
Artemis: Efficient Commit-and-Prove SNARKs for zkML

Hidde Lycklama1*, Alexander Viand2*, Nikolay Avramov1, Nicolas Küchler1, Anwar Hithnawi3

1ETH Zurich 2Intel Labs 3University of Toronto

Abstract
The widespread adoption of machine learning (ML) in various
critical applications, from healthcare to autonomous systems,
has raised significant concerns about privacy, accountabil-
ity, and trustworthiness. To address these concerns, recent
research has focused on developing zero-knowledge machine
learning (zkML) techniques that enable the verification of
various aspects of ML models without revealing sensitive
information. Recent advances in zkML have substantially im-
proved efficiency; however, these efforts have primarily opti-
mized the process of proving ML computations correct, often
overlooking the substantial overhead associated with verifying
the necessary commitments to the model and data. To address
this gap, this paper introduces two new Commit-and-Prove
SNARK (CP-SNARK) constructions (Apollo and Artemis)
that effectively address the emerging challenge of commit-
ment verification in zkML pipelines. Apollo operates on KZG
commitments and requires white-box use of the underlying
proof system, whereas Artemis is compatible with any homo-
morphic polynomial commitment and only makes black-box
use of the proof system. As a result, Artemis is compatible
with state-of-the-art proof systems without trusted setup. We
present the first implementation of these CP-SNARKs, evalu-
ate their performance on a diverse set of ML models, and show
substantial improvements over existing methods, achieving
significant reductions in prover costs and maintaining effi-
ciency even for large-scale models. For example, for the VGG
model, we reduce the overhead associated with commitment
checks from 11.5x to 1.2x. Our results suggest that these
contributions can move zkML towards practical deployment,
particularly in scenarios involving large and complex ML
models.

1 Introduction

In recent years, the use of machine learning (ML) has be-
come increasingly pervasive, with applications ranging from
personalized recommendations and healthcare diagnostics to

* These authors contributed equally to this work.

conversational agents like ChatGPT and autonomous vehicles.
As ML transitions from an academic tool to a widely used
technology with real-world impacts, concerns about privacy,
accountability, and trustworthiness are mounting. In response,
there has been a push to regulate AI, including efforts by
governments to ensure these technologies are deployed re-
sponsibly and ethically [3, 26, 33]. At the same time, the
research community has increasingly recognized that ensur-
ing the integrity and correctness of ML models is crucial for
maintaining trust in these systems, especially in high-stakes
domains. This, in turn, has driven a wide range of research
focused on developing transparent, verifiable, and auditable
machine learning methods, targeting various stages of model
development and deployment [12, 31, 32, 38, 41].

Much of the ML verification and auditing research assumes
access to models and their underlying data. However, this as-
sumption is often infeasible, particularly in contexts involving
sensitive data or where organizations are unwilling to share
models for competitive reasons. To address this, some recent
efforts have focused on leveraging cryptographic techniques
to verify various properties of ML models without requir-
ing direct access to data or models, thereby preserving the
privacy needed in these applications. Specifically, many of
these efforts leverage zero-knowledge proofs (ZKPs) to verify
various aspects of the data and/or the model, also known as
“zkML” [10,27,29,30,46]. Applying Zero-Knowledge proofs
to ML can present significant challenges due to the scalability
issues inherent in ML. However, recent advances in zkML
have greatly improved its efficiency and scalability, with the
most efficient approaches today leveraging advanced lookup
features in modern proof systems to optimize the proving pro-
cess. In particular, zkML systems based on Halo2-style proof
systems have demonstrated significant performance gains, al-
lowing for large-scale, trustless deep learning inference with
minimal overhead [10, 27].

Due to their zero-knowledge nature, zkML proofs do not
disclose the specifics of the model used in an inference,
thereby preserving intellectual property and privacy. However,
this also means that such a proof of inference only verifies
the correct execution of a machine learning model without

1

ar
X

iv
:2

40
9.

12
05

5v
1

 [
cs

.C
R

]
 1

8
Se

p
20

24

providing information about the model’s identity. A proof of
that is, by itself, not generally useful in practice, as it does
not ensure the computation was performed using the intended
model or that the model itself was not tampered with or re-
placed. Therefore, linking the proof to a specific model for
which certain guarantees have been established – such as
being trained under specific conditions or fulfilling particu-
lar attributes – is crucial. In practice, this link is established
through cryptographic commitments to the model and, as part
of the ZKP, demonstrating that the model in the zkML proof
indeed corresponds to the model that was committed to.

To date, the vast majority of research in zkML has focused
primarily on enhancing the efficiency of proving ML com-
putations while largely neglecting the overhead associated
with ensuring the consistency between the model and the
model commitment [27]. However, as zkML methods con-
tinue improving, the overhead associated with model com-
mitments is becoming a significant bottleneck. Recent stud-
ies have observed that commitment-related operations can
account for a substantial portion of the total overhead in in-
ference pipelines [16, 27]. In fact, as we show in this work,
for larger models, existing approaches to commitment consis-
tency checks for zkML [4,16,27,45] can dominate the overall
verification time with, for some models, more than 90% of
the prover’s time spent on these checks rather than on ML
computations.
Commit-and-Prove SNARKs. The need to efficiently verify
that a part of a witness in a ZKP matches a value that was
committed to earlier arises in many contexts beyond zkML.
Similar patterns occur in applications such as anonymous
credential systems, e-voting schemes, verifiable encryption
protocols, and decentralized auditing systems [1]. Campan-
elli et al. [9] formalize this as Commit-and-Prove SNARKs
(CP-SNARKs), i.e., a Succinct Non-Interactive Argument
of Knowledge (SNARK) that can also show that (a part of)
the witness is consistent with an external commitment. For
certain types of ZKPs, such as Sigma Protocols and Bullet-
proofs [6], expressing statements about values contained in
commitments is an inherent part of the protocol. As a result,
these SNARKs either directly fulfill the Commit-and-Prove
SNARK (CP-SNARK) definition or can be trivially adapted
to fulfill it [6,11]. However, for most generic SNARKs, an ex-
plicit construction is required [1,7,9]. This can either take the
form of re-computing a commitment inside the SNARK (as
is done in current zkML works that consider commitments),
or it can take the form of an extension to the underlying proof
system (as is the case in the LegoSNARK [9] line of work).
Contributions. In this paper, we present a new approach
for constructing efficient Commit-and-Prove SNARKs that
incorporates minimal computation within the SNARK and
extends the underlying proof system in a highly efficient
manner. More concretely, this paper presents the following
contributions:

1. We introduce Apollo, a new Commit-and-Prove SNARK

that extends the LegoSNARK-style techniques initially pro-
posed in Lunar [7, 8]. Apollo simplifies the construction
process by minimally adapting the arithmetization of the
witness within the SNARK. This optimized approach al-
lows Apollo to achieve 7.3x improvements in prover time
over Lunar. However, Apollo inherits the trusted setup re-
quirement from Lunar [7].

2. We also propose Artemis, a new Commit-and-Prove
SNARK, which only makes black-box use of the underly-
ing SNARK and supports any homomorphic polynomial
commitment. As a result, it supports modern state-of-the-
art proof systems without trusted setup, such as Halo2 with
IPA-based commitments [17].

3. We provide the first implementation of Lunar’s CP-
SNARK, along with our implementations of the Apollo
and Artemis constructions, all of which are made publicly
available as open-source software1.

4. We evaluate Apollo and Artemis on a diverse set of ML
models, including GPT-2 [35], utilizing state-of-the-art
zkML techniques for proving the correctness of ML compu-
tations [10]. Our evaluation shows that Apollo and Artemis
dramatically outperform existing approaches, improving
upon the state of the art by an order of magnitude. In addi-
tion, we show that Artemis without trusted setup achieves
effectively the same performance as Apollo (and Artemis)
with trusted setup.

2 Background

We begin by defining the two core building blocks of our
work, namely Polynomial Commitments and (Commit-and-
Prove) SNARKs. We then outline the Plonkish Arithmetiza-
tion framework, which underpins the proof systems used in
state-of-the-art zkML. These details will be relevant to under-
standing how we efficiently instantiate our construction for,
e.g., the Halo2 proof system [17]. Due to space constraints,
we refer to Appendix A for additional definitions.
Notation. We use the standard notation for bitstrings {0,1}∗,
groups (h generates G) and fields Fp with order p. We use
bracket notation to denote ranges, e.g., [n] = {1, . . . ,n}, and
symbols representing polynomials are displayed in bold. We
define a language L as a subset of {0,1}∗ and a relation R as
a subset of {0,1}∗×{0,1}∗. The asymptotic security notions
in this section are all quantified over λ-compatible relations
Rλ and we therefore use the simplified notation R instead.

2.1 Polynomial Commitments

Definition 2.1 (Polynomial Commitments [28]). Polynomial
commitments allow a prover to commit to a polynomial while
retaining the ability to later reveal the polynomial’s value at

1https://github.com/pps-lab/artemis

2

https://github.com/pps-lab/artemis

any specific point, along with a proof that the revealed value is
indeed correct. These commitments are an important building
block for constructing succinct proofs. A polynomial com-
mitment scheme consists of a triple (PC.Setup, PC.Commit,
PC.Eval), where:

• PC.Setup(d)→ ck: prepares the public parameters given
the maximum supported degree of polynomials d and out-
puts a common reference string pp.

• PC.Commit(ck,g,r)→ c: computes a commitment c to a
polynomial g, using randomness r.

• PC.Eval(ck,c,x,y;g,r)→ {0,1}: A protocol in which the
prover convinces a verifier that c commits to f such that
f (x) = y.

A polynomial commitment scheme is secure if it provides cor-
rectness, polynomial binding, evaluation binding, and hiding
properties. We refer to [28] for a formal definition of these
properties. Additionally, we require that PC.Eval be an in-
teractive argument of knowledge with knowledge soundness,
ensuring the existence of an extractor that can recover the
committed polynomial from any evaluation, provided it has
full access to the adversary’s state.

2.2 zk-SNARKs

A proof for a relation R is a protocol between a prover P
and an efficient verifier V by which P convinces V that ∃w :
R (x,w) = 1, where x is called an instance, and w a witness
for x. If the proof is a single message from P to V , it is non-
interactive and consists of three polynomial-time algorithms:

• Setup(1λ,R)→ (pp,vk): Setup public parameters crs and
a verification key vk for a relation R and security parameter
λ.

• Prove(pp,x,w)→ π: If R (x,w) = 1, output a proof π.

• Verify(vk,x,π)→{0,1}: Verify a proof π for instance x.

Proofs generally support a class of relations, for instance
bounded size arithmetic circuits, including the size of a re-
lation |R |. A proof that satisfies completeness, knowledge
soundness, and succinctness is a Succinct Non-Interactive
Argument of Knowledge (SNARK). If the proof also satisfies
zero-knowledge, i.e., it does not reveal any other information
than the statement being true, it is a zero-knowledge Suc-
cinct Non-Interactive Argument of Knowledge (zk-SNARK).
We provide formal definitions of these properties in Defini-
tion A.4 in Appendix A.
Commit-and-Prove SNARK (CP-SNARK). CP-SNARKs
are SNARKs where the instance contains one or more commit-
ments to parts of the witness [1,7,9]. In particular, the instance
contains a set of commitments, i.e., (x,c1, . . . ,cℓ), to subsets
of the witness (w,r1, . . . ,rℓ) where ci = Com.Commit(wi,ri)
with wi a subset of the witness.

Definition 2.2 (CP-SNARKs [9]). Let R be a relation
over Dx×Dw where Dw splits over ℓ+1 arbitrary domains
D1× . . .×Dℓ×Dv for some arity parameter ℓ ≥ 1. We de-
note the sub-witnesses w1, . . . ,wℓ,wv following this split. Let
Com = (Com.Setup,Com.Commit,Com.Verify) be a commit-
ment scheme (as per Definition A.1) whose message space
M is such that Di ⊂M for all i ∈ [ℓ]. A Commit-and-Prove
SNARK for a relation R and a commitment scheme Com is
a SNARK for a relation R Com such that:

R Com =


((x,c1, . . . ,cℓ),(w,r1, . . . ,rℓ)) :

(x,w) ∈ R∧
j∈[ℓ] Com.Verify(ck,c j,w j,r j) = 1


CP-SNARKs satisfy completeness, knowledge soundness,
and succinctness properties similar to SNARKs. Similar to
zk-SNARKs, we can also consider a zero-knowledge variant
of CP-SNARKs. We refer to Campanelli et al. [9] for a formal
definition of CP-SNARK properties.

2.3 Arithmetization

In the context of SNARKs that express statements over com-
putations, the computation is generally expressed as bounded-
depth arithmetic circuits. As most SNARKs internally rely
on representing constraints as polynomials, arithmetization
acts as an intermediary between the (circuit) computation
and the polynomial representation required by the underlying
proof system. Specifically, arithmetization reduces statements
about computations to algebraic statements involving poly-
nomials of a bounded degree. Some operations can be easily
transformed into arithmetic operations, either because they
are algebraic operations over a finite field or because they
can be easily adapted to algebraic operations. However, more
complex operations (e.g., comparisons or any higher-order
function) are not as easily expressed in arithmetic circuits.
As a result, modern SNARKs generally support more ad-
vanced arithmetization, such as lookups and custom gates that
can help address this overhead. This induces a complex de-
sign problem, where different approaches to arithmetizing the
same computation can give rise to proofs with vastly different
efficiency. In the following, we focus on the Plonkish arithme-
tization that is used by many state-of-the-art proof systems,
including Halo2 [17]. Halo2 is zk-SNARK that builds upon
the original Halo protocol [5] but combines it with Plonk-
ish arithmetization to express functions or applications as
circuits, as originally introduced by Plonk [18]. Specifically,
Halo2 relies on UltraPLONK’s [2] arithmetization, which
adds support for custom gates and lookup arguments.

Definition 2.3 (Plonkish Arithmetization [2, 17]). Consider a
grid comprised of n rows (where n = 2k for some k) with n f
fixed columns, na advice columns, and np instance columns.
Let Fi, j ∈ Fp be the value in the j-th row of the i-th fixed

3

column, and let Ai, j and Pi, j be defined equivalently for
advice and instance columns, respectively. Let {fi(X)}i∈n f ,
{ai(X)}i∈na , and {pi(X)}i∈np be the polynomials representing
the fixed, advice, and instance columns, respectively, where
• fi(X) interpolates s.t. fi(ω

j) = Fi, j for i ∈ [n f], j ∈ [n]

• ai(X) interpolates s.t. ai(ω
j) = Ai, j for i ∈ [na], j ∈ [n]

• pi(X) interpolates s.t. pi(ω
j) = Pi, j for i ∈ [np], j ∈ [n].

for ω ∈ Fp a n = 2k primitive root of unity.
Constraints for (custom) gates are expressed as multivariate

polynomials bi in n f +na +ni +1 indeterminates of degree
at most n−1, for which we only consider their evaluation at
points of the form:

bi(X , f0(X), ..., fn f−1(X),a0(X), ...,ana−1(X),

p0(X), ..., pnp−1(X)).

We refer to the extensive literature on Plonkish arithmetization
for details on copy and permutation constraints [11,17,18,39].

3 Related Work

In this section, we provide a concise overview of recent devel-
opments in zkML, focusing on key state-of-the-art results. We
then review existing work on Commit-and-Prove SNARKs
and discuss their limitations.
zkML. The field of zero-knowledge machine learning has
seen rapid development in recent years, driven by the applica-
tion and optimization of various proof systems for ML infer-
ence and training tasks. While there has been some work ad-
dressing ML training [20,40,44], the majority of research has
concentrated on ML inference. Initial efforts in this area were
primarily focused on convolutional neural networks (CNNs)
and used early proof systems such as Groth16 [23], which are
capable of proving statements about relations formulated as
Quadratic Arithmetic Programs (QAPs).

For instance, ZEN [16] proposes a stranded encoding
method to optimize the multiplication of multiple small
fixed-point numbers in one field element. vCNN [29] and
pvCNN [46] enhance support for CNN architectures by
proposing arithmetizations of convolutions that significantly
reduce the number of multiplications required in their QAP
representation. zkCNN [30] proposes a novel technique
for proving convolutions with linear prover time using a
sumcheck-based protocol. However, these works do not con-
sider more recent ML developments and are generally not
practical for larger models.

More recent research has favored the Halo2 proof system,
which supports Plonkish arithmetization, due to its enhanced
expressiveness and the absence of a trusted setup [5]. In par-
ticular, the support for custom gates and lookup arguments
enables more efficient arithmetization of complex ML lay-
ers, which were previously costly to arithmetize. Kang et

al. [27] propose a construction based on Halo2 to prove infer-
ence for ImageNet-scale models, demonstrating a substantial
improvement in prover time compared to earlier methods.
EZKL [15, 19, 43] provides an open-source platform that can
arithmetize computational graphs to Plonkish, with support
for a wide variety of deep learning and data science models.
Finally, ZKML [10] introduces an optimizing compiler that
translates Tensorflow Lite models into Plonkish arithmetiza-
tions for Halo2, supporting a wide range of neural network
layers and models related to computer vision and language
models, including language models such as GPT-2.
Commit-and-Prove SNARKs. Most zkML works over-
look the issue of commitments entirely. The few that do dis-
cuss it, generally propose a straightforward approach based
on effectively “(re-)computing” the commitment inside the
SNARK [14,16,27,45]. However, commitments and SNARKs
generally rely on different algebraic structures; therefore, one
needs to emulate operations, such as elliptic curve computa-
tions, using a large number of arithmetic circuit operations.
To address this mismatch, ZK-friendly elliptic curves (e.g.,
the Jubjub curve from Zcash [17]) have been proposed. These
curves reduce the overhead by decreasing the number of con-
straints needed to verify a commitment, but, despite these
improvements, they remain far from efficient. Given these
limitations of ZK-friendly elliptic curves, recent research has
shifted towards hash-based commitments. While conventional
hash functions like (e.g., SHA256) introduce more overhead
than elliptic curve-based methods, ZK-friendly hash functions
such as Poseidon [21] provide a more efficient alternative,
outperforming elliptic curve-based commitments, including
those using ZK-friendly curves. Nonetheless, our evaluation
shows that even with these improvements, the overhead re-
mains too high for zkML, particularly when dealing with
large-scale models.

Campanelli et al. formalized the notion of “commit-and-
proof-SNARKs” (CP-SNARKs) [9], and proposed an alter-
native approach to constructing them in LegoSNARK [9]
which proposed an adaptation of the Groth16 [23] zk-SNARK
to a CP-SNARK. Subsequent works have proposed CP-
SNARKs for a variety of proof systems. For example, Chen
et al. show how to convert sumcheck-based SNARKs to
CP-SNARKs [11], though this only applies for expensive
multilinear commitments which are required for sumcheck.
Eclipse [1] introduces a compiler that transforms Interactive
Oracle Proof (IOP)-style SNARKs instantiated with Pedersen-
like commitments into CP-SNARKs relying on amortized
Sigma protocols. This transformation results in a proof size
sublinear in the number of commitments and size of the com-
mitted witness. However, the verifier’s computational over-
head is linear with respect to the committed input size, which
significantly impacts the verifier efficiency when a large por-
tion of the witness is committed, as is the case in zkML.

Most relevant to our work, Lunar [7, 8] presents a com-
piler for IOP-style SNARKs with polynomial commitments

4

by proving shifts of related polynomials using a pairing-
based construction. This method offers a proof size over-
head that is independent of the size of the committed wit-
ness. However, a limitation of this approach is that it only
supports pairing-based polynomial commitments, which, for
all currently known pairing-based polynomial commitments,
requires a trusted setup [5]. Lunar does not provide an imple-
mentation and, as we show in the following sections, makes a
series of simplifying assumptions about the layout and cost
model of Plonkish arithmetizations. As we discuss in § 4.1,
these result in significant overheads when applying Lunar in
practice.

4 Design

We begin by presenting Apollo, a CP-SNARK in the Lego-
SNARK style [9] for Plonk [2, 18] and KZG-style commit-
ments [28]. Next, we introduce Artemis, a CP-SNARK that
operates with arbitrary proof systems (i.e., makes only black-
box use of the underlying SNARK) that supports any homo-
morphic polynomial commitment. Most importantly, it sup-
ports state-of-the-art proof systems like Halo2 that do not re-
quire a trusted setup. We then provide a formal security proof
for Artemis. Finally, we discuss the efficient instantiation of
Artemis for proof systems like Halo2 that use Plonkish arith-
metization. A detailed discussion of concrete performance
and a comparison to existing approaches is deferred to the
next section (cf. § 5).

4.1 Apollo: Improved CP-SNARKs for Plonk and KZG

Recent zkML advancements based on Plonk-style proof
systems have significantly reduced the overhead associated
with proving ML computations [10, 27, 43]. Nonetheless,
these works have either overlooked commitment checks en-
tirely or only considered "recomputation" approaches, such
as Poseidon-based commitments [27, 45]. Meanwhile, out-
side the scope of zkML, a series of works beginning with
LegoSNARK [9] have introduced alternative approaches for
handling commitment checks. These approaches are based
on the insight that SNARKs, in general, inherently require
committing to the witness internally. As a result, these works
bypass the need to add costly recomputation constraints to
the SNARK by constructing specialized proofs that link these
internal witness commitments to external commitments. This
has the potential to dramatically improve performance. How-
ever, as we discuss below, these solutions unfortunately have
significant limitations in practice. We address these limita-
tions by introducing Apollo, which significantly optimizes
the state-of-the-art approach.

Lunar [7] proposes a LegoSNARK-style construction for
Plonk-style proof systems that represents the current state
of the art. One of the key challenges in this approach to CP-
SNARKs is that the internal witness commitments usually do

not directly correspond to the commitments we want to verify.
For example, internal commitments generally commit to more
than just the (part of) the witness that we are interested in. As
a result, Lunar actually introduces two specialized proofs: a
shifting proof (CP(2)

link in [7]) that effectively aligns the external
and internal commitments, and the core linking proof (CP(1)

link
in [7]) that establishes that the external proofs indeed commit
to the witness values.

For example, in the Plonkish arithmetization (cf. Defi-
nition 2.3), the witness values of interest (e.g., the model
weights) might appear across a variety of rows and columns
in the grid. As part of the proof, the prover commits to a poly-
nomial encoding of each column in the grid. Thus, the witness
values of interest will be spread across multiple commitments
and also across the entire evaluation domain. The shifting
proof in Lunar shows that the original external commitment
and a shifted version that aligns the values to the evaluation
domain of the witness values are commitments to the same un-
derlying polynomial. Lunar’s construction only operates on a
single column, i.e., in the case of witness values being spread
across multiple columns and, therefore, commitments, multi-
ple instances of the shifting and linking proofs are required.
More importantly, Lunar assumes that the values for each
external commitment appear contiguously inside the witness
column, which is unlikely to be the case for zkML. Whenever
a value appears out-of-order, or after a gap, additional shift-
ing and linking proofs are required. As a result, Lunar incurs
significant overheads when applied to real-world settings be-
cause of the large amount of additional shifting and linking
proofs to align complicated real-world arithmetizations with
the external commitments. We show in our evaluation (cf. § 5)
that these overheads are significant in practice.

In Apollo, our key insight is that instead of addressing the
complexity of aligning commitments with complex real-world
arithmetizations through multiple external proofs, we can ex-
ploit the flexibility of Plonkish arithmetizations to perform the
alignment once inside the Plonk proof. Specifically, we add
an additional advice column ana+1 that contains the witness
values of interest in the same sequence as they appear in the
external commitment, and already aligned correctly on the
evaluation domain. We then add a copy constraint bi for each
witness value to link the new copies to their original cells
in the grid. With this, we can directly perform the linking
proof between the new advice column ana+1 and the external
commitments c1, . . . ,cℓ. In case there are more witness val-
ues than can fit a single column, we overflow into additional
columns, each requiring one additional linking proof.

Our approach entirely removes the need to perform the
shifting proofs and dramatically reduces the number of link-
ing proof instances. For example, for an inference proof for
MobileNet [37], Lunar requires 20 shifting and 20 linking
proofs, while Apollo requires only a single linking proof. We
omit formal proofs for Apollo, as we directly use the linking

5

ΠArtemis = ⟨P((x,c1, . . . ,cℓ),(w,r1, . . . ,rℓ)),V ((x,c1, . . . ,cℓ))⟩

P : µ←$ Fp,rµ←$ Fp,cµ← PC.Commit(ck,µµµ,rµ) where µµµ is the degree-0 polynomial defined by µ and send cµ to V

V : α←$ Fp,β←$ Fp and send α,β to P

P : define r← rµ +∑
ℓ
i=0 ri+1 ·αi and g := µµµ+∑

ℓ
i=0 wi+1 ·αi where wi is defined by interpreting wi as a coefficient vector

P : ρ← g(β) and send ρ to V

P and V execute the zk-SNARK Π with ((x,α,β,ρ),(w,µ)) for the relation

 ((x,α,β,ρ),(w,µ))
:

(x,w) ∈ R ∧ρ = (µµµ+∑i wi+1 ·αi)(β)


and halt if Π aborts

P and V define c← cµ +∑
ℓ
i=0 ci+1 ·αi

P and V execute PC.Eval(ck,c,β,ρ;g,r) and output the result

Figure 1: Artemis CP-SNARK. We denote w1, . . . ,wℓ,wv as the sub-witnesses of w ∈Dw following the split of Dw.

protocol (CP(1)
link) from Lunar [7] and otherwise merely extend

the arithmetization of the underlying SNARK in a straightfor-
ward manner. Though Apollo represents a significant advance
compared to the existing state of the art, it inherits some of
the inherent shortcomings of Lunar’s construction. Specifi-
cally, both Lunar and Apollo are white-box constructions that
depend very explicitly on details of the arithmetization, the
commitments, and the proof system. In addition, Lunar’s link-
ing proof (CP(1)

link) requires a pairing-based polynomial com-
mitment, i.e., KZG which requires a trusted setup. Therefore,
we next discuss Artemis, which addresses these drawbacks.

4.2 Artemis: Efficient CP-SNARKs w/o Trusted Setup

Current CP-SNARK constructions are closely tied to the spe-
cific proof systems and commitments they employ. In contrast,
the re-computing approach is more general, as it treats the un-
derlying proof system as a black box, but this flexibility comes
with considerable overhead. With Artemis, we propose a new
approach for CP-SNARKs that achieves both generality and
efficiency. Our approach is compatible with any homomor-
phic polynomial commitment and any generic proof system
(i.e., we only make black-box use of the proof system).
Polynomial Commitments. To verify the consistency of
committed witness elements in a homomorphic polynomial
commitment, consider the following setup. Let wi for i ∈ [ℓ]
be the part of the witness w (cf. Definition 2.2) that is
committed to in a homomorphic polynomial commitment
ci (cf. Definition 2.1). For our CP-SNARK, we need to check
ci

?
= PC.Commit(ck,wi,ri) for ri ∈ Fp, where wi denotes the

the polynomial encoding of wi. Equivalently, we can ex-
press this as checking that wi

?
= wi

′, where wi
′ ∈ Fp [X] s.t.

ci = PC.Commit(ck,wi
′,r′i) for r′i ∈ Fp. At first glance, this

might suggest that verification via the SNARK requires re-
computing the commitment, as is typically required with Po-

seidon hash-based commitments. However, as polynomial
commitments offer the ability to compute an opening of the
polynomial evaluated at a specific point (PC.Eval), we can
simplify the process by evaluating gwi on a random point β

and checking that it matches the opening of the commitment
at β (i.e., PC.Eval(ck,c,β,wi(β);wi

′,r′i) = 1). This approach
relies on the well-known DeMillo–Lipton–Schwartz–Zippel
Lemma (c.f. Lemma A.5 in Appendix A), which states that a
polynomial of degree d over a field F evaluated at a random
point is non-zero with probability at most d/|F|.
Efficient Checking of Polynomial Commitments. Evaluat-
ing the polynomial wi corresponding to the witness at a ran-
dom point β requires only a few arithmetic operations, and can
therefore be done very efficiently inside the SNARK. How-
ever, opening a polynomial commitment to a specific point is
generally more expensive than recomputing the commitment.
For example, for KZG commitments, this opening requires
essentially the same computation as the original commitment
and also additional pairing operations. However, with a poly-
nomial commitment, we can use PC.Eval outside the SNARK
to evaluate the commitment on the same random point with-
out leaking the entire polynomial. Specifically, we can run
this computation outside the SNARK by releasing the point
ρi = wi(β) from the SNARK as ρi = wi(β)+µi for a random
masking value µi←$ Fp. Using a homomorphic polynomial
commitment, the prover can easily provide a commitment
cµi = PC.Commit(µµµi,rµi) where µµµi is the polynomial encod-
ing of µi and rµi ←$ Fp. This allows us to run PC.Eval not on
(ck,ci,β,ρi;wi,ri) but on (ck,ci + cµi ,β,ρi;wi + µµµi,ri + rµi),
removing any potential leakage.
Aggregating Multiple Commitments. Up to this point, we
have considered each wi and ci individually. However, a key
advantage of our approach—particularly in comparison to
Lunar and Apollo —is the ability to aggregate all wi and
ci, thereby reducing the number of commitment checks to
a single PC.Eval operation. To achieve this, we compute a

6

linear combination with an additional challenge α from the
verifier, specifically, we set:

ρ = (µµµ+∑i wi ·αi)(β)

where µµµ is the polynomial encoding of a single random mask-
ing value µ←$ Fp, and α←$ Fp is the verifier-provided chal-
lenge. We then run a single instance of PC.Eval:

PC.Eval(ck,cµ +∑i ci ·αi,β,ρ;µµµ+∑i wi ·αi,rµ +∑i ri ·αi).

We show in our proof that the knowledge soundness error this
introduces is negligible. Note, that this is distinct from the
usual batch opening that some polynomial commitments sup-
port (e.g., employed in Plonk with KZG commitments [17]).
Since we only consider opening of commitments at the same
value, and do not need to verify each result individually but
only the aggregated value, our optimization technique applies
to any homomorphic polynomial commitment.
ΠArtemis Construction. We construct ΠArtemis, a (zk) CP-
SNARK for a relation R matching Definition 2.2 and a homo-
morphic polynomial commitment scheme PC, given PC and a
SNARK (or zk-SNARK) Π for a R ′ that we will define below.
We provide the complete protocol in Figure 1, and focus on
discussing key points below. The prover commits to a random
mask µ (specifically, its polynomial encoding µµµ) and sends
the commitment cµ to the verifier. The verifier replies with
two challenge values, α and β. The prover uses α to compute
a linear combination g of the witnesses wi masked with µµµ.
The prover then evaluates g at β and sends the resulting value
ρ to the verifier. This enables the prover and verifier to run
a SNARK Π for a slightly extended version of the original
relation:

R ′ =

 ((x,α,β,ρ),(w,µ))
:

(x,w) ∈ R ∧ρ = (µµµ+∑i wi+1 ·αi)(β)


I.e., we extend the original relation by a simple masked poly-
nomial evaluation of a linear combination of the witness poly-
nomials at a challenge point. In practice, this does not intro-
duce a significant overhead, and we discuss how to augment
arithmetizations of R to efficient arithmetizations of R ′ in
§ 4.4. Assuming Π does not abort, the protocol then proceeds
to using PC.Eval to show that the commitments evaluate to
the same value. Towards this, both verifier and prover com-
pute a masked linear combination of the commitments using
α which is possible due to their homomorphic nature. This,
together with the masked linear combination of the witness
polynomials, and a masked linear combination of the commit-
ment randomnesses, forms the input to PC.Eval. Due to the
(repeated applications of) DeMillo–Lipton–Schwartz–Zippel
Lemma, this check will complete (with high probability) only
if the witnesses in the SNARK indeed agree with the commit-
ted values. We provide a full proof of security for Artemis in
§ 4.3.

|π| Prove (time) Verify (time)

Eclipse [1] O(log(ℓ ·d)) O(ℓ ·d) O(ℓ ·d) G
Lunar [7] O(ℓ) O(ℓ ·d) O(ℓ) P
Apollo (§4.1) O(ℓ) O(ℓ ·d) O(ℓ) P
Artemis (§4.2) O(ℓ) O(ℓ ·d) O(ℓ) G + O(1) P

Table 1: Asymptotic comparison of the overhead introduced
by CP-SNARKs for Plonkish relations with KZG-style com-
mitments, with ℓ input commitments each of size d. Prover
time is expressed in group operations, while verifier time is
split into group exponentiations (G) and pairings (P).

Cost Analysis. We provide a comparison of the asymptotic
complexity of CP-SNARKs that support Plonkish relations
in Table 1. We consider only instantiations using KZG-style
commitments, as Lunar and Apollo are only compatible with
these. We report the commitment checking overhead, i.e.,
the overhead of the CP-SNARK over an equivalent non-CP
SNARK for the same relation. All approaches introduce linear
prover overhead, which is likely optimal as simply reading
the external commitments already induces such an overhead.
Similarly, all approaches add linear overhead to the proof size.
While Lunar, Apollo and Artemis all add verifier overhead
that is linear in the number of external commitments, we note
that for Artemis, we require only a single pairing operation
with the linear overhead only consisting of efficient group
operations. We note that asymptotics do not provide a full
picture of performance. For example, Apollo introduces the
same asymptotic overhead as Lunar [7], but is significantly
faster in practice. We refer to § 5 for a detailed evaluation of
concrete performance.

4.3 Security Proof for Artemis

We now show that Artemis is a CP-SNARK. A technicality in
the proof is that for knowledge soundness, our extractor must
be able to extract the randomness of the individual commit-
ments, even though we only have a single evaluation proof
that is masked by a random value. To do so, our extractor inter-
nally invokes the extractor of PC several times to reconstruct
the randomness from different evaluation proofs.

Theorem 4.1 (Artemis CP-SNARK). ΠArtemis in Fig. 1 is
a CP-SNARK for the relation R and commitment scheme
PC. If Π is zero-knowledge and PC is hiding, then ΠArtemis is
zero-knowledge.

Proof. ΠArtemis satisfies the properties of a CP-SNARK:
Completeness:. It follows from the completeness of the
SNARK and the homomorphic and completeness proper-
ties of the polynomial commitment scheme. P convinces
V with high probability that ((x,α,β,ρ),(w,µ)) ∈ R ′ from
the completeness of the SNARK Π. Hence, it holds that

7

ρ = (µµµ+∑ j wi ·α j)(β). Further, since PC is homomorphic, it
holds that

c = cµ +∑
ℓ
j=1 c j ·α j

= PC.Commit(ck,µµµ,rµ)+∑
ℓ
i=1 PC.Commit(ck,wi,ri) ·αi

= PC.Commit(ck,µµµ+∑
ℓ
i=1 wi ·αi,rµ +∑

ℓ
i=1 ri ·αi)

Hence, the opening proof of the PC for c evaluates to ρ at β

due to the homomorphic property of the scheme. V accepts
because of the completeness of the polynomial commitment
scheme.
Knowledge Soundness. Our goal is to extract a witness
(w,r1, . . . ,rℓ) that satisfies the relation R ′ given an instance
(x,c1, . . . ,cℓ). Specifically, (w,r1, . . . ,rℓ) such that (x,w)∈R
and ci opens to wi with randomness ri for all i ∈ [ℓ]. At a high
level our extractor EArtemis works as follows:

1. Extract the witness of the SNARK Π w̃ using EΠ.
2. Execute protocol ℓ+ 1 times for distinct challenges by

rewinding the prover to the second step of the protocol
in order to reconstruct the masked polynomial defined by
the randomness of the commitments r̃1, . . . , r̃ℓ through the
different r obtained through the output of EPC on the eval-
uation proof for c.

3. Return (w̃, r̃1, . . . , r̃ℓ).
We now provide a detailed proof.
Suppose that A convinces V that (x,w) ∈ R ′ with non-
negligible probability. We show that there exists EArtemis that,
assuming the existence of extractors EΠ for Π and EPC for
PC, outputs a valid witness (w,r1, . . . ,rℓ) for R ′ with non-
negligible probability given access to A .

We first invoke the extractor EΠ which exists due to the
knowledge soundness of Π. Upon receiving the same input as
AΠ, EΠ outputs a witness (ŵ,µ) after interacting with A such
that ((x,β,ρ),(ŵ, µ̂)) satisfies the relation R ′. If the cheating
prover A convinces the ΠArtemis verifier V , then the proof Π

is valid, except with negligible probability εΠ. Hence, in the
following, we know that (x, ŵ) ∈ R and ρ = ĝ(β) where ĝ is
defined as in the protocol using ŵ and µ̂.

The extractor then samples ℓ+1 distinct random challenges
for α and runs the protocol with A ℓ+ 1 times, rewinding
the prover to the second step of the protocol where it re-
ceives α from V . On each iteration, if the cheating prover
A convinces the ΠArtemis verifier V , then the verifier outputs
1 after the evaluation protocol except with negligible prob-
ability εPC. The extractor EPC returns a polynomial g′ such
that ρ = g′(β), as well as a decommitment r′ for c′. Suppose
that g′ ̸= ĝ. Then, because β was sampled uniformly at ran-
dom, from the Demillo-Lipton-Schwartz-Zippel (Lemma A.5
in Appendix A), it holds that:

Pr
[
PC.Eval(ck,c′,β,ρ;g′,r′) = 1

]
≤ d

p
,

where d = maxi|wi|. Hence, g′ = ĝ with overwhelming prob-
ability.

With the ℓ+1 evaluation pairs of α, r̃, EArtemis reconstructs
the randomness of the individual commitments r̃1, . . . , r̃ℓ. In-
terpolating the points of the ℓ+1 decommitments α(j),r′,(j),
EArtemis retrieves the randomness r̃µ, r̃1, . . . , r̃ℓ such that

r̃µ +∑
ℓ
i=1 r̃i · (α(j))i = r̃′,(j)

for all j ∈ [ℓ+1]. The probability that r̃1, . . . , r̃ℓ ̸= r1, . . . ,rℓ
depends on the probability that any of the points α(j),r′,(j) is
not on ĝ or fails to be extracted by EPC, and is bounded by

(ℓ+1) ·Pr
[
g′ ̸= ĝ

]
= (ℓ+1) ·

(
d
p
+ εPC

)
.

As a result, the total soundness error is bounded by

εΠ +
(ℓ+1) ·d

p
+(ℓ+1) · εPC

≤ εΠ +
2 · |w|

p
+(|w|+1) · εPC

because ℓ ·d is at most the size of the witness |w|, resulting in
a soundness error that is negligible in the security parameter
λ. Finally, the extractor performs the rewinding procedure an
expected O(ℓ) times, resulting in a running time of EArtemis
linear in |x| and |w|.
Zero-knowledge. ArtemisR satisfies zero-knowledge if PC
is hiding and Π is a zk-SNARK. Concretely, we show that
there exists a simulator SimArtemis that, assuming the exis-
tence of a simulator SimPC for PC and a simulator SimΠ

for Π, outputs a valid transcript when given an instance
(x,c1, . . . ,cℓ) as input. We will show that the transcript gener-
ated by SimArtemis is statistically indistinguishable from the
view of an honest verifier V running an interactive protocol
ΠArtemis with the prover P holding a valid instance and witness
((x,c1, . . . ,cℓ),(w,r1, . . . ,rℓ)) ∈ R .

At a high level, the simulator SimArtemis must generate a
valid transcript consisting of cµ, ρ and valid transcripts for
Π and PC for a given instance (x,c1, . . . ,cℓ) and challenges
α,β. The primary challenge is in generating the transcript
for PC, as SimΠ will create a suitable transcript no matter
what value of β the simulator passes to it (as long as it is
consistent with other uses of β). However, an instance (c,β,ρ)
for PC is valid only if the polynomial g inside c evaluated
at β equals ρ. In addition, we need to ensure that c = cµ +

∑
ℓ
i=1 ci ·αi, as this is how the verifier computes c in Artemis.

This can easily be achieved by setting cµ = cρ−∑
ℓ
i=1 ci ·αi

where cρ is a commitment to a polynomial that evaluates
to ρ everywhere. More specifically, the simulator SimArtemis
proceeds as follows:

1. Sample two random values ρ′←$ Fp,rµ←$ Fp and
2. Compute c′ρ = PC.Commit(ck,gρ′ ,rµ) where gρ′ is the 0-

degree polynomial defined by ρ′.
3. Compute c′µ = c′ρ−∑

ℓ
i=1 ci ·αi.

4. Invoke SimPC to generate a transcript τPC on instance
(c′ρ,β,ρ).

8

R
· · ·

ρprev ρ w β Fn f +1

β

β

β

β

β

w(0)

w(1)

w(2)

w(3)

w(4)

ρ2

ρ3

ρ4

ρ5

0

ρ1

ρ2

ρ3

ρ4

ρ5

ω0

ω1

ω2

ω3

ω4

1

1

1

1

1

bh

Advice Instance Fixed

Figure 2: Simplified Visualization of a Plonkish grid with our
extensions for a single commitment.

5. Invoke SimΠ to generate a transcript τΠ on instance
(x,α,β,ρ).

6. Output the tuple (c′µ,ρ
′,τPC,τΠ).

The transcript output by SimArtemis is valid for (x,c1, . . . ,cℓ)
and challenges α,β, because c = c′µ + ∑

ℓ
i=1 ci · αi = cρ −

∑
ℓ
i=1 ci ·αi +∑

ℓ
i=1 ci ·αi = cρ, resulting in a valid instance

(cρ,β
′,ρ) for PC. The distribution of c′µ is the same as that of

cµ in the real interaction due to the hiding property of PC. The
distribution of the evaluation point β′ output by SimArtemis is
the same as β in the real interaction, as the former is uniformly
random over Fp, and the latter is masked by a random value
uniformly sampled from Fp. Therefore, the full transcript is
indistinguishable from the transcript of the verifier interacting
with the prover in the real world.

4.4 Efficient Arithmetization for Artemis

In Artemis, we need to augment arithmetizations of R to an
efficient arithmetization of R ′

R ′ =

 ((x,α,β,ρ),(w,µ))
:

(x,w) ∈ R ∧ρ = (µµµ+∑i wi+1 ·αi)(β)


While doing this naively will generally be reasonably efficient,
in the following we show an optimized approach, focusing
on Plonkish arithmetizations (cf. Definition 2.3) as these are
used by the state-of-the-art zkML approaches. In Figures 2
and 3, we visualize the required additions to the Plonkish grid.
Note that this is not to scale: in practice, grids will have many
more rows, and the vast majority of the grid will be dedicated
to the original relation R rather than our additions.

Strawman Approach. A naive approach to arithmetizing
R ′ would be express it as the inner product of the witness
polynomial and the powers of β0, . . . ,β

d . As β is public, the
verifier can easily compute these powers, resulting in fewer
constraints. Unfortunately, this approach leads to a significant
overhead for the verifier, as it must interpolate a polynomial
for the powers of β over the evaluation domain, resulting in a
linear overhead of the verifier.
Horner’s Method. As the additional constraint that we need
to add is essentially an evaluation of a polynomial at a specific
point, we can utilize an arithmetization based on Horner’s
method [25]. In order to illustrate this, we first consider a sim-
plified setting, with a single commitment c to witness poly-
nomial w with coefficients w (i.e., ℓ= 1). For this simplified
setting, which we visualize in Figure 2, we will also assume
that the size d of the witness matches the number of rows n
of the Plonkish grid. We denote the individual elements wi

as w(0)
i , . . . ,w(d−1)

i . Note that we specifically use zero-based
indexing here as this is more natural when considering these
elements as coefficients of wi.

According to Horner’s method, we can then compute

w(0)+w(1)
β+w(2)

β
2 +w(3)

β
3 + · · ·

as

w(0)+β

(
w(1)+β

(
w(2)+β

(
w(3)+ · · ·

)))
.

This latter form enables a convenient recursive computation,
that, in order to compute the partial evaluation down to de-
gree j only requires access to the j-th coefficient, β, and the
j+1-th partial evaluation. We denote the partial evaluation
for the j-th degree as ρ j. Then, we have the recurrence rela-
tion

ρ j = w(j)+β∗ρ j+1 with ρd = 0.

To express this in the Plonkish grid, we extend the grid with a
set of additional columns: ana+1 to store ρ j+1, ana+2 to store
ρ j, and ana+3 to store w(j). We also add a selector column
fn f +1, and an instance column pnp+1 to store β. Generally,
the verifier needs to interpolate a polynomial for each in-
stance column, which would be expensive for pnp+1, as it
contains values across the entire evaluation domain. However,
the polynomial simply needs to evaluate to the β across the
entire evaluation domain. Therefore, we can forgo the expen-
sive interpolation and directly generate a constant polynomial
ggg(X) = β. We add copy constraints to ensure that the copies of
the witness values correspond to their original occurrences in
the arithmetization of R . In addition, we add copy constraints
to link the occurrences of each ρ j across both columns, i.e.,
ana+1 and ana+2. Finally we add a custom gate constraint:

bh(X , . . . ,ana+1(X),ana+2(X),ana+3(X),pnp+1(X), fn f +1(X))

= fn f +1(X) · (ana+3(X)+ana+1(X) ·pnp+1(X)−ana+2(X))

Finally, we note that we could forgo the ρprev column and
instead use a custom gate spanning two rows, saving one

9

R
· · ·

ρprev ρ w1 . . .

. . .

wnh β1 . . .

. . .

βnh
α1 . . .

. . .

αℓ Fn f +1

β1

β1

β1

β1

β1

βnh

βnh

βnh

βnh

βnh

α1

α1

α1

α1

α1

αℓ

αℓ

αℓ

αℓ

αℓ

w(0)
1

w(2)
1

w(4)
1

w(6)
1

w(8)
1

w(d−8)
ℓ

w(d−6)
ℓ

w(d−4)
ℓ

w(d−2)
ℓ

w(d)
ℓ

ρ2

ρ3

ρ4

ρ5

0

ρ1

ρ2

ρ3

ρ4

ρ5

ω0

ω1

ω2

ω3

ω4

1

1

1

1

1

bh

Advice Instance Fixed

Figure 3: Visualization of a Plonkish grid with our extensions for ℓ commitments of size d.

column. However, as in the state of the art zkML approaches
using Plonkish arithmetizations [10], we restrict ourselves to
single-row custom gates.
Supporting Larger Commitments. So far, we have assumed
that the size d of the commitment w matches the number of
rows n in the plonkish grid. Where d is smaller, we can triv-
ially pad w with zeros. However, if d is larger than n, we need
to split w across multiple advice columns. A straightforward
approach might add a separate pair of advice columns for the
intermediate values ρ′,ρ′prev for each witness column, as well
as multiple custom gates and selector columns. However, we
can avoid this overhead by combining Horner’s method with a
(generalized) even-odd decomposition approach. Specifically,
we use the common observation that

w(0)+w(1)
β+w(2)

β
2 +w(3)

β
3 +w(4)

β
4 +w(5)

β
5 + · · ·

can be rewritten as

w(0)+w(2)
β

2 +w(4)
β

22
+ · · ·

+β

(
w(1)+w(3)

β
2 +w(5)

β
22
+ . . .

)
which can be interpreted as a combination of two polynomials
in X2. Combining this with the Horner’s method approach,
we arrive at(

w(0)+βw(1)
)
+β

2

((
w(2)+βw(3)

)
+β

2
(
· · ·
)))

.

which gives rise to the recurrence

ρ j =
(

w(j)+β∗w(j+1)
)
+β

2
ρ j+1

where n is the number of rows in the grid and ρd = 0. This
is why we split the witness into the columns not based on

sequential chunks, but instead based on even and odd terms
(cf. Figure 3). We can easily adapt our custom gate to compute
this new formula by introducing a new instance column pnp+2

for β2. As is the case for the instance column pnp+1 that
contains β, the verifier does not need to interpolate this, as we
can directly construct the (constant) polynomial that evaluates
to β2 at all points. This approach generalizes to any number
k = ⌈d/n⌉ of columns: instead of splitting the polynomial into
even and odd components, we split it modulo k. This requires
the addition of an instance column βi for i∈ [1,k], but as these
do not need to be interpolated, this does not impact runtime
significantly.
Supporting Multiple Commitments. Finally, we consider
the case with ℓ commitments, beginning with the naive ap-
proach, then show how this can be extended to an efficient so-
lution for a large number of small commitments, before intro-
ducing our optimization for multiple large commitments. Sim-
ilar to the naive approach to supporting larger commitments,
we can resolve this by adding a pair of advice columns (for
ρi and ρprevi) for each witness column. This introduces three
advice columns per commitment, however, in cases where all
commitments are small, this is highly inefficient, as the vast
majority of each column will be unused. Instead, if all com-
mitments are sufficiently small (specifically, smaller than n

3),
we can more efficiently “stack” multiple commitments into a
single column, and make use of the same additional advice
columns (and the same custom gate) by simply setting ρprevi
to zero whenever a new commitment starts. However, when
each commitment might be larger than we can accommodate
in a single column (as will generally be the case in zkML), we
cannot apply this technique. Instead, our optimization relies
on aggregating multiple commitments. The key insight here is
that we can use essentially the same optimized technique we
used to handle multiple columns per witness to also handle
multiple witnesses. For this, we introduce additional instance

10

0

0.2

0.5

0.8

1

1.2

1.5

KZ
G

Pr
ov

er
 [m

in
]

MNIST ~8k

0

1

2

3

4

5

ResNet-18 ~280k

0

2

4

6

8
DLRM ~764k

0

25

50

75

100

125

MobileNet ~3.5m

0

20

40

60

80

100

120
VGG-16 ~15m

0

50

100

150

200

250

300
Diffusion ~19.5m

0

20

40

60

80

100

GPT-2 ~81m

0

0.2

0.5

0.8

1

1.2

1.5

IPA
 P

ro
ve

r [
m

in
]

0

1

2

3

4

5

0

2

4

6

8

0

25

50

75

100

125

0

20

40

60

80

100

120

0

50

100

150

200

250

300

0

20

40

60

80

100

No Commitment Artemis (Ours) Apollo (Ours) Lunar Poseidon

Figure 4: Prover Time in minutes for KZG-based (top) and IPA-based (bottom) approaches for various models. As Apollo and
Lunar only support KZG-based instantiations, they are omitted in the bottom row. Poseidon fails to scale to Diffusion and GPT-2,
while Lunar fails to scale to GPT-2, as described in § 5.3, and are therefore omitted for these models.

columns for the powers of α, and in our custom gate, replace
each occurrence of w(j)

i with

∑
ℓ
i=1 αiw(j)

i

We visualize our additions to grid in Figure 3. For ease of pre-
sentation, we assume all commitments require ⌈ ℓd ⌉ columns.
In practice, one can trivially adjust the custom gate in order
to support different amounts of columns for each witness.
Masking. Finally, we consider µ, which needs to be added to
the result of the polynomial evaluation. For the vast majority
of arithmetizations of R , there will be suitable empty cells
and existing custom gates (e.g., addition or inner products)
that we can reuse, in which case we only need to add a single
copy constraint to link the computed value of ρ1 with its copy
in the addition. In the rare cases where it is not possible to
integrate this addition into the existing grid, we add a new
row that contains only µ and a copy of ρ1 and, if necessary, a
custom gate for addition and an associated selector column.

5 Evaluation

In this section, we evaluate the performance of Apollo and
Artemis for various computer vision and natural language
processing models. We compare against the existing state
of the art, namely Lunar [8] and Poseidon [21]. We focus
on showing that our constructions make zkML significantly
more practical, especially for large models. In addition, we
show that Artemis can achieve similarly low overheads even
without relying on trusted setup.

5.1 Implementation

In addition to implementing our constructions, Apollo and
Artemis, we provide the first (to the best of our knowledge)

complete implementation of Lunar’s CPlink construction [7].
We implement all techniques in Rust, as an extension of the
Halo2 library [17], which includes implementations for KZG-
[28] and IPA-based [5] zero-knowledge proofs. We instantiate
the underlying group with the pairing-friendly BN256 curve
for KZG-based proofs and the Pallas curve for the IPA-based
proofs. This allows us to use our constructions in combination
with the models used in the state-of-the-art zkML work [10],
which is also based on Halo2. We make all our implemen-
tations and benchmarking configurations available as open-
source2. Below, we discuss the implementation of each of the
approaches we evaluate in more detail:
No Commitment: This baseline does not check commitments
at all, as in Chen et al. [10].

Poseidon: We used a Poseidon [21] gadget provided by the
Halo2 library [17].

Lunar: We implement Lunar’s CP-SNARK construction [7]
for Halo2’s Plonkish arithmetization. Specifically, we imple-
ment CP(1)

link and CP
(2)
link from [7]. We use Halo2’s underlying

finite field Rust library ff. CPlink relies heavily on division
of vanishing polynomials on a subset of the evaluation do-
main, which is not directly supported by Halo2’s polynomial
implementation. Therefore, we extend this implementation
with support for efficient FFT-based polynomial division to
ensure competitive performance of CPlink.

Apollo: We implement Apollo (cf. § 4.1) which performs
the alignment of the witness in the arithmetization using a
small set of extra columns and copy constraints, resulting
in a significantly more efficient CPlink. The implementation
otherwise uses the same approach as Lunar.

Artemis: For Artemis (cf. § 4.2), our construction based
on homomorphic polynomial commitments, we use Halo2’s

2https://github.com/pps-lab/artemis

11

https://github.com/pps-lab/artemis

0

0.01

0.02

0.03

0.04

0.05

0.06

KZ
G

Ve
rif

ie
r [

se
c]

MNIST ~8k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ResNet-18 ~280k

0.000

0.025

0.050

0.075

0.100

0.125

0.150
DLRM ~764k

0.0

0.5

1.0

1.5

2.0

2.5

3.0
MobileNet ~3.5m

0.0

0.5

1.0

1.5

2.0

2.5

3.0
VGG-16 ~15m

0

2

4

6

8

10
Diffusion ~19.5m

0

5

10

15

GPT-2 ~81m

0

0.1

0.2

0.3

0.4

IPA
 V

er
ifi

er
 [s

ec
]

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0

2

4

6

0

2

4

6

8

10

0

1

2

3

4

5

6

0

2

4

6

8

10

No Commitment Artemis (Ours) Apollo (Ours) Lunar Poseidon

Figure 5: Verifier Time in seconds for KZG-based (top) and IPA-based (bottom) approaches for various models. As Apollo
and Lunar only support KZG-based instantiations, they are omitted in the bottom row. Poseidon fails to scale to Diffusion and
GPT-2, while Lunar fails to scale to GPT-2, as described in § 5.3, and are therefore omitted for these models. Note that because
IPA-based proof systems have logarithmic verifier time, we use a different y-axis scaling for the bottom row.

standard implementation of polynomial commitments, and
implement the arithmetization of polynomial evaluation using
Horner’s method (cf. § 4.4) as a gadget in the Halo2 library.

5.2 Experimental Setup

We evaluate the prover time, verifier time and proof size for
Halo2-based zkML inference proofs with a commitment to
the model for a wide range of different models. We perform
the evaluation on AWS EC2 instances running Ubuntu 24.04,
with instance types adjusted to meet each model’s resource
demands: r6i.8xlarge (32 vCPUs, 256 GB RAM), r6i.16xlarge
(64 vCPUs, 512 GB RAM), and r6i.32xlarge (128 vCPUs,
1024 GB RAM). This corresponds to the model-instance map-
ping used in [10], except for VGG-16, for which Poseidon
requires a larger instance. We therefore evaluate all VGG-
16 experiments on r6i.32xlarge instances. Below, we briefly
describe the models we consider in our evaluation.
MNIST: A minimal CNN [22] with 8.1K parameters and
444.9K FLOPs, trained on the MNIST image classification
task, evaluated on an r6i.8xlarge instance.

ResNet-18: An image classifier [24] trained on CIFAR-10,
with 280.9K parameters and 81.9M FLOPs, evaluated on an
r6i.8xlarge instance.

DLRM: A deep learning recommendation model [34],
with 764.3K parameters and 1.9M FLOPs, evaluated on an
r6i.8xlarge instance.

MobileNet: A mobile-optimized image classifier [37] trained
on ImageNet, with 3.5M parameters and 601.8M FLOPs,
evaluated on an r6i.16xlarge instance

VGG-16: A CNN with 15.2M parameters and 627.9M
FLOPs, trained on CIFAR-10 [42], evaluated on an
r6i.32xlarge instance.

Diffusion: A small text-to-image Stable Diffusion model [36],
with 19.5M parameters and 22.9B FLOPs, evaluated on an
r6i.32xlarge instance.

GPT-2: A distilled transformer-based language model opti-
mized for inference [35], with 81.3M parameters and 188.9M
FLOPs, evaluated on an r6i.32xlarge instance.

We perform five measurements for the verifier time and report
the mean and the standard deviation (as error bars) in the
figures.

5.3 Results

In Figure 4 we report wall clock runtimes for the prover,
similarly, we report verifier times in Figure 5, while we report
proof sizes in Table 2.
Prover Overhead. We begin by discussing prover over-
head (cf. Figure 4), which is by far the most important metric
when considering the practicality of zkML. For Poseidon,
the overhead of recomputing the commitment inside the
SNARK results in a significant overhead that scales roughly
linearly in the model size, ranging from 3.2x-17.3x for KZG,
and from 3.2x-17.2x for IPA compared to the baseline (No
Commitment). The approach of Lunar using the internal wit-
ness commitment of the SNARK reduces the overhead to
3.0x-7.5x in the case of KZG, which is an improvement over
Poseidon, but is still significant because the number of CPlink
proofs scales with the number of witness-containing columns.
A notable exception where Poseidon outperforms Lunar is
for MobileNet, whose architecture results in a large number
of columns relative to the number of weights. Nevertheless,
the overheads of prior approaches are prohibitively expensive,
particularly for larger models. Note that, for GPT-2 and Diffu-
sion, Poseidon was unable to complete successfully because

12

of memory requirements beyond 1024GB, which is the maxi-
mum available memory for AWS r6i instances. Similarly, for
Lunar, which does not run successfully for GPT-2.

In comparison, our CP-SNARK constructions Apollo and
Artemis outperform the related approaches across all configu-
rations, introducing an overhead of only 1.01x-1.18x for KGZ
and 1.03x-1.42x for IPA. These approaches only require adap-
tations to the arithmetization and the proof system that are
very concretely efficient. Apollo is significantly faster than
Lunar, because the alignment of the witness using copy con-
straints in the arithmetization obviates the need for shifting
proofs. For smaller models, Apollo outperforms Artemis as
the latter needs to extend the arithmetization with a custom
gate, the relative impact of which reduces as the model grows.
As a result, we observe Artemis outperforming Apollo for
larger models. More importantly, we note that Artemis offers
very similar prover times whether using KZG or IPA com-
mitments (without trusted setup), a setting which Lunar and
Apollo do not support.
Verifier. We present the verifier times in Figure 5. KZG-
based proof systems provide a verification time constant
in the size of the witness. However, even for the baseline
(No Commitment) the verifier times for different models still
vary, because the different model output size result in differ-
ent proof instance sizes. Similarly, merely adding the com-
mitments to the instance increases the KZG verifier time.
However, the vast majority of the differences in verifier time
between the different approaches are due to the additional
checks that (some of) the approaches introduce. In contrast,
verifier times for IPA scale (logarithmically) with the size of
the witness so we expect slower verification times in general.
Poseidon shows a negligible increase in verification time

for KZG, as it only adapts the arithmetization of the relation
and not the SNARK, resulting in a tiny increase in verifica-
tion time due the addition of the commitment to the public
input. In contrast, for IPA-based Poseidon, we observe a
considerable increase in verifier time (2x-11x) due to the
complex arithmetization of Poseidon. Lunar (which only
supports KZG) increases the verification time compared to
No Commitment significantly (8.5x-252.9x), as it requires a
linear number of additional pairing operations to verify the
CPlink proofs. Although Apollo (which also only supports
KZG) reduces the number of required pairing operations com-
pared to Lunar, the verification overhead is, in some config-
urations, still significant (1x-4x), compared to the baseline
(No Commitment). Artemis, on the other hand, requires only
one additional pairing verification, resulting in a negligible
overhead in verification time (1.0x-1.1x) for KZG. For IPA,
the verification overhead is also relatively low (at most 1.2x),
which is significantly lower than the prior state of the art in
this setting.
Proof Size. While not of primary concern for most zkML
applications, we report proof sizes in Table 2 for completeness.
In general, proof sizes are very small (a few dozen kB at

No Com. Artemis Apollo Lunar Poseidon
§ 4.2 § 4.1 [7] [21]

K
Z

G

MNIST 9 10 10 9 12
ResNet-18 14 15 15 14 16
DLRM 5 6 6 4 10
MobileNet 18 18 18 18 21
VGG 16 17 16 11 15
Diffusion 32 33 33 16 -
GPT-2 15 16 15 - -

IP
A

MNIST 10 12 - - 14
ResNet-18 16 18 - - 18
DLRM 7 9 - - 11
MobileNet 19 21 - - 23
VGG 17 20 - - 17
Diffusion 34 36 - - -
GPT-2 17 19 - - -

Table 2: Proof size in kB for KZG-based (top) and IPA-based
(bottom) approaches for various models. As Apollo and Lunar
only support KZG-based instantiations, they are omitted in
the bottom row. Poseidon fails to scale to Diffusion and GPT-
2, while Lunar fails to scale to GPT-2, as described in § 5.3,
and are therefore omitted for these models.

most) for the baseline (No Commitment) across all models.
Furthermore, the overhead of adding commitment verification
is generally low across all approaches. In fact, in some cases
we see a decrease in proof size for Lunar. This is an artifact
of the restrictions of Lunar’s construction, which require the
evaluation domain of the SNARK to be at least as large as the
(committed) witness. As a result, there are instances where
we need to increase the number of rows in the Plonkish grid
to achieve this. In these cases, we can then make use of these
additional rows by re-layouting the original grid into fewer
columns, which reduces the proof size.
Summary. In conclusion, we demonstrate that both Apollo
and Artemis significantly advance the state-of-the-art for prac-
tical zkML. Commitment verification is essential for real-
world usage zkML, yet existing approaches introduced sig-
nificant overheads that made zkML impractical for all but
the smallest models. We demonstrate that, with Apollo and
Artemis, it is possible to apply zkML with commitment veri-
fication to large models of real-world interest. Furthermore,
we show that, with Artemis, this is possible while using state-
of-the-art SNARKs that do not require trusted setup.

Acknowledgements

We would like to thank Christian Knabenhans for his insight-
ful feedback. We would also like to acknowledge our sponsors
for their generous support, including Meta, Google, and SNSF
through an Ambizione Grant No. PZ00P2_186050.

13

References

[1] Diego F Aranha, Emil Madsen Bennedsen, Matteo Cam-
panelli, Chaya Ganesh, Claudio Orlandi, and Akira Taka-
hashi. ECLIPSE: Enhanced compiling method for
pedersen-committed zkSNARK engines. Cryptology
ePrint Archive, 2021.

[2] Aztec Network. Proving system components.
https://docs.aztec.network/protocol-
specs/cryptography/proving-system/overview,
2021. Accessed: 2024-9-1.

[3] Abeba Birhane, Ryan Steed, Victor Ojewale, Briana Vec-
chione, and Inioluwa Deborah Raji. AI auditing: The
broken bus on the road to AI accountability. arXiv
[cs.CY], January 2024.

[4] EZKL Blog. Removing additional commitment cost,
2023. Accessed: 2024-07-22.

[5] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo:
Recursive proof composition without a trusted setup.
Technical report, Cryptology ePrint Archive, Report
2019/1021, 2019.

[6] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP),
May 2018.

[7] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs
Querol, and Hadrián Rodríguez. Lunar: a toolbox
for more efficient universal and updatable zkSNARKs
and commit-and-prove extensions. Cryptology ePrint
Archive, Paper 2020/1069, 2020. (Extended Version).

[8] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs
Querol, and Hadrián Rodríguez. Lunar: A toolbox for
more efficient universal and updatable zkSNARKs and
commit-and-prove extensions. In ASIACRYPT 2021,
2021.

[9] Matteo Campanelli, Dario Fiore, and Anaïs Querol.
LegoSNARK: Modular design and composition of suc-
cinct zero-knowledge proofs. CCS ’19. ACM, Novem-
ber 2019.

[10] Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and
Daniel Kang. ZKML: An optimizing system for ML
inference in zero-knowledge proofs. 2024.

[11] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei
Zhang. HyperPlonk: Plonk with linear-time prover and
high-degree custom gates. In EUROCRYPT 2023. 2023.

[12] Dami Choi, Yonadav Shavit, and David Duvenaud.
Tools for verifying neural models’ training data. arXiv
[cs.LG], July 2023.

[13] Richard A Demillo and Richard J Lipton. A probabilis-
tic remark on algebraic program testing. Inf. Process.
Lett., 7(4):193–195, June 1978.

[14] EZKL Docs. Visibility: What is private?, 2023.
https://docs.ezkl.xyz/visibility_what_is_
private/. Accessed: 2024-09-03.

[15] EZKL. An engine for doing inference for deep learning
models and other computational graphs in a zk-snark
(ZKML). Accessed: 02-09-2024.

[16] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding,
and Shumo Chu. ZEN: An optimizing compiler for
verifiable, zero-knowledge neural network inferences.
Cryptology ePrint Archive, 2021.

[17] Zcash Foundation. Halo2 book, 2021. https://zcash.
github.io/halo2/. Accessed: 2024-078-02.

[18] Ariel Gabizon, Zachary J Williamson, and Oana Ciob-
otaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[19] Bianca-Mihaela Ganescu and Jonathan Passerat-
Palmbach. Trust the process: Zero-knowledge machine
learning to enhance trust in generative AI interactions.
In The 5th AAAI Workshop on Privacy-Preserving Arti-
ficial Intelligence, 2024.

[20] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahlou-
jifar, Mohammad Mahmoody, Guru-Vamsi Policharla,
and Mingyuan Wang. Experimenting with zero-
knowledge proofs of training. 2023.

[21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rech-
berger, Arnab Roy, and Markus Schofnegger. Poseidon:
A new hash function for zero-knowledge proof systems.
USENIX Security, pages 519–535, 2021.

[22] Ruslan Grimov. The minimal neural network that
achieves 99 https://github.com/ruslangrimov/
mnist-minimal-model, 2018.

[23] Jens Groth. On the size of pairing-based non-interactive
arguments. In EUROCRYPT 2016, 2016.

[24] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Euro-
pean Conference on Computer Vision, 2016.

[25] W. G. Horner. A new method of solving numerical
equations of all orders, by continuous approximation.
Philosophical Transactions of the Royal Society of Lon-
don, 109:308–335, 1819.

14

https://docs.aztec.network/protocol-specs/cryptography/proving-system/overview
https://docs.aztec.network/protocol-specs/cryptography/proving-system/overview
https://docs.ezkl.xyz/visibility_what_is_private/
https://docs.ezkl.xyz/visibility_what_is_private/
https://zcash.github.io/halo2/
https://zcash.github.io/halo2/
https://github.com/ruslangrimov/mnist-minimal-model
https://github.com/ruslangrimov/mnist-minimal-model

[26] White House. Executive order on the safe, secure, and
trustworthy development and use of artificial intelli-
gence, October 2023. E.O. 14110.

[27] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and
Yi Sun. Scaling up trustless DNN inference with zero-
knowledge proofs. arXiv [cs.CR], October 2022.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT 2010, 2010.

[29] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok
Oh. vCNN: Verifiable convolutional neural network
based on zk-SNARKs. Cryptology ePrint Archive, 2020.

[30] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN:
Zero knowledge proofs for convolutional neural network
predictions and accuracy. 2021.

[31] Hidde Lycklama, Nicolas Küchler, Alexander Viand,
Emanuel Opel, Lukas Burkhalter, and Anwar Hithnawi.
Cryptographic auditing for collaborative learning. In
NeurIPS ML Safety Workshop, 2022.

[32] Hidde Lycklama, Alexander Viand, Nicolas Küchler,
Christian Knabenhans, and Anwar Hithnawi. Holding
Secrets Accountable: Auditing Privacy-Preserving Ma-
chine Learning. In USENIX Security, Philadelphia, PA,
August 2024.

[33] National Science and Technology Council Committee
on Technology. Preparing for the future of artificial
intelligence, October 2016.

[34] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, et al. Deep learning recommendation model for
personalization and recommendation systems. CoRR,
abs/1906.00091, 2019.

[35] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019.

[36] Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 10674–10685, 2021.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[38] Peter Schulam and Suchi Saria. Can you trust this pre-
diction? auditing pointwise reliability after learning. In
AISTATS, volume 89, pages 1022–1031, 2019.

[39] Srinath Setty, Justin Thaler, and Riad Wahby. Customiz-
able constraint systems for succinct arguments. IACR
Cryptol eprint Arch, 2023:552, 2023.

[40] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas
Franzese, Natalie Dullerud, Sébastien Gambs, Nicolas
Papernot, Xiao Wang, and Adrian Weller. Confidential-
PROFITT: Confidential PROof of FaIr training of trees.
In ICLR, 2022.

[41] Reza Shokri. PRIVACY AUDITING OF MACHINE
LEARNING USING MEMBERSHIP INFERENCE AT-
TACKS. ICLR, 2022.

[42] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[43] Tobin South, Alexander Camuto, Shrey Jain, Shayla
Nguyen, Robert Mahari, Christian Paquin, Jason Mor-
ton, and Alex Pentland. Verifiable evaluations of ma-
chine learning models using zkSNARKs. arXiv [cs.LG],
February 2024.

[44] Haochen Sun and Hongyang Zhang. ZkDL: Efficient
zero-knowledge proofs of deep learning training. arXiv
[cs.LG], July 2023.

[45] Suppakit Waiwitlikhit, Ion Stoica, Yi Sun, Tatsunori
Hashimoto, and Daniel Kang. Trustless audits without
revealing data or models. In ICML’24, April 2024.

[46] Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming
Li, and Jia-Nan Liu. pvcnn: Privacy-preserving and
verifiable convolutional neural network testing. IEEE
Transactions on Information Forensics and Security,
18:2218–2233, 2023.

A Definitions

Definition A.1 (Commitment Scheme). A non-
interactive commitment scheme consists of a mes-
sage space M , randomness space O, a commitment
space C and a tuple of polynomial-time algorithms
(Com.Setup,Com.Commit,Com.Verify) defined as follows:

• Com.Setup(1λ)→ crs: Given a security parameter λ, it out-
puts public parameters crs.

• Com.Commit(crs,m,r)→ c: Given public parameters crs,
a message m ∈M and randomness r ∈ O, it outputs a com-
mitment c.

• Com.Verify(crs,c,r,m)→{0,1}: Given public parameters
crs, a commitment c, a decommitment r, and a message m,
it outputs 1 if the commitment is valid, otherwise 0.

A non-interactive commitment scheme has the following prop-
erties:

15

• Correctness. For all security parameters λ, for all
m and for all crs output by Com.Setup(1λ), if c =
Com.Commit(crs,m,r), then Com.Verify(crs,c,m,r) = 1.

• Binding. For all polynomial-time adversaries A , the prob-
ability

Pr
[
Com.Verify(crs,c,m1,r1) = 1∧
Com.Verify(crs,c,m2,r2) = 1∧m1 ̸= m2 :

crs← Com.Setup(1λ),(c,r1,r2,m1,m2)← A(crs)
]

is negligible.

• Hiding. For all polynomial-time adversaries A , the advan-
tage

|Pr[A(crs,c) = 1 : c← Com.Commit(crs,m1,r)]−
Pr[A(crs,c) = 1 : c← Com.Commit(crs,m2,r)]|

is negligible, for all messages m1,m2.

Definition A.2 (Homomorphic Commitment Scheme [6]).
A homomorphic commitment scheme is a non-interactive
commitment scheme such that M , O and C are all abelian
groups and for all m1,m2 ∈M and r1,r2 ∈ O, we have

Com.Commit(crs,m1 +m2,r1 + r2) =

Com.Commit(crs,m1,r1)+Com.Commit(crs,m2,r2).

Definition A.3 (KZG Commitments [28]). KZG commit-
ments leverage bilinear pairings to create a commitment
scheme for polynomials where the commitments have con-
stant size. Let G1, G2 and GT be cyclic groups of prime
order p such with generators h1 ∈ G1 and h2 ∈ G2. Let e :
G1×G2→GT be a bilinear pairing, so that e(α ·h1,β ·h2) =
αβ · e(h1,h2). The KZG polynomial commitment scheme for
some polynomial g made up of coefficients gi is defined by
four algorithms:

• PC.Setup(d): Sample α←$ Fp and output

pp←
(

α ·h1, . . . ,α
d ·h1,α ·h2

)
• PC.Commit(pp,g): Output com = g(α) ·h1, computed as

com←
d

∑
i=0

gi · (αi ·h1)

• PC.Prove(pp,com,g,x) : Compute the remainder and quo-
tient

q(X),r(X)← (g(X)−g(x))/(X− x) .

Check that the remainder r(X) and, if true, output π= q(α) ·
h1, computed as ∑

d
i=0
(
qi · (αi ·h1)

)
.

• PC.Check(pp,com,x,y,π): Accept if the following pairing
equation holds:

e(π,α ·h2− x ·h2) = e(com− y ·h1,h2)

The security properties of KZG commitments fundamentally
rely on the hardness of the polynomial division problem. The
parameter α acts as a trapdoor and must be discarded after
PC.Setup to ensure the binding property. Hence, we require a
trusted setup to generate the public parameters and securely
discard α, which can be computed using MPC or, depending
on the deployment, computed by the auditor acting as a trusted
dealer. Together, PC.Prove and PC.Check form the evaluation
protocol for the scheme. The hiding property relies on the
discrete logarithm assumption, so if α is not discarded this
breaks the binding property but not the hiding property. We
refer to [28] for a detailed security analysis. Further, KZG
commitments are homomomorphic, i.e., if com1 and com2 are
commitments to polynomials g1 and g2, then com1 + com2 is
a commitment to polynomial g1 +g2.

Definition A.4. A zk-SNARK is a proof with the following
properties:

• Completeness. For every true statement for the relation R
an honest prover with a valid witness always convinces the
verifier, i.e., ∀(x,w) ∈ R :

Pr

[
Verifyvk(x,π) = 1

∣∣∣∣∣(crs,vk)← Setup(1λ)

π← Provecrs(x,w)

]
= 1

• Knowledge Soundness. For every PPT adversary, there
exists a PPT extractor that gets full access to the adversary’s
state (including its random coins and inputs). Whenever
the adversary produces a valid argument, the extractor can
compute a witness with high probability: ∀A∃E :

Pr

[
Verifyvk(x̃, π̃) = 1

∧R (x̃,w′) = 0

∣∣∣∣∣ (crs,vk)← Setup(1λ)

((x̃, π̃);w′)← A |E(crs)

]
= negl(λ)

We stress here that this definition requires a non-black-box
extractor, i.e., the extractor gets full access to the adver-
sary’s state.

• Succinctness. For any x and w, the length of the proof is
given by |π|= poly(λ) ·polylog(|x|+ |w|).

• Zero-Knowledge. There exists a PPT simulator S =
(S1,S2) such that S1 outputs a simulated CRS crs and a
trapdoor td; On input crs, x, and td, S2 outputs a simulated
proof π, and for all PPT adversaries A = (A1,A2), such that∣∣∣∣∣∣∣Pr

(x,w) ∈ R
∧

A2(π) = 1

∣∣∣∣∣∣∣
(crs,vk)← Setup(1λ)

(x,w)← A1(1λ,crs)

π← Provecrs(x,w)

−

Pr

(x,w) ∈ R
∧

A2(π) = 1

∣∣∣∣∣∣∣
(crs′, td)← S1(1λ)

(x,w)← A1(1λ,crs′)

π← S2(crs′, td,x)


∣∣∣∣∣∣∣= negl(λ)

16

Lemma A.5 (Demillo-Lipton-Schwartz-Zippel [13]). Let
f ∈ Fp[X] be a non-zero polynomial of degree d over a prime
field Fp. Let S be any finite subset of Fp and let r be a field
element selected independently and uniformly from set S.
Then

Pr[f (r) = 0]≤ d
|S|

.

B Ethics and Open Science Statements

Ethics Statement. This work introduces Efficient Commit-
and-Prove SNARKs for zkML, aiming to improve privacy
and security in machine learning applications. Our work aims
to empower users by providing tools that ensure data privacy,
transparency, and integrity in machine learning applications.
By enhancing privacy-preserving ML, we contribute to the
responsible use of data, protecting individuals’ sensitive data
from unauthorized access or misuse. However, we recognize
that any cryptographic tool, including SNARKs, can be mis-
used if applied irresponsibly. To mitigate these risks, we en-
courage the community to adhere to ethical guidelines when
deploying zkML solutions in practice.
Open Science Statement. To ensure the reproducibility of
our results, we will publish the code for our system, including
the implementation of existing work generated as part of this
work. We will also provide detailed documentation of our
experimental setup and an artifact evaluation to facilitate the
reproduction of our results. All resources will be publicly
accessible.

17

	Introduction
	Background
	Polynomial Commitments
	zksnarks
	Arithmetization

	Related Work
	Design
	Apollo: Improved cpsnark for Plonk and KZG
	Artemis: Efficient cpsnark w/o Trusted Setup
	Security Proof for Artemis
	Efficient Arithmetization for Artemis

	Evaluation
	Implementation
	Experimental Setup
	Results

	Definitions
	Ethics and Open Science Statements

