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ABSTRACT

While Large Language Models (LLMs) have demonstrated remarkable capabilities
across diverse natural language processing tasks, aligning these models with vary-
ing human preferences across multiple objectives remains a significant challenge
in practical deployments. Existing multi-objective alignment methods rely on
manually specified preference weights, which not only burden users with difficult
preference specification tasks but also lead to suboptimal training efficiency due
to exploration of irrelevant preference combinations. To alleviate these issues,
we propose a novel framework named PRO, i.e., PReference Orchestrator, which
features a lightweight preference adapter that automatically infers prompt-specific
preference weights during both training and deployment phases. Specifically, the
adapter automatically learns appropriate preference weights for each prompt by
training on normalized reward scores from multiple reward models for preferred
responses, which inherently reflect effective preference balances across objectives.
Additionally, We provide theoretical analysis proving that our prompt-aware pref-
erence mechanism achieves superior performance compared to fixed preference
weights in multi-objective alignment scenarios. Extensive experiments across multi-
ple tasks demonstrate the effectiveness of our method over existing multi-objective
alignment approaches.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
of natural language processing tasks, including text generation (Liang et al., 2024), conversational
interaction (Wang et al., 2023), reasoning (Xu et al., 2025), and code completion (Jiang et al., 2024).
However, ensuring that these models align with human values and preferences remains a significant
challenge. Misaligned models can produce outputs that are biased, harmful, or harmless but unhelpful,
leading to negative user experiences and potential societal harm. Therefore, effective alignment
techniques are crucial for deploying LLMs in real-world applications, with RLHF, i.e., Reinforcement
Learning from Human Feedback (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022),
being one of the most prominent methods.

In practical deployments, different users often have diverse preferences regarding LLM outputs.
For instance, some may prioritize helpfulness and informativeness, while others might value safety
and harmlessness more highly. A single objective is insufficient to capture these multi-dimensional
requirements. Multi-objective alignment aims to train models that can adapt to these varying
preference profiles, typically represented as a preference weight vector, where each dimension
corresponds to the relative importance of a particular objective (Li et al., 2021; Rame et al., 2023;
Yang et al., 2024b).

A straightforward approach for multi-objective alignment is to combine multiple reward models into
a single reward signal through weighted summation, then use the combined reward signal for RL
optimization (Li et al., 2021). While effective, this approach typically uses fixed weights during
training, and developing separate models for different preference combinations remains resource-
intensive. To address the inefficiency, methods like MODPO (Zhou et al., 2024b) and CPO (Guo et al.,
2024) have eliminated the RL step entirely by optimizing directly on multi-objective preference data.
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More recent innovations focus on test-time adaptability to user preferences (Rame et al., 2023; Yang
et al., 2024b), enabling a single model to accommodate diverse preference profiles. For instance,
REWARD SOUPS (Rame et al., 2023) and MOD (Shi et al., 2024) train multiple single-objective
expert models for each objective, then perform weighted averaging of these experts based on user
preferences at test time. RIC (Yang et al., 2024b) and DPA (Wang et al., 2024) control user preferences
by appending reward scores to the input, followed by SFT fine-tuning. During online sampling, they
randomly sample user preferences to generate new responses and use rejection sampling (Dong et al.,
2023) to filter high-quality samples for further iterative training. PARM (Lin et al., 2025) employs
a single preference-aware autoregressive reward model that dynamically adapts to user-specified
preference vectors to guide a frozen base model’s generation process.

However, while existing methods can adapt to different preferences for each prompt, they rely on
manually specified preference weights. In practice, users often struggle to determine the optimal
preference combination for a given prompt—for instance, how to properly balance honesty, helpful-
ness, and harmlessness when asking for advice about a sensitive political topic. This dependency on
manual input for preference weights not only increases user burden but may also lead to suboptimal
output quality due to inappropriately preferences setting. Additionally, during the training phase,
approaches like RIC and DPA employ random sampling of preference vectors to increase training data
diversity, but these randomly sampled preferences may deviate from the optimal configuration for
specific prompts. This results in reduced training efficiency and computational resources wasted ex-
ploring ineffective preference combinations. To address these limitations, we propose Prompt-Aware
Multi-Objective Alignment with a Preference Orchestrator that automatically infers appropriate
preference weight vectors for each prompt, eliminating the need for manual input while providing
more intelligent preference sampling strategies during training.

Motivated by the above consideration, we introduce a novel framework named PRO, i.e., PReference
Orchestrator, which involves a lightweight adapter module that automatically learns appropriate
preference weights for multi-objective alignment. Specifically, the adapter takes an input prompt and
outputs a weight vector that specifies how to combine multiple reward objectives for that specific
context. The adapter is trained on normalized reward scores from multiple reward models for the
preferred responses in existing human preference data, leveraging the insight that preferred responses
inherently reflect effective preference balances across objectives. Additionally, our framework serve
as a flexible plugin that can be integrated with existing multi-objective alignment methods, enhancing
their performance by providing prompt-aware preference rather than relying on random sampling or
fixed weights. Our contributions are summarized as follows:

• Practically, we propose the PRO framework, a lightweight and flexible preference adapter that
automatically infers preference weights without requiring manual specification. This framework
can be seamlessly integrated with existing multi-objective alignment methods as a plug-in module,
enhancing their performance while reducing user burden and improving training efficiency.

• Theoretically, we prove that our prompt-aware preference mechanism achieves superior per-
formance compared to using fixed preference weights, providing theoretical guarantees for the
effectiveness of adaptive preference in multi-objective alignment scenarios.

Extensive experiments on multiple tasks, including summarization, question answering, and mathe-
matical reasoning, demonstrate the effectiveness of our method over existing multi-objective align-
ment approaches.

2 RELATED WORK

Language Model Alignment: Aligning LLMs with human values and intentions is a fundamental
step toward building responsible and effective AI systems (Achiam et al., 2023; Chen et al., 2025).
The most influential paradigm is Reinforcement Learning with Human Feedback (RLHF) (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022), where a reward model is first trained
to capture human preference signals, and the LLM is subsequently fine-tuned to maximize the
expected reward under a KL-regularized objective. Despite its effectiveness, RLHF suffers from
high computational cost and training instability (Dong et al., 2023; Yuan et al., 2023). To address
these issues, DPO (Rafailov et al., 2023) was proposed as a simpler and more efficient alternative.
DPO directly learns from pairwise human preference data and has been shown to be mathematically
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equivalent to RLHF under certain assumptions. This perspective has inspired a series of variants
aiming to further improve optimization efficiency, stability and alignment quality (Ethayarajh et al.,
2024; Hong et al., 2024; Meng et al., 2024; Kim et al., 2025; Garg et al., 2025). For instance,
SIMPO (Meng et al., 2024) eliminates the dependency on a reference model and mitigates length
bias in optimization by introducing a length regularization term, resulting in more efficient training.
KTO (Ethayarajh et al., 2024) proposes a divergence-based formulation that directly operates on
binary feedback, thereby avoiding the need for pairwise preference comparisons while maintaining
stable alignment.

Multi-Objective Language Model Alignment: Multi-objective alignment aims to optimize language
models across multiple, potentially conflicting objectives such as helpfulness, harmlessness, and
honesty. Early approaches typically employ weighted summation to combine multiple reward
models into a unified signal for reinforcement learning optimization (Li et al., 2021). However,
these methods rely on fixed preference weights throughout training, limiting their adaptability to
diverse user needs and requiring separate models for different preference combinations. Recent
work has explored more efficient alternatives that eliminate the computationally expensive RL
step. Methods like MODPO (Zhou et al., 2024b) and CPO (Guo et al., 2024) directly optimize on
multi-objective preference data, avoiding the instability and computational overhead associated with
RL-based approaches. A growing line of research focuses on runtime adaptability, enabling a single
model to accommodate diverse user preferences (Rame et al., 2023; Yang et al., 2024b). REWARD
SOUPS (Rame et al., 2023) and MOD (Shi et al., 2024) train multiple single-objective expert models
and perform weighted averaging at inference time based on user-specified preferences. RIC (Yang
et al., 2024b) and DPA (Wang et al., 2024) control preferences by appending reward scores to inputs
during supervised fine-tuning, then use rejection sampling (Dong et al., 2023) during inference to
filter high-quality responses. PARM (Lin et al., 2025) employs a preference-aware autoregressive
reward model that dynamically adapts to user-specified preference vectors to guide generation from
a frozen base model. While these approaches demonstrate promising results, they either require
training multiple specialized models or rely on explicit user preference specification at inference
time.

3 PRELIMINARIES

We first introduce the formal notation for the language model alignment with single reward model.
Let V be a vocabulary of a language model. The goal of alignment is to ensure that the language
model π : X → Y generates response y ∈ Y that are consistent with human values and preferences
given a query x ∈ X , where the query x = [x1, x2, . . . , xm] and response y = [y1, y2, . . . , yn] are
sequences of tokens, the input space X = Vm and the output space Y = Vn.

Supervised Fine-Tuning (SFT): The alignment process typically begins with Supervised Fine-Tuning
(SFT), which adjusts the language model using Maximum Likelihood Estimation on a human-labeled
high-quality dataset Dsft = {(xi,yi)}Ni=1:

LSFT = −
N∑
i=1

ni∑
j=1

logP (yji |[y
k
i ]
j−1
k=0,x

(i); θ), (1)

where N is the number of training examples, ni is the length of the i-th target sequence, and θ
represents the parameters of the language model πθ. For the notational simplicity, y0i = ∅ denotes an
empty placeholder.

Reinforcement Learning from Human Feedback (RLHF): To further align the language model
with human preferences, Reinforcement Learning from Human Feedback (RLHF) is employed.
This involves training a reward model rϕ : X × Y → R using a dataset of human preferences
Drm = {(xi,y+

i ,y
−
i )}Mi=1, where each entry consists of a query xi and two responses y+

i and y−
i ,

with y+
i being preferred over y−

i . The reward model is trained to satisfy the following condition:

Lrm = −
M∑
i=1

logP (y+
i ≻ y−

i |xi;ϕ) = −
M∑
i=1

log σ(rϕ(xi,y
+
i )− rϕ(xi,y

−
i )), (2)

where σ(·) is the sigmoid function. Subsequently, the language model is fine-tuned using reinforce-
ment learning algorithms, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017), to
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maximize the expected reward provided by the reward model:
LRLHF(θ) = Ex∼D,y∼πθ(·|x) [−rϕ(x,y) + βKL(πθ(·|x) ∥πref(·|x))] , (3)

where β is a hyperparameter that balances the reward maximization and the Kullback-Leibler (KL)
divergence regularization term, which prevents the fine-tuned model from deviating excessively from
the reference model πref, which is typically the SFT model.

Multi-Objective Alignment: In practical scenarios, aligning a language model with multiple, often
conflicting, human preferences is essential. This is typically achieved by training multiple reward
models {rϕk

}Kk=1 with the multi-objective dataset Dmo = {(xi,yi1,yi2, {pi,k}Kk=1)}Mi=1, where
pi,k ∈ {0, 1} denotes the preference for the k-th objective. pi,k = 1 indicates that response yi1 is
preferred over yi2 for the k-th objective, and vice versa. The typical approach involves combining
these reward models into a single scalar reward using a weighted sum:

rmo(x,y;w) =

K∑
k=1

wkrϕk
(x,y), (4)

where w = [w1, w2, . . . , wK ] are non-negative weights that sum to one, reflecting the relative
importance of each objective. The language model is then fine-tuned using the combined reward in a
manner similar to Eq. (3):

LMORLHF(θ;w) = Ex∼D,y∼πθ(·|x) [−rmo(x,y;w) + βKL(πθ(·|x) ∥πref(·|x))] . (5)

Test-Time Multi-Objective Alignment: At test time, users may have different preferences for
the importance of each objective. To accommodate this, the language model can be adapted to
user-specified weights w without retraining. Formally, the response of each prompt π(y|x,w) is
conditioned on both the input prompt x and the preference weights w.

4 THE PROPOSED METHOD

4.1 THE PREFERENCE ORCHESTRATOR

In this section, we introduce the PRO, i.e., PREFERENCE ORCHESTRATOR, a lightweight classifier
module that automatically determines the optimal preference weight vector for multi-objective
alignment given an input prompt. The adapter takes an input prompt x and outputs a weight vector
w = [w1, w2, . . . , wK ] that specifies how to combine multiple reward objectives for that specific
context. This learned adapter enables prompt-aware optimization, where different types of inputs
can be automatically assigned appropriate preference configurations based on their characteristics.
Formally, we define the adapter as w = fψ(x), where fψ : X → ∆K−1 is a neural network
parameterized byψ, and ∆K−1 represents the (K−1)-simplex ensuring valid probability distributions
with

∑K
k=1 wk = 1 and wk ≥ 0.

4.2 TRAINING THE PREFERENCE ORCHESTRATOR

To train the Preference Orchestrator, we leverage the existing preference dataset Drm =
{(xi,y+

i ,y
−
i )}Mi=1. The key insight is that the preferred responses inherently reflect an effective

balance across multiple objectives—they are preferred precisely because they achieve a superior
trade-off among various quality dimensions. For instance, a technical query might yield a preferred
response with high scores on accuracy and informativeness, while a creative writing prompt might
have preferred responses scoring highly on creativity and engagement. These score distributions
implicitly encode the context-appropriate preference weights.

To extract the implicit preference weights from these preferred responses, we compute the rewards
from all K reward models for each preferred response:

r+i = [rϕ1
(xi,y

+
i ), rϕ2

(xi,y
+
i ), . . . , rϕK

(xi,y
+
i )]. (6)

We then normalize these reward scores to obtain valid preference weights:

w∗
i = softmax(r+i /τ) =

[
exp(rϕk

(xi,y
+
i )/τ)∑K

j=1 exp(rϕj
(xi,y

+
i )/τ)

]K
k=1

, (7)
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a) Preference Orchestrator Training

b) Multi-Objective Alignment
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Figure 1: Overview of the PRO framework. The adapter takes an input prompt and outputs a weight
vector that determines how to combine multiple reward objectives for that specific context.

where τ is a temperature parameter that controls the sharpness of the distribution.

The is then trained using supervised learning to predict these implicit preference weights:

LPRO(ψ) =
1

M

M∑
i=1

KL(fψ(xi)∥w∗
i ), (8)

where KL denotes the Kullback-Leibler divergence between the predicted and target weight distribu-
tions. This training objective enables the adapter to learn the mapping from prompt characteristics to
optimal preference configurations, distilling the implicit preferences encoded in human-annotated
data into an explicit weight prediction mechanism. The training of PRO is illustrated in Figure 1 (a).

4.3 INTEGRATING THE PREFERENCE ORCHESTRATOR WITH MULTI-OBJECTIVE ALIGNMENT

The PRO can be seamlessly integrated into existing multi-objective alignment frameworks. During
both training and inference, the adapter generates context-specific preference weights for each input
prompt, which are then used to combine the multiple reward models.

Integrating with Multi-Objective Alignment: In the multi-objective alignment setting, where users
input only prompt without any explicit preference weights, we utilize the PRO to generate weights
for each prompt during the training phase, making the model implicitly learn the ability to generate
responses that trade off between multiple objectives. Taking MORLHF as an example:

LPRO-MORLHF(θ; fψ) = Ex∼D,y∼πθ(·|x) [−rmo(x,y; fψ(x)) + βKL(πθ(·|x) ∥πref(·|x))] . (9)

This approach allows the model to adaptively focus on the most relevant objectives for each prompt,
leading to more effective and contextually appropriate responses. The architecture of this integration
is illustrated in Figure 1 (b).

Integrating with Test-Time Multi-Objective Alignment: In the Test-Time Multi-Objective Align-
ment setting, our method provides dual advantages. First, during the online sampling phase, our
approach can provide recommended preference configurations, avoiding potentially unreasonable
preference combinations that may arise from random sampling, thereby improving training effi-
ciency and reducing computational resource waste. Second, during inference, when users do not
have explicit preference specifications, our method can automatically provide reasonable default
preference weights, ensuring consistency in model output quality. Motivated by the reward in context
technique (Lu et al., 2022; Yang et al., 2024b; Wang et al., 2024), we encode the preference weights
as additional input tokens appended to the original prompt. The integration process involves two
stages:

5
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Offline Stage: During the offline training phase, the model is first warmed up using weights-
conditioned supervised fine-tuning. For each training sample (xi,yi), we first compute the rewards
from all K reward models and normalize them using softmax to obtain preference weights by Eq. (7).
The offline training objective becomes:

Loffline
PRO-WIC(θ) = −

N∑
i=1

ni∑
j=1

logP (yji |[y
k
i ]
j−1
k=0,xi,w

∗; θ), (10)

where the input xi,w∗ is constructed by appending these normalized weights to the original prompt
by the template: Prompt <W1> w∗

i,1 <W2> w
∗
i,2 . . . <WK> w

∗
i,K . This stage serves as a warm-up

phase, teaching the model to respond conditioned on preference weights.

Online Sampling Stage: During the online phase, our adapter recommends preference weights,
replacing the random preference sampling strategy used in previous methods (Yang et al., 2024b;
Wang et al., 2024).

Lonline
PRO-WIC(θ; fψ) = −

∑
xi∈Donline

ni∑
j=1

logP (yji |[y
k
i ]
j−1
k=0,xi, fψ(xi); θ), (11)

where Donline = {xi}Oi=1 is the online prompt set, and fψ(xi) provides the adapter-predicted prefer-
ence weights for prompt xi. The architecture of this integration is illustrated in Figure 1 (c).

This adaptive mechanism enables our framework to both satisfy users with explicit preferences and
provide intelligent solutions for scenarios lacking preference guidance, making the system more
user-friendly and practically deployable.

5 THEOREMTICAL ANALYSIS

In this section, we provide a theoretical analysis of the Preference Orchestrator and its impact on
multi-objective alignment. We consider two approaches for multi-objective alignment:

• Fixed-weight approach: Uses a single global weight vector wfixed ∈ W for all prompts, typically
set as uniform weights wfixed = [1/K, . . . , 1/K].

• Adaptive approach: Uses our Preference Orchestrator fψ : X → ∆K−1 to generate context-
specific weights for each prompt.

For a given prompt x, the alignment gap measures the suboptimality of a policy π compared to the
optimal policy π∗

w∗(x) under the true optimal weights w∗(x) is defined as:

Gap(π,x) = Frmo(·;w∗(x))(π
∗
w∗(x))− Frmo(·;w∗(x))(π), (12)

where Fr(π) = Ey∼π(·|x)[r(x,y)]−βDKL[π(·|x)∥πref(·|x)] is the KL-regularized reward objective
and π∗

w∗(x) = minπ∼H Frmo(·;w∗(x))(π), H is the hypothesis space.

The overall alignment gap is then defined as the expected gap over the prompt distribution:
Align-Gap(π) = Ex∼D [Gap(π,x)] . (13)

We now present our main theoretical result, which demonstrates that the adaptive weight approach
using the Preference Orchestrator achieves a smaller lower bound of alignment gap compared to the
fixed-weight approach.
Theorem 5.1 (Superiority of Adaptive Weights). Let πfixed be the optimal policy trained with fixed
weights wfixed, and πadapt be the policy optimized using our Preference Orchestrator fψ. Under the
following assumptions: (i) The reward function rmo(·;w) is Bi-Lipschitz continuous lower bouned by
Lr with respect to the weight vector w; (ii) The KL-regularized objective satisfies strong convexity
with parameter µ > 0; (iii) The reward objective Fr(π) is lower bounded by a constant C > 0, i.e.,
minπ,r,w Frmo(·;w)(π) = C; then the alignment gaps satisfy:

Align-Gap(πfixed) ≥
µL2

r

2β2L2
π

Ex∼D
[
∥w∗(x)−wfixed∥22

]
Align-Gap(πadapt) ≥

µL2
rC

2

2β2L2
π

O(
log 1

δ

N
).

(14)
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with probability at least 1 − δ, where N is the number of training samples of the Preference
Orchestrator and Lπ is the Lipschitz constant of the log-policy function. The proof is provided in
Appendix A.1.

Remark. Theorem 5.1 reveals the advantage of our adaptive approach over fixed-weight methods.
As the number of training samples N approaches infinity, the alignment gap of our Preference
Orchestrator approaches zero, indicating that our method can achieve near-optimal performance
with sufficient training data. In contrast, the fixed-weight approach maintains a persistent lower
bound on its alignment gap that is proportional to Ex∼D[∥w∗(x) − wfixed∥22], representing the
inherent mismatch between the global fixed weights and the context-specific optimal weights. This
fixed error becomes increasingly problematic as the diversity of optimal preferences across different
prompts grows larger, highlighting the limitation of using uniform weights for all contexts.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and Models. For test-time multi-objective alignment setting, we evaluated our approach
on two datasets: Reddit Summary (Völske et al., 2017) and Helpful Assistant (Bai et al., 2022).
The Reddit Summary dataset contains summaries of Reddit posts, comprising 14.9k posts and
corresponding summaries. We consider reward models: preference and summaries, which evaluate
human preference for summaries trained with different datasets, and a faithful reward that measures
the faithfulness of the summary to the original post. Helpful Assistant is a dialogue task containing
160k prompts and corresponding responses, annotated with human preferences. We employ three
reward models for this dataset: helpfulness, harmlessness, and humor. For multi-objective alignment
setting, we evaluated our approach on Ultrafeedback (Cui et al., 2023), which is a fine-grained,
diverse preference dataset with 64k prompts and corresponding responses, annotated with human
preferences across four dimensions: instruction-following, truthfulness, honesty, and helpfulness.
We trained separate reward models for each of these dimensions. For Reddit Summary and Helpful
Assistant, we used LLaMA-7B (Touvron et al., 2023) as the base model, while for Ultrafeedback, we
employed Qwen-2.5-7B (Yang et al., 2024a) as the base model.

Evaluation Metrics. For Reddit Summary and Helpful Assistant, we randomly sampled 2k prompts
from the test set, generated responses with different weights of user preferences, and calculated
the average score for each reward dimension. We compared the multi-dimensional average test
reward curves corresponding to the empirical Pareto frontiers generated by different methods. The
outer curves indicate superior performance of the method across objectives with various preferences.
For Ultrafeedback, we employed three widely adopted automatic evaluation benchmarks for LLMs:
AlpacaEval 2 (Li et al., 2023; Dubois et al., 2024), MT-Bench (Bai et al., 2024), and Arena-Hard (Li
et al., 2024a;b). All evaluations used GPT-4o as the judge model. For AlpacaEval 2, we report the
raw win rate (WR) and length-controlled win rate (LC) against the reference model GPT-4o-05-13.
For Arena-Hard, we report the win rate (WR) and style-controlled win rate (SC), comparing our
model against the GPT-4-Preview-1106 baseline. For MT-Bench, we report the average multi-turn
score (Score) assigned by GPT-4o, which rates each response on a scale of 1-10.

Baselines. We compared our approach with two different types of baseline methods. For Reddit
Summary and Helpful Assistant datasets, we compared with multi-objective alignment methods
including: (1) MORLHF (Li et al., 2021): This method assigns fixed weights to each objective reward
model, using the weighted score as the reward signal for PPO optimization. (2) REWARD SOUPS
(Rame et al., 2023): This approach first trains multiple expert models using single-objective RL, then
performs weighted averaging of these experts’ outputs, with weights determined by user preferences.
(3) RIC (Yang et al., 2024b): This method appends reward scores to the prompt to control user
preferences, followed by fine-tuning using SFT. For Ultrafeedback, we compared our method with
various advanced LLM alignment methods: SFT, DPO (Rafailov et al., 2023), IPO (Azar et al., 2024),
KTO (Ethayarajh et al., 2024), SIMPO (Meng et al., 2024), WPO (Zhou et al., 2024a), SELECTIVE
DPO (Gao et al., 2025), ADPO (Ji et al., 2025), and PPO (Ouyang et al., 2022). The implementation
details are provided in Appendix A.2.
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(a) Reddit Summary (b) Helpful Assistant

Figure 2: Results of the Reddit Summary and Helpful Assistant in test-time multi-objective alignment.

Table 1: Performance on Reddit Summary
with two objectives (Equal weights).

Method Summary Faithful

MORLHF 0.78 -0.66
REWARD SOUPS 0.65 -0.64
RIC offline 1.15 -0.21
RIC online 1.35 -0.21

PRO-WIC 1.46 -0.19

Table 2: Performance on Reddit Summary
with three objectives (Equal weights).

Method Summary Faithful Preference

MORLHF 0.78 -0.66 0.55
REWARD SOUPS 0.64 -0.56 0.91
RIC offline 0.71 -0.25 1.33
RIC online 0.84 -0.25 1.69

PRO-WIC 0.95 -0.23 2.12

6.2 MAIN RESULTS

Performance on Reddit Summary and Helpful Assistant Tasks. As shown in Figure 2, each point
in the figure represents the average score across all reward dimensions. The numbers at the centers of
the markers indicate the preference weight for the first reward in each pair. Due to the substantial
computational cost of MORLHF for various preference weight combinations and the inability to adapt
to different user preferences in test-time, we do not report the results for MORLHF in the figure.
Compared to baseline methods, the curve for our method, i.e., PRO-WIC, consistently lies on the
outermost boundary in most cases, indicating that our method can adapt to different user preferences
and balance multiple conflicting objectives. Furthermore, we compare the performance of different
methods under an equal-weight setting. As shown in Tables 1-4, PRO achieves the best scores on
most evaluation metrics in both two-objective and three-objective scenarios (except for the Helpful
dimension on Helpful Assistant).

General Capability Assessment on Ultrafeedback. To evaluate the general capabilities of our
method in broader scenarios, we trained it on the Ultrafeedback dataset and tested it on three
mainstream benchmarks: AlpacaEval 2, Arena-Hard, and MT-Bench. As shown in Table 5, PRO
outperforms almost all baseline methods across multiple benchmarks. Specifically, on AlpacaEval
2, PRO-MORLHF achieves a win rate (WR) and length-controlled win rate (LC) of 47.30% and
50.35%, respectively, significantly outperforming all baselines. On the more challenging Arena-Hard
benchmark, our method also demonstrates strong competitiveness. On MT-Bench, PRO-MORLHF
achieves the score of 7.93, which is only slightly lower than the best baseline ADPO.

6.3 ABLATION STUDY

PRO-WIC vs. RIC Variants. In the test-time multi-objective alignment setting, we compare our
method PRO-WIC with two variants of RIC: RIC offline (which removes the online sampling phase)
and RIC online (which uses random preference sampling during the online phase). As shown in
Tables 1-4, PRO-WIC consistently outperforms both RIC variants across all evaluation scenarios.

PRO-MORLHF vs. MORLHF. In the multi-objective alignment setting, we compare our method
PRO-MORLHF with the baseline MORLHF approach. As shown in Table 5, MORLHF uses fixed
uniform weights across all prompts, while our method employs the Preference Orchestrator to assign

8
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Table 3: Performance on Helpful Assistant
with two objectives (Equal weights).

Method Harmless Helpful

MORLHF 0.31 0.76
REWARD SOUPS -0.11 0.93
RIC offline 0.10 1.86
RIC online 0.34 2.00

PRO-WIC 0.57 2.10

Table 4: Performance on Helpful Assistant
with three objectives (Equal weights).

Method Harmless Helpful Humor

MORLHF 0.31 0.76 -0.35
REWARD SOUPS 0.02 0.66 0.39
RIC offline -0.51 1.22 0.82
RIC online 0.03 1.31 0.65

PRO-WIC 0.47 1.28 1.03

Table 5: Performance comparison across AlpacaEval 2, Arena-Hard, and MT-Bench benchmarks.

Methods AlpacaEval 2 Arena-Hard MT-Bench
WR(%) LC(%) WR(%) SC(%) Score

SFT 34.03 34.08 48.5 44.3 7.71
DPO 37.24 36.84 49.0 47.2 7.83
IPO 37.95 36.43 54.6 48.3 7.64
KTO 38.12 36.51 43.9 44.1 7.63
SIMPO 40.03 40.78 54.6 48.8 7.58
WPO 44.11 40.06 62.0 53.0 7.81
SELECTIVE DPO 38.02 39.21 51.7 48.2 7.74
PPO 39.52 39.79 55.3 48.9 7.81
ADPO 44.04 38.90 61.9 53.2 7.97
MORLHF 41.38 44.83 44.2 34.1 7.20

PRO-MORLHF 47.30 50.35 63.5 54.2 7.93

context-specific weights for each prompt. The results demonstrate significant performance improve-
ments across all benchmarks. These substantial improvements highlight the critical importance of
prompt-aware preference adaptation.

6.4 EFFECT OF THE PREFERENCE ORCHESTRATOR

0 20 40 60 80 100 120 140
Training Step

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

R
ew

ar
d 

Sc
or

es

Instruction-following
Truthfulness
Honesty
Helpfulness
Single Reward (PPO)

Figure 3: Training reward curves com-
paring PRO-MORLHF and PPO on Ultra-
feedback dataset.

To further demonstrate the effectiveness of our Prefer-
ence Orchestrator, we analyze the convergence behav-
ior during training. Figure 3 shows the training reward
curves for both our method PRO-MORLHF and the base-
line MORLHF approach on the Ultrafeedback dataset.

As shown in the figure, the purple curve corresponds
to PPO trained with a single reward model and im-
proves slowly, whereas the other colored curves represent
our PRO-MORLHF with an adapter that assigns prompt-
specific weights; our method achieves much faster reward
growth from early training and maintains a clear lead
throughout, validating its efficiency and effectiveness.

7 CONCLUSION

In this paper, we introduced the Preference Orchestrator, a novel approach for multi-objective
alignment in large language models. By learning to predict context-specific preference weights
based on input prompts, our method enables prompt-aware optimization that effectively balances
multiple conflicting objectives. Theoretical analysis demonstrates that our approach achieves a
smaller lower bound of alignment gap compared to fixed-weight methods. Extensive experiments on
various datasets and benchmarks show that our method outperforms state-of-the-art baselines in both
multi-objective alignment and general capability assessments.
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A APPENDIX

A.1 PROOF OF THEOREM 5.1

We first relate the alignment gap to the difference between policies, then connect the policy difference
to the difference in reward functions, and finally link the reward difference to the difference in weight
vectors.

Firstly, we consider the alignment gap for a generic policy πw that is optimal for a given weight
vector w. For a specific prompt x, its gap with respect to the optimal policy π∗

w∗(x) is:

Gap(πw,x) = Frmo(·;w∗(x))(π
∗
w∗(x))− Frmo(·;w∗(x))(πw). (15)

Step 1: From Alignment Gap to Policy Difference. By Assumption (i), the objective function
Fr(π) is µ-strongly concave. This means that for any two policies π1, π2 and reward function r, we
have:

Fr(π1)− Fr(π2) ≥ ⟨∇Fr(π2), π1 − π2⟩+
µ

2
∥π1 − π2∥2. (16)

Since π∗
w∗(x) is the maximizer of Frmo(·;w∗(x))(·), the gradient at the optimum is zero, i.e.,

∇Frmo(·;w∗(x))(π
∗
w∗(x)) = 0. Setting π1 = π∗

w∗(x) and π2 = πw, we get a lower bound on
the gap:

Gap(πw,x) ≥
µ

2
∥π∗

w∗(x) − πw∥2, (17)

where ∥·∥ denotes the norm in the policy space. Now utilizing that log π(y|x) is Lipschitz continuous
with parameter Lπ = 1

c , with the condition that there is some constant c > 0 such that π(y|x) ≥ c
for all x,y, we have:

∥ log π∗
w∗(x) − log πw∥ ≤ Lπ∥π∗

w∗(x) − πw∥. (18)

Step 2: From Policy Difference to Reward Difference. As shown in Direct Preference Optimization
(DPO) (Rafailov et al., 2023), the optimal policy for the KL-regularized objective has an analytical
form:

πw(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
rmo(x,y;w)

)
, (19)

where Z(x,w) is a normalization constant. Taking the logarithm, we have:

log πw(y|x) = log πref(y|x)− logZ(x) +
1

β
rmo(x,y;w). (20)

The difference in log-probabilities between two optimal policies is directly proportional to the
difference in their corresponding reward functions:

log π∗
w∗(x) − log πw =

1

β
(rmo(·;w∗(x))− rmo(·;w)) . (21)

Combining this with Eq. 18, we get:

Gap(πw,x) ≥
µ

2L2
πβ

2
∥rmo(·;w∗(x))− rmo(·;w)∥2. (22)

Step 3: From Reward Difference to Weight Difference. Now, we use Assumption (ii), the
Lr-Bi-Lipschitz continuity of the reward function with respect to the weight vector w. This implies:

∥rmo(·;w∗(x))− rmo(·;w)∥ ≥ Lr∥w∗(x)−w∥2. (23)

Squaring both sides and substituting into Eq. 22, we obtain a lower bound for the gap at a single
prompt x:

Gap(πw,x) ≥
µL2

r

2β2L2
π

∥w∗(x)−w∥22. (24)

We can now apply this general result to our two specific policies, πfixed and πadapt, by taking the
expectation over the prompt distribution D.
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Table 6: Hyperparameters for Qwen2.5-7B during generation and training.

Hyperparameters Notation Qwen2.5-7B

Generation
Temperature - 0.8
Top-p - 0.95
Generation Num K 8
Max new token Lnew 2048

Training
Learning rate α 5e-7
Batch size B 128
Max prompt length Lprompt 2048
Max generation length Lgen 2048
Training max length Lmax 4096
Reward model max length Lreward 4096
KL loss β 0.1 (2.5 for SimPO)

For the fixed-weight policy, πfixed, the weight vector is always w = wfixed. Taking the expectation of
Eq. 24 over x ∼ D:

Align-Gap(πfixed) = Ex∼D[Gap(πfixed,x)] ≥
µL2

r

2β2L2
π

Ex∼D
[
∥w∗(x)−wfixed∥22

]
. (25)

For πadapt, the weight vector for each prompt x is given by our preference orchestrator, w = fψ(x).
Taking the expectation of Eq. 24 over x ∼ D:

Align-Gap(πadapt) = Ex∼D[Gap(πadapt,x)] ≥
L2
r

2µβ2
Ex∼D

[
∥w∗(x)− fψ(x)∥22

]
. (26)

By the theory of generalization error bound with assumption (iii) (Mohri et al., 2018; Liu et al., 2023;
Xu et al., 2023), we have with probability at least 1− δ,

Ex∼D
[
∥w∗(x)− fψ(x)∥22

]
= C2O(

log 1
δ

N
). (27)

Then, the proof is completed.

A.2 IMPLEMENTATION DETAILS

We provide the implementation details of baselines and our method in the following subsections. In
the test-time multi-objective alignment setting, we follow the implementation of RIC (Yang et al.,
2024b). The backbone of the Preference Orchestrator is xlm-roberta-base 1. We train the Preference
Orchestrator with learning rate of 1e-5 and batch size of 32. The optimizer is AdamW and the
temperature parameter τ is set to 0.1. For the PRO-WIC, the training step of offline stage is 10000
and the training step of online stage is 5000 for 2 epochs, in each epoch, we sample 5000 prompts
from the prompt set for online sampling.

In the multi-objective alignment setting, we set the hyperparameters for baselines used in the
experiments as listed in Table 6. For the PRO-MORLHF, we use the same backbone xlm-roberta-base
and train the Preference Orchestrator with learning rate of 1e-5 and batch size of 32. The optimizer is
AdamW and the temperature parameter τ is set to 0.1. All of the reward models are trained with the
backbone of qwen2.5-0.5b 2. Specifically, for the baselines that using single reward model, we train

1https://huggingface.co/FacebookAI/xlm-roberta-base
2https://huggingface.co/Qwen/Qwen2.5-0.5B
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the reward model on the Ultrafeedback of the binarized version 3. And for the methods that using
multiple reward models, we sampled the preference pairs for each objective and train the reward
model on the Ultrafeedback of the fine-grained version 4.

All experiments are conducted on 8 NVIDIA A800 GPUs and Intel(R) Xeon(R) Platinum 8358 CPU.

B THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model (LLM) as an assistive tool in the preparation of
this manuscript. The LLM’s role was primarily confined to language refinement, including grammar
and spelling checks, and enhancing the logical coherence and clarity of the prose. Additionally,
the model assisted in the generation of certain segments of code. The core conceptual framework,
theoretical analysis, experimental design, and conclusions presented in this paper are the original
work of the authors.

3https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
4https://huggingface.co/datasets/openbmb/UltraFeedback
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