For targeted attacks with
target label y;, we instead maximize F'(x’),,. Since there are at least (Z) feasible solutions for x/,

which is exponential in , this is a computationally hard problem.

Check processing systems. A check processing system F’ accepts as input a binary image x of a
check and outputs confidence scores F'(x) which represent the most likely amounts that the check is
for. Check processing systems are a special family of OCR systems that consist of two independent
models that verify each other. Models Fi and F7, for Courtesy and Legal Amount Recognition (CAR
and LAR) classify the amounts written in numbers and in words respectively. If the predicted labels
of the two models do not match, the check is flagged. For example, if the CAR and LAR of a valid
check read 100 and “one hundred”, the values match and the check is processed. The main challenge
with attacking checks is to craft an adversarial example x’ with the same target label for both F» and
F7. Returning to the previous example, a successful adversarial check image might have the CAR
read 900 and the LAR read “nine hundred”. For this targeted attack, the optimization problem is:

max FC (X/)yt + FL (X/)yt
x'€{0,1} " ys £y
[lx—x"||o<k

subjectto y; = argmax, Fo(x'); = argmax, Fy,(x');

The attacker first needs to select a target amount y; different from the true amount ¥, and then attack
F¢ and Fp, such that both misclassify x’ as amount y;. Since check processing systems also flag
checks for which the models have low confidence in their predictions, we want to maximize both the
probabilities Fo(x'),, and Fr,(x’),,. In order to have x’ look as similar to x as possible, we also
limit the number of modified pixels to be at most k. Check processing systems are configured such
that F- and F, only output the probabilities for a limited number of their most probable amounts.
This limitation makes the task of selecting a target amount challenging, as aside from the true amount,
the most probable amounts for each of F= and F, may be disjoint sets.

Black-box access. We assume that we do not have any information about the OCR model F' and
can only observe its outputs, which we formalize with the score-based black-box setting where an
attacker only has access to the output probability distributions of a model F over queries x’.

3 EXISTENCE OF PROVABLY ROBUST CLASSIFIERS FOR BINARY IMAGES

We first show the existence of binary image classifiers that are provably robust to any attack that
modifies a large, bounded, number of pixels. This implies that there is no attack that can obtain
reasonable guarantees on the number of pixel inversions needed to cause misclassification. Our first
result is that there exists an m-class linear classifier F' for binary images such that every class contains
some image whose predicted label according to F' cannot be changed with o(d) pixel flips, i.e., every
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class contains at least one image which requires a number of pixel flips that is linear in the number of
pixels to be attacked. The analysis, which is in the appendix, uses a probabilistic argument.

Theorem 1. There exists an m-class linear classifier F for d-dimensional binary images s.t. for
all classes i, there exists at least one binary image X in i that is robust to d/4 — \/2dlogm /2 pixel
changes, i.e., for all x' s.t. || x — x'[|o < d/4 — /2dlog m /2, arg max; F(x'); = i.

This robustness result holds for all m classes, but only for the most robust image in each class. We
also show the existence of a classifier robust to attacks on an image drawn uniformly at random.
There exists a 2-class classifier s.t. for both classes, a uniformly random image in that class requires,

in expectation, Q(\/&) pixel flips to be attacked. The analysis relies on anti-concentration bounds.

Theorem 2. There exists a 2-class linear classifier F for d-dimensional binary images such that for
both classes 1, a uniformly random binary image x in that class 1 is robust to \/&/ 8 pixel changes in

expectation, i.e. By ;) [minx/:argmaxj Fx'), i X —x|lo] > \/Q/S

These hardness results hold for worst-case classifiers. Experimental results in Section 6 show that, in
practice, classifiers for binary images are highly vulnerable and that the algorithms that we present
next require a small number of pixel flips to cause misclassification.

4 ATTACKING BINARY IMAGES

In this section, we present SCAR, our main attack algorithm. We begin by describing a simplified
version of SCAR, Algorithm 1, then discuss the issues of hiding noise in binary images and optimizing
the number of queries, and finally describe SCAR. At each iteration, Algorithm 1 finds the pixel p in
input image x such that flipping z,, to the opposite color causes the largest decrease in F'(x’),,, which
is the confidence that this perturbed input x’ is classified as the true label y. It flips this pixel and
repeats this process until either the perturbed input is classified as label 3’ # y or the maximum L
distance k with the original image is reached. Because binary images x are such that x € {0,1}%, we
implicitly work in Z¢. In particular, with ey, . . ., e, as the standard basis vectors, x’ + e,, represents
the image x’ with pixel p flipped.

Algorithm 1 A combinatorial attack on OCR systems.

input model F', image x, label y
x —x
while y = arg max; F(x'); and ||x’ — x|lo < k do
p' <+ argmin, F(x' +ep),
X' —x' +epy
return x’

Although the adversarial images produced by Algorithm 1 successfully fool models and have small
L distance to the original image, it suffers in two aspects: the noise added to the inputs is visible to
the human eye, and the required number of queries to the model is large.

Hiding the noise. Attacks on images in a binary domain are fundamentally different from attacks
on colored or grayscale images. In the latter two cases, the noise is often imperceptible because
the change to any individual pixel is small relative to the range of possible colors. Since attacks on
binary images can only invert a pixel’s color or leave it untouched, noisy pixels are highly visible
if their colors contrast with that of their neighboring pixels. This is a shortcoming of Algorithm 1,
which results in noise with small L distance but that is highly visible (for example, see Figure 1). To
address this issue, we impose a new constraint that only allows modifying pixels on the boundary of
black and white regions in the image. A pixel is on a boundary if it is white and at least one of its
eight neighboring pixels is black (or vice-versa). Adversarial examples produced under this constraint
have a greater L distance to their original images, but the noise is significantly less noticeable.

Optimizing the number of queries. An attack may be computationally expensive if it requires
many queries to a black-box model. For paid services where a model is hidden behind an API,
running attacks can be financially costly as well. Several works have proposed techniques to reduce
the number of queries. Many of these are based on gradient estimation (Chen et al., 2017; Tu et al.,
2019; Ilyas et al., 2018a;b; Al-Dujaili & O’Reilly, 2019). Recently, several gradient-free black-box
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attacks have also been proposed. Li et al. (2019) and Moon et al. (2019) propose two such approaches,
but these rely on taking small steps of size € in a direction which modifies all pixels. SIMBA (Guo
et al., 2019), another gradient-free attack, can be extended to the binary setting and is evaluated in the
context of binary images in Section 6. We propose two optimization techniques to exploit correlations
between pixels both spatially and temporally. We define the gain from flipping pixel p at point x’ as
the following discrete derivative of F' in the direction of p:

F(x')y — F(x' +ep)y
We say a pixel p has large gain if this value is larger than a threshold 7.

* Spatial correlations. Pixels in the same spatial regions are likely to have similar discrete derivatives
(e.g. Figure 4 in appendix). At every iteration, we prioritize evaluating the gains of the eight pixels
N (p) neighboring the pixel p which was modified in the previous iteration of the algorithm. If one
of these pixels has large gain, then we flip it and proceed to the next iteration.

* Temporal correlations. . Pixels with large discrete derivatives at one iteration are likely to also
have large discrete derivatives in the next iteration (e.g. Figure 5 in appendix). At each iteration, we
first consider pixels that had large gain in the previous iteration. If one of these pixels still produces
large gain in the current iteration, we flip it and proceed to the next iteration.

SCAR. In order to improve on the number of queries, SCAR (Algorithm 2) prioritizes evaluating
the discrete derivatives at pixels which are expected to have large gain according to the spatial and
temporal correlations. If one of these pixels has large gain, then it is flipped and the remaining pixels
are not evaluated. If none of these pixels have large gain, we then consider all pixels on the boundary
B(x) of black and white regions in the image x. In this set, the pixel with the largest gain is flipped
regardless of whether it has gain greater than 7. As before, we denote the standard basis vector in the
direction of coordinate 7 with e;. We keep track of the gain of each pixel with vector g.

Algorithm 2 SCAR, Shaded Combinatorial Attack on Recognition sytems.

input model F, image x, label y, threshold 7, budget &
x +—x,g+0
while y = arg max; F(x'); and ||x’ — x|l < k do
forp: g, >Torpe N(p')do
gp < F(x')y = F(xX' + ep)y
if max, g, < 7 then
for p € B(x') do
gp < F(x')y = F(xX' + ep)y
p' + argmax, g,
x —x' + ey
return x’

Algorithm 2 is an untargeted attack which finds x’ which is classified as label iy’ # y by F. It can
easily be modified into a targeted attack with target label y; by changing the first condition in the
while loop from y = arg max; F'(x’); to y; # arg max; F(x’); and by computing the gains g, as
F(x+ep),, — F(x),, instead of F'(x), — F(x+e,),. Even though SCAR performs well in practice,
there exists simple classifiers for which any algorithm requires a large number of pixel inversions to
find an adversarial example x’, as shown in Section 3.

5 SIMULTANEOUS ATTACKS

There are two significant challenges to attacking check processing systems. In the previous section,
we discussed the challenge caused by the preprocessing step that binarizes check images (Jayadevan
et al., 2012). The second challenge is that check processing systems employ two independent models
that verify the output of the other model: F- and F, classify the amount written in numbers and
in letters respectively. We thus propose an algorithm which tackles the problem of attacking two
separate OCR systems simultaneously. A natural approach is to search for a target amount at the
intersection of what Fio and F, determines are probable amounts. However, on unmodified checks,
the models are often highly confident of the true amount, and other amounts have extremely small
probability. To increase the likelihood of choosing a target amount which will result in an adversarial
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Figure 1: Examples of attacks on a CNN trained over MNIST (top left), a CNN trained over EMNIST (top right),
an LSTM for handwritten numbers (center), and Tesseract for typed words (bottom). The images correspond to,
from left to right, the original image, the outputs of SCAR, VANILLA-SCAR, POINTWISE, and SIMBA. The
predicted labels are in light gray below each image. For Tesseract attacks (bottom), we show the original image
and SCAR’s output.

example, we first proceed with an untargeted attack on both F» and F, using SCAR, which returns
image x* with reduced confidence in the true amount y. Then we choose the target amount y; to be
the amount ¢ with the maximum value min(F¢(x");, Fr,(x");), since our goal is to attack both F
and F;. Then we run T-SCAR, which is the targeted version of SCAR, twice to perform targeted
attacks on both F» and F, over image x“.

Algorithm 3 The attack on check processing systems.

input check image x, models F- and F7, label y
Xc, X, ¢ extract CAR and LAR regions of x
X, XY < SCAR(F¢,%x¢), SCAR(F,xp,)
Y¢ — max;z, min(Fo(xg):, Fr(x}):)
xb, x5+ T-SCAR(Fe, x%, yt), T-SCAR(Fr, XY, yr)
x" < replace CAR, LAR regions of x with x,, x},
return x*

6 EXPERIMENTS

We demonstrate the effectiveness of SCAR for attacking text recognition systems. We attack, in
increasing order of model complexity, standard models for single handwritten character classification
(Section 6.2), an LSTM model for handwritten numbers classification (Section 6.3), a widely used
open source model for typed (printed) text recognition called Tesseract (Section 6.4), and finally
commercial check processing systems used by banks for mobile check deposit (Section 6.5).

6.1 EXPERIMENTAL SETUP

Benchmarks. We compare four attack algorithms. SCAR is Algorithm 2 with threshold 7 = 0.1.
VANILLA-SCAR is Algorithm 1. We compare SCAR to Algorithm 1 to demonstrate the importance
of hiding the noise and optimizing the number of queries SIMBA is Algorithm 1 in (Guo et al.,
2019) with the Cartesian basis and € = 1. SIMBA is an algorithm for attacking (colored) images
in black-box settings using a small number of queries. At every iteration, it samples a direction q
and takes a step towards eq or —eq if one of these improves the objective. In the setting where q is
sampled from the Cartesian basis and € = 1, SIMBA corresponds to an L attack on binary images
which iteratively chooses a random pixel and flips it if doing so results in a decrease in the confidence
of the true label. POINTWISE (Schott et al., 2018) first applies random salt and pepper noise until the
image is misclassified. It then greedily returns each modified pixel to its original color if the image
remains misclassified. We use the implementation available in Foolbox (Rauber et al., 2017).

Metrics. To evaluate the performance of each attack A over a model F' and test set X, we use
three metrics. The success rate of A is the fraction of images x € X for which the output image
x' = A(x) is adversarial, i.e. the predicted label ' of x’ is different from the true label y of x. We
only attack images x which are initially correctly classified by F'. We use the L distance to measure
how similar an image x’ = A(x) is to the original image x, which is the number of pixels where x
and x’ differ. The number of queries to model F’ to obtain output image x’ = A(x).
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Figure 2: Success rate by Lo distance and number of queries for a CNN model on MNIST, a LeNet5 model on
EMNIST, an LSTM model on handwritten numbers, and Tesseract over printed words.

The distance constraint k. We seek a principled approach to selecting the maximum L distance
k. For an image x with label y, the L constraint is k¥ = aF(x)/|y| where F(x) counts the number
of pixels in the foreground of the image, o € [0, 1] is a fixed fraction, and |y| represents the number
of characters in y, e.g. |23FC6A| = 6. In other words, k is a fixed fraction of the average number of
pixels per character in x. In our experiments, we set & = 1/5.

6.2 DIGIT AND CHARACTER RECOGNITION SYSTEMS

For each experiment, we provide further details about the datasets and models in the appendix.
We train models over binarized versions of the MNIST digit (LeCun et al., 2010) and EMNIST
letter (Cohen et al., 2017) datasets. We binarize each dataset with the map » — |755]. We
additionally preprocess the EMNIST letter dataset to only include lowercase letters. We consider five
models: a logistic regression model (LogReg), a 2-layer perceptron (MLP2), a convolutional neural
network (CNN), a neural network from (LeCun et al., 1998) (LeNet5), and a support vector machine
(SVM). Their Top-1 accuracies are given in the appendix.

We discuss the results of the attacks on the CNN model trained over MNIST and on the LeNet5
model trained over EMNIST. The full results for the remaining 8 models are in the appendix. In
Figure 2, we observe that for fixed L distances k < k, VANILLA-SCAR has the largest number of
successful attacks with an L distance at most x on the CNN model. For example, 80% of the images
were successfully attacked by flipping at most 7 of the 784 pixels of an MNIST image. SCAR is very
close but requires significantly fewer queries and, as shown in Figure 1 its noise is less visible even
though its Lg distance is slightly larger. SIMBA requires very few queries to attack between 40%
and 65% of the image, but the attacked images have large L distances. The success rate does not
increase past 40% and 65% because the noise constraint & is reached. POINTWISE obtains a success
rate close to 85% and 98% on the CNN and LeNet5, respectively. The average L distance of the
images produced by POINTWISE is between SCAR and SIMBA. Overall, SCAR obtains the best
number of queries and L distance combination. It is the only attack, together with VANILLA-SCAR,
which consistently obtains a success rate close to 100% on MNIST and EMNIST models.

6.3 LSTM ON HANDWRITTEN NUMBERS

We train an OCR model on the ORAND-CAR-A dataset, part of the HDSRC 2014 competition
on handwritten strings (Diem et al., 2014). This dataset consists of 5793 images from real bank
checks taken from a Uruguayan bank. Each image contains between 2 and 8 numeric characters. We
implement the OCR model described in (Mor & Wolf, 2018). The trained model achieves a precision
score of 85.7% on the test set of ORAND-CAR-A, which would have achieved first place in the
HDSRC 2014 competition. The results are similar to the attacks on the CNN-MNIST model. SIMBA
has less than 20% success rate. POINTWISE obtains a high success rate with a small number of
queries, but is outperformed by SCAR and VANILLA-SCAR in terms of L distance. Due to the images
being high-dimensional (d ~ 50,000) and consisting of multiple digits, the reason why SIMBA
performs poorly is that the flipped pixels are spread out over the different digits (see Figure 1).
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Figure 3: An example of a check for $401 attacked by Algorithm 3 that is misclassified with high confidence as
$701 by a check processing system used by US banks.

6.4 TESSERACT ON PRINTED WORDS

Tesseract is a popular open-source text recognition system designed for printed text that is sponsored
by Google (Smith, 2007). We attacked 100 images of random printed English words of length four
(the full list of words, together with the misclassified labels, can be found in the appendix). Tesseract
does not recognize any word and reject input images with excess noise. Since the goal is to misclassify
images as words with a different meaning, an attack is successful if the adversarial image is classified
as a word in the English dictionary. The main result for the attacks on Tesseract is that, surprisingly,
for around half of the images, flipping a single pixel results in the image being classified as a different
word in the English dictionary (see Figure 2). SCAR again produces attacks with L distance close to
VANILLA-SCAR, but with fewer queries. Unlike the other models, SCAR and VANILLA-SCAR do not
reach close to 100% accuracy rate. We hypothesize that this is due to the fact that, unlike digits, not
every combination of letters forms a valid label, so many words have an edit distance of multiple
characters to get to the closest different label. In these experiments, POINTWISE obtains the highest
success rate. In the appendix, we consider SCAR attacking Tesseract on the word “idle” and analyze
the spatial and temporal correlations between pixels in that example.

6.5 CHECK PROCESSING SYSTEMS

We licensed software from providers of check processing systems to major US banks and applied
the attack described in Algorithm 3. This software includes the prediction confidence as part of
their output. Naturally, access to these systems is limited and the cost per query is significant. We
confirm the findings from the previous experiments that SCAR, which is used as a subroutine by
Algorithm 3, is effective in query-limited settings and showcase the vulnerability of OCR systems
used in the industry. Check fraud is a major concern for US banks; it caused over $1.3 billion in
losses in 2018 (American Bankers Association, 2020). We obtained a 17.1% success rate (19 out
of 111 checks) when attacking check processing systems used by banks for mobile check deposits.
As previously mentioned, a check is successfully attacked when both amounts on the check are
misclassified as the same wrong amount (see Figure 3). Since check fraud occurs at large scale, we
believe that this vulnerability raises serious concerns.

Classifier Queries L, distance
CAR (Fo) 1615 11.77
LAR (Fp) 8757 14.85

We say that a check is misclassified with high confidence if the amounts written in number and words
are each classified with confidence at least 50% for the wrong label. We obtained high confidence
misclassification for 76.5% of the checks successfully attacked. In Figure 3, we show the output of a
check for $401 that has both amounts classified as 701 with confidence at least 80%. On average,
over the checks for which we obtained high confidence misclassification, Algorithm 3 flipped 11.77
and 14.85 pixels and made 1615 and 8757 queries for the amounts in numbers and words respectively.
The checks are high resolution, with widths of size 1000. Additional examples of checks misclassified
with high confidence can be found in the appendix.

'Regarding physical realizability: instead of printing an adversarial check in high resolution, an attacker can
redirect the camera input of a mobile phone to arbitrary image files, which avoids printing and taking a picture
of an adversarial check. This hacking of the camera input is easy to perform on Android.
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A MISSING ANALYSIS FROM SECTION 3

Theorem 1. There exists an m-class linear classifier F for d-dimensional binary images s.t. for
all classes i, there exists at least one binary image X in i that is robust to d/4 — \/2d1logm /2 pixel
changes, i.e., for all x' s.t. || x —x'[|o < d/4 — /2dlogm /2, arg max; F(x'); = i.

Proof. In this proof, we assume that binary images have pixel values in {—1,1} instead of {0, 1}.
We consider a linear classifier waw,w;n such that the predicted label y of a binary image x is
y = argmax; X"w}.

We wish to show the existence of weight vectors wj,...,w”*™ that all have large pairwise Ly
distance. This is closely related to error-correction codes in coding theory which, in order to detect
and reconstruct a noisy code, also aims to construct binary codes with large pairwise distance.

We do this using the probabilistic method. Consider m binary weight vectors wi, . .., W, chosen
uniformly at random, and independently, among all d-dimensional binary vectors w € {—1,1}%. By
the Chernoff bound, for all ¢, j € [m], we have that for 0 < ¢ < 1,

Pr{||w; — w;llo < (1 - 8)d/2] < e /4,
There are (")) < m? pairs of images (i, j). By a union bound and with § = \/8log m/d, we get that

Pr {le —wjllo > d/2—+/2dlogm : foralli,j € [m],i # j} >1—m2e 944 5 0,
Thus, by the probabilistic method, there exists w7,..., w},
V2dlogm for all 4, j € [m)].

It remains to show that the linear classifier Fw; ...,w+m satisfies the condition of the theorem statement.
For class i, consider the binary image x; = w?. Note that for binary images x € {—1,1}%, we
have xTw} = d — 2[|x — w}|o. Thus, x]w} = d and arg max;_,; x; w; < 2y/2dlogm, and we
get x]w} — arg max; 4, xiTw; > d — 2v/2dlog m. Each pixel change reduces this difference by at
most 4. Thus, for all x" such that ||x; — x'||o < (d — 2v/2dlogm)/4 = d/4 — \/2dlogm /2, we

O

have x'Tw} — arg max;_,; x'Tw} > 0 and the predicted label of x is 4.

such that [|[w} — willo > d/2 —

Theorem 2. There exists a 2-class linear classifier F for d-dimensional binary images such that for
both classes 1, a uniformly random binary image x in that class 1 is robust to \/&/ 8 pixel changes in

expectation, i.e. By ;) [minx/:argmaxj Fx'), i X —=x|lo] > Vd/s.

Proof. Consider the following linear classifier
o TT 2 d
F(X) _ {O if 1 .T*CC()/2 < bl .
1 otherwise

Informally, this is a classifier which assigns label 0 if ||x||o < d/2 and label 1 if ||x||o > d/2. The
classifier tiebreaks the ||x||o = d/2 case depending on whether or not the first positionin xisa 1 ora
0. Notice that this classifier assigns exactly half the space the label 0, and the other half the label 1.

Consider class 0 and let 2/(0) be the uniform distribution over all x in class 0. We have

1 /d
P = 8| = —
o o=+ = 52 (%)

when s < d/2 and Prycy o) [[|[x]lo = 8] = 5 (f) when s = d/2. The binomial coefficient (f) is
maximized when s = d/2. For all d € Z™, Stirling’s approximation gives lower and upper bounds of
V2rditze=d < dl < d?t2e~t1, Since d is even, we get

< d > o d! < e24
d/2) = (@ " wvd
Therefore, we have that for all s,

H[m—ﬂ<l<d><dﬂ
x€U(0) 0= A d/2 - 7'('\/;1,

11
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which implies

md

lixllo — d/2] > ] sy 2Vd e ]

4de 77\/& 25

The same argument follows similarly for members of class 1. Therefore, for either class, at least half

Pr

x€U(0) 4e

of the images & of that class are such that |||x||o — d/2| > ”4—\? > %. These images require at least

% pixel flips in order to change the predicted label according to F', and we obtain the bound in the

theorem statement. O

B ADDITIONAL DESCRIPTION OF DATASETS AND MODELS

B.1 DIGIT AND CHARACTER RECOGNITION SYSTEMS

The datasets. We preprocess the EMNIST letter dataset to only include lowercase letters, since
an uppercase letter which is misclassified as the corresponding lowercase letter does not change the
semantic meaning of the overall word. We randomly select 10 correctly-classified samples from each
class in MNIST and EMNIST lowercase letters to form two datasets to attack.

Models. We consider the following five models, trained in the same manner for the MNIST and
EMNIST datasets. For each model, we also list their Top-1 accuracies on MNIST and EMNIST.

* LogReg: We create a logistic regression model by flattening the input and follow this with
a fully connected layer with softmax activation. (MNIST: 91.87% / EMNIST: 80.87%)

* MLP2: We create a 2-layer MLP by flattening the input, followed by two sets of fully
connected layers of size 512 with ReLLU activation and dropout rate 0.2. We then add a fully
connected layer with softmax activation. (MNIST: 98.01% / EMNIST: 93.46%)

* CNN: We use two convolutional layers of 32 and 64 filters of size 3 x 3, each with ReLU
activation. The latter layer is followed by a 2 x 2 Max Pooling layer with dropout rate 0.25.
(MNIST: 99.02% / EMNIST: 95.04%)

This output is flattened and followed by a fully connected layer of size 128 with ReLU
activation and dropout rate 0.5. We then add a fully connected layer with softmax activation.

e LeNet 5: We use the same architecture as in (LeCun et al., 1998). (MNIST: 99.01% /
EMNIST: 94.33%)

* SVM: We use the sklearn implementation with default parameters. (MNIST: 94.11% /
EMNIST: 87.53%)

Except for the SVM, we train each model for 50 epochs with batch size 128, using the Adam optimizer
with a learning rate of 10~3. The experimental results for CNN on MNIST and LeNet5 on EMNIST
are shown in Section 5.

B.2 LSTM ON HANDWRITEN NUMBERS

The dataset. We train an OCR model on the ORAND-CAR-A dataset, part of the HDSRC 2014
competition on handwritten strings (Diem et al., 2014). This dataset consists of 5793 images from
real bank checks taken from a Uruguayan bank. The characters in these images consist of numeric
characters (0-9) and each image contains between 2 and 8 characters. These images also contain
some background noise due to the real nature of the images. We observe the train/test split given in
the initial competition, meaning that we train our model on 2009 images and attack only a randomly
selected subset from the test set (another 3784 images). The images as presented in the competition
were colored, but we binarize them in a similar preprocessing step as done for MNIST/EMNIST
datasets.

The LSTM model. We implement the OCR model described in (Mor & Wolf, 2018), which
consists of a convolutional layer, followed by a 3-layer deep bidirectional LSTM, and optimizes for
CTC loss. CTC decoding was done using a beam search of width 100. The model was trained with
the Adam optimizer using a learning rate of 10~%, and was trained for 50 epochs. The trained model

12
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Figure 4: Success rate by L distance and by number of queries for four different models on MNIST.

achieves a precision score of .857 on the test set of ORAND-CAR-A, which would have achieved
first place in that competition.

B.3 TESSERACT ON PRINTED WORDS

The model. We use Tesseract version 4.1.1 trained for the English language. Tesseract 4 is based
on an LSTM model (see (Song & Shmatikov, 2018) for a detailed description of the architecture of
Tesseract’s model).

The dataset. We attack images of a single printed English word. Tesseract supports a large number
of languages, and we use the version of Tesseract trained for the English language. We picked
words of length four in the English dictionary. We then rendered these words in black over a white
background using the Arial font in size 15. We added 10 white pixels for padding on each side of the
word. The accuracy rate over 1000 such images of English words of length four chosen at random
is 0.965 and the average confidence among words correctly classified is 0.906. Among the words
correctly classified by Tesseract, we selected 100 at random to attack.

For some attacked images with a lot of noise, Tesseract does not recognize any word and rejects the
input. Since the goal of these attacks is to misclassify images as words with a different meaning, we
only consider an attack to be successful if the adversarial image produced is classified as a word in
the English dictionary. For example, consider an attacked image of the word “one”. If Tesseract does
not recognize any word in this image, or recognizes “oe” or “:one”, we do not count this image as a
successful attack.

We restricted the attacks to pixels that were at distance at most three of the box around the word.
Since our algorithm only considers boundary pixels, this restriction avoids giving an unfair advantage
to our algorithm in terms of total number of queries. In some cases, especially images with a lot of
noise, Tesseract does not recognize any word and rejects the input. Since the goal of these attacks
is to misclassify images as words with a different meaning than the true word, we only consider
an attack to be successful if the adversarial image produced is classified as a word in the English
dictionary. For example, consider an image with the text “one”. If Tesseract does not recognize any
word in this image, or recognizes “oe” or “:one”’, we do not count this image as a successful attack.

Figure 6: Examples of attacks on the LSTM for handwritten numbers. The images correspond
to, from left to right, the original image, the outputs of SCAR, VANILLA-SCAR, POINTWISE, and
SIMBA.
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Figure 5: Success rate by L distance and by number of queries for four different models on EMNIST.

C ADDITIONAL EXPERIMENTAL RESULTS

In Figure 4 and Figure 5, we provide additional experimental results on the MNIST and EMNIST
datasets. In Figure 6, we give additional examples of attacks on the LSTM model for handwritten
number. In Table 1, we list the 100 English words of length 4 we attacked together with the word
label of the image resulting from running SCAR.

Spatial and temporal correlations. In Figure 7 we plot a separate line for each pixel p and the
corresponding decrease in confidence from flipping that pixel at each iteration. We first note the
pixels with the smallest gains at some iteration are often among the pixels with the smallest gains
in the next iteration, which indicates temporal correlations. Most of the gains are negative, which
implies that, surprisingly, for most pixels, flipping that pixel increases the confidence of the true label.
Thus, randomly choosing which pixel to flip, as in SIMBA, is ineffective.

~ 05 —— Average
Q

@

=

w

2

(1]

= 05
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lteration

Figure 7: The gain from each pixel for the five iterations it took to successfully attack the word “idle”
on Tesseract.

As discussed in Section 4, SCAR exploits spatial and temporal correlations to optimize the number of
queries needed. As an example, we consider SCAR attacking Tesseract on the word “idle”.

Figure 8 again shows the gain from flipping each pixel, but this time as a heatmap for the gains at the
first iteration. We note that most pixels with a large gain have at least one neighboring pixel that also
has a large gain. This heatmap illustrates that first querying the neighboring pixels of the previous
pixel flipped is an effective technique to reduce the number of queries needed to find a high gain
pixel.
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Figure 8: Heatmap of the gains from flipping a pixel on the word “idle” with Tesseract.

Original Label Original Label Original Label
word from SCAR word from SCAR word from SCAR
down dower race rate punt pant

fads fats nosy rosy mans mans
pipe pie serf set cram ram
soft soft dare dare cape tape
pure pure hood hoot bide hide
zoom zoom yarn yam full fall
lone tone gorp gore lags fags
fuck fucks fate ate dolt dot
fist fist mags mays mods mots
went weal oust bust game game
omen men rage rage taco taco
idle die moth math ecol col
yeah yeah woad woad deaf deaf
feed feet aged ed vary vary
nuns runs dray ray tell tel
educ educ ency ency avow VOW
gush gust pres press wits wits
news news deep sleep weep ween
swim swim bldg bid vile vie
hays nays warp war sets nets
tube lube lost lo smut snout
lure hare sqrt sat mies miles
romp romp okay okay boot hoot
comp camp kept sept yipe vie
pith pithy herb herbs hail fail
ploy pro show how saga gaga
toot foot hick nick drat rat
boll boil tout foul limo lino
elev ale blur bur idem idler
dank dank biog dog twin twins
gild ail lain fain slip sip
waxy waxy gens gents yeti yet
test fest mega mega loge toge
pups pups

Table 1: The 100 English words of length 4 we attacked together with the word label of the image
resulting from running SCAR.

Finally, in Figure 6, we show additional examples of our attacks on check processing systems.
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Ive SCuehdw T,

Figure 9: First digit and word of the CAR and LAR amount of checks for $562, $72, and $2
misclassified as $862, $92, and $3 by a check processing system. The pixels in red correspond to
pixels whose colors differ between the original and attacked image.
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