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Abstract. Existing automated symbolic optimizer design methods ne-
cessitate the use of proxies, often resulting in significant performance
degradation when transferring to a target domain. In this paper, we pro-
pose a learning based model called Symbolic Optimizer Learner (SOL)
that can discover high-performance symbolic optimizers directly on the
target. SOL is integrated with symbols and can be directly transformed
into a symbolic optimizer. In addition, an unrolled optimization approach
is introduced for SOL training. SOL can be embedded into the training
process of neural networks, optimizing the target directly without any
proxies. Our extensive experiments demonstrate the good performance
and high generalizability of SOL through diverse tasks, ranging from
classifications to adversarial attacks, from GNN to NLP tasks. On im-
age classification, SOL achieved ∼5× speedup and ∼3% accuracy gain.
On adversarial attacks, SOL achieved the best attack success rate across
seven SOTA defense models. On GNN training, SOL discovered opti-
mizers can outperform Adam on three different datasets. On BERT fine-
tuning, SOL also outperformed AdamW on five benchmarks. The source
code is available at https://github.com/songxt3/SOL.
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1 Introduction

Optimizers play an important role in neural networks (NNs) training. As shown
in Fig. 1, the convergence speed and accuracy of ResNet [17] using different
optimizers are significantly different in CIFAR-10 classification [21]. Many effi-
cient optimizers have been developed based on optimization theory and practical
know-how, for example, first-order momentum-based methods like Stochastic
Gradient Descent (SGD) [31], second-order momentum-based approaches like
RMSprop [36], and hybrids like Adam [20]. With a plethora of available optimiz-
ers, picking the most suitable one for a specific task and configuring its param-
eters can be a time-consuming and laborious trial-and-error process. Therefore,
there is a growing interest in the automatic design of optimizers tailored to
specific tasks, which has gained prominence in recent years [1, 2, 5, 27,28].

⋆ Corresponding author.
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Fig. 1: Convergence speed and accuracy
of ResNet-18 using different optimizers in
the CIFAR-10 image classification task.
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Fig. 2: Illustration of the difference be-
tween the symbolic optimizer and the
parametric optimizer.

The rationale behind automated optimizer design is to create a suitable opti-
mizer for a given task without iterative handcrafting [6]. Compared to manually-
designed optimizers, such as Momentum [37] and Adam, auto-designed optimiz-
ers are expected to complete a set of optimizees from the same task domain
faster, yet generating a higher-quality model with a similar amount of comput-
ing budget. Auto-designed optimizers are mainly in two categories: parametric
optimizers and symbolic optimizers. The difference is shown in Fig. 2. The para-
metric optimizers commonly refer to parameterized models (e.g., NNs) trained
to optimize a given task. They tend to overfit during training, resulting in poor
generalizability to other tasks [40]. Sometimes they are even worse than hand-
crafted optimizers. In addition, the inherent complex and black-box nature of
parameterized models make these optimizers hard to scale and interpret [48].

Compared to parametric optimizers, symbolic optimizers are in the form of
mathematical formulas like manually designed optimizers. They are generally
considered to have better generalizability [7], scalability [30], and interpretabil-
ity [48]. However, existing auto-design symbolic optimizer methods generally
search over the discrete space with Reinforcement Learning (RL) [2] or Evolu-
tionary Computation (EC) [7, 29, 30], which require sampling many optimizers
during the search process and evaluating every one of them on the given task.
To reduce the search cost, these methods usually perform the search on a small
proxy task and then transfer the generated optimizer onto the target tasks. The
transfer process itself still needs manual tuning of hyperparameters [2]. That de-
feats the original purpose of automated optimizer design. Moreover, there is no
guarantee of performance for these optimizers, if the manual tuning is absent [40].
It is desirable to have an automated design method to generate high-performance
symbolic optimizers directly based on the target tasks of interest.

Hence we propose Symbolic Optimizer Learner (SOL), of which the inputs
are the current states (e.g., gradient, momentum, etc.) in an NN training process,
and the outputs are the updated weights of NN. Additionally, we offer a compre-
hensive set of symbols, including input variables and operators, as ingredients for
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composing high-performance optimizers for diverse tasks. These symbols can be
integrated as computational units in SOL. Consequently, we can directly extract
symbols and their corresponding weights after training, obtaining a ready-to-use
symbolic optimizer without extra processing.

Our main contributions are summarized below:

– We propose SOL that can directly learn and formulate a symbolic optimizer
without post-processing. Compared to existing methods [1, 48], SOL can
produce a scalable, generalizable, and interpretable symbolic optimizer.

– We introduce an unrolled optimization approach, which embeds SOL’s learn-
ing into NN training. Unlike existing methods [2,29], no proxy is needed here.
Optimzers can be directly built on tasks through backward propagation.

– We demonstrate that symbolic optimizers generated by SOL can outperform
both handcrafted and auto-designed optimizers on a wide range of tasks, e.g.,
achieving significant improvement against Adam on various tasks.

2 Related Works

2.1 Hand-designed Optimizers

Table 1: Handcrafted optimizers:
θ are neural network parameters; g
represents the gradient; α, β1, β2,
γ are hyperparameters of the opti-
mization algorithm.
Name Updated Rule

Adam

mt = β1mt−1 + (1− β1)gt,
vt = β2vt−1 + (1− β2)g

2
t ,

m̂t = mt/(1− βt
1),

v̂t = vt/(1− βt
2),

∆θt = −αm̂tv̂t
−1/2

SGD ∆θt = −αgt
SGD + Momentum mt = γmt−1 + (1− γ)gt,

∆θt = −αmt

Adagrad
Gt = Gt−1 + g2t
∆θt = −αgtG−1/2

t

RMSprop
vt = β2vt−1 + (1− β2)g

2
t ,

∆θt = −αgtv−1/2
t

Optimizer is crucial for the training of deep
learning models. Over the past, various hand-
designed optimizers have been introduced for
training NNs, achieving good performance,
such as SGD [31], Momentum [37], Ada-
grad [12], RMSprop [36], Adam [20], etc. As
shown in Table 1, these hand-designed opti-
mizers are basically symbolic optimizers. Se-
lecting a suitable one from them needs ex-
perience. Setting hyperparameters for these
optimizers also requires experience, plus mul-
tiple trials to optimize performance. For ex-
ample, in the PyTorch framework, the hyper-
parameters that need to be set when using
the Adam optimizer include α, β1, β2, eps,
weight_decay, amsgrad, and so on.

2.2 Automated Optimizer Design

There are two types of auto-designed optimizers: parametric optimizers and sym-
bolic optimizers. Pioneering work of the first category is also coined as Learning
to Optimize (L2O) [6]. L2O in general aims to learn a parameterized model that
takes the optimizee’s local states (such as gradients and decays) as inputs. The
output are the updates for the weights. For example, L2LGD2 [1] uses LSTM
(Long Short-Term Memory) to design an optimizer that determines the direc-
tion and step size of the optimizee’s gradients. Models used in L2O variants
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are mainly recurrent neural networks [22], most of which [1, 24, 45] are based
on LSTM architecture [19]. In L2O, an LSTM is unrolled to perform iterative
updates and trained to find short optimization routes. One set of parameters
are shared across all the unrolled steps. Another than LSTM, different types of
NN models, such as MLP [28] and hierarchical recurrent neural networks [42],
also appear in existing L2O studies. Despite of multiple practical benefits, L2O
also has some limitations, such as the poor scalability on optimizees with many
parameters [48], and the poor generalizability cross different tasks [6]. Moreover,
L2O variants are often based on NNs, which are non interpretable black-box [14].

The second category, symbolic optimizers (aka non-parametric optimizers),
search over a discrete space to find a good optimizer. Optimizers in this approach
are usually represented by discrete structures (e.g., tree) or computer codes.
Multiple search strategies based on RL and EC, have been proposed to perform
the search. For instance, NOS-RL [2] leverages RL to learn a controller to produce
update rules, represented by symbolic trees. AutoML-Zero [30] uses EC to search
over a vast space of computer codes for the whole ML pipeline, including the
optimizers. Existing methods based on RL and EC require numerous evaluation
of optimizers that are sampled during the process. The evaluation process is
costly, computationally prohibitive for practitioners to apply or to analyze [40].
Moreover, to reduce the overall cost, these methods tend to conduct search on
a smaller proxy task, and then transfer the discovered optimizer to the target.
Unfortunately, the transfer process often leads to a performance drop.

Hence it is desirable to have a method that can perform directly on the
target to train the symbolic optimizer. Symbolic L2O [48] equips prior L2O
methods with symbolic regression to obtain symbolic optimizers. This method
first trains an NN for the optimization task, and then fits the model using a
symbolic regression algorithm. Such approach does direct trains on the target,
but the symbolic regression results in additional computational cost. In order to
address the aforementioned issues, SOL is proposed as it can directly generate
an optimizer after training, eliminating the need for symbolic regression.

3 Approach

3.1 Problem Formulation

An optimization problem can be mathematically formulated as minθ∈Θl(θ),
where l(θ) represents the optimizee, θ is termed as parameters to be optimized in
domain Θ. The algorithm to solve the problem is called optimizer. For a differen-
tiable optimization problem, a standard optimizer takes an update at iteration
t based on the gradient at the current point θt: θt+1 = θt − α × ϕ(▽θl(θt)),
where α denotes the step size and ϕ is the update function. The design of
update function ϕ differs significantly between existing optimizers. Traditional
manually designed optimizers represent the update functions with mathematical
equations. For example, the commonly used Adam optimizer is in the form of
ϕ(▽θl(θt)) = m(▽θl(θt))/

√
m((▽θl(θt))2), where m(·) is the momentum func-

tion with an internal state. In our method, ϕ is a special model, SOL.
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Fig. 3: Left: The overall framework. In the training stage, SOL is trained on the opti-
mizee l(θ) via a bi-level process. After training, the optimized SOL is transformed into
a symbolic form, which can be used to optimize more tasks. Right: The architecture of
SOL. The inputs x of SOL are input features built from an optimizee’s state including
g, m, etc. The output y is the updates for the parameters. The hidden layer in SOL is
a linear mapping followed by a set of computational units including exp, (·)2, etc.

3.2 Overall Framework

The overall framework of our method is depicted on the left of Fig. 3. SOL is
trained on the optimize at first. Then, the learned optimizer is transformed into
a symbolic form after training. The detailed steps are presented in Algorithm 1.
To efficiently learn an optimizer, we formulate the learning process as a bi-level
optimization problem with inner and outer, which can be formalized as:

θt+1 = θt − α× ϕ(▽θl(θt), ω) (1)
ωτ+1 = ωτ − β × ψ(▽ωL(ωτ )) (2)

Equation (1) represents the inner optimization. The weights θ of a target opti-
mizee l(θ) is optimized by repeatedly applying an update function ϕ(·). In our
method, the update function is modeled by the learnable optimizer, SOL. It takes
the optimizee’s states at iteration t as inputs and outputs the updated states for
the next iteration t+1. Notably, ω denotes the parameters of the learnable opti-
mizer, which will be optimized in the outer optimization. Equation (2) represents
the outer optimization. In the stage, the optimizer parameters ω are updated
to minimize outer-objective L(ωτ ), where τ is termed as the length of the inner
loop. L aims to properly measure the optimizer performance. For convenience,
it can be the sum value or the final value of the loss in the inner loop.

3.3 Symbolic Optimizer Learner (SOL)

As mentioned above, the objective of our proposed method is to learn a sym-
bolic optimizer based on optimization tasks. We first define the symbolic search
space upon manually designed optimizers and previous works [2, 20, 48]. More
specifically, there are three types of operators usable in the symbolic optimizers:
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Algorithm 1: Proposed Algorithm
Input: Training data, an optimizee, max epoch, length, unrolling length
Output: A symbolic optimizer
Initialize a SOL based on the optimize, and an optimizer for the SOL;
while epoch < max epoch do

Reinitialize an optimizee;
while i < length//unrolling length do

while j < unrolling length do
Update the optimizee by SOL according the loss on training data;
Cumulate loss;
j += 1;

end
Update the SOL according to the cumulative loss;
i += 1;

end
epoch += 1;

end
Get the symbolic optimizer from the SOL;
Return the symbolic optimizer;

– a set of input operators built from optimizee’s current states including gra-
dients (e.g., g, m), decays (e.g., linear decay), and constants (e.g., 1, 2)

– a set of unary operators (e.g., (·)2, exp(·), sign(·))
– a set of binary operators (e.g., +,×)

With the defined symbolic search space, we need to incorporate the symbols
into a parametric model which can be trained and then transformed into symbolic
equations. SOL, the special NN model, is proposed for this purpose. It is inspired
by equation learning [32]. SOL is a variant of multi-layered feed-forward network
with special computational units. Its architecture is illustrated on the right hand
side of Fig. 3. Its inputs x are input features built from the optimizee’s state
including g, m, etc. The output is the updates of parameters in the optimizee,
which is denoted as y. In SOL, an L-layer architecture contains L-1 hidden layers,
each being a linear mapping followed by a non-linear transformations f(·). The
linear mapping is similar to other NNs, but not the non-linear transformations.
Activation functions in other NNs are often ReLU or Tanh, while f(·) is a set
of computational units, including various unary and binary operators available
in the search space. The computational units receive the components in c(i) as
inputs and then produce the output h(i):

h(i) = f(c(i)) =


f1(c

(i)
1 )

f2(c
(i)
2 )
...

fnh
(c

(i)
nc−1, c

(i)
nc )

 (3)
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The final layer, i.e., Lth, does not have the activation function, so it com-
putes the output by a linear read-out y = W (L)h(L−1) + b(L). During training,
the weights W of the SOL are iteratively updated to reduce the loss. After
training, the computational units associated with high weights are subsequently
extracted to create the symbolic optimizers. The input features of SOL preserve
the current training state of the optimize. Our observation from the experiments
suggests that a reasonable increase of input features can significantly improve the
optimizer’s performance. Moreover, the computational units can be added and
duplicated within each layer. This design reduces SOL’s sensitivity to random
initialization and fosters a smoother optimization landscape, thereby reducing
the network’s vulnerability to be trapped in local minima.

By adjusting the number of hidden layers, SOL can be adapted to different
optimization tasks. It is worth noting that, for most tasks, shallow SOL (e.g.,
1-2 layers) is already sufficient to optimize them efficiently. More importantly,
SOL can be trained by backward propagation. This feature enables convenient
integration with other NN-based models for an end-to-end training, allowing
efficient learning of optimizer for diverse range of tasks.

3.4 Unrolled Optimization of SOL
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Fig. 4: SOL’s unrolled optimization process.

With the SOL model, we need an
efficient way to train it on dif-
ferent optimization tasks. As in-
troduced in Sec. 3.2, SOL can be
trained by minimizing the outer-
objective L(ω). During the back-
ward propagation process, the
derivatives of L with respect to
the SOL parameters ω need to be
computed. Due to the oscillations
in NN training, direct optimiza-
tion of the SOL using loss from
each iteration would be unstable.
On the other hand, computing the
loss for the entire NN training
process is expensive. Hence un-
rolled optimization is introduced
to balance the training perfor-
mance and computational cost.
Unrolled optimization draws inspiration from LSTM training, where the net-
work is unrolled into a feedforward structure along the time dimension. Simi-
larly, during SOL training, we iteratively unroll the process into a comprehensive
computational graph. This graph can then be optimized by backpropagating the
accumulated loss across multiple iterations.

The process is illustrated in Fig. 4. In the forward propagation, the SOL
optimizer ϕ is iteratively applied to optimize the weights θ of a target optimizee,
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which can form an unrolled computational graph. In the backward propagation,
the outer-objective L backward propagates through this unrolled computational
graph to compute gradients for the optimizer parameters ω. As demonstrated in
existing works, it is computationally costly to unroll the whole inner optimization
process to just obtain a single outer gradient. Compared to entire backward
propagation, truncated backward propagation is a more desirable solution. It
partitions the unrolled optimization process into separate segments, and multiple
outer gradients can be computed over shorter segments. Instead of computing the
full gradient from iteration t = 0 to T , we compute gradients in separate windows
from t = a to a + τ . The gradients from these segments can be used to update
ω without unrolling all T iterations, dramatically decreasing the computation
needed for each update to ω. The number of inner-steps is called the unrolling
length. It is challenging to set the length properly. A large number of steps
per truncation can result in exploding gradients making outer-training difficult,
while a small number of steps may produce biased gradients, consequently poor
performance. The optimal unrolling length needs to be determined according to
the specific optimization task in hand.

3.5 Discussions and Relationship to Prior Works

SOL aims to automatically design symbolic optimizers for diverse tasks using
gradient descent directly. Compared to other automated symbolic optimizer de-
sign methods, our approach does not need to evaluate a large group of candidate
optimizers that are generated through RL or EC search, hence significantly re-
duces the evaluation overhead occurred in the training process.

The training methods of SOL, such as bi-level optimization, are derived from
L2O. Like the parametric model in L2O, SOL is also suitable to be directly
integrated into the training process of NNs for learning. However, our method
diverges from existing L2O methods both in motivation and the final product.
Most of the L2O variants employed LSTM-based NN models. They use NN mod-
els to fit update rules and, therefore, do not include a symbolic search space.
These NN models, known as parametric optimizers, often contain numerous pa-
rameters, which compromises their generalizability across diverse tasks, partic-
ularly large scale tasks. In addition, SOL is proposed with an aim of designing
interpretable optimizers that can in the expression of mathematical equations,
commonly known as symbolic optimizers. Hence, similar to previous automated
symbolic optimizer search methods [2, 40, 48], we also incorporate a symbolic
search space. The features constructed based on the current state of the opti-
mizee are used as the inputs of SOL. The activation layer of SOL is replaced with
unary and binary operators, which are necessary components for the construc-
tion of symbolic optimizers. These designs enable and facilitate SOL to discover
suitable symbolic optimizers more successfully for different tasks, without rely-
ing on numerous parameters. That can be demonstrated through the following
experiments over five groups of tasks, ranging from image classification to ad-
versarial attack, to node classification, and to BERT fine-tuning.
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4 Experiment Settings

Following conventions [2, 40], we first perform experiments on the standard au-
tomated optimizer design benchmarks, and demonstrate that SOL can discover
optimizers that outperform both manually designed and automatically designed
counterparts. Secondly, SOL is also evaluated on other popular ML tasks, in-
cluding adversarial attack, GNN training and NLP model tuning. These are to
further demonstrate that SOL can automatically design suitable optimizers for
these tasks as well. Our experiments adopt the following operators, as suggested
in [2, 48]:
– Input operators: g, g2, g3, ag, m, v, sign(g), sign(m), ad, rs, ld, cd, 1, 2
– Unary operators: identical, (·)2, exp, sign, −(·)
– Binary operators: +, −, ×

These symbolic operators cover the gradients (g, g2, and g3), first-order mo-
mentum (m), second-order momentum (v), linear decay (ld), and cosine decay
(cd). They are commonly used in current optimizers. The numbers, 1 and 2, are
the constants that can be used in the optimizer. Division could cause numerical
problems in a densely connected NN (e.g., inf or NaN), hence it is excluded
from the operator set. Adam, denoted as ad, is included as an input operator,
as the absence of ÷ would prevent this type of operator from being explicitly
represented. The two decay operators, ld and cd, are in below equations:
– linear decay: 1− t/T ,
– cosine decay: 0.5× (1 + cos(2πnt/T )),

where t and T are the current step and maximum step respectively, and n is set
to 0.5 for cosine decay. The operator ag denotes preprocessed g. It is to make
the computation of g more stable, using the following formula:

ag = log(|g|+ ϵ)/p× in− (1− in),

where in = |g| > e−p, and p, ϵ are set to 10 and 10−6 respectively. We use the
default PyTorch setting and hyper-parameters for all the input operators. The
investigation on how the choice of operators impacts the optimizers are presented
in Appendix A1.

The hyperparameter setting in the optimizer learning process (e.g., epochs
and unrolled length) follows existing L2O studies. Other task-related hyperpa-
rameters, e.g., learning rate and batch size, can be adjusted but are not impact-
ful, as presented in Appendix A2. We conduct the experiments with different
hyperparameters setting to analysis their impact, as presented in Appendix A3.

5 Experiments and Results

To validate the generalizability of SOL, five different tasks are involved, in-
cluding hand-written digit classification, image classification, adversarial attack,
node classification, and BERT fine-tuning. They are presented from Sec. 5.1
to Sec. 5.5. The symbolic forms of the generated optimizers are analyzed and
visualized in Appendix A4.
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Adam SGDSGD+mom Nesterov ENOSLion RMSprop L2LGD2 SOL (Ours)

(a) MNISTNET (b) MNISTNET-2Layer

(c) MNISTNET-Big (d) MNISTNET-ReLU

Fig. 5: Training loss trajectory on hand-written digit classification with MNISTNET.

5.1 Task 1: Hand-written Digit Classification with MNISTNET

We first evaluate SOL on a standard automated optimizer design benchmark
MNISTNET [1, 40]. The optimizer learning process is conducted on the stan-
dard MNISTNET. After that, the learned symbolic optimizer is utilized to train
the network from scratch and compared with other optimizers. The competi-
tors are in two categories: five manually designed optimizers (Adam, SGD, Mo-
mentum, Nesterov, and RMSprop) and three automatically designed optimizers
(L2LGD2 [1], ENOS [40], Lion [7]). In order to verify the generalizability of
SOL, we transfer the learned optimizer to optimize three variants of MNIST-
NET with a number of hidden layers (MNISTNET-2Layer), different dimensions
(MNISTNET-Big), and activations (MNISTNET-ReLU).

As shown in Fig. 5, the optimizer discovered by SOL achieves the lowest
training loss on the MNISTNET and its variants. This result demonstrates the
effectiveness and generalizability of the proposed method. More specifically, in
terms of the convergence speed, SOL achieved the first place on MNISTNET-
ReLU and marginally behind L2LGD2 in the other three experiments. However,
the fast convergence in the early training iterations of L2LGD2 is essentially a
result of overfitting. As demonstrated in the figure, L2LGD2 gradually shows
an oscillating upward trend after convergence. The training loss of SOL at first
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Table 2: Performance of optimizers designed by dif-
ferent methods on CIFAR-10.

Optimizer Acc.(%) Search Method
Adam 67.15%±0.47 manual
SGD 43.22%±0.59 manual
SGD+Momentum 66.34%±0.05 manual
Nesterov 66.79%±0.47 manual
RMSprop 66.47%±0.47 manual
PowSign-ld 35.18%±0.19 NOS-RL [2]
PowSign-cd 35.56%±0.41 NOS-RL [2]
AddSign-ld 34.04%±0.42 NOS-RL [2]
AddSign-cd 34.33%±0.50 NOS-RL [2]
Lion 67.02%±0.11 EC-based [7]
conv2 67.65%±0.10 ENOS [40]
Ours 68.75%±0.35 Meta Training

Table 3: Test accuracy on
CIFAR-10 with ResNet-18.

Optimizer Acc.(%) Search Time
SGD 89.08% -
SGD+mom 91.19% -
Adam 91.50% -
SymbolicL2O 93.45% 5.65h
Ours 93.16% 1.60h

Table 4: GPU memory usage
during training.

Model #Para. Ours L2LGD2
ResNet18 11.2M 2,125MB 6,307MB
ResNet34 21.8M 2,531MB 11,761MB
ResNet50 25.6M 3,169MB 24,541MB

converges rapidly and then gradually stabilizes. This comparison illustrates the
superiority of the discovered optimizer by SOL against parametric optimizers.
In terms of final training loss, SOL achieved the best performance among all
eight competitors in all four experiments. Its lead is significant on MNISTNET
and MNISTNET-2Layer.

5.2 Task 2: Image Classification with ConvNet and ResNet

We further validate SOL on another automated optimizer design benchmark,
proposed in NOS-RL [2]. This benchmark is to discover a suitable optimizer
that can efficiently train a CNN, namely ConvNet, to classify the CIFAR-10
dataset. More specifically, the ConvNet is with 2 convolution layers, each of
which contains a 32-filter 3 × 3 convolution with ReLU activation and batch
normalization. Apart from the optimizers generated by NOS-RL [2], we also
include classic hand-designed optimizers, as well as more recent automatically
generated optimizers [7, 40] in the comparison.

The results are summarized in Table 2. Compared to manually designed opti-
mizers (the first block with 5 methods), our method achieved better performance
than the most commonly used Adam optimizer and others. Compared to the au-
tomatically designed competitors (the second block with 6 methods), the test
accuracy achieved by our method is also the highest. In addition, the efficiency
of our method is also better than other optimizer search methods. For exam-
ple, NOS-RL [2] sampled 15,000 optimizers. Each of them needs 10 minutes for
performance evaluation, which requires about a day of search time, even with
massively parallel evaluation. In contrast, our method can learn an optimizer for
the task in a mere 3 hours. The above results illustrate SOL can significantly
reduce the computation cost and improve the performance.

Although simple MNISTNET and ConvNet are common benchmarks in the
field of automated optimizer search, their accuracy on image classification tasks
is significantly lower than complex CNN (e.g., ResNet18). SymbolicL2O [48]
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has taken the lead in exploring automatic search optimizers for commonly used
CNNs, such as ResNet. Following the work of SymbolicL2O, we also evaluate
the proposed method on ResNet18 and compare it with manually designed op-
timizers and SymbolicL2O. The results are shown in Table 3. The optimizer
learned by SOL again outperformed all the competitors, except for an accuracy
that is 0.29% behind SymbolicL2O. As for the search time, SOL is 3.5× faster
than SymbolicL2O. It took only 1.60h, instead of 5.65h, in the search process.
Search time indicates the algorithm efficiency, arguably more important for au-
tomatically designed methods in practice. More analysis about training time is
presented in Appendix A5.

AdamW
Ours

50             100            150           200             250

Training Steps
Lo

ss

2.0

AdamW
Ours

1.0

1.5

Fig. 6: Training loss trajec-
tory on tuning LLaMA-7B.

More importantly, SOL shows advantage in
generalizability and scalability. As for general-
izability, we transfer the optimizer searched on
ResNet18 to a completely different task, the fine-
tuning LLMs task. More specifically, we fine-tuned
the LLaMA-7B model on the Alpaca dataset. The
validation error was 0.93 using the AdamW opti-
mizer and 0.91 using ours. Our optimizer actu-
ally has a faster convergence speed than Adamw
as shown in Fig. 6. As for scalability, we stud-
ied the GPU memory usage. As indicated in Ta-
ble 4, the GPU memory usage of SOL increases
with the number of parameters, at a rate below
linear growth. In comparison, L2LGD2, the well-
known automatically designed parametric opti-
mizers, shows an exponential increase. This means
that the optimizer searched by SOL can easily be applied to large-scale tasks.

5.3 Task 3: Adversarial Attack

We further evaluate SOL on adversarial attack as suggested in [40], to see how
would SOL perform under constraints. Adversarial attacks are a typical con-
straint optimization problem that aims at finding norm-bounded perturbations
in the input space that alter a model’s predictions. Projected Gradient De-
scent (PGD) [25] is the optimizer commonly used in adversarial attacks. In
commonly used l∞-norm setting, PGD takes the form of : x = ProjB∞

ϵ (xo)(x+
γsign(▽xL(x))), where Bϵ∞(xo) represents a ϵ ball around the original image
xo w.r.t. l∞-norm. The aim is to automatically design the update rule inside the
projection operator. We choose seven top defense models from RobustBench [8].
The learning process is conducted in Carmon2019 model [4]. After that, the
learned optimizer is subsequently evaluated on the other six top defense meth-
ods for WideResNet [47] and ResNet [18]. Following the settings [8], ϵ is set to
8/255. Each optimizer runs once for 100 steps on every image from the test split.

The results are shown in Table 5. The optimizer discovered by SOL outper-
forms PGD on all the defense models. Moreover, we also compared the discov-
ered optimzier with Adaptive PGD (APGD) [9] which is the best handcrafted
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Table 5: Attack success rate of optimizers
against defense models on CIFAR-10.

Defense Models PGD APGD Ours
Carmon2019 [4](WRN-28-10) 38.67% 39.06% 39.45%
Gowal2020 [16](WRN-34-20) 39.98% 40.02% 40.61%
Gowal2020 [16](WRN-28-10) 35.93% 35.93% 36.33%
Sehwag2020 [33](WRN-28-10) 40.63% 41.02% 41.02%
Wu2020 [44](WRN-28-10) 41.41% 41.41% 41.80%
Engstrom201 [13](RN-50) 49.38% 49.60% 49.90%
Wong2020 [43](RN-18) 54.69% 55.08% 55.08%

Table 6: Classification accuracy of
our optimizer against Adam.

Model Dataset Adam Ours
Cora 82.48%±0.52 83.10%±0.57

GAT Citeseer 65.33%±0.30 66.07%±0.24
PubMed 75.40%±0.81 76.58%±0.26

Cora 75.80%±0.10 76.70%±0.07
JK-Net Citeseer 59.93%±0.23 61.02%±0.25

PubMed 73.87%±0.30 74.20%±0.71

and tuned optimizer for adversarial attacks. APGD combines a well-tuned mo-
mentum update rule with a conditional learning rate decay on a handcrafted
schedule, which can be adapted for different tasks. Our results show that the op-
timizer from SOL can also rival APGD, clearly demonstrating the effectiveness
of SOL for constraint optimization tasks. In addition, more experiments about
fewer attack iterations and different attack principles are in Appendix A6.

5.4 Task 4: Node Classification on Graphs

To see whether SOL can generate optimizers to train GNNs to classify nodes
on graphs, the Graph Attention Network (GAT) [38] and Jumping Knowledge
Network (JK-Net) [46] are used. They are the most widely used models in graph
learning. The comparison is performed on three graph benchmarks including
Cora [26], Citeseer [15], PubMed [34]. The number of iterations is set to 50. For
each iteration, GAT is trained for 250 epochs, and the unrolling length is 50.

Cora(Adam) Cora(Ours) CiteSeer(Adam) CiteSeer(Ours) PubMed(Adam) PubMed(Ours)

(a) GAT (b) JK-Net

Fig. 7: Training loss trajectory with GAT and JK-Net.

The experiment results are shown in Table 6. On all the graph benchmarks,
the proposed method can discover optimizers outperforming Adam, which is the
standard optimizer for optimizing GNNs. In addition, it is worth noting that
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GAT and JK-Net are two different GNN architectures, based on graph attention
and graph convolution respectively. Nevertheless, the proposed method can still
discover suitable optimizers for them (as shown in Fig. 7). This result further
demonstrates SOL’s generalizability and its potential to reduce the need for
expert knowledge in designing different optimizers.

5.5 Task 5: BERT Fine-tuning on NLP tasks

To evaluate SOL’s capability for large language models, we evaluated it on
BERT [10]. In the experiment, a pre-trained BERT (base-uncased) is finetuned
on the GLUE benchmark [39]. We follow the default configurations: the number
of epochs is set to 3 for Cola [41], SST-2 [35], and RTE [3] dataset, and 5 epochs
on MPRC [11] and WNLI [39] dataset. The batch size is set to 32.

Table 7: Performance of BERT finetun-
ing on GLUE.

Dataset AdamW Ours
Cola 61.01±0.84 63.14±0.56
SST-2 90.87±0.96 91.83±0.38
RTE 63.87±1.63 66.83±2.01
MRPC 82.38±1.06 84.62±1.02
WNLI 54.07±3.29 55.63±0.28

The experiment results are listed
in Table 7. We compare the opti-
mizer learned by our method with
AdamW [23], which is the default op-
timizer for BERT finetuning. It can be
seen from Table 7 that the learned op-
timizers by our method outperformed
AdamW on all five datasets. Such a re-
sult demonstrates the effectiveness of
the proposed method of learning opti-
mizers even for large language models.

6 Conclusion

The goal of this study is to develop a method that enables the automated design
of high-performance symbolic optimizers directly on a diverse range of tasks. To
achieve this, we propose a symbolic optimizer learning model, namely SOL, that
takes an optimizee’s states as input and produces the updates for the optimizee’s
parameters. As a learnable model, SOL can be integrated into the optimizee’s
training process and directly optimized by gradient descent. More importantly,
the trained SOL can then be transformed into a mathematical expression, i.e.,
a symbolic optimizer, which is scalable and generalizable, capable of optimizing
new tasks. The proposed method is evaluated on a diverse set of five differ-
ent tasks, including image classification, adversarial attack, graph node classi-
fication, and large language model finetuning. The experiment results clearly
demonstrate the effectiveness of the proposed method, as it can automatically
design symbolic optimizers, outperforming both manually-designed and other
auto-designed counterparts, on these diverse tasks. Hereby we conclude that our
proposed symbolic optimizer learner is effective, yet generalizable and scalable,
offering a highly competitive option for network optimization. Our future work
will focus on simplifying the learned symbolic optimizers to enhance their inter-
pretability and facilitate future improvement.
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