

000 PREFERENCE ORCHESTRATOR: PROMPT-AWARE 001 002 MULTI-OBJECTIVE ALIGNMENT FOR LARGE LAN- 003 004 GUAGE MODELS

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 While Large Language Models (LLMs) have demonstrated remarkable capabilities
014 across diverse natural language processing tasks, aligning these models with vary-
015 ing human preferences across multiple objectives remains a significant challenge
016 in practical deployments. Existing multi-objective alignment methods rely on
017 manually specified preference weights, which not only burden users with difficult
018 preference specification tasks but also lead to suboptimal training efficiency due
019 to exploration of irrelevant preference combinations. To alleviate these issues,
020 we propose a novel framework named PRO, i.e., PReference Orchestrator, which
021 features a lightweight preference adapter that automatically infers prompt-specific
022 preference weights during both training and deployment phases. Specifically, the
023 adapter automatically learns appropriate preference weights for each prompt by
024 training on normalized reward scores from multiple reward models for preferred
025 responses, which inherently reflect effective preference balances across objectives.
026 Additionally, We provide theoretical analysis proving that our prompt-aware pref-
027 erence mechanism achieves superior performance compared to fixed preference
028 weights in multi-objective alignment scenarios. Extensive experiments across multi-
029 ple tasks demonstrate the effectiveness of our method over existing multi-objective
030 alignment approaches.

1 INTRODUCTION

031 Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
032 of natural language processing tasks, including text generation (Liang et al., 2024), conversational
033 interaction (Wang et al., 2023), reasoning (Xu et al., 2025), and code completion (Jiang et al., 2024).
034 However, ensuring that these models align with human values and preferences remains a significant
035 challenge. Misaligned models can produce outputs that are biased, harmful, or harmless but unhelpful,
036 leading to negative user experiences and potential societal harm. Therefore, effective alignment
037 techniques are crucial for deploying LLMs in real-world applications, with RLHF, i.e., Reinforcement
038 Learning from Human Feedback (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022),
039 being one of the most prominent methods.

040 In practical deployments, different users often have diverse preferences regarding LLM outputs.
041 For instance, some may prioritize helpfulness and informativeness, while others might value safety
042 and harmlessness more highly. A single objective is insufficient to capture these multi-dimensional
043 requirements. Multi-objective alignment aims to train models that can adapt to these varying
044 preference profiles, typically represented as a preference weight vector, where each dimension
045 corresponds to the relative importance of a particular objective (Li et al., 2021; Rame et al., 2023;
046 Yang et al., 2024b).

047 A straightforward approach for multi-objective alignment is to combine multiple reward models into
048 a single reward signal through weighted summation, then use the combined reward signal for RL
049 optimization (Li et al., 2021). While effective, this approach typically uses fixed weights during
050 training, and developing separate models for different preference combinations remains resource-
051 intensive. To address the inefficiency, methods like MODPO (Zhou et al., 2024b) and CPO (Guo et al.,
052 2024) have eliminated the RL step entirely by optimizing directly on multi-objective preference data.

More recent innovations focus on test-time adaptability to user preferences (Rame et al., 2023; Yang et al., 2024b), enabling a single model to accommodate diverse preference profiles. For instance, REWARD SOUPS (Rame et al., 2023) and MOD (Shi et al., 2024) train multiple single-objective expert models for each objective, then perform weighted averaging of these experts based on user preferences at test time. RIC (Yang et al., 2024b) and DPA (Wang et al., 2024) control user preferences by appending reward scores to the input, followed by SFT fine-tuning. During online sampling, they randomly sample user preferences to generate new responses and use rejection sampling (Dong et al., 2023) to filter high-quality samples for further iterative training. PARM (Lin et al., 2025) employs a single preference-aware autoregressive reward model that dynamically adapts to user-specified preference vectors to guide a frozen base model’s generation process.

However, while existing methods can adapt to different preferences for each prompt, they rely on manually specified preference weights. In practice, users often struggle to determine the optimal preference combination for a given prompt—for instance, how to properly balance honesty, helpfulness, and harmlessness when asking for advice about a sensitive political topic. This dependency on manual input for preference weights not only increases user burden but may also lead to suboptimal output quality due to inappropriately preferences setting. Additionally, during the training phase, approaches like RIC and DPA employ random sampling of preference vectors to increase training data diversity, but these randomly sampled preferences may deviate from the optimal configuration for specific prompts. This results in reduced training efficiency and computational resources wasted exploring ineffective preference combinations. To address these limitations, we propose Prompt-Aware Multi-Objective Alignment with a *Preference Orchestrator* that automatically infers appropriate preference weight vectors for each prompt, eliminating the need for manual input while providing more intelligent preference sampling strategies during training.

Motivated by the above consideration, we introduce a novel framework named PRO, i.e., *P*reference *O*rchestrator, which involves a lightweight adapter module that automatically learns appropriate preference weights for multi-objective alignment. Specifically, the adapter takes an input prompt and outputs a weight vector that specifies how to combine multiple reward objectives for that specific context. The adapter is trained on normalized reward scores from multiple reward models for the preferred responses in existing human preference data, leveraging the insight that preferred responses inherently reflect effective preference balances across objectives. Additionally, our framework serve as a flexible plugin that can be integrated with existing multi-objective alignment methods, enhancing their performance by providing prompt-aware preference rather than relying on random sampling or fixed weights. Our contributions are summarized as follows:

- **Practically**, we propose the PRO framework, a lightweight and flexible preference adapter that automatically infers preference weights without requiring manual specification. This framework can be seamlessly integrated with existing multi-objective alignment methods as a plug-in module, enhancing their performance while reducing user burden and improving training efficiency.
- **Theoretically**, we prove that our prompt-aware preference mechanism achieves superior performance compared to using fixed preference weights, providing theoretical guarantees for the effectiveness of adaptive preference in multi-objective alignment scenarios.

Extensive experiments on multiple tasks, including summarization, question answering, and mathematical reasoning, demonstrate the effectiveness of our method over existing multi-objective alignment approaches.

2 RELATED WORK

Language Model Alignment: Aligning LLMs with human values and intentions is a fundamental step toward building responsible and effective AI systems (Achiam et al., 2023; Chen et al., 2025). The most influential paradigm is Reinforcement Learning with Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022), where a reward model is first trained to capture human preference signals, and the LLM is subsequently fine-tuned to maximize the expected reward under a KL-regularized objective. Despite its effectiveness, RLHF suffers from high computational cost and training instability (Dong et al., 2023; Yuan et al., 2023). To address these issues, DPO (Rafailov et al., 2023) was proposed as a simpler and more efficient alternative. DPO directly learns from pairwise human preference data and has been shown to be mathematically

108 equivalent to RLHF under certain assumptions. This perspective has inspired a series of variants
 109 aiming to further improve optimization efficiency, stability and alignment quality (Ethayarajh et al.,
 110 2024; Hong et al., 2024; Meng et al., 2024; Kim et al., 2025; Garg et al., 2025). For instance,
 111 SIMPO (Meng et al., 2024) eliminates the dependency on a reference model and mitigates length
 112 bias in optimization by introducing a length regularization term, resulting in more efficient training.
 113 KTO (Ethayarajh et al., 2024) proposes a divergence-based formulation that directly operates on
 114 binary feedback, thereby avoiding the need for pairwise preference comparisons while maintaining
 115 stable alignment.

116 **Multi-Objective Language Model Alignment:** Multi-objective alignment aims to optimize language
 117 models across multiple, potentially conflicting objectives such as helpfulness, harmlessness, and
 118 honesty. Early approaches typically employ weighted summation to combine multiple reward
 119 models into a unified signal for reinforcement learning optimization (Li et al., 2021). However,
 120 these methods rely on fixed preference weights throughout training, limiting their adaptability to
 121 diverse user needs and requiring separate models for different preference combinations. Recent
 122 work has explored more efficient alternatives that eliminate the computationally expensive RL
 123 step. Methods like MODPO (Zhou et al., 2024b) and CPO (Guo et al., 2024) directly optimize on
 124 multi-objective preference data, avoiding the instability and computational overhead associated with
 125 RL-based approaches. A growing line of research focuses on runtime adaptability, enabling a single
 126 model to accommodate diverse user preferences (Rame et al., 2023; Yang et al., 2024b). REWARD
 127 SOUPS (Rame et al., 2023) and MOD (Shi et al., 2024) train multiple single-objective expert models
 128 and perform weighted averaging at inference time based on user-specified preferences. RIC (Yang
 129 et al., 2024b) and DPA (Wang et al., 2024) control preferences by appending reward scores to inputs
 130 during supervised fine-tuning, then use rejection sampling (Dong et al., 2023) during inference to
 131 filter high-quality responses. PARM (Lin et al., 2025) employs a preference-aware autoregressive
 132 reward model that dynamically adapts to user-specified preference vectors to guide generation from
 133 a frozen base model. While these approaches demonstrate promising results, they either require
 134 training multiple specialized models or rely on explicit user preference specification at inference
 135 time.

3 PRELIMINARIES

138 We first introduce the formal notation for the language model alignment with single reward model.
 139 Let \mathcal{V} be a vocabulary of a language model. The goal of alignment is to ensure that the language
 140 model $\pi : \mathcal{X} \rightarrow \mathcal{Y}$ generates response $\mathbf{y} \in \mathcal{Y}$ that are consistent with human values and preferences
 141 given a query $\mathbf{x} \in \mathcal{X}$, where the query $\mathbf{x} = [x^1, x^2, \dots, x^m]$ and response $\mathbf{y} = [y^1, y^2, \dots, y^n]$ are
 142 sequences of tokens, the input space $\mathcal{X} = \mathcal{V}^m$ and the output space $\mathcal{Y} = \mathcal{V}^n$.

143 **Supervised Fine-Tuning (SFT):** The alignment process typically begins with Supervised Fine-Tuning
 144 (SFT), which adjusts the language model using Maximum Likelihood Estimation on a human-labeled
 145 high-quality dataset $\mathcal{D}_{\text{sft}} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$:

$$146 \quad \mathcal{L}_{\text{SFT}} = - \sum_{i=1}^N \sum_{j=1}^{n_i} \log P(y_i^j | [y_i^k]_{k=0}^{j-1}, \mathbf{x}^{(i)}; \theta), \quad (1)$$

149 where N is the number of training examples, n_i is the length of the i -th target sequence, and θ
 150 represents the parameters of the language model π_θ . For the notational simplicity, $y_i^0 = \emptyset$ denotes an
 151 empty placeholder.

152 **Reinforcement Learning from Human Feedback (RLHF):** To further align the language model
 153 with human preferences, Reinforcement Learning from Human Feedback (RLHF) is employed.
 154 This involves training a reward model $r_\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ using a dataset of human preferences
 155 $\mathcal{D}_{\text{rm}} = \{(\mathbf{x}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)\}_{i=1}^M$, where each entry consists of a query \mathbf{x}_i and two responses \mathbf{y}_i^+ and \mathbf{y}_i^- ,
 156 with \mathbf{y}_i^+ being preferred over \mathbf{y}_i^- . The reward model is trained to satisfy the following condition:

$$158 \quad \mathcal{L}_{\text{rm}} = - \sum_{i=1}^M \log P(\mathbf{y}_i^+ \succ \mathbf{y}_i^- | \mathbf{x}_i; \phi) = - \sum_{i=1}^M \log \sigma(r_\phi(\mathbf{x}_i, \mathbf{y}_i^+) - r_\phi(\mathbf{x}_i, \mathbf{y}_i^-)), \quad (2)$$

161 where $\sigma(\cdot)$ is the sigmoid function. Subsequently, the language model is fine-tuned using reinforce-
 162 ment learning algorithms, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017), to

162 maximize the expected reward provided by the reward model:
 163

$$\mathcal{L}_{\text{RLHF}}(\theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta(\cdot | \mathbf{x})} [-r_\phi(\mathbf{x}, \mathbf{y}) + \beta \text{KL}(\pi_\theta(\cdot | \mathbf{x}) \| \pi_{\text{ref}}(\cdot | \mathbf{x}))], \quad (3)$$

165 where β is a hyperparameter that balances the reward maximization and the Kullback-Leibler (KL)
 166 divergence regularization term, which prevents the fine-tuned model from deviating excessively from
 167 the reference model π_{ref} , which is typically the SFT model.

168 **Multi-Objective Alignment:** In practical scenarios, aligning a language model with multiple, often
 169 conflicting, human preferences is essential. This is typically achieved by training multiple reward
 170 models $\{r_{\phi_k}\}_{k=1}^K$ with the multi-objective dataset $\mathcal{D}_{\text{mo}} = \{(\mathbf{x}_i, \mathbf{y}_{i1}, \mathbf{y}_{i2}, \{p_{i,k}\}_{k=1}^K)\}_{i=1}^M$, where
 171 $p_{i,k} \in \{0, 1\}$ denotes the preference for the k -th objective. $p_{i,k} = 1$ indicates that response \mathbf{y}_{i1} is
 172 preferred over \mathbf{y}_{i2} for the k -th objective, and vice versa. The typical approach involves combining
 173 these reward models into a single scalar reward using a weighted sum:

$$r_{\text{mo}}(\mathbf{x}, \mathbf{y}; \mathbf{w}) = \sum_{k=1}^K w_k r_{\phi_k}(\mathbf{x}, \mathbf{y}), \quad (4)$$

177 where $\mathbf{w} = [w_1, w_2, \dots, w_K]$ are non-negative weights that sum to one, reflecting the relative
 178 importance of each objective. The language model is then fine-tuned using the combined reward in a
 179 manner similar to Eq. (3):

$$\mathcal{L}_{\text{MORLHF}}(\theta; \mathbf{w}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta(\cdot | \mathbf{x})} [-r_{\text{mo}}(\mathbf{x}, \mathbf{y}; \mathbf{w}) + \beta \text{KL}(\pi_\theta(\cdot | \mathbf{x}) \| \pi_{\text{ref}}(\cdot | \mathbf{x}))]. \quad (5)$$

182 **Test-Time Multi-Objective Alignment:** At test time, users may have different preferences for
 183 the importance of each objective. To accommodate this, the language model can be adapted to
 184 user-specified weights \mathbf{w} without retraining. Formally, the response of each prompt $\pi(\mathbf{y} | \mathbf{x}, \mathbf{w})$ is
 185 conditioned on both the input prompt \mathbf{x} and the preference weights \mathbf{w} .

4 THE PROPOSED METHOD

4.1 THE PREFERENCE ORCHESTRATOR

190 In this section, we introduce the PRO, i.e., PREFERENCE ORCHESTRATOR, a lightweight classifier
 191 module that automatically determines the optimal preference weight vector for multi-objective
 192 alignment given an input prompt. The adapter takes an input prompt \mathbf{x} and outputs a weight vector
 193 $\mathbf{w} = [w_1, w_2, \dots, w_K]$ that specifies how to combine multiple reward objectives for that specific
 194 context. This learned adapter enables prompt-aware optimization, where different types of inputs
 195 can be automatically assigned appropriate preference configurations based on their characteristics.
 196 Formally, we define the adapter as $\mathbf{w} = f_\psi(\mathbf{x})$, where $f_\psi : \mathcal{X} \rightarrow \Delta^{K-1}$ is a neural network
 197 parameterized by ψ , and Δ^{K-1} represents the $(K-1)$ -simplex ensuring valid probability distributions
 198 with $\sum_{k=1}^K w_k = 1$ and $w_k \geq 0$.
 199

4.2 TRAINING THE PREFERENCE ORCHESTRATOR

200 To train the *Preference Orchestrator*, we leverage the existing preference dataset $\mathcal{D}_{\text{rm}} =$
 203 $\{(\mathbf{x}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)\}_{i=1}^M$. The key insight is that the preferred responses inherently reflect an effective
 204 balance across multiple objectives—they are preferred precisely because they achieve a superior
 205 trade-off among various quality dimensions. For instance, a technical query might yield a preferred
 206 response with high scores on accuracy and informativeness, while a creative writing prompt might
 207 have preferred responses scoring highly on creativity and engagement. These score distributions
 208 implicitly encode the context-appropriate preference weights.

209 To extract the implicit preference weights from these preferred responses, we compute the rewards
 210 from all K reward models for each preferred response:

$$\mathbf{r}_i^+ = [r_{\phi_1}(\mathbf{x}_i, \mathbf{y}_i^+), r_{\phi_2}(\mathbf{x}_i, \mathbf{y}_i^+), \dots, r_{\phi_K}(\mathbf{x}_i, \mathbf{y}_i^+)]. \quad (6)$$

213 We then normalize these reward scores to obtain valid preference weights:

$$\mathbf{w}_i^* = \text{softmax}(\mathbf{r}_i^+ / \tau) = \left[\frac{\exp(r_{\phi_k}(\mathbf{x}_i, \mathbf{y}_i^+)/\tau)}{\sum_{j=1}^K \exp(r_{\phi_j}(\mathbf{x}_i, \mathbf{y}_i^+)/\tau)} \right]_{k=1}^K, \quad (7)$$

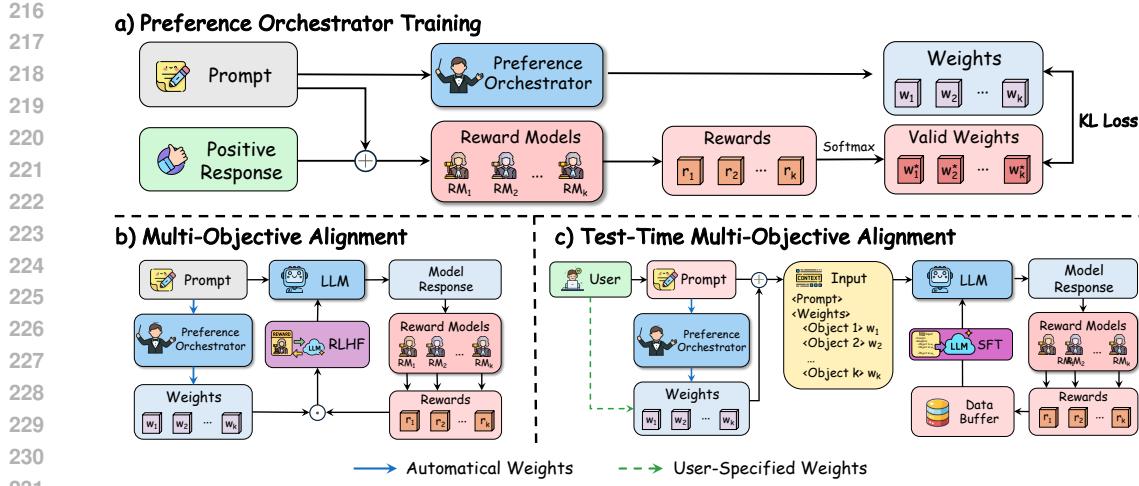


Figure 1: Overview of the PRO framework. The adapter takes an input prompt and outputs a weight vector that determines how to combine multiple reward objectives for that specific context.

where τ is a temperature parameter that controls the sharpness of the distribution.

The is then trained using supervised learning to predict these implicit preference weights:

$$\mathcal{L}_{\text{PRO}}(\psi) = \frac{1}{M} \sum_{i=1}^M \text{KL}(f_\psi(\mathbf{x}_i) \parallel \mathbf{w}_i^*), \quad (8)$$

where KL denotes the Kullback-Leibler divergence between the predicted and target weight distributions. This training objective enables the adapter to learn the mapping from prompt characteristics to optimal preference configurations, distilling the implicit preferences encoded in human-annotated data into an explicit weight prediction mechanism. The training of PRO is illustrated in Figure 1 (a).

4.3 INTEGRATING THE PREFERENCE ORCHESTRATOR WITH MULTI-OBJECTIVE ALIGNMENT

The PRO can be seamlessly integrated into existing multi-objective alignment frameworks. During both training and inference, the adapter generates context-specific preference weights for each input prompt, which are then used to combine the multiple reward models.

Integrating with Multi-Objective Alignment: In the multi-objective alignment setting, where users input only prompt without any explicit preference weights, we utilize the PRO to generate weights for each prompt during the training phase, making the model implicitly learn the ability to generate responses that trade off between multiple objectives. Taking MORLHF as an example:

$$\mathcal{L}_{\text{PRO-MORLHF}}(\theta; f_\psi) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta(\cdot | \mathbf{x})} [-r_{\text{mo}}(\mathbf{x}, \mathbf{y}; f_\psi(\mathbf{x})) + \beta \text{KL}(\pi_\theta(\cdot | \mathbf{x}) \parallel \pi_{\text{ref}}(\cdot | \mathbf{x}))]. \quad (9)$$

This approach allows the model to adaptively focus on the most relevant objectives for each prompt, leading to more effective and contextually appropriate responses. The architecture of this integration is illustrated in Figure 1 (b).

Integrating with Test-Time Multi-Objective Alignment: In the Test-Time Multi-Objective Alignment setting, our method provides dual advantages. First, during the online sampling phase, our approach can provide recommended preference configurations, avoiding potentially unreasonable preference combinations that may arise from random sampling, thereby improving training efficiency and reducing computational resource waste. Second, during inference, when users do not have explicit preference specifications, our method can automatically provide reasonable default preference weights, ensuring consistency in model output quality. Motivated by the reward in context technique (Lu et al., 2022; Yang et al., 2024b; Wang et al., 2024), we encode the preference weights as additional input tokens appended to the original prompt. The integration process involves two stages:

270 **Offline Stage:** During the offline training phase, the model is first warmed up using weights
 271 conditioned supervised fine-tuning. For each training sample $(\mathbf{x}_i, \mathbf{y}_i)$, we first compute the rewards
 272 from all K reward models and normalize them using softmax to obtain preference weights by Eq. (7).
 273 The offline training objective becomes:

$$274 \quad \mathcal{L}_{\text{PRO-WIC}}^{\text{offline}}(\theta) = - \sum_{i=1}^N \sum_{j=1}^{n_i} \log P(y_i^j | [y_i^k]_{k=0}^{j-1}, \mathbf{x}_i, \mathbf{w}^*; \theta), \quad (10)$$

277 where the input $\mathbf{x}_i, \mathbf{w}^*$ is constructed by appending these normalized weights to the original prompt
 278 by the template: Prompt <W1> $w_{i,1}^*$ <W2> $w_{i,2}^*$... <WK> $w_{i,K}^*$. This stage serves as a warm-up
 279 phase, teaching the model to respond conditioned on preference weights.
 280

281 **Online Sampling Stage:** During the online phase, our adapter recommends preference weights,
 282 replacing the random preference sampling strategy used in previous methods (Yang et al., 2024b;
 283 Wang et al., 2024).

$$284 \quad \mathcal{L}_{\text{PRO-WIC}}^{\text{online}}(\theta; f_\psi) = - \sum_{\mathbf{x}_i \in \mathcal{D}_{\text{online}}} \sum_{j=1}^{n_i} \log P(y_i^j | [y_i^k]_{k=0}^{j-1}, \mathbf{x}_i, f_\psi(\mathbf{x}_i); \theta), \quad (11)$$

287 where $\mathcal{D}_{\text{online}} = \{\mathbf{x}_i\}_{i=1}^O$ is the online prompt set, and $f_\psi(\mathbf{x}_i)$ provides the adapter-predicted prefer-
 288 ence weights for prompt \mathbf{x}_i . The architecture of this integration is illustrated in Figure 1 (c).

289 This adaptive mechanism enables our framework to both satisfy users with explicit preferences and
 290 provide intelligent solutions for scenarios lacking preference guidance, making the system more
 291 user-friendly and practically deployable.
 292

293 5 THEOREMTICAL ANALYSIS

295 In this section, we provide a theoretical analysis of the *Preference Orchestrator* and its impact on
 296 multi-objective alignment. We consider two approaches for multi-objective alignment:
 297

- 298 • **Fixed-weight approach:** Uses a single global weight vector $\mathbf{w}_{\text{fixed}} \in \mathcal{W}$ for all prompts, typically
 299 set as uniform weights $\mathbf{w}_{\text{fixed}} = [1/K, \dots, 1/K]$.
- 300 • **Adaptive approach:** Uses our *Preference Orchestrator* $f_\psi : \mathcal{X} \rightarrow \Delta^{K-1}$ to generate context-
 301 specific weights for each prompt.

302 For a given prompt \mathbf{x} , the alignment gap measures the suboptimality of a policy π compared to the
 303 optimal policy $\pi_{\mathbf{w}^*(\mathbf{x})}^*$ under the true optimal weights $\mathbf{w}^*(\mathbf{x})$ is defined as:
 304

$$305 \quad \text{Gap}(\pi, \mathbf{x}) = F_{r_{\text{mo}}(\cdot; \mathbf{w}^*(\mathbf{x}))}(\pi_{\mathbf{w}^*(\mathbf{x})}^*) - F_{r_{\text{mo}}(\cdot; \mathbf{w}^*(\mathbf{x}))}(\pi), \quad (12)$$

306 where $F_r(\pi) = \mathbb{E}_{\mathbf{y} \sim \pi(\cdot | \mathbf{x})} [r(\mathbf{x}, \mathbf{y})] - \beta D_{\text{KL}}[\pi(\cdot | \mathbf{x}) \| \pi_{\text{ref}}(\cdot | \mathbf{x})]$ is the KL-regularized reward objective
 307 and $\pi_{\mathbf{w}^*(\mathbf{x})}^* = \min_{\pi \sim \mathcal{H}} F_{r_{\text{mo}}(\cdot; \mathbf{w}^*(\mathbf{x}))}(\pi)$, \mathcal{H} is the hypothesis space.
 308

309 The overall alignment gap is then defined as the expected gap over the prompt distribution:

$$310 \quad \text{Align-Gap}(\pi) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\text{Gap}(\pi, \mathbf{x})]. \quad (13)$$

311 We now present our main theoretical result, which demonstrates that the adaptive weight approach
 312 using the *Preference Orchestrator* achieves a smaller lower bound of alignment gap compared to the
 313 fixed-weight approach.
 314

Theorem 5.1 (Superiority of Adaptive Weights). *Let π_{fixed} be the optimal policy trained with fixed
 315 weights $\mathbf{w}_{\text{fixed}}$, and π_{adapt} be the policy optimized using our *Preference Orchestrator* f_ψ . Under the
 316 following assumptions: (i) The reward function $r_{\text{mo}}(\cdot; \mathbf{w})$ is Bi-Lipschitz continuous lower bounded by
 317 L_r with respect to the weight vector \mathbf{w} ; (ii) The KL-regularized objective satisfies strong convexity
 318 with parameter $\mu > 0$; (iii) The reward objective $F_r(\pi)$ is lower bounded by a constant $C > 0$, i.e.,
 319 $\min_{\pi, r, \mathbf{w}} F_{r_{\text{mo}}(\cdot; \mathbf{w})}(\pi) = C$; then the alignment gaps satisfy:*

$$320 \quad \text{Align-Gap}(\pi_{\text{fixed}}) \geq \frac{\mu L_r^2}{2\beta^2 L_\pi^2} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\|\mathbf{w}^*(\mathbf{x}) - \mathbf{w}_{\text{fixed}}\|_2^2]$$

$$321 \quad \text{Align-Gap}(\pi_{\text{adapt}}) \geq \frac{\mu L_r^2 C^2}{2\beta^2 L_\pi^2} \mathcal{O}\left(\frac{\log \frac{1}{\delta}}{N}\right). \quad (14)$$

324 with probability at least $1 - \delta$, where N is the number of training samples of the Preference
 325 Orchestrator and L_π is the Lipschitz constant of the log-policy function. The proof is provided in
 326 Appendix A.1.

328 **Remark.** Theorem 5.1 reveals the advantage of our adaptive approach over fixed-weight methods.
 329 As the number of training samples N approaches infinity, the alignment gap of our Preference
 330 Orchestrator approaches zero, indicating that our method can achieve near-optimal performance
 331 with sufficient training data. In contrast, the fixed-weight approach maintains a persistent lower
 332 bound on its alignment gap that is proportional to $\mathbb{E}_{x \sim \mathcal{D}}[\|\mathbf{w}^*(\mathbf{x}) - \mathbf{w}_{\text{fixed}}\|_2^2]$, representing the
 333 inherent mismatch between the global fixed weights and the context-specific optimal weights. This
 334 fixed error becomes increasingly problematic as the diversity of optimal preferences across different
 335 prompts grows larger, highlighting the limitation of using uniform weights for all contexts.

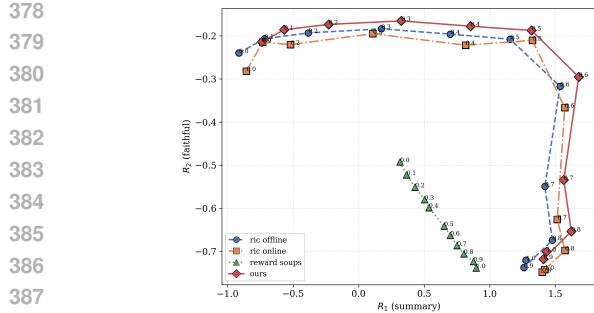
338 6 EXPERIMENTS

340 6.1 EXPERIMENTAL SETUP

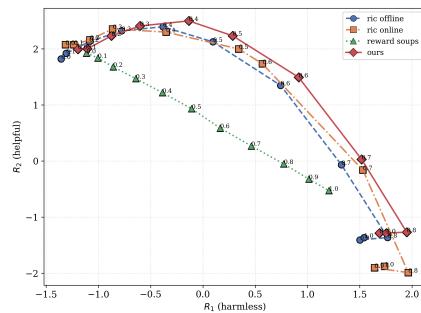
343 **Datasets and Models.** For test-time multi-objective alignment setting, we evaluated our approach
 344 on two datasets: Reddit Summary (Völske et al., 2017) and Helpful Assistant (Bai et al., 2022).
 345 The Reddit Summary dataset contains summaries of Reddit posts, comprising 14.9k posts and
 346 corresponding summaries. We consider reward models: preference and summaries, which evaluate
 347 human preference for summaries trained with different datasets, and a faithful reward that measures
 348 the faithfulness of the summary to the original post. Helpful Assistant is a dialogue task containing
 349 160k prompts and corresponding responses, annotated with human preferences. We employ three
 350 reward models for this dataset: helpfulness, harmlessness, and humor. For multi-objective alignment
 351 setting, we evaluated our approach on Ultrafeedback (Cui et al., 2023), which is a fine-grained,
 352 diverse preference dataset with 64k prompts and corresponding responses, annotated with human
 353 preferences across four dimensions: instruction-following, truthfulness, honesty, and helpfulness.
 354 We trained separate reward models for each of these dimensions. For Reddit Summary and Helpful
 355 Assistant, we used LLaMA-7B (Touvron et al., 2023) as the base model, while for Ultrafeedback, we
 356 employed Qwen-2.5-7B (Yang et al., 2024a) as the base model.

357 **Evaluation Metrics.** For Reddit Summary and Helpful Assistant, we randomly sampled 2k prompts
 358 from the test set, generated responses with different weights of user preferences, and calculated
 359 the average score for each reward dimension. We compared the multi-dimensional average test
 360 reward curves corresponding to the empirical Pareto frontiers generated by different methods. The
 361 outer curves indicate superior performance of the method across objectives with various preferences.
 362 For Ultrafeedback, we employed three widely adopted automatic evaluation benchmarks for LLMs:
 363 AlpacaEval 2 (Li et al., 2023; Dubois et al., 2024), MT-Bench (Bai et al., 2024), and Arena-Hard (Li
 364 et al., 2024a;b). All evaluations used GPT-4o as the judge model. For AlpacaEval 2, we report the
 365 raw win rate (WR) and length-controlled win rate (LC) against the reference model GPT-4o-05-13.
 366 For Arena-Hard, we report the win rate (WR) and style-controlled win rate (SC), comparing our
 367 model against the GPT-4-Preview-1106 baseline. For MT-Bench, we report the average multi-turn
 368 score (Score) assigned by GPT-4o, which rates each response on a scale of 1-10.

369 **Baselines.** We compared our approach with two different types of baseline methods. For Reddit
 370 Summary and Helpful Assistant datasets, we compared with multi-objective alignment methods
 371 including: (1) MORLHF (Li et al., 2021): This method assigns fixed weights to each objective reward
 372 model, using the weighted score as the reward signal for PPO optimization. (2) REWARD SOUPS
 373 (Rame et al., 2023): This approach first trains multiple expert models using single-objective RL, then
 374 performs weighted averaging of these experts' outputs, with weights determined by user preferences.
 375 (3) RIC (Yang et al., 2024b): This method appends reward scores to the prompt to control user
 376 preferences, followed by fine-tuning using SFT. For Ultrafeedback, we compared our method with
 377 various advanced LLM alignment methods: SFT, DPO (Rafailov et al., 2023), IPO (Azar et al., 2024),
 KTO (Ethayarajh et al., 2024), SIMPO (Meng et al., 2024), WPO (Zhou et al., 2024a), SELECTIVE
 DPO (Gao et al., 2025), ADPO (Ji et al., 2025), and PPO (Ouyang et al., 2022). The implementation
 details are provided in Appendix A.2.



(a) Reddit Summary



(b) Helpful Assistant

Figure 2: Results of the Reddit Summary and Helpful Assistant in test-time multi-objective alignment.

Table 1: Performance on Reddit Summary with two objectives (Equal weights).

Table 2: Performance on Reddit Summary with three objectives (Equal weights).

Method	Summary	Faithful
MORLHF	0.78	-0.66
REWARD SOUPS	0.65	-0.64
RIC offline	1.15	-0.21
RIC online	1.35	-0.21
PRO-WIC	1.46	-0.19

Method	Summary	Faithful	Preference
MORLHF	0.78	-0.66	0.55
REWARD SOUPS	0.64	-0.56	0.91
RIC offline	0.71	-0.25	1.33
RIC online	0.84	-0.25	1.69
PRO-WIC	0.95	-0.23	2.12

6.2 MAIN RESULTS

Performance on Reddit Summary and Helpful Assistant Tasks. As shown in Figure 2, each point in the figure represents the average score across all reward dimensions. The numbers at the centers of the markers indicate the preference weight for the first reward in each pair. Due to the substantial computational cost of MORLHF for various preference weight combinations and the inability to adapt to different user preferences in test-time, we do not report the results for MORLHF in the figure. Compared to baseline methods, the curve for our method, i.e., PRO-WIC, consistently lies on the outermost boundary in most cases, indicating that our method can adapt to different user preferences and balance multiple conflicting objectives. Furthermore, we compare the performance of different methods under an equal-weight setting. As shown in Tables 1-4, PRO achieves the best scores on most evaluation metrics in both two-objective and three-objective scenarios (except for the Helpful dimension on Helpful Assistant).

General Capability Assessment on Ultrafeedback. To evaluate the general capabilities of our method in broader scenarios, we trained it on the Ultrafeedback dataset and tested it on three mainstream benchmarks: AlpacaEval 2, Arena-Hard, and MT-Bench. As shown in Table 5, PRO outperforms almost all baseline methods across multiple benchmarks. Specifically, on AlpacaEval 2, PRO-MORLHF achieves a win rate (WR) and length-controlled win rate (LC) of 47.30% and 50.35%, respectively, significantly outperforming all baselines. On the more challenging Arena-Hard benchmark, our method also demonstrates strong competitiveness. On MT-Bench, PRO-MORLHF achieves the score of 7.93, which is only slightly lower than the best baseline ADPO.

6.3 ABLATION STUDY

PRO-WIC vs. RIC Variants. In the test-time multi-objective alignment setting, we compare our method PRO-WIC with two variants of RIC: RIC offline (which removes the online sampling phase) and RIC online (which uses random preference sampling during the online phase). As shown in Tables 1-4, PRO-WIC consistently outperforms both RIC variants across all evaluation scenarios.

PRO-MORLHF vs. MORLHF. In the multi-objective alignment setting, we compare our method PRO-MORLHF with the baseline MORLHF approach. As shown in Table 5, MORLHF uses fixed uniform weights across all prompts, while our method employs the *Preference Orchestrator* to assign

432
433 Table 3: Performance on Helpful Assistant
434 with two objectives (Equal weights).

Method	Harmless	Helpful
MORLHF	0.31	0.76
REWARD SOUPS	-0.11	0.93
RIC offline	0.10	1.86
RIC online	0.34	2.00
PRO-WIC	0.57	2.10

432
433 Table 4: Performance on Helpful Assistant
434 with three objectives (Equal weights).

Method	Harmless	Helpful	Humor
MORLHF	0.31	0.76	-0.35
REWARD SOUPS	0.02	0.66	0.39
RIC offline	-0.51	1.22	0.82
RIC online	0.03	1.31	0.65
PRO-WIC	0.47	1.28	1.03

442 Table 5: Performance comparison across AlpacaEval 2, Arena-Hard, and MT-Bench benchmarks.
443

Methods	AlpacaEval 2		Arena-Hard		MT-Bench
	WR(%)	LC(%)	WR(%)	SC(%)	Score
SFT	34.03	34.08	48.5	44.3	7.71
DPO	37.24	36.84	49.0	47.2	7.83
IPO	37.95	36.43	54.6	48.3	7.64
KTO	38.12	36.51	43.9	44.1	7.63
SIMPO	40.03	40.78	54.6	48.8	7.58
WPO	44.11	40.06	62.0	53.0	7.81
SELECTIVE DPO	38.02	39.21	51.7	48.2	7.74
PPO	39.52	39.79	55.3	48.9	7.81
ADPO	44.04	38.90	61.9	53.2	7.97
MORLHF	41.38	44.83	44.2	34.1	7.20
PRO-MORLHF	47.30	50.35	63.5	54.2	7.93

459 context-specific weights for each prompt. The results demonstrate significant performance improve-
460 ments across all benchmarks. These substantial improvements highlight the critical importance of
461 prompt-aware preference adaptation.
462

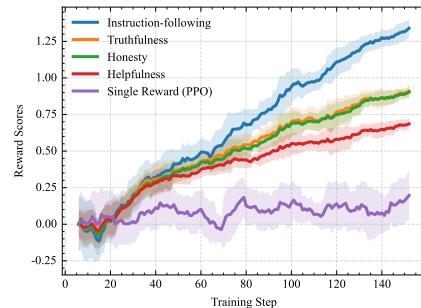
463 6.4 EFFECT OF THE PREFERENCE ORCHESTRATOR

465 To further demonstrate the effectiveness of our *Preference Orchestrator*, we analyze the convergence behav-
466 ior during training. Figure 3 shows the training reward
467 curves for both our method PRO-MORLHF and the base-
468 line MORLHF approach on the Ultrafeedback dataset.
469

470 As shown in the figure, the purple curve corresponds
471 to PPO trained with a single reward model and im-
472 proves slowly, whereas the other colored curves represent
473 our PRO-MORLHF with an adapter that assigns prompt-
474 specific weights; our method achieves much faster reward
475 growth from early training and maintains a clear lead
476 throughout, validating its efficiency and effectiveness.
477

478 7 CONCLUSION

480 In this paper, we introduced the *Preference Orchestrator*, a novel approach for multi-objective
481 alignment in large language models. By learning to predict context-specific preference weights
482 based on input prompts, our method enables prompt-aware optimization that effectively balances
483 multiple conflicting objectives. Theoretical analysis demonstrates that our approach achieves a
484 smaller lower bound of alignment gap compared to fixed-weight methods. Extensive experiments on
485 various datasets and benchmarks show that our method outperforms state-of-the-art baselines in both
multi-objective alignment and general capability assessments.



478 Figure 3: Training reward curves com-
479 paring PRO-MORLHF and PPO on Ultra-
480 feedback dataset.

486 ETHICS STATEMENT
487488 We adhere to the ICLR Code of Ethics in this research. The datasets used are publicly available
489 with no inclusion of private, sensitive, or proprietary data involving human/animal subjects. We are
490 committed to ensuring that our research has a positive impact on society and the environment. We
491 have conducted a thorough review of our research and its potential impact, and we have identified no
492 significant ethical concerns.493
494 REPRODUCIBILITY STATEMENT
495496 Our work prioritizes reproducibility. All details for data preprocessing, model training, and evaluation
497 are included in Appendix. The datasets used are all publicly accessible, and we have cited their
498 corresponding literature in the paper.499
500 REFERENCES
501502 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
503 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
504 *arXiv preprint arXiv:2303.08774*, 2023.505 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
506 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
507 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
508 4447–4455, Valencia, Spain, 2024.509 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
510 Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
511 language models in multi-turn dialogues. *arXiv preprint arXiv:2402.14762*, 2024.512 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
513 Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
514 Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan
515 Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei,
516 Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and Jared Kaplan.
517 Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv
518 preprint arXiv:2204.05862*, 2022.519 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
520 Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don't always
521 say what they think. *arXiv preprint arXiv:2505.05410*, 2025.522 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
523 reinforcement learning from human preferences. *Advances in Neural Information Processing
524 Systems*, 30, 2017.525 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
526 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.527 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
528 Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
529 foundation model alignment. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.530 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
531 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.532 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model
533 alignment as prospect theoretic optimization. In *Proceedings of the International Conference on
534 Machine Learning*, volume 235, pp. 12634–12651, Vienna, Austria, 2024.535 Chengqian Gao, Haonan Li, Liu Liu, Zeke Xie, Peilin Zhao, and zhiqiang xu. Principled data
536 selection for alignment: The hidden risks of difficult examples. In *Forty-second International
537 Conference on Machine Learning*, Vancouver, Canada, 2025.

540 Shivank Garg, Ayush Singh, Shweta Singh, and Paras Chopra. Ipo: Your language model is secretly
 541 a preference classifier. In *Proceedings of the Association for Computational Linguistics*, pp.
 542 19425–19441, Vienna, Austria, 2025.

543

544 Yiju Guo, Ganqu Cui, Lifan Yuan, Ning Ding, Zexu Sun, Bowen Sun, Huimin Chen, Ruobing Xie,
 545 Jie Zhou, Yankai Lin, et al. Controllable preference optimization: Toward controllable multi-
 546 objective alignment. In *Proceedings of the Conference on Empirical Methods in Natural Language
 547 Processing*, pp. 1437–1454, Miami, FL, 2024.

548 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
 549 reference model. In *Proceedings of the Conference on Empirical Methods in Natural Language
 550 Processing*, pp. 11170–11189, Miami, FL, 2024.

551 Kaixuan Ji, Jiafan He, and Quanquan Gu. Reinforcement learning from human feedback with active
 552 queries. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.

553

554 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
 555 models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

556 Dongyoung Kim, Kimin Lee, Jinwoo Shin, and Jaehyung Kim. Spread preference annotation: Direct
 557 preference judgment for efficient llm alignment. In *Proceedings of the International Conference
 558 on Learning Representations*, Singapore, 2025.

559 Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization.
 560 *IEEE Transactions on Cybernetics*, 51(6):3103–3114, 2021.

561

562 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
 563 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 564 pipeline. *arXiv preprint arXiv:2406.11939*, 2024a.

565 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and
 566 Ion Stoica. From live data to high-quality benchmarks: The arena-hard pipeline. <https://lmsys.org/blog/2024-04-19-arena-hard/>, 2024b.

567

568 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 569 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 570 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

571

572 Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
 573 Shunyu Yao, Feiyu Xiong, et al. Controllable text generation for large language models: A survey.
 574 *arXiv preprint arXiv:2408.12599*, 2024.

575

576 Baijiong Lin, Weisen Jiang, Yuancheng Xu, Hao Chen, and Ying-Cong Chen. PARM: Multi-objective
 577 test-time alignment via preference-aware autoregressive reward model. In *Proceedings of the
 578 International Conference on Machine Learning*, Vancouver, Canada, 2025.

579

580 Biao Liu, Ning Xu, Jiaqi Lv, and Xin Geng. Revisiting pseudo-label for single-positive multi-label
 581 learning. In *Proceedings of International Conference on Machine Learning*, pp. 22249–22265,
 582 Honolulu, HI, 2023.

583

584 Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
 585 manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
 586 *Advances in Neural Information Processing Systems*, 35:27591–27609, 2022.

587

588 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 589 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.

590

591 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*. MIT
 592 press, 2018.

593

594 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 596 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 597 Ryan Lowe. Training language models to follow instructions with human feedback. In *Advances
 598 in Neural Information Processing Systems*, pp. 27730–27744, New Orleans, LA, 2022.

594 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 595 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances*
 596 *in Neural Information Processing Systems*, pp. 53728–53741, New Orleans, LA, 2023.

597 Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
 598 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by inter-
 599 polating weights fine-tuned on diverse rewards. In *Advances in Neural Information Processing*
 600 *Systems*, New Orleans, LA, 2023.

601 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 602 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

603 Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hanna Hajishirzi, Noah A Smith, and Simon S
 604 Du. Decoding-time language model alignment with multiple objectives. *Advances in Neural*
 605 *Information Processing Systems*, 37:48875–48920, 2024.

606 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
 607 Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize with human feedback. In
 608 *Advances in Neural Information Processing Systems*, pp. 3008–3021, Virtual, 2020.

609 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 610 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
 611 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 612 models. *arXiv preprint arXiv:2302.13971*, 2023.

613 Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit to learn
 614 automatic summarization. In *Proceedings of the Workshop on New Frontiers in Summarization*, pp.
 615 59–63, Copenhagen, Denmark, 2017.

616 Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large
 617 language models. In *Proceedings of CHI Conference on Human Factors in Computing Systems*,
 618 pp. 1–17, Hamburg, Germany, 2023.

619 Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and
 620 Tong Zhang. Arithmetic control of LLMs for diverse user preferences: Directional preference
 621 alignment with multi-objective rewards. In *Proceedings of the Annual Meeting of the Association*
 622 *for Computational Linguistics*, pp. 8642–8655, Bangkok, Thailand, 2024.

623 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 624 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 625 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

626 Ning Xu, Jun Shu, Renyi Zheng, Xin Geng, Deyu Meng, and Min-Ling Zhang. Variational label
 627 enhancement. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):6537–6551,
 628 2023.

629 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 630 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 631 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 632 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 633 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 634 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 635 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 636 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 637 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.

638 Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-in-
 639 context: Multi-objective alignment of foundation models with dynamic preference adjustment. In
 640 *Proceedings of the International Conference on Machine Learning*, volume 235, pp. 56276–56297,
 641 Vienna, Austria, 2024b.

642 Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
 643 responses to align language models with human feedback. *Advances in Neural Information*
 644 *Processing Systems*, 36:10935–10950, 2023.

648 Wenzuan Zhou, Ravi Agrawal, Shujian Zhang, Sathish Reddy Indurthi, Sanqiang Zhao, Kaiqiang
649 Song, Silei Xu, and Chenguang Zhu. Wpo: Enhancing rlhf with weighted preference optimization.
650 In *Proceedings of the Annual Meeting of the Association for Computational Linguistics*, pp.
651 8328–8340, Miami, FL, 2024a.

652 Zhanhui Zhou, Jie Liu, Jing Shao, Xiangyu Yue, Chao Yang, Wanli Ouyang, and Yu Qiao. Beyond
653 one-preference-fits-all alignment: Multi-objective direct preference optimization. In *Findings of*
654 *the Association for Computational Linguistics*, pp. 10586–10613, Bangkok, Thailand, 2024b.

655 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.
656 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
657 preprint *arXiv:1909.08593*, 2019.

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
 703

704 **A.1 PROOF OF THEOREM 5.1**
 705

706 We first relate the alignment gap to the difference between policies, then connect the policy difference
 707 to the difference in reward functions, and finally link the reward difference to the difference in weight
 708 vectors.

709 Firstly, we consider the alignment gap for a generic policy π_w that is optimal for a given weight
 710 vector w . For a specific prompt x , its gap with respect to the optimal policy $\pi_{w^*(x)}^*$ is:
 711

$$712 \text{Gap}(\pi_w, x) = F_{r_{\text{mo}}(\cdot; w^*(x))}(\pi_{w^*(x)}^*) - F_{r_{\text{mo}}(\cdot; w^*(x))}(\pi_w). \quad (15)$$

714 **Step 1: From Alignment Gap to Policy Difference.** By Assumption (i), the objective function
 715 $F_r(\pi)$ is μ -strongly concave. This means that for any two policies π_1, π_2 and reward function r , we
 716 have:

$$717 F_r(\pi_1) - F_r(\pi_2) \geq \langle \nabla F_r(\pi_2), \pi_1 - \pi_2 \rangle + \frac{\mu}{2} \|\pi_1 - \pi_2\|^2. \quad (16)$$

718 Since $\pi_{w^*(x)}^*$ is the maximizer of $F_{r_{\text{mo}}(\cdot; w^*(x))}(\cdot)$, the gradient at the optimum is zero, i.e.,
 719 $\nabla F_{r_{\text{mo}}(\cdot; w^*(x))}(\pi_{w^*(x)}^*) = 0$. Setting $\pi_1 = \pi_{w^*(x)}^*$ and $\pi_2 = \pi_w$, we get a lower bound on
 720 the gap:
 721

$$722 \text{Gap}(\pi_w, x) \geq \frac{\mu}{2} \|\pi_{w^*(x)}^* - \pi_w\|^2, \quad (17)$$

723 where $\|\cdot\|$ denotes the norm in the policy space. Now utilizing that $\log \pi(y|x)$ is Lipschitz continuous
 724 with parameter $L_\pi = \frac{1}{c}$, with the condition that there is some constant $c > 0$ such that $\pi(y|x) \geq c$
 725 for all x, y , we have:

$$726 \|\log \pi_{w^*(x)}^* - \log \pi_w\| \leq L_\pi \|\pi_{w^*(x)}^* - \pi_w\|. \quad (18)$$

728 **Step 2: From Policy Difference to Reward Difference.** As shown in Direct Preference Optimization
 729 (DPO) (Rafailov et al., 2023), the optimal policy for the KL-regularized objective has an analytical
 730 form:

$$731 \pi_w(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} r_{\text{mo}}(x, y; w)\right), \quad (19)$$

733 where $Z(x, w)$ is a normalization constant. Taking the logarithm, we have:

$$735 \log \pi_w(y|x) = \log \pi_{\text{ref}}(y|x) - \log Z(x) + \frac{1}{\beta} r_{\text{mo}}(x, y; w). \quad (20)$$

737 The difference in log-probabilities between two optimal policies is directly proportional to the
 738 difference in their corresponding reward functions:

$$740 \log \pi_{w^*(x)}^* - \log \pi_w = \frac{1}{\beta} (r_{\text{mo}}(\cdot; w^*(x)) - r_{\text{mo}}(\cdot; w)). \quad (21)$$

742 Combining this with Eq. 18, we get:

$$744 \text{Gap}(\pi_w, x) \geq \frac{\mu}{2L_\pi^2 \beta^2} \|r_{\text{mo}}(\cdot; w^*(x)) - r_{\text{mo}}(\cdot; w)\|^2. \quad (22)$$

746 **Step 3: From Reward Difference to Weight Difference.** Now, we use Assumption (ii), the
 747 L_r -Bi-Lipschitz continuity of the reward function with respect to the weight vector w . This implies:

$$749 \|r_{\text{mo}}(\cdot; w^*(x)) - r_{\text{mo}}(\cdot; w)\| \geq L_r \|w^*(x) - w\|_2. \quad (23)$$

750 Squaring both sides and substituting into Eq. 22, we obtain a lower bound for the gap at a single
 751 prompt x :

$$753 \text{Gap}(\pi_w, x) \geq \frac{\mu L_r^2}{2\beta^2 L_\pi^2} \|w^*(x) - w\|_2^2. \quad (24)$$

755 We can now apply this general result to our two specific policies, π_{fixed} and π_{adapt} , by taking the
 756 expectation over the prompt distribution \mathcal{D} .

756 Table 6: Hyperparameters for Qwen2.5-7B during generation and training.
757
758

759 Hyperparameters	760 Notation	761 Qwen2.5-7B
<i>Generation</i>		
762 Temperature	763 -	0.8
764 Top-p	765 -	0.95
766 Generation Num	767 K	8
768 Max_new_token	769 L_{new}	2048
<i>Training</i>		
770 Learning rate	771 α	5e-7
772 Batch size	773 B	128
774 Max prompt length	775 L_{prompt}	2048
776 Max generation length	777 L_{gen}	2048
778 Training max length	779 L_{max}	4096
780 Reward model max length	781 L_{reward}	4096
782 KL loss	783 β	0.1 (2.5 for SimPO)

776 For the fixed-weight policy, π_{fixed} , the weight vector is always $\mathbf{w} = \mathbf{w}_{\text{fixed}}$. Taking the expectation of
777 Eq. 24 over $\mathbf{x} \sim \mathcal{D}$:

$$779 \text{Align-Gap}(\pi_{\text{fixed}}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\text{Gap}(\pi_{\text{fixed}}, \mathbf{x})] \geq \frac{\mu L_r^2}{2\beta^2 L_{\pi}^2} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\|\mathbf{w}^*(\mathbf{x}) - \mathbf{w}_{\text{fixed}}\|_2^2]. \quad (25)$$

783 For π_{adapt} , the weight vector for each prompt \mathbf{x} is given by our preference orchestrator, $\mathbf{w} = f_{\psi}(\mathbf{x})$.
784 Taking the expectation of Eq. 24 over $\mathbf{x} \sim \mathcal{D}$:

$$785 \text{Align-Gap}(\pi_{\text{adapt}}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\text{Gap}(\pi_{\text{adapt}}, \mathbf{x})] \geq \frac{L_r^2}{2\mu\beta^2} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\|\mathbf{w}^*(\mathbf{x}) - f_{\psi}(\mathbf{x})\|_2^2]. \quad (26)$$

788 By the theory of generalization error bound with assumption (iii) (Mohri et al., 2018; Liu et al., 2023;
789 Xu et al., 2023), we have with probability at least $1 - \delta$,

$$790 \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [\|\mathbf{w}^*(\mathbf{x}) - f_{\psi}(\mathbf{x})\|_2^2] = C^2 \mathcal{O}\left(\frac{\log \frac{1}{\delta}}{N}\right). \quad (27)$$

793 Then, the proof is completed.

794 A.2 IMPLEMENTATION DETAILS

797 We provide the implementation details of baselines and our method in the following subsections. In
798 the test-time multi-objective alignment setting, we follow the implementation of RIC (Yang et al.,
799 2024b). The backbone of the *Preference Orchestrator* is xlm-roberta-base¹. We train the *Preference
800 Orchestrator* with learning rate of 1e-5 and batch size of 32. The optimizer is AdamW and the
801 temperature parameter τ is set to 0.1. For the PRO-WIC, the training step of offline stage is 10000
802 and the training step of online stage is 5000 for 2 epochs, in each epoch, we sample 5000 prompts
803 from the prompt set for online sampling.

804 In the multi-objective alignment setting, we set the hyperparameters for baselines used in the
805 experiments as listed in Table 6. For the PRO-MORLHF, we use the same backbone xlm-roberta-base
806 and train the *Preference Orchestrator* with learning rate of 1e-5 and batch size of 32. The optimizer is
807 AdamW and the temperature parameter τ is set to 0.1. All of the reward models are trained with the
808 backbone of qwen2.5-0.5b². Specifically, for the baselines that using single reward model, we train

809 ¹<https://huggingface.co/FacebookAI/xlm-roberta-base>

²<https://huggingface.co/Qwen/Qwen2.5-0.5B>

810 the reward model on the Ultrafeedback of the binarized version ³. And for the methods that using
811 multiple reward models, we sampled the preference pairs for each objective and train the reward
812 model on the Ultrafeedback of the fine-grained version ⁴.

813 All experiments are conducted on 8 NVIDIA A800 GPUs and Intel(R) Xeon(R) Platinum 8358 CPU.

816 B THE USE OF LARGE LANGUAGE MODELS

818 We acknowledge the use of a large language model (LLM) as an assistive tool in the preparation of
819 this manuscript. The LLM’s role was primarily confined to language refinement, including grammar
820 and spelling checks, and enhancing the logical coherence and clarity of the prose. Additionally,
821 the model assisted in the generation of certain segments of code. The core conceptual framework,
822 theoretical analysis, experimental design, and conclusions presented in this paper are the original
823 work of the authors.

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863 ³https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

⁴<https://huggingface.co/datasets/openbmb/UltraFeedback>