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Abstract001

Recent breakthroughs in LLMs have signifi-002
cantly enhanced their abilities to reason and003
solve thinking problems in various domains.004
Reinforcement learning (RL) and Supervised005
Fine Tuning (SFT)-based post-training mech-006
anisms along with high-quality curated data007
have enabled models such as DeepSeek-R1,008
Qwen2.5-Math, OpenAI o1 etc to outperform009
the state-of-the-art even in challenging bench-010
marks such as AIME’24 and MATH-500. How-011
ever, a significant drawback of these models012
is the large Chain-of-Thought (CoT) genera-013
tion step required to get to the final response,014
increasing resource requirement and response015
time. RL-based approaches with rewards for016
brevity as well as accuracy reduce verbosity,017
but require custom training with multiple gen-018
erations per problem, involving significant re-019
source usage, often limiting practitioners to020
small LLMs. Additionally, the performance021
lift obtained can be inconsistent. In this pa-022
per, we introduce TeleMathLang, a minimal023
syntax for reasoning and math that enables024
LLMs to generate complete chains of reason-025
ing while reducing response length by 30-65%026
across GSM8K, AI2-ARC, and MATH-500.027
We show that LLMs condense their responses028
when TeleMathLang is used purely as a prompt-029
ing strategy as well as for finetuning (even030
small LLMs with 1.5B parameters). Further,031
we show that it outperforms other concise rea-032
soning prompts in accuracy as well as seman-033
tic entropy, preserving what makes CoT work034
while reducing verbosity.035

1 Introduction036

Recent advances in large language models (LLMs)037

have led to remarkable improvements in the abil-038

ities of LLMs to perform complex reasoning and039

mathematical tasks, with models such as DeepSeek-040

R1, Qwen 2.5 Math and OpenAI o1 (DeepSeek-041

AI et al., 2025; OpenAI et al., 2024; Qwen et al.,042

2025) showing impressive results on challenging043
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Figure 1: Correlation between large response size and
accuracy in recent works. Top left from Jin et al. (2024)
bottom left from (Muennighoff et al., 2025), right from
DeepSeek-AI et al. (2025)

math and reasoning benchmarks such as AI2-ARC, 044

AIME’24, MATH-500 (Clark et al., 2018; Hug- 045

gingFaceH4, 2024; Hendrycks et al., 2021) etc. 046

This can largely be attributed to extensive post- 047

training that aims to incentivise the generation of 048

large chains-of-thought (CoT) (Wei et al., 2023) be- 049

fore returning the final output. This phenomenon in 050

three recent works is illustrated in Figure 1. How- 051

ever, while accurate, CoT-based responses are often 052

highly verbose with lengthy explanations which 053

do not always help performance (Aggarwal and 054

Welleck, 2025; Fatemi et al., 2025), inflating infer- 055

ence cost and latency. At the same time, attempting 056

to reduce the CoT output length through specifying 057

number of reasoning steps or output tokens leads 058

to degraded performance (Jin et al., 2024). 059

One line of prior work has explored reinforce- 060

ment learning (RL) techniques to shorten reason- 061

ing chains while preserving accuracy. For exam- 062

ple, specialized RL algorithms such as Group Rel- 063

ative Policy Optimization (GRPO) (DeepSeek-AI 064

et al., 2025) have been applied with reward func- 065

tions that encourage shorter correct answers and 066
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penalize overly long solutions (Fatemi et al., 2025;067

Aggarwal and Welleck, 2025; Liu et al., 2025; Hou068

et al., 2025). In practice, these RL-based meth-069

ods can compress chains-of-thought. However, RL070

approaches tend to be computationally expensive,071

often requiring iterative training phases (Hou et al.,072

2025) and heavy compute investment - for instance,073

GRPO on a 1.5B parameter LLM with 6 genera-074

tions with only 4096 tokens per step can require as075

many as 4 48GB GPUs to complete 1 epoch in 1076

day on 40k training samples (Dang and Ngo, 2025).077

This practically limits a large number of users to078

small, open-source models. Moreover, fine-tuning079

LLMs with RL can be unstable and brittle – small080

changes in hyperparameters or even random seeds081

can lead to large variance in results (Hochlehn-082

ert et al., 2025). Finally, aiming to reduce output083

length through reward functions can lead to LLMs084

learning reasoning processes through reward hack-085

ing (Gao et al., 2022).086

In this paper, we introduce TeleMathLang, a sim-087

ple, minimal syntax comprising of reasoning tokens088

and rules, that generates token-efficient reasoning089

chains without sacrificing accuracy. TeleMathLang090

works with instruction-tuned models by passing091

the syntax via prompts, and with heavily post-092

trained models (that work best under certain sys-093

tem and user prompts such as Qwen et al. (2025)),094

we show that finetuning on small datasets with095

TeleMathLang-formatted solutions for few epochs096

is sufficient to reduce token count without sacrific-097

ing accuracy (section 4.1.4). Under both these se-098

tups, it is resource efficient unlike RL-based meth-099

ods. Further, we show that it outperforms other100

concise prompting techniques (Lee et al., 2025; Xu101

et al., 2025), without leading to increased genera-102

tion uncertainty, which can be quantified by mea-103

suring semantic entropy (Shannon, 1948; Farquhar104

et al., 2024) (section 4.1.3).105

To summarize, we make the following contribu-106

tions:107

• We introduce TeleMathLang: a novel reason-108

ing syntax comprising of thinking tokens and109

rules which enables LLMs to generate com-110

plete reasoning chains, achieving CoT-level111

accuracy on complex reasoning tasks while112

reducing token count significantly.113

• We apply TeleMathLang to public math and114

reasoning benchmark datasets (MATH-500,115

GSM8K and AI2-ARC) with 5 different116

LLMs under prompt-based and and finetuned117

setups, and show that our method consistently 118

achieves comparable or higher accuracy com- 119

pared to CoT with token count reduction up to 120

65%+, outperforming other concise prompt- 121

ing strategies. 122

• Using the concept of semantic entropy, we 123

show that TeleMathLang does not increase 124

response uncertainty relative to CoT reasoning 125

chains even in complex problems, unlike other 126

concise reasoning methods. We also show 127

that it is able to automatically adapt reasoning 128

length to problem complexity, ensuring token 129

efficiency does not sacrifice accuracy. 130

2 Related Work 131

LLM Reasoning Brown et.al. (Brown et al., 2020) 132

showed that LLMs are able to generalize to un- 133

seen tasks if few illustrative examples were in- 134

cluded in the prompt. Chain-of-Thought (CoT) 135

prompting (Wei et al., 2023) significantly improved 136

LLM performance in tasks that required reason- 137

ing, through the usage of few-shot examples that 138

showed multi-step reasoning. By breaking down 139

complex problems into smaller, manageable steps, 140

CoT allows LLMs to generate chains of reason 141

that lead to the correct answer (discussed in more 142

detail section 3). Kojima et al. (Kojima et al., 143

2023) showed that models can be encouraged to 144

generate chains of thoughts even without few-shot 145

examples. More sophisticated structured reasoning 146

methods have been proposed more recently (Yao 147

et al., 2023a; Chen et al., 2023; Xu et al., 2025; Yao 148

et al., 2023b), which attempt to increase accuracy 149

by maintaining multiple reasoning chains, using 150

computational tools, or multi-step reason-observe- 151

act chains. However, CoT remains widely used. 152

More recently, thinking models have been devel- 153

oped that are explicitly designed to think longer 154

during inference (DeepSeek-AI et al., 2025; Qwen 155

et al., 2025; Shao et al., 2024; OpenAI et al., 2024). 156

These models are trained on high-quality super- 157

vised fine-tuning (SFT) data with responses in CoT 158

and program-of-thought (PoT) format (Chen et al., 159

2023). SFT checkpoints are then further incen- 160

tivized to generate larger CoT through reinforce- 161

ment learning (RL). DeepSeek R1 (DeepSeek-AI 162

et al., 2025) reported that during the course of ex- 163

tensive reinforcement learning, the model learned 164

to correct itself and generate longer chains. These 165

recent reasoning models have achieved state-of-the- 166

art performance on LLM benchmarks across do- 167
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mains. However, CoT-based training often biases168

models to generate responses with high verbosity169

and lengthy explanations which do not always help170

performance (Aggarwal and Welleck, 2025; Fatemi171

et al., 2025), inflating inference cost and latency.172

It can be shown that RL objectives can bias mod-173

els to generate long chains if intermediate steps174

are suboptimal (Liu et al., 2025), and it has been175

noticed that comparatively larger chains are often176

associated with incorrect responses (Aggarwal and177

Welleck, 2025).178

Concise Reasoning To address the verbosity179

in CoT responses, studies have explored concise180

prompting strategies. Lee et al. (2025) explore181

the performance of a host of prompting strate-182

gies across multiple LLMs. (Xu et al., 2025) pro-183

pose chain-of-draft, where LLMs are instructed184

to limit each thinking token to 5 words at most.185

Kang et al. (2024) proposes finetuning on a small186

training dataset with short-form CoT solutions187

(C3oT). While these approaches are promising,188

they have limitations. Chain-of-draft shows notice-189

ably poor performance in small LLMs, while C3oT190

requires finetuning and will not work with propri-191

etary LLMs, making both these approaches less192

generalizable than ours. Additionally, we discuss193

theoretically why concise prompting in suboptimal194

in section 3, and in section 4, we show the draw-195

backs of concise prompting with respect to both196

accuracy and uncertainty (measured with semantic197

entropy).198

Several studies have also explored reinforcement199

learning (RL) approaches aimed at producing more200

concise reasoning paths. Liu et al. (2025) propose201

a modification to GRPO by removing normaliza-202

tion term in the objective. Aggarwal and Welleck203

(2025); Fatemi et al. (2025) propose modifications204

to GRPO using token constraints, and Hou et al.205

(2025) uses an iterative approach to reduce token206

count gradually. While these approaches show207

promise, they often require substantial computa-208

tional resources and can be unstable during training.209

Additionally, the gains made by RL-based methods210

are brittle, as shown by (Hochlehnert et al., 2025).211

In this paper, we will show that TeleMathLang is212

able to generate concise reasoning without signif-213

icant computational overhead consistently across214

LLMs and datasets.215

Semantic entropy Shannon (Shannon, 1948)216

introduced the concept of entropy in information217

theory to quantify the amount of uncertainty or ran-218

domness associated with a source of information.219

In NLP, entropy is associated with the probability 220

distribution of tokens. In the presence of uncer- 221

tainty, none of the probabilities is particularly high. 222

However, in natural language responses difference 223

of tokens is less relevant than the difference in se- 224

mantic meaning. For example, "Best of Luck!" and 225

"Break a Leg!" use completely different tokens but 226

are semantically equivalent. Farquhar et al. (2024) 227

introduced the concept of semantic entropy to ad- 228

dress this. However, this is notoriously difficult to 229

estimate due to the vagueness of semantic equiv- 230

alence. Methods such as Semantic Entity Probes 231

(Kossen et al., 2024) have been proposed to approx- 232

imate semantic entropy scalably. In this paper, we 233

introduce a simple pairwise distance-based metric 234

for semantic entropy (section 4.1.3). 235

3 Proposed Methodology 236

In this section, we first provide a theoretical analy- 237

sis of what causes CoT to be so effective in boost- 238

ing an LLM’s ability to reason using the vocabulary 239

of Boolean circuit complexity. We then discuss 240

how our proposed method, TeleMathLang, aims to 241

preserve CoT performance boost while avoiding 242

the drawbacks of concise prompting instructions. 243

3.1 Preliminaries 244

Boolean Circuit Complexity Boolean circuits pro- 245

vide a useful framework for understanding the 246

computational limits of transformer architectures. 247

A Boolean circuit, formally, is a directed acyclic 248

graph where nodes are AND, OR, or NOT gates. 249

A circuit consists of input and output layers, with 250

feedforward connections (composed of logic gates) 251

between each other. The circuit’s depth is the 252

longest path from input to output, while the size 253

of the circuit is the total number of gates in it (Li 254

et al., 2024). Boolean circuit complexity classes 255

categorize computational problems based on the 256

shape and depth of Boolean circuits (networks of 257

AND/OR/NOT gates) needed to solve them. AC0 258

and TC0 are fundamental classes in this hierarchy, 259

comprising circuits are highly parallel but shallow, 260

able to perform computations that do not involve 261

a large number of sequential steps. Definitions of 262

these classes can be found in appendix A. 263

Transformer expressivity Transformers 264

(Vaswani et al., 2017) are designed to allow 265

parallel training, capturing positional information 266

through positional encodings, instead of sequential 267

training as in RNNs. Through the self-attention 268
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mechanism, transformers learn the dependencies269

between all input tokens, eliminating issues such270

as failure to learn long term dependence. Despite271

their impressive capabilities, it has been shown272

that transformer expressivity can be bounded by273

low-complexity classes such as TC0 with log274

precision assumption (Merrill and Sabharwal,275

2023) and AC0 with constant-bit precision (Li276

et al., 2024), as they are not designed to perform277

deep sequential computations unlike RNNs.278

3.2 Why does CoT work so well?279

CoT enhances transformer expressivity In CoT280

prompting, each reasoning step (each intermedi-281

ate token or sentence the model generates) can be282

viewed as a new input for the next step. The trans-283

former processes the input (which now includes284

the previously generated thought) with its fixed lay-285

ers, produces the next step of the chain-of-thought,286

essentially turning a single deep computation into287

what Li et al. (2024) calls "a sequence of shallow288

computations". Figure 2 illustrates this with an289

example.290

Problem : Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells the
remainder at the farmers' market daily for $2  per fresh duck egg. How much in
dollars does she make every day at the farmers' market?

Chain-of-Thought
Reasoning

To determine how much Janet
makes every day at the
farmers' market, we need to
follow these steps:

1. Calculate the total
number of eggs Janet uses
each day:
- Janet eats 3 eggs for
breakfast.
- Janet uses 4 eggs to bake
muffins.
- Therefore, the total
number of eggs used per day
is:
[3 + 4 = 7]

2. Calculate the number of
eggs  remaining  after  Janet
uses some for breakfast and
baking:
- Janet's ducks lay 16 eggs
per day.
- She uses 7 eggs per day.
- Therefore, the number of
eggs remaining is:
[16 - 7 = 9]

3. Calculate the daily
earnings from selling the
remaining eggs at the
farmers' market:
- Janet sells the remaining
eggs at $2 per egg.
- She has 9 eggs left to
sell.
- Therefore, her daily
earnings are:
[9 times 2 = 18]

Thus, Janet makes          

$\boxed{18}$ dollars every

day at the farmers' market.

Final Answer :

Planning

Shallow
computation

Shallow computation
on previous

shallow computation
result

Shallow computation
on previous

shallow computation
result

Output

Figure 2: CoT reduces complex operations to a sequence
of simpler sequential operations, including previous
steps in context

Li et al. (2024) prove that with T steps of CoT,291

a constant-depth transformer (even with constant-292

bit precision and modest width like O(log n)) can293

simulate any Boolean circuit of size T. A number294

of steps polynomial in the input length in theory295

allows a transformer to solve problems in P (poly- 296

nomial time), because poly-size circuits can be 297

simulated by sufficient CoT steps. 298

This theoretical result is confirmed by empirical 299

works such as Madaan et al. (2023) which shows 300

that the form of CoT is more important that the 301

content. However, at the same time, it is crucial 302

to make each CoT step informative, solving prob- 303

lems with circuit complexity AC0, to ensure the in- 304

creased output length actually increases expressiv- 305

ity. This has been shown for example in ablations 306

in (Wei et al., 2023; Lanham et al., 2023), where 307

simply increasing inference-time token count does 308

not work. Any reasoning vocabulary proposed as 309

an alternative to CoT (which consists typically of 310

a few demonstrations or a general instruction to 311

start with "Let’s think step-by-step") should have 312

sufficient vocabulary to handle problems with this 313

complexity. 314

Finally, with works such as DeepSeek-AI et al. 315

(2025), recently LLMs are tuned on large corpuses 316

with CoT outputs included in the response. This 317

further helps boost CoT performance during infer- 318

ence. 319

Limitations of concise prompting instructions 320

Works such as Lee et al. (2025); Kang et al. (2024) 321

explore prompting instructions and fine-tuning 322

strategies to reduce CoT length in LLM responses. 323

However, these instructions miss out on the key 324

insight that CoT allows transformers to be more 325

expressive by enabling them to perform serial com- 326

putations. General instructions to "Be Concise" 327

or to not use proper grammar, for instance, do not 328

provide LLMs with a mechanism to reduce ver- 329

bosity while preserving the number of reasoning 330

steps. In section 4.1.3, we show that these instruc- 331

tions lead to increased LLM uncertainty and higher 332

semantic entropy as they attempt to reduce token 333

count even if it means reducing number of reason- 334

ing steps, making each step more complex than 335

CoT. While chain-of-drafts (Xu et al., 2025) allows 336

serial computation, by limiting each step to 5 words 337

they limit the vocabulary of the LLM, which means 338

every step may not be informative. Chain-of-drafts 339

does not perform well in small LLMs, which is 340

acknowledged in the paper, and is corroborated by 341

our findings in section 4.1.4. 342

3.3 TeleMathLang 343

As discussed, CoT increases a decoder-only trans- 344

former’s ability to perform complex operations by 345

increasing the depth of computation. While ar- 346

4



Finetuning ApproachPrompt-Based Approach

TeleMathLang Solution
on open-deepscaler

dataset

TeleMathLang Prompt
on inference problem

Few-shot
examples

TeleMathLang Solution
+ CoT Solution

Foundational Model

Finetuned Model

TeleMathLang Prompt
on inference problem

TeleMathLang Solution
on inference problem

Class conditioned
training

Conditioned
Inference

TeleMathLang Solution
on inference problem

Inference

TeleMathLang
Prompt Train Dataset TeleMathLang

Solution

TeleMathLang Syntax (Table 1)
+ System Prompt

(please reason step-by-step using TelemathLang
and put your response in \boxed{value})

TeleMathLang Labelling

Foundational
Model

Labelling

Figure 3: Overall Method Flow

chitecture depth is constant, CoT simulates depth347

increase by performing a shallow computation and348

putting the computation back into the LLM’s con-349

text. Therefore, in order to maintain peformance350

gains from CoT, it is vital to allow serial computa-351

tion for as many steps as required for the problem,352

with sufficient vocabulary for reasoning, i.e. the353

tokens chosen should be sufficient to ensure the354

shallow computation is exact. Our key insight is to355

provide a fixed set of tokens for forcing sequential356

computation while allowing LLMs to use any token357

required inside each thinking step.358

To force sequential computation and thinking359

step, we develop on Kojy works such as Ye et al.360

(2025); Muennighoff et al. (2025); DeepSeek-AI361

et al. (2025), which show the association between362

the existence of self-correcting/self-reflecting to-363

kens (wait, however) and logical connectors (there-364

fore, since), and increased reasoning steps (and365

accuracy). We provide LLMs with TeleMathLang,366

which we define as a syntax with a fixed set of367

reasoning keywords that can be used to begin368

a sentence, and rules to ensure reasoning key-369

words are used ( Table 1). These keywords are370

chosen to force thinking and sequential problem371

solving, avoiding the limitations of concise prompt-372

ing instructions. We divide the keywords into core373

and extended, where core keywords are very com-374

monly used and extended keywords are used in375

more complex problems. 376

Prompting In few-shot or zero shot setup with 377

foundational models, the prompt provided con- 378

sists of a description of TeleMathLang as an ultra- 379

minimal syntax, the keywords and rules, few- 380

shot labelled examples (or zero-shot, as is the case) 381

and the instruction "Please think step-by-step in 382

TeleMathLang, and return your final answer in 383

boxed{answer}". The few-shot labelled examples 384

are kept fixed across all evaluation benchmarks 385

to assess generalizability of our method. The full 386

prompt template and few-shot examples can be 387

found in appendix B and C. 388

In section 4 we show that motivating TeleMath- 389

Lang as an ultra-minimal syntax to LLMs consis- 390

tently reduces token count while preserving ac- 391

curacy. We also show that the idea of starting 392

each sentence with a sequential reasoning keyword 393

maintains low semantic entropy compared to other 394

concise prompting techniques, implying that each 395

thinking step is simpler. Figure 4 shows an exam- 396

ple of CoT v/s TeleMathLang where we find that 397

the number of thinking steps is higher in TeleMath- 398

Lang while total token count is lower. 399

Finetuning We use TeleMathLang in a few-shot 400

prompting setting as well as a finetuning setting. 401

For finetuning, TeleMathLang responses are pre- 402

pared for the train dataset using a state-of-the-art 403

LLM, generally Claude 3.7 Sonnet (Anthropic, 404
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Core Reasoning Keywords Extended Reasoning Keywords Syntax Rules

Given: facts and setup Approach: strategy selection Begin each line with one of
Let: define variables Case: case analysis the keywords
Then: next logical step Insight: key observations Use LaTeX for mathematical notation
So: intermediate result Assume: for assumptions (e.g., 2×x, (a + b), x²)
Check: verify logic Lemma: supporting claims Evaluate expressions when possible
Therefore: conclusion Contradiction: proof method (e.g., "Let x = 3×2 = 6"),
Verify: double check Induction: inductive steps showing calculation
Answer: final result Generalize: extending patterns

Table 1: TeleMathLang Syntax

Problem : Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes     muffins for her friends every day with four. She sells the
remainder at the farmers' market daily for $2  per fresh duck egg. How much in
dollars does she make every day at the farmers' market?

TeleMathLang
Reasoning

Chain-of-Thought
Reasoning

Let: Total eggs = 16

To determine how much Janet
makes every day at the
farmers' market, we need to
follow these steps:

1. Calculate the total
number of eggs Janet uses
each day:
- Janet eats 3 eggs for
breakfast.
- Janet uses 4 eggs to bake
muffins.
- Therefore, the total
number of eggs used per day
is:
[3 + 4 = 7]

2. Calculate the number of
eggs  remaining  after  Janet
uses some for breakfast and
baking:
- Janet's ducks lay 16 eggs
per day.
- She uses 7 eggs per day.
- Therefore, the number of
eggs remaining is:
[16 - 7 = 9]

3. Calculate the daily
earnings from selling the
remaining eggs at the
farmers' market:
- Janet sells the remaining
eggs at $2 per egg.
- She has 9 eggs left to
sell.
- Therefore, her daily
earnings are:
[9 times 2 = 18]

Given: 16 eggs per day, eats
3, bakes 4, sells remainder
at $2 per egg

Then: Eggs eaten and baked =
3 + 4 = 7

Then: Eggs remaining for
sale = 16 - 7 = 9

Then: Earnings per egg = $2

Then: Total earnings = 9 ×
$2 = $18

Thus, Janet makes          

$\boxed{18}$ dollars every

day at the farmers' market.

Answer: \boxed{18}

Final Answer : Final Answer :

Num Steps: 4
Tokens : 239

Num Steps: 6
Tokens : 101

Figure 4: CoT v/s TeleMathLang reasoning chains

2025). To leverage the familiarity of recent LLMs405

with CoT due finetuning on CoT samples, we carry406

out conditioned training (Kang et al., 2024). We407

create a train dataset comprising of CoT as well408

as TeleMathLang demonstrations, creating a class-409

conditioned fine-tuning dataset (with one class for410

CoT and one for TeleMathLang, distinguished by411

the associated prompt). The purpose of this is to412

allow LLMs to learn the correspondence between413

CoT and TeleMathLang reasoning. During infer-414

ence, we provide the TeleMathLang prompt to get415

concise reasoning and response. More descriptions416

of labelling, training and testing are present in Sec-417

tion 4.418

Figure 3 illustrates the overall flow with la-419

belling, prompt-based algorithm and finetuning al-420

gorithm.421

4 Experimental Setup and Results 422

4.1 Experimental Setup 423

Models and Benchmark Datasets We use three 424

external benchmark datasets focusing on math and 425

reasoning: MATH-500 (Hendrycks et al., 2021), 426

GSM8K (Cobbe et al., 2021) and AI2-ARC (Clark 427

et al., 2018). While GSM8k contains grade school 428

math problems, MATH-500 is more challenging, 429

containing competition math problems. ARC con- 430

tains grade school science problems which require 431

logic to solve. Combined, these benchmarks show 432

an LLM’s ability to reason, calculate and solve 433

sequential problems. 434

Models To assess the generalizability of our ap- 435

proach across LLMs we run experiments across 436

0 shot, 4 shot and 8 shot setups on Claude 3.5 437

Sonnet v1 (Anthropic, 2024), Claude 3.7 Sonnet 438

(Anthropic, 2025), Nova Pro (Intelligence, 2024) 439

and Gemma 3 27B (Team et al., 2025) and report 440

the average increase in accuracy and avg token re- 441

duction using TeleMathLang wrt CoT. The 4 shot 442

and 8 shot examples were derived from the open- 443

deepscaler dataset (Dang and Ngo, 2025) which 444

contains challenging math problems not present in 445

the 3 evaluation datasets. 446

Finetuning The Claude, Nova and Gemma mod- 447

els are instruction-tuned to be helpful and general 448

purpose. In contrast, models such as the Qwen 2.5 449

instruct series are post-trained on large corpuses 450

of data with responses in long-CoT format(Qwen 451

et al., 2025). This is done to explicitly increase 452

output length, and the models perform best when 453

prompts match post-training data, and with in- 454

creased test-time computation (Muennighoff et al., 455

2025). We show that prompting-based methods 456

show poor performance here, and that this can be 457

overcome with finetuning. For Qwen 2.5, we fine- 458

tune the 1.5B instruction-tuned model in a condi- 459

tional generation framework as discussed in section 460

3 and compare against CoT instructions as well as 461
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Model MATH-500 GSM8K AI2-ARC Average
CoT TML Token↓ CoT TML Token↓ CoT TML Token↓ Token↓

Sonnet 3.5 v1 54.00% 58.67% 61.33% 89.66% 95.48% 69.21% 95.09% 94.65% 24.10% 51.55%
Sonnet 3.7 70.30% 75.90% 15.98% 95.98% 96.29% 24.76% 96.21% 95.88% 28.35% 23.03%
Nova Pro 72.87% 69.33% 46.52% 95.07% 93.91% 53.68% 93.87% 93.65% 46.33% 48.84%
Gemma 3 27B 76.50% 78.50% 35.88% 93.44% 93.33% 26.40% 92.30% 91.42% 32.46% 31.58%

Table 2: Performance comparison between CoT and TeleMathLang (TML) across datasets averaged across 0, 4
and 8 shot settings, showing accuracy and token reduction (Token↓).TeleMathLang maintains comparable accuracy
while significantly reducing token count. Instances where it outperforms CoT are in bold.

Prompt Type MATH-500 GSM8K
Acc. Token↓ Acc. Token↓

CoT 74.0% 0.00% 95.98% 0.00%
TeleMathLang 75.9% 15.98% 96.29% 24.76%
BeConcise 73.0% 34.51% 95.75% 30.52%
NoProperGrammar 72.2% 35.42% 96.05% 40.54%

Table 3: Comparison of prompting strategies on MATH-500 and GSM8K using Claude 3.7. Token↓ shows
percentage reduction in token count compared to CoT.

CoT-based finetuning. The implementation details462

can be found in appendix D. We reviewed the li-463

censes for all these datasets and models, and en-464

sured that we stick to the intended usage of these465

for research purposes.466

4.1.1 Performance Analysis467

Overall performance results are shown in Table468

2. The gains for some models in particular are469

noticeably large - Claude 3.5 v1 and Nova Pro470

achieve token count reductions of ∼50%+ over471

CoT while preserving accuracy. Accuracy is pre-472

served in other models as well, with token count473

reductions of 20-35%. This shows that TeleMath-474

Lang consistently reduces the number of generated475

tokens across LLMs and benchmark datasets while476

maintaining comparable or improved accuracy.477

4.1.2 TeleMathLang outperforms concise478

prompting instructions479

Recent prompting strategies such as BeConcise,480

NoProperGrammar etc (Lee et al., 2025) have481

demonstrated the ability to reduce output token482

count without major loss in accuracy on simpler483

tasks. Table 3 compares them against TeleMath-484

Lang. All three minimal prompting approaches485

reduce token count. However, TeleMathLang486

uniquely preserves accuracy across both datasets.487

On GSM8K, a relatively less complex bench-488

mark, all prompting methods maintain high perfor-489

mance, while on the more challenging MATH-500490

benchmark, both BeConcise and NoProperGram-491

mar show degraded performance as they prioritize492

brevity. TeleMathLang maintains high accuracy 493

while token reduction is lesser. This aligns with the 494

token complexity hypothesis (Lee et al., 2025) that 495

problems possess an intrinsic token complexity 496

threshold, below which reliable solution genera- 497

tion becomes statistically improbable. TeleMath- 498

Lang allows LLMs to adaptively shorten output 499

token count in response to the complexity of the 500

task. 501

4.1.3 TeleMathLang allows models to perform 502

concise reasoning with low semantic 503

entropy 504

As discussed in Section 2, semantic entropy can 505

be used to measure LLM response certainty and 506

consistency. In this experiment, we compare the se- 507

mantic entropy of TeleMathLang with 0 shot CoT, 508

BeConcise and NoProperGrammar prompts. 509

Semantic Entropy Measurement We randomly 510

sample the MATH-500 dataset and pick 100 prob- 511

lems. For each problem, we generate 20 responses 512

from Claude 3.7 for each prompting approach. We 513

then use gte-large (Li et al., 2023) to get sentence 514

embeddings for the entire output. Finally, we cal- 515

culate the pairwise distances of these embeddings 516

and compare their means. Using sentence embed- 517

dings ensures that the focus remains on semantic 518

meaning and not on individual tokens, and pairwise 519

distances between similar lines of reasoning should 520

be smaller than different lines of reasoning. The 521

results are shown in Table 4. 522

We observe that TeleMathLang’s mean pairwise 523

distance is similar to CoT, while BeConcise and 524
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Prompt Type Mean Pairwise Distance Increase Relative to CoT

CoT 0.048 0.00%
TeleMathLang 0.049 2.08%
BeConcise 0.057 18.75%
NoProperGrammar 0.065 35.42%

Table 4: Mean pairwise cosine distance between response embeddings across prompt types. CoT is used as the
baseline.

Dataset CoT TeleMathLang BeConcise NoProperGrammar Chain-of-Draft
Acc. Token↓ Acc. Token↓ Acc. Token↓ Acc. Token↓ Acc. Token↓

AI2-ARC 55.85% 0.00% 44.30% 26.71% 28.42% 26.83% 17.05% 27.95% 6.68% 67.54%
GSM8K 72.23% 0.00% 67.12% -4.71% 69.21% 24.24% 69.14% 28.94% 51.18% 40.08%

Table 5: Performance comparison of concise promp-based strategies using Qwen 2.5 1.5B. Each cell shows accuracy
and token reduction relative to CoT.

Dataset CoT (non-FT) CoT (FT) TeleMathLang (FT) Conditional Gen.
Acc. Token↓ Acc. Token↓ Acc. Token↓ Acc. Token↓

AI2-ARC 55.85% 0.00% 72.24% 8.18% 70.23% 40.06% 74.92% 38.98%
GSM8K 71.86% 0.00% 71.86% 2.07% 69.85% 52.82% 71.36% 46.29%

Table 6: Qwen-2.5-1.5B on AI2-ARC and GSM8K with various inference strategies. Token↓ shows percentage
reduction in generated tokens relative to non-fine-tuned CoT.

NoProperGrammar result in significantly higher525

distances. Providing a syntax of reasoning key-526

words ensure LLMs perform as many reasoning527

steps as required, allowing them to be more consis-528

tent in their outputs, while general concise prompt-529

ing instructions may lead to increased uncertainty530

as LLMs try to perform complex operations in a531

single step.532

4.1.4 TeleMathLang reduces token count even533

in models post-trained to generate long534

output535

As mentioned in section 2, recent advancements536

especially in math benchmarks are largely at-537

tributable to significant investments on post-538

training on CoT datasets. Due to the usage of539

CoT in SFT, models such as Qwen 2.5 are op-540

timized only in setups where model is asked to541

generate long step-by-step reasoning. Restricting542

these models through instructions hampers perfor-543

mance, and we noticed that prompt-based strategies544

(BeConcise, NoProperGrammar, chain-of-draft) do545

not work in these models(Table 5).546

We finetuned Qwen 2.5 1.5B using pure547

TeleMathLang samples as well as combined sam-548

ples for conditional generation, and compared it549

with CoT prompting as well as finetuning. We find550

that this helps the model learn to perform concise551

reasoning without compromizing on quality, over-552

coming the inflexibility of the base model. Condi- 553

tional generation shows the best performance, as 554

the model learns to associate TeleMathLang solu- 555

tions with CoT since both solutions are present in 556

the training data. The results are shown in table 6. 557

5 Conclusion 558

In this work, we proposed TeleMathLang, a min- 559

imal syntax with reasoning keywords and rules 560

that enables LLMs to generate complete chains- 561

of-thought while reducing total token count. We 562

showed that it generalizes well across instruction- 563

tuned LLMs, and requires light finetuning in mod- 564

els which have been explicitly trained to generate 565

longer chains of thought. It showed significant 566

reduction in output token count without compro- 567

mising accuracy, adaptively changing CoT length 568

according to the token complexity of problems. 569

Finally, the specified keywords and syntactical 570

framework allows LLMs to generate output with 571

low semantic entropy (representing uncertainty) 572

compared to other minimal prompting techniques. 573

The combination of low resource requirement and 574

no loss in accuracy positions TeleMathLang as a 575

promising direction of research, and future work 576

could focus on optimizing reasoning tokens as well 577

as reducing token count within each reasoning step. 578
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Limitations579

We acknowledge the limitations of TeleMathLang580

with a view to motivating further research in this581

field. TeleMathLang-syntax based prompts gener-582

alize well across LLMs, except for models heavily583

post-trained on problems with CoT solutions. Fine-584

tuning such models may require labelled samples,585

which can be generated using other LLMs, but586

care needs to be taken with respect to their accu-587

racy. Additionally, we provide a set of keywords588

beyond just "wait" as in (Muennighoff et al., 2025),589

but more investigation needs to be done in future590

works to understand the most optimal reasoning591

keywords using more diverse reasoning datasets, to592

avoid the risk of disallowing certain critical logical593

operations. Finally, we will explore reducing token594

count further within reasoning steps through more595

explicit instructions.596
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A Boolean Circuit Complexity Classes976

A family of circuits Cn is of constant depth if there977

exists a constant K such that the depth of Cn is978

bounded by K for all n. A family of circuits is of979

polynomial size if there exists a constant c such that980

the size of Cn is bounded by nc + c for all n. The981

set AC0 is the set of families of Boolean circuits 982

of both constant depth and polynomial size (Hao 983

et al., 2022). The set TC0 is a slightly larger set of 984

circuit families that include threshold gates. These 985

sets, with varying depths, sizes and operations, are 986

used to represent complexity of computations - for 987

instance, an operation like majority voting is too 988

complex for AC0 but belongs to TC0. 989

B TeleMathLang prompt template 990

TELEMATHLANG PROMPT
<SYSTEM> PLEASE REASON STEP BY STEP USING
TELEMATHLANG, AND PUT YOUR FINAL ANSWER
WITHIN \BOXED{VALUE}
<USER> YOU SOLVE MATH PROBLEMS USING ULTRA-
MINIMAL TELEMATHLANG LANGUAGE. HERE’S THE
SYNTAX SYNTAX: <SYNTAX IN TABLE 1>
HERE’S A FEW EXAMPLES: <FEW-SHOT>
PROBLEM: <PROBLEM>

Table 7: TeleMathLang Prompt

C Few-shot examples 991

Here we share a few few-shot TeleMathLang ex- 992

amples. We provide the CoT solution side-by-side 993

for reference only. The actual few shot examples 994

included in the prompt only include the TeleMath- 995

Lang solutions. 996

Example 1: Square Window Problem 997

Problem: Doug constructs a square window using 998

8 equal-size panes of glass. The ratio of the height 999

to width for each pane is 5 : 2, and the borders 1000

around and between the panes are 2 inches wide. 1001

In inches, what is the side length of the square 1002

window? 1003
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Chain-of-Thought (CoT) Reasoning

1. Identify the dimensions of each pane:
Given that the ratio of the height to the
width of each pane is 5 : 2, let the height of
each pane be 5x inches and the width be 2x
inches.

2. Calculate the total dimensions of the
window: The window is constructed with
8 panes arranged in 2 rows and 4 columns.
The borders between and around the panes
are 2 inches wide.

3. Calculate the total width of the win-
dow:

• There are 4 panes in each row, each
with a width of 2x inches.

• There are 3 borders of 2 inches be-
tween panes and 2 borders on the sides.

• Total width = 4(2x)+5(2) = 8x+10

4. Calculate the total height of the win-
dow:

• There are 2 panes in each column, each
with a height of 5x inches.

• There is 1 border between panes and 2
borders at the top and bottom.

• Total height = 2(5x)+3(2) = 10x+6

5. Set up the equation for the square:
Since the window is square,

8x+ 10 = 10x+ 6

6. Solve for x:

8x+ 10 = 10x+ 6

10 = 2x+ 6

4 = 2x

x = 2

7. Calculate side length:

8(2) + 10 = 16 + 10 = 26 inches

8. Final Answer:

26
1004

TeleMathLang Reasoning

• Given: Square window, 8 panes, pane
ratio 5:2 (h:w), 2-inch borders

• Let: Pane height = 5x, width = 2x

• Then: Window layout = 2 rows × 4
columns

• Then: Total width = 4(2x) + 5(2) =
8x+ 10

• Then: Total height = 2(5x) + 3(2) =
10x+ 6

• Check: 8x+ 10 = 10x+ 6

• Then: x = 2

• Then: Side length = 26

• Verify: 26 = 26

• Answer: 26
1005
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Example 2: Polynomial Interpolation1006

Problem1007

Problem: Let P (x) be a polynomial of degree 3n1008

such that:1009

P (3k) = 2,

P (3k − 2) = 1,

P (3k − 1) = 0, for k = 1, . . . , n

1010

and P (3n+ 1) = 730. Find n.1011

Chain-of-Thought (CoT) Reasoning

To solve for n, we analyze the polynomial P (x) using
Lagrange Interpolation.

1. Define points:

• P (3k) = 2 for k = 0, 1, . . . , n

• P (3k − 2) = 1, k = 1, . . . , n

• P (3k − 1) = 0, k = 1, . . . , n

2. Interpolation:

P (x) = 2

n∑
p=0

∏
0≤r≤3n
r ̸=3p

x− r

3p− r

+

n∑
p=1

∏
0≤r≤3n
r ̸=3p−2

x− r

3p− 2− r

3. Evaluate at x = 3n+ 1:

P (3n+ 1) = 2

n∑
p=0

∏
0≤r≤3n
r ̸=3p

3n+ 1− r

3p− r

+

n∑
p=1

∏
0≤r≤3n
r ̸=3p−2

3n+ 1− r

3p− 2− r

4. Simplify with alternating binomial sum:

P (3n+ 1) =

((
3n+ 1

0

)
−

(
3n+ 1

3

)

+

(
3n+ 1

6

)
− · · ·

)
(2(−1)3n − 1) + 1

5. Given: P (3n+ 1) = 730:

(alternating sum) (2(−1)3n − 1) = 729

6. Use lemma:

23n+2 · sin3n+1
(
π
3

)
3

= 729 ⇒ n = 4

7. Conclusion:
n = 4

1012

TeleMathLang Reasoning

Given: P (x) of degree 3n
Let: P (3k) = 2, P (3k − 2) = 1, P (3k − 1) = 0
for respective ranges
Let: P (3n+ 1) = 730
Approach: Lagrange interpolation
Then:

P (x) = 2

n∑
p=0

∏
r ̸=3p

x− r

3p− r
+

n∑
p=1

∏
r ̸=3p−2

x− r

3p− 2− r

So:

P (3n+1) =

((
3n+ 1

0

)
−

(
3n+ 1

3

)
+ · · ·

)
·
(
2(−1)3n − 1

)
+ 1

Check: Matches given P (3n+ 1) = 730
Solve: Alternating binomial identity
Lemma: 23n+2 sin3n+1(π/3)

3
= 729 ⇒ n = 4

Answer: 4

1013

D Finetuning Implementation Details 1014

Implementation details We use Qwen’s recom- 1015

mended settings (temperature, repetition penalty 1016

etc) shared by Qwen developers (Qwen, 2024) 1017

with vllm for inference, and for finetuning, we use 1018

huggingface’s TRL library. We evaluate the per- 1019

formance of Conditional Generation against CoT 1020

w/o fine tuning, CoT with fine-tuning, and solely 1021

TeleMathLang fine-tuning. The model is trained 1022

for 10 epochs on a train dataset sample of size 1000, 1023

with learning rate 5e−5 for TeleMathLang and CoT, 1024

and for 5 epochs with combined 2000 samples for 1025

conditional generation 1026
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