
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

What is Adversarial Training for Diffusion Models?

Anonymous Authors1

Abstract

We answer the question in the title showing that
adversarial training (AT) for diffusion models
(DMs) is inherently different from classifiers.
Whereas for the latter it is related to invariance
of the output given input from a fixed class, AT
for DMs requires equivariance to make the dif-
fusion process still land in the data distribution.
For the first time, we define AT as a means to
enforce smoothness in the diffusion flow to make
it more resistant to outliers or corrupted datasets.
Unlike prior art, ours does not require any par-
ticular assumption on the noise model and our
new training scheme can be implemented on top
of the diffusion noise, using additional random
noise—similar to randomized smoothing—or ad-
versarial noise—akin to adversarial training. Our
method unlocks capabilities such as intrinsically
handling noisy data, dealing with extreme vari-
ability such as outliers, preventing memorization,
and, obviously, improving robustness and security.
We rigorously evaluate our approach with proof-
of-concept datasets with known distributions in
low- and high-dimensional space, thereby taking
perfect measure of errors; we further evaluate on
standard benchmarks such as CIFAR-10, recov-
ering the underlying distribution in presence of
strong noise or corrupted data.

1. Introduction
When we train Diffusion Models (DMs) going large-scale,
noise in the data is inevitable. Training generative modeling
on a massive amount of data is key for the current success of
AI, alas, data-level noise can arise in different forms such as
inlier noise, minor perturbations to data points that remain
within the expected distribution, or outlier noise, data points
that deviate significantly from the others, going out from the

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

pnoise(x0)

pdata(x0)q(xT )

xT ... ...

+

xt xt−1 x0

xt+δ

xt

xt+δ

xt−1
ϵθ(xt, t)

δ

Figure 1. Inducing smoothness into diffusion trajectories. In-
stead of training directly the denoising network to follow the score
function i.e., xt 7→ xt−1 using just ϵθ(xt, t), we locally perturb
the data point as xt+δ inside a ℓp ball centered on xt and impose
equivariance to let the model reach the same point yet passing
through the local perturbation: xt+δ 7→ ϵθ(xt, t) + δ ≜ xt−1.
This is equivalent to adding an intermediate step between the
Markov Chain that functions as an additional denoising step dur-
ing training in case the network is misled by outliers or noise in the
dataset—pnoise(x0)—not proper of pdata(x0). The local noising
step can be implemented as adversarial (Goodfellow et al., 2015)
or as random, akin to randomized smoothing, Cohen et al. (2019).
The perturbation is adaptive so that is large in the noise phase and
shrinks in the content phase. indicates the forward process;

the reverse process.

expected distribution. We may also have missing data or cor-
rupted data where values may be affected by Gaussian noise;
finally, we may have “adversarial” noise such as those found
in poisoning attacks (Tian et al., 2022). Although there have
been attempts to train in noisy settings with some remark-
able results such as Daras et al. (2024c;d;a), it is desirable to
have a generic method that makes less assumptions on the
type of noise. In fact, Daras et al. (2024c) requires know-
ing the exact variance of the added Gaussian noise, Daras
et al. (2024d) handles only missing data and (Daras et al.,
2024a) needs to know which samples are noisy and which
are clean. Another open problem with DMs is the fact that
despite their remarkable generation performance (Dhariwal
& Nichol, 2021), researchers in AI Safety and red-teaming

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

What is Adversarial Training for Diffusion Models?

have demonstrated that they memorize part of the training
data (Jagielski et al., 2023; Somepalli et al., 2023; Carlini
et al., 2023). So DMs have solved GAN stability problems,
such as mode collapse, yet they have introduced the issue
of memorization and leakage of information. Indeed, while
DMs may better cover the modes of the underlying data
distribution (Zhong et al., 2019) in the extreme case of over-
parametrized models, this may lead to the aforementioned
memorization. While it is important to cover all the modes,
we may want to discard minor modes, latent factors that are
not proper of the input data manifold or spurious correla-
tions. To strike a better trade-off between mode coverage
and memorization, we propose a method to smooth the tra-
jectory space of DMs as depicted in Fig. 1. Leveraging on
the limits of prior art, we make the following contributions:

⋄ Despite a few papers applied AT to DMs (Yang et al.,
2024; Sauer et al., 2024), so far no one has defined what
AT is for DMs at the fundamental level and shed light
on when is convenient to apply it, i.e. denoising the data
distribution. Though previous work made progress in
handling noise with DMs (Daras et al., 2024d;c;a), we
are the first to reconnect AT as a denoising method.

⋄ Inspired by Zhang et al. (2019) for classifiers, we define
a proper algorithm to apply AT to DMs, showing that it
is inherently different from classification: while a cate-
gorization problem requires developing invariance, for a
score-matching problem, there is the need for equivari-
ance as summarized in our key finding in Eq. (10).

⋄ We empirically demonstrate the flexibility of our method
in handling noisy data, dealing with extreme variability
such as outliers, preventing memorization, and improv-
ing robustness and security. We do so by providing ex-
periments in low-dimensional settings (3D) with known
distributions and also in high-dimension still with known
distributions. Following prior art (Daras et al., 2024c;a)
we use Gaussian noise to perturb the data. We evaluate
on a real dataset such as CIFAR-10, scoring good metrics
even in the presence of extreme clutter.

2. AT smooths the Diffusion Flow
2.1. Preliminaries

Diffusion Models (DMs) (Ho et al., 2020) aim to learn a
data distribution, pdata(x) by “encoding data” using a fixed
noising procedure that maps data toN (0, I) using a Markov
chain q(xT , . . . ,x1|x0) =

∏T
t=1 q(xt|xt−1), where, given

a noisy input xt−1, the distribution of the next state is:

q(xt|xt−1) = N
(
xt;

√
1− σ(t)xt−1, σ(t)I

)
, (1)

and σ(t) is the noise scheduler: a monotonically decreasing
time-varying function chosen such that σ(0) = σmin and

σ(T ) = σmax and often 0 < σmin < σmax < 1. Generation
is attained with a learnable “decoding step” that reverts back
data from noise estimating p(xt−1|xt). If the noise sched-
uler is chosen carefully to take small noising steps, then
the approximation q(xT |x0) ≈ N (0, I) and the following
equation hold:

q(xt|x0) = N
(
xt;
√
αtxt−1, (1−αt)I

)
, αt

.
=

t∏
s=1

1−σ(t)

This means we can encode directly from x0 7→ xt as:

xt =
√
αtx0 +

√
1− αt ϵ where ϵ ∼ N (0, I). (2)

The process is analyzed in Song et al. (2021b) as denois-
ing score matching, following the Stochastic Differential
Equation (SDE):

xt = f(xt, t)t+ g(t)wt (3)

where w is the standard Wiener process, f(·, t) : Rd → Rd

is the drift coefficient, and g(·) : R→ R is the diffusion co-
efficient. Generation is performed by solving the probability
flow ODE (PF-ODE), from t = T to 0 and starting from
xT ∼ N (0, σ2

maxI), whose solution is learned from the DM.
For a given x0, the simplified version of training objective
LDM reported in Ho et al. (2020) is thus defined as:

LDM = Eϵ∼N (0,I)
t∼U(0,I)

[∥∥ϵ− ϵθ
(
xt(x0, ϵ), t

)∥∥2
2

]
(4)

whose objective is to infer the noise ϵ applied to the initial
image, ensuring that the starting point x0 is correctly recon-
structed, enabling the model—the denoising network ϵθ—to
correctly generate in-distribution data during inference. For
inference we solve the SDE using ϵθ and the recurrency:

xt−1(θ) =
1√

1− σ(t)

(
xt(θ)−

σ(t)√
1− αt

ϵθ
(
xt(θ), t

))
+

+ σ(t)z z ∼ N (0, I) and ∀t ∈ [T, . . . , 0].
(5)

2.2. Motivation, “in vitro” experiments, and noise types

Motivation and overview. Adversarial samples for classifiers
are the cornerstone idea towards robust models (Goodfellow
et al., 2015; Madry et al., 2018). To ensure the invariance of
classifier response to future adversarial perturbations, AT is
designed to maintain consistency of the model’s output. Un-
like classifiers, training DMs involves a regression task, and
the AT problem must be formulated differently. In our work,
we propose the first principled approach to adversarially
train diffusion models. As shown in Fig. 2(a) our methods
can estimate the underlying distribution even in presence of
strong inliers noise or uniform outliers; moreover, consider-
ing Fig. 2(b), it can smooth the score fields of DMs leading
to more stable fields.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

What is Adversarial Training for Diffusion Models?

0 500 1000
T

0.00

0.25

0.50

0.75

1.00

r(
t)

—————–

Input DDPM Robustadv

U
ni

fo
rm

O
ut

lie
rs

St
ro

ng
In

lie
rs Ground-Truth DDPM Robustadv

(a) (b) (c)

δ ray deviation scheduler

√
1
−

α
t
r(
t)

T

Linear
ω = 2
ω = 3
ω = 4
ω = 8

Figure 2. (a) Handling different types of noise. While the baseline method DDPM (Ho et al., 2020) struggles to handle distributions where
the true one is embedded with either strong inliers noise (top) or uniform outliers (bottom), ours is more robust. (b) Score vector fields:
versors represent the score field, where their magnitude is represented as colormap, less more intense. (left) Ground-truth (middle)
Baseline DDPM (Ho et al., 2020); (right) Our Robustadv. AT induces more smooth and consistent score, better matching the shape of
the input distribution. As side effects: it shrinks the variability of the data distribution and induces more intense fields. (c) Adversarial
perturbation ray. Different curves show different trends varying the ω parameter. In DDPM,

√
1− αt r(t): we use a similar scheduler as

r(t) but the exponent ω shrinks the content phase and pushes down the slope of the curve to reduce it.

“In vitro” Experimental Setup. We experiment on synthetic
3D datasets where we have the possibility to go from “linear”
and unimodal datasets to more complex multi-modal. In
oblique-plane we assume pdata lives approximately on
a 2D subspace with equation x + y + z = 30 embedded
in 3D. In 3-gaussians, we address multi-modal distri-
butions such as Mixture of Gaussian 1

3N ([10, 10, 10], σ) +
1
3N ([20, 20, 20], σ) + 1

3N ([10, 30, 30], σ) with σ = 0.25.
We also move to high-dimensional space x ∈ R32×32×3

yet still in controlled settings by using a simple dataset of
images of butterflies, “the Smithsonian Butterflies” 1. It con-
sists of aligned butterflies which we resize to 32× 32
and then flatten. We then linearize the data by fitting a
subspace of 25 dimensions embedded in a 3072-D space,
retaining 70% of the variance using principal components as
x′ = µ+

∑
i λiαiUi where the stochasticity comes from

α ∼ N (0;σ), then µ ∈ R3072 and U ∈ R25×3072 are the
mean and the principal components of the datasets, and λi

is the singular value associated to each component. The
new linearized data is visually very similar to the real data,
thus we throw away the real data and proceed to train DMs
to fit {x′}Ni=1. This allows us to have a perfect measure of
errors of how much we arrive close to the distribution. In
this case, for example, we avoid measuring proxy metrics
such as FID, instead measuring the reconstruction error be-
tween the subspace and the image generated by the diffusion
model as ρ =

∥∥x0(θ) −UU⊤x0(θ)
∥∥ where x0(θ) is the

generation using Eq. (5). In addition, we also measure the
Peak Signal-to-Noise Ratio (PSNR).

Noise model tested. We experiment with different noise mod-
els: for 3D point clouds we add inlier noise by increasing
the σ of Gaussians or increasing α as α ∼ N (0;σ) in case
of subspace µ +

∑
i λiαiUi. We also experiment with

outlier noise by adding strong noise in the ambient space:

1Dataset available on Hugging Face

for 3D point clouds we embed the original point cloud with
dense, grid-like uniform noise; for butterflies in high-
dimension, we simply add Gaussian noise after linearizing
as x′ + z where z ∼ N (0, σI). Fig. 2(a) and Fig. 3(a) show
the noise types and the datasets.

2.3. Injecting Adversarial Noise in the Diffusion Flow

Injecting additional noise in the diffusion flow. Given that DM
encoding process already perturbs the data with Gaussian
noise, it is not trivial to add another perturbation. After ex-
tensive tests and research, we found out that it is necessary
to craft the δ perturbation following these requirements: i)
the ray of the perturbation, i.e. r(t) =

∥∥δ(t)∥∥
p

has to be
time-dependent following the noise scheduler σ(t); ii) re-
calling the diffusion phases as defined in Choi et al. (2022),
the ray cannot be large in the content phase, otherwise the
approach may merge two different modes of the data dis-
tribution yielding over smoothing; iii) when t → T , thus
we are close to pure noise, r(t) can have a high value with
a maximum of 1 to maintain the assumption mentioned in
Section 2.1; iv) finally, for t → 0, r(t) also have to tend
to zero yet keeping a constant bias γ at the end; if we do
not do so, the approach may under smooth the data and
the denoising will not occur. According to this, we modify
Eq. (2) as:

xt =
√
αtx0+

√
1− αt (ϵ+δ) where ϵ ∼ N (0, I), (6)

and δ is sampled independently for each dimension as:

δ ∼ U
(
− rβ(t), rβ(t)

)
and rβ(t)

.
=

(
√
1− αt)

ω + γ · β√
1− αt

(7)
where ω ≥ 1 is an exponent to shrink the ray in the content
phase and γ is the bias to keep the ray at a minimum but
not zero. The denominator in Eq. (7) is needed so that it

3

https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset butterflies subset


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

What is Adversarial Training for Diffusion Models?

0 100 200

0.005

0.010

0 100 200
20

30

0 100 200

20

25

0 100 200
0.000

0.005

0.010

0 100 200

0.005

0.010

0 100 200
20

30

0 100 200

20

25

0 100 200
0.000

0.005

0.010

0 100 200

0.005

0.010

0 100 200
20

30

0 100 200

20

25

0 100 200
0.000

0.005

0.010

0 100 200

0.005

0.010

0 100 200
20

30

0 100 200

20

25

0 100 200
0.000

0.005

0.010

PSNR ↑ ρ =
∥∥x0(θ)−UU⊤x0(θ)

∥∥ ↓

Epochs

Epochs

Epochs

Epochs

DDPM Robustran Robustadv

R
eg

ul
ar

da
ta

se
t

N
oi

sy
da

ta
se

t

x′

x′ + z

x0(θ) — DDPM

x0(θ) — Robustadv

(a) (b)
Figure 3. (a) Training on linearized butterflies dataset makes it possible to measure in closed form reconstruction error. From top
to bottom, we show: the training data, the corrupted data, the generation results by DDPM and by Robustadv. (b) Plot of metrics: first
column PSNR while second column offers the closed-form reconstruction error. The first row displays regular, uncorrupted data, while
the second row shows results with corrupted data where 90% of the data has been perturbed with Gaussian noise with σ = 0.1.

simplifies with
√
1− αt of Eq. (6). β is a scalar to sim-

ply increase the bias randomly and by default is set to 1.
Fig. 2(c) shows the adversarial perturbation ray in function
of time compared to the normal DDPM scheduler.

Two types of perturbations: random vs adversarial. The ad-
ditional noise we add to enforce smoothness can be of two
types: random δran, akin randomized smoothing (Cohen
et al., 2019), or adversarial δadv, similar to AT (Goodfellow
et al., 2015). Random: The random noise applied to enforce
smoothness is defined as Eq. (7) yet sampling β ∼ U [0.5, 2],
a stochastic parameter included to randomize the ray so that
the process is resilient to variability in the ray. Being de-
fined in such a way, δran would be an uniform variable whose
standard deviation is defined as rβ(t)/

√
3. Adversarial: The

adversarial noise definition builds on top of the previous
setting. The perturbation first is initialized randomly as δran
and then updated similarly to Fast Gradient Sign Method
(FGSM) with random start as in Kurakin et al. (2017) with
ℓ∞. We thus optimize δadv as:

δadv ≜ argmin
∥δ∥∞≤rβ(t)

∥∥ϵθ(xt + δ, t
)
− ϵθ

(
xt, t

)∥∥2
2

(8)

that was implemented by taking a gradient step and pro-
jecting it back to the feasible set using Projected Gradient
Descent (PGD):

xadv
t = Prβ(t)

[
xt +

rβ(t)√
3

sign
(
∇xtLDM

(
ϵ, ϵθ

(
xt(x0, ϵ), t

))]

where Prβ(t) projects onto the surface of xt’s neighbor ℓ∞-
ball and rβ(t)/

√
3 is the standard deviation of the attack.

2.4. Adversarial Training for Diffusion Models

Once we have defined to how inject the perturbation into
the diffusion flow, we proceed to define the AT algorithm.

Naı̈ve invariance does not work. We have found that simply
applying AT loss as in classifiers:

L = argmin
θ

∥∥ϵθ(xt + δ, t
)
− ϵθ

(
xt, t

)∥∥2
2

(9)

does not work. Eq. (9) brings the DM to learn another
distribution different than pdata(x). Indeed, in this case, the
model learns a slightly shifted data distribution, causing
the generation of noisy data that was injected when adding
the perturbation δ. This resulted in worse FID because the
model was not able to perform denoising and the generated
data contained the injected noise.

Key change is equivariance. We found out that the right
way to apply AT to DMs is equivariance. The intuition is
depicted in the introductory Fig. 1. Since, in the end, the
forward process still needs to “land” in the data distribution
despite the additional perturbations δ, the network must
learn to denoise from xt+δ in such a way that the denoised
point always matches the previous one in the chain xt−1.
This objective is reached by taking into account δ in the AT
loss as argminθ

∥∥ϵθ(xt + δ, t
)
− [ϵ+ δ]

∥∥2
2
.

Our Training. Following the above setting, the proposed
training formulation builds on top of that. The noisy sam-
ple xt is defined as in Eq. (2), while the perturbed noisy
sample xt + δ is defined as in Eq. (6), considering either
δran or δadv as perturbation elements. We have the regular
term—LDM as in Eq. (4)—where the method teaches the
network to flow towards the data distribution using ϵ. Yet,

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

What is Adversarial Training for Diffusion Models?

Algorithm 1 Adv. Training for Diffusion Models

Input: dataset D, model parameter θ, max timestep T ,
noise scheduler αt, reg. strength λ, ray scheduler rβ(t)
repeat

Sample x ∼ D, timestep t ∈ U({0, . . . , T}),
ϵ ∼ N (0, I), β ∼ U [0.5, 2], δ ∼ U [−rβ(t), rβ(t)]
xt =

√
ᾱtx0 +

√
1− ᾱtϵ w/ Eq. (2)

xadv
t = xt+

√
1− ᾱt(δ+ϵ) w/ Eq. (6), δ as in Eq. (7)

Take a gradient step as−∇θLAT(xt,x
adv
t , t, ϵ) Eq. (10)

until convergence

we added our novel term Lreg that enforces equivariance
and smoothness around the regular trajectory of the DM.
Our final formulation is thus:

LAT(xt,x
adv
t , t, ϵ) = argmin

θ

∥∥ϵθ(xt, t
)
− ϵ

∥∥2
2︸ ︷︷ ︸

LDM to fit data distr.

+

+ λt

∥∥ϵθ(xadv
t , t

)
− ϵθ

(
xt, t

)
− δ

∥∥2
2︸ ︷︷ ︸

Lreg to enforce smoothness

(10)

where λt is a time-dependent hyper-parameter that defines
the strength of the regularization. This parameter, λt =
λ·

√
3

β·r(t) , depends on a constant λ and is rescaled according to
the norm of the perturbation through its standard deviation.
Eq. (10) is intended to be applied directly to the DDPM
framework which is based on a ϵ-prediction network. The
steps of our method are detailed in Algorithm 1.

3. Experimental Results
We use a progression of datasets that go from extremely
controlled to real data. We experiment on synthetic 3D
datasets where we have the possibility to simulate “linear”
and unimodal distributions to more complex multi-modal
datasets. We present results “in vitro” to guide our analy-
sis on low-dimensional and also high-dimensional datasets
taking perfect measure of errors. We offer results on a real
dataset such as CIFAR-10, quantitatively assessing quality
and diversity, using established metrics such as IS (Salimans
et al., 2016) and FID (Heusel et al., 2017) evaluated on
10, 000 images. Following prior art (Daras et al., 2024c;a),
we experiment with Gaussian noise as the main source of
corruption pnoise(x) and only work in challenging settings,
testing a percentage p of corrupted data of p = 90% with
two levels of σ = {0.1, 0.2}. When computing FID, we
always test on the clean dataset despite training with noisy
datasets. Unlike prior art, our method does not exploit which
samples are clean and which noisy, nor has knowledge of
the σ applied for corruption. Our methods are indicated by
Robust where “adv” in the suffix uses adversarial perturba-
tion and “ran” uses random. Finally, we show additional
experiments that support our claims on less memorization,

faster sampling, and robustness to attacks. Hyperparameter
Settings. We set ω = 2 and γ was set to 8/255. The strength
of regularization λ is set to 0.3: we have experienced that if
we raise λ to 0.5 we get an over-smoothing effect whereas
too low values prevent denoising.

3.1. Evaluation using DDPM and DDIM

Controlled Experiments. Fig. 3(b) shows the results when
we train on high dim. data that lives on a subspace. In case
we train on the clean, regular dataset, the baseline and our
Robust DMs perform similarly though Robustran has slightly
better PSNR. When we train on the noisy dataset, {x′ +
z}Ni=1, then both Robust DMs offer superior performance
(orange and blue curves) with wide gaps compared to the
baseline (green curve) in both PSNR and reconstruction
error. In this case the Robustadv appears to be better at
unlearning the noise. The generation from the baseline
DDPM often provides samples with saturated blue colors
that are unlikely to be found in the training set while our
method has better fidelity—see Fig. 3(a).

Random or adversarial? We can also reply this question:
by ablating the use of δadv compared to δran, Table 1(left)
tells that the adversarial perturbation can guarantee much
stronger denoising effect than random yet they are more
expensive for training. Nevertheless, we still note that the
impact of our Eq. (10) is remarkable even in the case of ran-
dom perturbation keeping the FID far below the baselines.

Resistant to noise by design. Table 2 compares our approach
with the baseline DDPM and DDIM on CIFAR-10 yet cor-
rupted with Gaussian noise. We start by showing that, de-
spite our method has an inductive bias towards denoising the
data distribution, if we apply it to the original dataset with
no noise (p = 0%), we only get a slight increase in the FID—
from 7.2 to 28.66. Yet, if we inspect the results visually we
discover that ours is actually smoothing the background of
CIFAR-10 and object shape and outlines are still visible as
shown in Fig. 4. More results are available in the supplemen-
tary material. When we switch to noisy settings, we have

DDPM (Ho et al., 2020) Robustadv

Figure 4. Despite the FID decreases once trained on clean data,
generated images by Robustadv look smooth and the clutter in the
background has been canceled.

a large improvement over the baseline for both DDPM and
DDIM. We highlight that while the baseline FIDs skyrocket
to very high values for p = 90%, σ = 0.2, the robust DMs
are able to keep it in a reasonable range: the DDIM FID de-

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

What is Adversarial Training for Diffusion Models?

Table 1. (left) Random vs Adversarial Perturbations (right) Robust
diffusion flow allows less sampling steps keeping high fidelity.
σ 0.1 0.2
metrics FID IS FID IS

Robustran 79.21 5.21 68.04 4.34
Robustadv 24.70 7.21 24.81 7.07

Steps 300 500
metrics FID IS FID IS

DDPM 224.38 3.33 28.07 8.46
Robustadv 37.89 6.39 24.34 7.53

Table 2. Evaluation of performance under different noise condi-
tions for CIFAR-10 using FID ↓ and IS ↑ for DDPM and DDIM.

p%→ 0 0.9
σ → 0 0.1 0.2
metrics→ FID IS FID IS FID IS

DDPM (Ho et al., 2020) 7.2 8.95 58.05 6.93 102.68 4.19
Robustadv 28.68 7.04 24.70 7.21 24.81 7.07
DDIM (Song et al., 2020) 11.62 8.36 59.28 6.89 105.43 4.09
Robustadv 31.20 6.38 25.48 6.85 24.93 6.69

parts to 105.43, whereas ours manages to keep it below 25.
We offer a qualitative comparison in Fig. 8 where we can
notice the benefits of our method. More images available in
the supplementary material.

Time complexity. Training with AT as an impact during the
training time, in particular, we estimate a slow down of×2.5
for Robustadv whereas Robustran is less time-consuming
since it does not have to backprop for the adversarial per-
turbation. Despite the training time being lower than the
baseline, remarkably the inference time is the same as other
methods and we can attain faster sampling—see Section 3.3.

Baseline Adv.Baseline Adv.

Baseline Adv.Baseline Adv.Baseline Adv.

RobustadvDDPM (Ho et al., 2020)

o
b
l
i
q
u
e
-
p
l
a
n
e

3
-
g
a
u
s
s
i
a
n
s

Figure 5. Diffusion flow of DMs vs Robust DMs. Left column
shows the result by Ho et al. (2020) affected by outliers. Regular
training tends to incorporate the noise inside the diffusion flow,
making it more prone to generate undesirable and unexpected
results; Right column is Robustadv that trades off variability for
resilience with heatmaps more concentrated, clear, and less faded.

3.2. Robust DMs memorize less

Following Daras et al. (2024d) we show that Robust DMs
are naturally less prone to memorize the training data. We
perform an experiment following Somepalli et al. (2023):

using DDPM and our Robustadv trained on clean CIFAR-10,
we synthesize 50K images from each of them and measure
the similarities of those images with the one in the training
set, embedding the images with DINO-v2 (Oquab et al.,
2023). In Daras et al. (2024d) a similar experiment was
done yet using DeepFloyd IF instead of U-Net DDPM. Al-
though U-Net has much less parameters than DeepFloyd
IF—millions vs billions—one could assume that U-Net will
overfit less. Instead from Fig. 6 it can be observed that there
is still a decent amount of generated samples with similarity
higher than 0.90. A similarity ≥ 0.9 roughly corresponds
to the same CIFAR image. Robust models have a histogram
that is drastically shifted on the left and the curve of the
histogram in the right part decays more rapidly than DDPM.
In the region ≥ 0.9, ours have far less training replicas.

0.50 0.60 0.70 0.80 0.90 1.00
Similarity Score

0

500

1000

1500

Co
un

t
0.90 0.95
0

100

200

Zoomed View (>0.9)
DDPM

RobustDMadv

Figure 6. Histogram of similarities between generated samples
from DMs and the CIFAR-10 training set. Similarity values above
0.9 roughly correspond to the same image with some variation in
color, orientation, or background details. While values above 0.94
suggest nearly identical images. DDPM generated images (red)
are closer to the training set. In contrast, Robustadv (blue) shows a
noticeable shift to the left and drastically reduces the replicas.

3.3. Smooth Diffusion Flow enables Faster Sampling

Smooth Diffusion Flow. This section describes the results
obtained by applying our method to the classical DDPM (Ho
et al., 2020). Fig. 5 shows the diffusion flow mapping the
standard normal distribution to the data distribution from
left to right. To visualize the flow, we use low-dimensional
3D data and every time project the data in 2D by simply
removing a coordinate. In oblique-plane, we can see
how Robust DMs capture less variability in the dataset,
thereby rejecting a lot of outlier noise while the heatmap of
DDPM is more faded. Moreover, DDPM is misled by the
noise and creates a very sublet yet additional mode that is
not present in the data, whereas ours keeps the generation
unimodal. The same remarks hold for a multi-modal dataset:
in 3-gaussians, DDPM trajectories are misled by noise
and fade while ours are kept straight. In this case, the figure
shows two modes: one is not displayed due to projection.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

What is Adversarial Training for Diffusion Models?

Faster Sampling. Fig. 5 shows that the diffusion flow of a Ro-
bust DM is more compact, less faded and more dense. This
could imply that the inference process may still recover the
right path in case the regressed score vector is corrupted or
is noisy or in case we deliberately use fewer steps in Eq. (5)
for faster sampling. We tested this hypothesis and the trade-
off table of FID in function of the number of steps taken is
shown in Table 1(right). Even more, if we cross compare
Table 1(right) with Table 2, on clean data Robustadv scores
a better FID with 500 steps (24.34) vs 1000 steps (28.68).
This experiment supports our claim showing that Robust
DMs are still able to generate samples with good fidelity
even though we use fewer steps in the inference. The degra-
dation using less steps is widely more graceful than DDPM
especially when we take only 300 steps over 1000.

0.25 0.50 0.75 1.00

50

100

150

200

250

0.25 0.50 0.75 1.00

2

4

6

8

0.25 0.50 0.75 1.00

50

100

150

200

250

0.25 0.50 0.75 1.00

2

4

6

8

% time steps attacked % time steps attacked

FID ↓ IS ↑

25% 50% 75% 100%

D
D

PM
R

ob
us

t ad
v

DDPM Robustadv

Figure 7. Robustness to Adversarial Attacks. While the baseline
model DDPM is susceptible to adversarial attacks, Robust DMs
are able to better resist to them yielding superior FID and IS for
different percentage of time steps attacked: i.e. 25% means that
we attack 250 steps uniformly over the 1000 of DDPM.

3.4. Robustness to Adversarial Attacks

Our method is naturally resilient to attacks. Like classi-
fiers, AT enforces robustness to adversarial perturbations in
the diffusion flow. The attack has to take into account the
stochastic nature of DM inference and the fundamental hy-
pothesis of Gaussianity for each diffusion stage. We attack
a DM in a white-box setting by adding, in some of the inter-
mediate steps of the inference, an adversarial perturbation
defined as described in Algorithm 2. We need to be careful
with the range of values of the perturbation to maintain the
assumption of the diffusion process; more information can

Algorithm 2 Adversarial Attack on a Diffusion Model.

Input: percentage of attacked timesteps p, total timesteps
T , model ϵθ, scheduler values αt and σ(t), perturbation
strength ϕ; xT ∼ N (0, I)
for t = T to 0 do
xt−1 ← ϵθ(xt, t)

x̂0 ← xt−
√
1−ᾱtϵθ(xt,t)√

ᾱt

µ̃t(xt, x̂0)←
√
ᾱt−1σ(t)
1−ᾱt

x̂0 +
√
αt(1−ᾱt−1)

1−ᾱt
xt

x′
t = xt + δ; δ ∼ N (0, I) · ϕ · σ(t)

x′
t−1 ← ϵθ(x

′
t, t)

x̂′
0 ←

x′
t−

√
1−ᾱtϵθ(x

′
t,t)√

ᾱt

L =
∥∥µ̃t(xt, x̂0)− µ̃t(x

′
t, x̂

′
0)
∥∥2
2

xadv
t = xt + δ where δ = σ(t) · sign(∇xt

LDM )
xt−1 ← ϵθ(x

adv
t , t)

end for

be found in Appendix A.1. Fig. 7 shows that our method
is much more robust to attacks in diffusion flow: robust
DMs can tolerate up to 50% of time step attacked and still
generate samples with decent fidelity. Only at 75% time
steps attacked, the generation fails for both.

4. Related Work
Diffusion Models. Score-based generative models (Song &
Ermon, 2019) introduce a maximum likelihood framework
focused on learning the score function–the gradient of the
log density–to generate samples that are likely to be part
of the real data distribution. These models express the in-
ference process through a Stochastic Differential Equations
(SDE) (Dhariwal & Nichol, 2021). Non-equilibrium ther-
modynamics inspired the diffusion process (Sohl-Dickstein
et al., 2015), a concept that from particle physics was ap-
plied as a peculiar case of score-based generative model
and that led to the rise of Denoising Diffusion Probabilistic
Models (DDPMs) (Ho et al., 2020). Diffusion models (DM)
became the de-facto standard algorithm in generative mod-
eling on high-dimensional data, overcoming the previous
adversarial min-max game between a generator and a dis-
criminator (GANs) (Goodfellow et al., 2020). DMs not only
achieve higher fidelity (Dhariwal & Nichol, 2021) but also
provide more stability in training. DMs have been exten-
sively improved: working on the logarithmic likelihood esti-
mate (Nichol & Dhariwal, 2021), faster sampling (Nichol
& Dhariwal, 2021; Song et al., 2021a) and performing the
diffusion process in the latent space (Rombach et al., 2022)
instead of the data space. In Karras et al. (2022; 2024), the
authors provide insightful clarifications on several design
choices for diffusion models. Furthermore, they introduce
an improved U-Net architecture featuring redesigned net-
work layers that ensure consistent activation, weight, and

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

What is Adversarial Training for Diffusion Models?

DDPM (Ho et al., 2020) Robustadv

Figure 8. Qualitative comparison. We offer qualitative samples of Robustadv vs DDPM. Despite the training containing 90% of corrupted
data with strong Gaussian noise with σ = 0.2, Robustadv generates smooth objects with no visible noise or artifacts while DDPM outputs
the Gaussian noise. σ = 0.2 means we are adding 40% of the variability that is naturally present in CIFAR-10 being σdata = 0.5.

update magnitude, achieving state-of-the-art FID on CIFAR
and other benchmarks. Lastly, Song et al. (2023) proposed
consistency models, a distillation method for one-step infer-
ence by directly mapping noise to data. The name consis-
tency arises from the fact that they enforce different noisy
versions in the same trajectory to map to the same data. Un-
like them, we enforce smoothness in the local neighborhood
of a trajectory so its score field remains locally consistent.

Denoising and Inverse problems with DMs. The attention to
applying DMs in scenarios where the data is not assumed to
be curated and clean but is instead degraded or corrupted,
has increased in recent years (Aali et al., 2023; Xiang et al.,
2023; Daras et al., 2024d;a). Given the specific challenges
related to training with noisy data, this problem is closely re-
lated to inverse problems (Tachella et al., 2024; Kawar et al.,
2024). Recently, a line of research has focused on the appli-
cation of Stein’s Unbiased Risk Estimator (SURE) (Metzler
et al., 202) and its subsequent improvements, including UN-
SURE (Tachella et al., 2024), GSURE (Kawar et al., 2024),
Soft Diffusion (Daras et al., 2024b), and methods leveraging
optimal transport for training with noise (Dao et al., 2024).

Adversarial Robustness. Adversarial robustness is loosely
connected with denoising since adversarial training (AT) can
be viewed as a means of removing spurious correlations (Ye
et al., 2024) with improved out-of-domain generalization
when transferring to a new domain (Ilyas et al., 2019) or
related to causal learning (Zhang et al., 2020; 2022). Surpris-
ingly, only a few papers show that AT actually increases spu-

rious correlations in some cases (Moayeri et al., 2022a;b),
although robustness tools are still used to assess if a neu-
ral model relies on spurious associations between the input
and the output class (Singla & Feizi, 2022; Neuhaus et al.,
2023). AT variants have also been used to improve domain
shift (Salman et al., 2020) and out of distribution (Wang
et al., 2022). While it is reasonable to say that AT has been
extensively studied on discriminative classifiers and GANs,
its application to DMs remains relatively unexplored, ex-
cept for Sauer et al. (2024) in which it is applied for fast
sampling and Yang et al. (2024) which investigates the in-
terconnection between samples in a batch.

5. Conclusions and Future Work
We have presented the first attempt to incorporate AT into
DM training showing that AT for generative modeling im-
plies smoothing the data distribution and can be effectively
used for denoising the data. We also have shown that we
need to reinterpret it as equivariant property and not in-
variance. Our method has been proved to be highly robust
even if presence of 90% corrupted data with strong Gaus-
sian noise. For future work we have plenty of ideas: in the
encoding steps of the denoising we believe we can improve
the encoding functions by letting the network learn an ω
that is input dependent. We also have to extend our method
to work in fully corrupted settings (p = 100%) and port
our approach to Elucidating DM framework (EDM) (Karras
et al., 2022; 2024) in order to scale to larger datasets.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

What is Adversarial Training for Diffusion Models?

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning, in particular the robustness of
a particular type of generative models, Diffusion Models,
that are widely used in the industry and for content creation.
There are many potential societal consequences of our work:
we believe the robustness of DMs is not well studied and
can have highly beneficial societal impact. For example,
we can consider as outliers NSFW content or other minor
modes that are not proper of latent factors that we wish to
learn. Our research can enable generative AI which is more
robust as less susceptible to adversarial perturbations and
memorizing less the data having models that better respect
privacy. This field is mandatory and does not count in
the page limit

References
Aali, A., Arvinte, M., Kumar, S., and Tamir, J. I. Solv-

ing inverse problems with score-based generative priors
learned from noisy data. In Asilomar Conference on
Signals, Systems, and Computers, 2023.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V.,
Tramer, F., Balle, B., Ippolito, D., and Wallace, E. Ex-
tracting training data from diffusion models. In USENIX
Security Symposium, 2023.

Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., and Yoon, S.
Perception prioritized training of diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11472–11481, 2022.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In ICML, pp. 1310–
1320. PMLR, 2019.

Dao, Q., Ta, B., Pham, T., and Tran, A. A high-quality
robust diffusion framework for corrupted dataset. In
ECCV, 2024.

Daras, G., Cherapanamjeri, Y., and Daskalakis, C. How
much is a noisy image worth? data scaling laws for
ambient diffusion. arXiv e-prints, pp. arXiv–2411, 2024a.

Daras, G., Delbracio, M., Talebi, H., Dimakis, A., and
Milanfar, P. Soft diffusion: Score matching with general
corruptions. TMLR, 2024b.

Daras, G., Dimakis, A., and Daskalakis, C. C. Consistent
diffusion meets tweedie: Training exact ambient diffusion
models with noisy data. In ICML, 2024c.

Daras, G., Shah, K., Dagan, Y., Gollakota, A., Dimakis,
A., and Klivans, A. Ambient diffusion: Learning clean
distributions from corrupted data. In NeurIPS, 2024d.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. In NeurIPS, 2021.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. In ICLR, 2015.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS,
volume 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, volume 33, 2020.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. In NeurIPS, 2019.

Jagielski, M., Thakkar, O., Tramer, F., Ippolito, D., Lee,
K., Carlini, N., Wallace, E., Song, S., Thakurta, A. G.,
Papernot, N., et al. Measuring forgetting of memorized
training examples. In ICLR, 2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models. In
NeurIPS, 2022.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T.,
and Laine, S. Analyzing and improving the training
dynamics of diffusion models. In CVPR, 2024.

Kawar, B., Elata, N., Michaeli, T., and Elad, M. Gsure-based
diffusion model training with corrupted data. TMLR,
2024.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
machine learning at scale. In ICLR, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

Metzler, C. A., Mousavi, A., Heckel, R., and Baraniuk,
R. G. Unsupervised learning with stein’s unbiased risk
estimator. arXiv preprint arXiv:1805.10531, 202.

Moayeri, M., Banihashem, K., and Feizi, S. Explicit trade-
offs between adversarial and natural distributional robust-
ness. In NeurIPS, 2022a.

Moayeri, M., Pope, P., Balaji, Y., and Feizi, S. A compre-
hensive study of image classification model sensitivity
to foregrounds, backgrounds, and visual attributes. In
CVPR, 2022b.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

What is Adversarial Training for Diffusion Models?

Neuhaus, Y., Augustin, M., Boreiko, V., and Hein, M. Spuri-
ous features everywhere-large-scale detection of harmful
spurious features in imagenet. In ICCV, 2023.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In ICML, 2021.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V.,
Szafraniec, M., Khalidov, V., Fernandez, P., HAZIZA, D.,
Massa, F., El-Nouby, A., et al. Dinov2: Learning robust
visual features without supervision. TMLR, 2023.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X., and Chen, X. Improved techniques
for training gans. In NeurIPS, 2016.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry,
A. Do adversarially robust imagenet models transfer
better? In NeurIPS, 2020.

Sauer, A., Lorenz, D., Blattmann, A., and Rombach, R.
Adversarial diffusion distillation. In ECCV, 2024.

Singla, S. and Feizi, S. Salient imagenet: How to discover
spurious features in deep learning? In ICLR, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In ICML, 2015.

Somepalli, G., Singla, V., Goldblum, M., Geiping, J., and
Goldstein, T. Diffusion art or digital forgery? investi-
gating data replication in diffusion models. In CVPR,
2023.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICML, 2020.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In ICLR, 2021a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In NeurIPS, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In ICLR, 2021b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In ICML, 2023.

Tachella, J., Davies, M., and Jacques, L. Unsure: Unknown
noise level stein’s unbiased risk estimator. arXiv preprint
arXiv:2409.01985, 2024.

Tian, Z., Cui, L., Liang, J., and Yu, S. A comprehensive
survey on poisoning attacks and countermeasures in ma-
chine learning. ACM Computing Surveys, 55(8):1–35,
2022.

Wang, Q., Wang, Y., Zhu, H., and Wang, Y. Improving
out-of-distribution generalization by adversarial training
with structured priors. NeurIPS, 2022.

Xiang, T., Yurt, M., Syed, A. B., Setsompop, K., and Chaud-
hari, A. Ddm2̂: Self-supervised diffusion mri denois-
ing with generative diffusion models. arXiv preprint
arXiv:2302.03018, 2023.

Yang, L., Qian, H., Zhang, Z., Liu, J., and Cui, B. Structure-
guided adversarial training of diffusion models. In CVPR,
2024.

Ye, W., Zheng, G., Cao, X., Ma, Y., Hu, X., and Zhang,
A. Spurious correlations in machine learning: A survey.
arXiv preprint arXiv:2402.12715, 2024.

Zhang, C., Zhang, K., and Li, Y. A causal view on robust-
ness of neural networks. In NeurIPS, 2020.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and
Jordan, M. I. Theoretically principled trade-off between
robustness and accuracy. In ICML, 2019.

Zhang, Y., Gong, M., Liu, T., Niu, G., Tian, X., Han, B.,
Schölkopf, B., and Zhang, K. Adversarial robustness
through the lens of causality. In ICLR, 2022.

Zhong, P., Mo, Y., Xiao, C., Chen, P., and Zheng, C. Re-
thinking generative mode coverage: A pointwise guaran-
teed approach. In NeurIPS, 2019.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

What is Adversarial Training for Diffusion Models?

A. Appendix
A.1. Attack formulation

In inference mode, it is possible to represent the inverse Markov Chain as the sequence of intermediate realizations of
Gaussian distributions with fixed parameters regarding mean scaling and variance scaling. From the paper (Ho et al.,
2020) in Eqs. 6 and 7 the t-th step of the inference can be written as the sampling from the posterior distribution
q(xt−1|xtt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), where:

µ̃t(xt,x0) :=

√
αt−1σ(t)

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt, β̃t :=

1− αt−1

1− αt
σ(t).

This implies that, at each time step, the expected variance and mean of the distribution are defined in a specific manner.
During inference, the value of x0 corresponds to the output obtained after the network’s prediction. In the context of the
DDPM framework, x0 is replaced by the estimated value, which depends on the epsilon-predicting network:

x̂0 =
xt −

√
1− αtϵθ(xt)√

αt
,

To properly craft the attack, and still consider it legitimate, it is essential to scale it to the correct standard deviation to align
with the diffusion process. Failing to do so would result in the network’s inference being affected not by the perturbation
itself but by the incorrect range of the perturbation, causing errors due to the inability to maintain the process within its
Gaussian assumptions.

In this context, the attack procedure follows the FGSM approach with random start. However, the perturbation is then scaled
to match the appropriate variance at timestep t to maintain consistency with the diffusion process.

The FGSM attack generates an adversarial example by perturbing the noisy sample xt in the direction of the gradient of the
loss function L with respect to xt. Specifically, the adversarial perturbation is given by:

x′
t = xt + ϕ · sign

(
∇xt
LDM(xt)

)
,

where ϕ controls the magnitude of the perturbation, sign(·) represents the element-wise sign function.

The adversarial attack in this approach is integrated into the diffusion process by leveraging the predictive functions including
a variance-handling mechanisms defined in the model in order to guarantee to concretely adapt to the Gaussian hypothesis
of the reverse MC. The adversarial attack begins with perturbing the input xt defining its x′

t as:

x′
t = xt + δ, δ ≜ N (0, ϕ · σ(t)).

The function to be optimized in order to craft the adversarial attack is defined as follows:

LFGSM =
∥∥µ̃t(xt,x0)− µ̃t(x

′
t,x0)

∥∥2
2

where µ̃t represents the predicted mean of the diffusion process at time step t, which depends on both the input xt and the
original sample x0. The optimization goal is to maximize the discrepancy between the predicted means of the clean and
adversarial inputs, ensuring that the perturbation effectively disrupts the reverse diffusion process.

To compute the adversarial perturbation δ, the gradient of the loss LFGSM with respect to x′
t is used:

δ = σ(t) · sign (∇xt
LFGSM) ,

where σ(t) scales the perturbation to ensure it adheres to the variance of the Gaussian noise in the reverse diffusion process
at the t-th step. This step aligns the adversarial attack with the stochastic nature of the model, ensuring the perturbation
remains consistent with the Gaussian hypothesis.

The final adversarial example is then obtained as:

xadv
t = xt + δ.

The adversarially perturbed sample xadv
t is fed back into the reverse diffusion process, following the recurrency of the

inference.

11


