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Abstract

Face recognition under viewpoint and illumination
changes is a difficult problem, so many researchers have
tried to solve this problem by producing the pose- and
illumination- invariant feature. Zhu et al. [26] changed all
arbitrary pose and illumination images to the frontal view
image to use for the invariant feature. In this scheme, pre-
serving identity while rotating pose image is a crucial is-
sue. This paper proposes a new deep architecture based
on a novel type of multitask learning, which can achieve
superior performance in rotating to a target-pose face im-
age from an arbitrary pose and illumination image while
preserving identity. The target pose can be controlled by
the user’s intention. This novel type of multi-task model
significantly improves identity preservation over the single
task model. By using all the synthesized controlled pose
images, called Controlled Pose Image (CPI), for the pose-
illumination- invariant feature and voting among the multi-
ple face recognition results, we clearly outperform the state-
of-the-art algorithms by more than 4∼6% on the MultiPIE
dataset.

1. Introduction

Recently, there have been significant advances in face
recognition technologies, especially due to deep learning.
Zhu et al. [26] proposed a deep model that can convert
a face image with an arbitrary pose and illumination to a
so-called canonical face image as if it is viewed from the
front with a standard illumination. DeepFace [18] achieved
a human-level performance in face recognition for the first
time with a 97% recognition rate on very challengning LFW
dataset [6], and this record has recently been updated by a
more powerful deep learning method [17] achieving an im-
pressive 99% recognition rate on LFW dataset.

One important challenge related to face recognition is
changing the viewpoint of a face image or synthesizing a
novel view while preserving the identity of the face. For

Figure 1. Conceptual diagram of our proposed model. The Input
image under an arbitrary pose and illumination is transformed into
another pose image. The Remote Code represents the target pose
code corresponding to the output image. By interacting between
the input image and the Remote Code, our model produces desired
pose image.

instance, DeepFace also relies on a preprocessing stage that
rotates the input face images to a canonical view. A recent
work [27] that extends [26] can generate not only a canon-
ical view but also many face images with arbitrary poses
preserving the identity.

This paper improves upon these recent achievements
by proposing a simple yet powerful way to rotate a two-
dimensional face image to a different pose selected by a
user. More specifically, an arbitrary pose and illumination
are used for input to the network, and a controlled pose un-
der frontal illumination is generated as output. The concept
is illustrated in Figure 1. We train a deep neural network
(DNN) that takes a face image and a binary code encoding
a target pose, which we call Remote Code, and generates
a face image with the same identity viewed at the target
pose indicated by the Remote Code. It is as if the user has
a remote control and a black-box rotator, which can rotate
a given face image according to the user’s Remote Code.
The quality of this rotator can be measured by the degree to
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Input −45o −30o −15o 0o +15o +30o +45o

Figure 2. The first column represents the input test images of two
individuals from the MultiPIE dataset. The remaining columns are
the outputs from the input images with different Remote Codes.
For example, the third column represents the −30o pose images
resulting from the first column images and the Remote Code that
represents −30o. The top three rows have the same identity, and
the bottom three rows are the same identity under different illumi-
nations and poses.

which the output face image accords with the desired pose
and the degree to which the identity of the face is preserved.
Figure 2 shows the final results of our model. From the in-
put images under various illuminations and poses with the
same identity, our model can produce almost the same im-
ages for each controlled pose under frontal illumination.

To improve the identity-preserving ability of the deep
neural network, we introduce an auxiliary DNN and an aux-
iliary task that requires that the series interconnection of the
main DNN, which generates the desired pose image, and
the auxiliary DNN reconstructs the original input image,
i.e. the auxiliary DNN reconstructs the original input im-
age back from the output image of the main DNN. The idea
is that if the series interconnection of the main DNN and
auxiliary DNN can reconstruct the original input image, the
output of the main DNN should be identity-preserving and
contain sufficient information about the identity of the input
image. If the identity is not preserved by the main DNN,
the output image of the main DNN already takes a different
identity and the result of the next auxiliary DNN would de-
viate even further from the set of valid face images of the
original identity.

Another conceptual diagram for this multi-task learning
approach is shown in Figure 3. Suppose you would like to
rotate a given face image to 30o. A DNN trained with a typ-
ical single-task approach would warp the face image along
a path that deviates from the ground truth path to some ex-
tent, which is depicted by the yellow region. The output
image will be somewhere in the intersection of the yellow
region and subspace corresponding to pose parameter 30o.

Figure 3. Conceptual diagram for our multi-task learning. By
attaching second task, the path from input image to target pose
image is closer to the ground truth path than the single task.

With the additional task that restores the original input im-
age back from the output image, the warping path would
get closer to the ground truth path as depicted by the green
regions due to improved identity preserving ability. Simi-
larly, the target pose can be 0o or −45o, etc., as illustrated
in Figure 3.

Previous multitask learning models have shared some
layers to determine common features [13]. After the shared
layers, the remaining layers are split into the multi-tasks.
However, we have designed the multi-task model in a novel
way, as described in Figure 4. Our multi-task model shares
all the layers involved in the main DNN and attaches auxil-
iary DNN right after the main DNN to improve the identity-
preserving ability. To evaluate the performance of our
model, we prepared a face recognition task. We trained and
tested on the large MultiPIE face dataset [5], which contains
face images taken in various poses and under diverse illu-
minations. We use several pose-changed images from each
test image as the pose- and illumination- invariant features.
Our contributions are as follows: 1. We propose the new
architecture and Remote Code, which can efficiently change
the image into the desired pose. Unlike [27], where several
candidate face images for face rotation should be generated
and the best fit for controlled pose is selected from among
the many candidates, the proposed method can generate the
new face image with the desired pose in a single trial. 2. We
introduce a novel type of multi-task learning strategy, which
further improves the identity-preserving ability of the DNN.
3. We achieve a better face recognition rate than [26] and
[27] using all the synthesized images at multiple viewpoints
and voting among the multiple face recognition results.

The rest of this paper is organized as follows. In Sec. 2,
previous research about the face recognition and multitask
learning are explained. The description of our model and



Figure 4. Complete architecture of our DNN model containing four main parts: the feature extraction part, the feature rotation part, the
imaging part, and the reconstruction task part which is the auxiliary task. Each part consists of the locally connected layer, the max-pooling
layer, and the fully connected layer. In the third part, the red box represents the output layer where the target pose images are generated.

what we focused on designing is explained in Sec. 3, and
the parameters of our models are described in Sec. 4. Sec.
5 describes various experiments to demonstrate the strength
of our model, followed by the conclusion in Sec. 6.

2. Related Work

Face recognition Typically, for the past twenty years,
hand-crafted features such as LBP [1], SIFT [15] or Gabor
[14] have been used in the face recognition task. Recently,
face recognition and verification across poses have become
major issues. These studies are largely separated into stud-
ies of 3D methods [2, 12, 24, 20] and 2D methods [11]. For
the 3D methods, Asthana et al. [2] rotate non-frontal im-
ages to frontal images using the 3D model and landmark
points. Li et al. [12] also transform a rotated face image to
a frontal image using a morphable displacement field. Yi et
al. [20] provide pose-robust features by using transformed
filters and the 3D model. On the other hand, 2D methods
extract pose-invariant features without 3D information. By
representing the test image with a weighted sum of gallery
images, Li et al. [11] use these weights as pose-invariant
features. The DNN have been used to find pose-robust fea-
tures without hand-crafted features [26, 7, 27]. Zhu et al.
[26] change various pose images into frontal images using
CNN and use these ouput images directly as pose-invariant
features. This method is also applied in [7], by changing
poses step-by-step to minimize the effects of the manifold.
Zhu et al. [27] propose a multi-view perceptron (MVP),
which can untangle the identity and pose by using random
hidden neurons.

Deep learning with multitask learning Recently, many
DNN architectures have improved the performance on sev-
eral computer vision tasks by using multitask learning
[21, 23, 4]. To obtain the global weights that can extract
features for the various tasks, Collobert et al. [4] iteratively
trains the single model on each training set corresponding to

each different task. Instead of sharing all weights, a DNN
has the shared layers in the front part, followed by separated
layers to perform different tasks [25, 13, 22]. However, our
model shares all layers of the main task with the second
task.

3. Model Description
Two key objectives of our model are creating a new

posed image according to what the Remote Code represents,
and preserving input image identity even though the pose is
changed. Our model is carefully designed to produce su-
perior performance in these objectives. Figure 4 represents
the final design of the network. Our model uses an image
M ∈ RN×N and the Remote Code C ∈ {0, 1}2N+1 for the
input W ∈ R(N+1)×(N+1), which is defined as:

W(x,y) =

{
M(x,y) if 1 ≤ x, y ≤ N
CN+1−x+y otherwise , (1)

where (x , y) and C j represent the pixel coordinate (x , y)
and the j -th bit of C , respectively. As shown in Figure 4, the
Remote Code surrounds the input image to make a square
input set. Experimentally, the way to attach the Remote
Code to an image doesn’t effect on the performance.

Many previous works have efficiently used CNN to train
the DNN model from images [16, 9]. However, CNN shares
filters over all images, when it is inappropriate to apply fil-
ters, which share weights, to the Remote Code attached im-
age. For that reason, we use the locally connected layer
without weight sharing for the first part. For the second
part, we use the fully connected layer to change features to
contain the target pose information that the Remote Code
represents. The locally connected layer and the pooling
layer are applied after the fully connected layer to make
features more effectively contain pose information and pre-
serve identity. After the second part, the output layer, which
consists of the fully connected layer, functions to construct



the new pose image. Furthermore, the novel element of the
additional task part is attached after the third part. A de-
tailed explanation of part 4 is contained in Sec. 3.2.

The whole set of parameters is expressed as
Input(61×61)-L(7,32)-P(2,2)-FC(3600)-L(5,32)-P(3,3)-
FC(3729)-FC(3600)-L(5,32)-P(3,3)-FC(3721). L, P, and
FC denote the locally connected layer, pooling layer, and
fully connected layer, respectively. L(7,32), P(2,2), and
FC(3600) mean that this layer applies 32 filters without
weight sharing with size 7, the max-pooling layer whose
size is 2 with stride 2, and the fully connected layer with
3600 neurons, respectively. FC(3729) is the output layer
that produces a target image and code that represents the
informations of input image. In addition, FC(3721) means
a second task layer that reconstructs an input image and
Remote Code the same as the input layer. The locally
connected layer and fully connected layer use an ReLU
activation function [9]. The whole locally connected layer
has stride 1, and all the strides of pooling layers are set
to the same as their filter size. However, the output layer
and the last layer contain the linear activation function
without rectification. Parameter settings can be varied
flexibly depending on the input image size and the number
of target poses. The above parameter settings are designed
for the experiment with 60×60 input images and 7 poses,
described in Sec. 5.2.1.

3.1. Remote Code

We use two special codes at the input and output layer
to control the input image to change their pose. The code
at the input layer, Remote Code, Ci , i = 1 , . . . ,n , instructs
the input image to change to the i -th pose out of n poses
with the same identity. The Remote Code, which is a kind
of simple repetition code, Ci ∈ {0, 1}l with total length l is
defined as:

Cj
i =

{
1 if (i− 1)× k < j ≤ i× k
0 otherwise , (2)

where C j
i is the j -th bit of code Ci and k = ⌊l/n⌋. (l ,n)

were set equal to (121, 7) and (65, 9) for the experiments
described in Sec. 5.2.1 and Sec. 5.2.2, respectively. As the
output layer generates the target pose image with frontal
illumination from various illumination images, we do not
need the illumination information at the input layer code.
However, the auxiliary DNN that starts with the output layer
of the main DNN needs the information of not only the pose
but also the illumination of the input image to reconstruct
the input image. We set the output layer code, called Recon
Code, {Qi ,St}, i = 1 , . . . ,n, t = 1 , . . . ,m , which repre-
sents the i -th pose out of n poses with the t-th illumination
condition out of m illumination variations of the input im-
age. Similarly to the Remote Code, we set the pose code,

Qi ∈ {0, 1}l with total length l is defined as:

Qj
i =

{
1 if (i− 1)× k < j ≤ i× k
0 otherwise , (3)

where Q j
i is the j -th bit of code Qi and k = ⌊l/n⌋. (l ,n)

were set equal to (49, 7) and (72, 9) for the experiments de-
scribed in Sec. 5.2.1 and Sec. 5.2.2, respectively. Further-
more, the illumination code, St ∈ {0, 1}l with total length l
is defined as:

Sj
t =

{
1 if (t− 1)× k < j ≤ t× k
0 otherwise , (4)

where S j
t is the j -th bit of code St and k = ⌊l/m⌋. (l ,m)

were set equal to (80, 20) and (60, 20) for the experiments
described in Sec. 5.2.1 and Sec. 5.2.2, respectively.

Finally, we can define the training dataset. As we can
make n Remote Codes for one image, the dataset is n
times larger than the original dataset. We can set the train-
ing dataset, input and output pairs for the each image M ,
L = {{M ,Ci}, {Mi ,Qj ,St}}, where i = 1 , . . . ,n and Mi

is the i -th pose image with frontal illumination with the
same identity as M . Qj and St are the pose and illumi-
nation code of the image M , respectively.

3.2. Multitask Learning

We used a multitask learning model as described in Fig-
ure 4. Although the main objective of our model is to con-
struct the new pose image, we additionally attached a sec-
ond task, reconstructing the input image, after the first task
model to preserve the input identity while rotating an input
image.

We take the squared L2 norm as the cost function for
both tasks. For the first task, the cost function of the output
layer, constructing the new pose image and the Recon Code,
is defined as:

Ec =

N∑
i=1

∥Yi,GT − Yi∥22, (5)

where Yi,GT and Yi are the ground-truth and the gener-
ated output that contains the changed pose image, and the
pose and illumination information of the input image, re-
spectively. Furthermore, i and N indicates the index of the
training input and total batch size, respectively.

The cost function of the second task, reconstructing the
input image and the Remote Code, is defined as:

Er =
N∑
i=1

∥Xi,GT −Xi∥22, (6)

where Xi,GT and Xi are the ground-truth and the con-
structed output containing the input image and Remote
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Figure 5. Feature space of 6000 features of the testing images, from MultiPIE dataset, extracted on each layer. Each dot of the same color
represents the feature of input set containing the same Remote Code; for example, the red dot is the feature containing the Remote Code
representing −60o.

Code, respectively. Our final cost function is the weighted
sum of the cost function of the first and the second task,

E = λcEc + λrEr, (7)

where λc and λr are the weights for the first and second
task, respectively. We assumed that the two tasks have same
importances. λc and λr were set equal to 1 for all experi-
ments.

4. Training
All our experiments used the cuda-convnet [8], which is

one of the popular DNN toolboxes. We can control several
parameters including the initial weight (iniW), the learning
rate of weight and bias (epsW, epsB), momentum of weight
and bias (monW, momB), and L2 weight decay (wc). For
all experiment settings, we use the same parameters. For
the locally connected layer and the fully connected layer,
we set the iniW equal to 0.001 and 0.01, respectively. In ad-
dition, for all layers except the first locally connected layer,
we set the epsW, epsB, momW, momB, and wc equal to
0.0001, 0.0002, 0.9, 0.9, and 0.04, respectively. We set
epsW to 0.001 and epsB to 0.02 for the first locally con-
nected layer. We trained our model using mini-batch gradi-
ent descent with back propagation [10]. The batch size is
equal to 100.

To obtain the input and output training set, we carried
out two preprocessing steps for the image set, not for the
Remote Code. First, in order to be robust to illumination
changes, each image is subtracted and divided by the mean

and variance of each image, respectively. Second, we also
subtracted the per-pixel mean and divided by the per-pixel
variance, computed over the training images.

5. Experiments
The experiment section consists of four parts to demon-

strate the strength of our model. Sec. 5.1 shows the feature
space of each layer to analyze how the input face image ro-
tates along the deep architecture. We use the t-SNE method
[19], one of the famous tools to transform high-dimensional
space into two-dimensional space. Sec. 5.2 contains the re-
sults of face recognition experiments with state-of-the-art
procedures to demonstrate the ability to preserve identity.
We carefully designed our model to construct a target im-
age and preserve an identity at the same time, performing
well on both tasks. Accordingly, we contruct the experi-
ments to demonstrate the effectiveness of our model. In
Sec. 5.3, we compare our multitask model to a single task
model. Finally, in Sec. 5.4, we construct an experiment to
show the advantages of putting a fully connected layer at
the beginning.

5.1. Feature Space

As shown in Figure 5, the features from the first pool-
ing layer are mixed together in similar patterns to the input
layer. This shows that the first locally connected layer and
the pooling layer extract useful features of the input image,
rather than the changed pose. Features that have the same
Remote Code inserted in the input layer start to merge with



each other from the first fully connected layer. However,
some different-color dots mixed with each other show that
the one fully connected layer is not enough to change the
pose perfectly. The locally connected and pooling layers
attached after the fully connected layer clearly performed
the objective of changing pose. As shown in Figure 5, at
the second pooling layer, features are perfectly separated
from the other colors. As the output layer is a fully con-
nected layer, operating to change the features into the target
pose image, features are mixed with those of similar poses;
for example, the −45o,−30o, and −15o images are simi-
lar. Features extracted from the second pooling layer show
a better performance than those extracted from other layers
in the face recognition task, as described in Table 3.

5.2. Face Recognition

To demonstrate how our model maintains the identity of
input images, we take the face recognition task by using the
MultiPIE dataset [5]. We prepared two experiment settings:
Setting 1, we only used session 1 images in the MultiPIE
dataset which includes 249 subjects. 100 subjects (ID 001
to 100) under 7 poses (−45o to +45o) and 20 illuminations,
were used for training the model to analyze a human face.
After the training, we chose the remaining 149 subjects (ID
101 to 250 except 213) under 6 poses (−45o ∼ +45o ex-
cept 0o) with 19 illuminations (ID 01 ∼ 20 except frontal
illumination, ID 07) for the probes to test. For the gallery
images, one frontal image with frontal illumination for each
subject was used. Therefore, 14000 images were used for
training, and 16986 images were used for testing. For Set-
ting 2, we prepared more large scale data in the MultiPIE
dataset. We used 200 subjects (ID 001 ∼ 200) under 9 poses
(−60o to +60o) with 20 illuminations for training. For the
testing, we used remaining 137 subjects under 9 poses with
20 illuminations, 137×9×20 images in total. The selecting
procedure of gallery images are same with Setting 1.

For the test step, we extracted features from the output
layer, called Controlled Pose Image (CPI), which is marked
with a red box in Figure 4. Furthermore, we extracted fea-
tures from the second pooling layer in front of the output
layer, termed as Controlled Pose Feature (CPF). To evalu-
ate, all experiments used L2 distance norm to compare the
test image and gallery images. As our model can create dif-
ferent pose images from one image, we make n, the number
of trained poses (7 for Setting 1 and 9 for Setting 2), im-
ages Pi (i = 1, . . . ,n) per one probe image. Furthermore,
we make n images Gj

i (i = 1, . . . ,n, j is subject identity) per
one gallery image. For each i, the result of the equation

min
j

∥Pi −Gj
i∥

2
2, (8)

is calculated. The result for each i is voted to produce the
final result.

−45o −30o −15o +15o +30o +45o Avg
Li[11] 63.5 69.3 79.7 75.6 71.6 54.6 69.3
Z.Zhu[26] 67.1 74.6 86.1 83.3 75.3 61.8 74.7
CPI 66.6 78.0 87.3 85.5 75.8 62.3 75.9
CPF 73.0 81.7 89.4 89.5 80.4 70.3 80.7

Table 1. Recognition rates (%) for the various poses under Setting
1. Best results are written in bold.

00 01 02 03 04 05 06
Li[11] 51.5 49.2 55.7 62.7 79.5 88.3 97.5
Z.Zhu[26] 72.8 75.8 75.8 75.7 75.7 75.7 75.7
CPI 66.0 62.6 69.6 73.0 79.1 84.5 86.6
CPF 59.7 70.6 76.3 79.1 85.1 89.4 91.3

08 09 10 11 12 13 14
Li[11] 97.7 91.0 79.0 64.8 54.3 47.7 67.3
Z.Zhu[26] 75.7 75.7 75.7 75.7 75.7 75.7 73.4
CPI 86.5 84.2 80.2 76.0 70.8 65.7 76.1
CPF 92.3 90.6 86.5 81.2 77.5 72.8 82.3

15 16 17 18 19 Avg
Li[11] 67.7 75.5 69.5 67.3 50.8 69.3
Z.Zhu[26] 73.4 73.4 73.4 72.9 72.9 74.7
CPI 78.2 80.7 79.4 77.3 65.4 75.9
CPF 84.2 86.5 85.9 82.9 59.2 80.7

Table 2. Recognition rates (%) for the various illuminations under
Setting 1. Best results are written in bold.

5.2.1 Result of Setting 1: Containing 7 Poses

In this setting, we used 60×60-size images for the input as
described in Figure 4. We compared our results with the
state-of-the-art results [26] and Li et al. [11]. The results of
recognition rates for different poses are shown in Table 1.
As with human perception, our model found it difficult to
imagine the face identity from the greatly rotated images,
−45o and +45o cases. However, Table 1 shows that not
only the CPI but also the CPF outperformed the state-of-
the-art for most poses. Table 2 shows the recognition rates
for 20 different illuminations. As we tested on 19 illumi-
nation settings excluding frontal illumination (ID 07), only
19 results are shown. The CPF outperforms all the other
methods for 12 out of 19 parts.

5.2.2 Result of Setting 2: Containing 9 Poses

As the state-of-the-art [27] uses training and test im-
ages with size 32×32, we prepared the same setting.
The changed input image size requires different param-
eter settings. The whole set of parameters is expressed
as Input(33×33)-L(5,16)-P(2,2)-FC(1600)-L(5,16)-P(2,2)-
FC(1156)-FC(1600)-L(7,16)-P(2,2)-FC(1089). We com-
pared our results with several features listed in [27]. All
the previous settings used LDA to reduce the dimensions
of features. As shown in Table 3, the CPF outperforms all
the other methods for all different poses. Extracting fea-
tures from different layers produced different results. As



−60o −45o −30o −15o 0o +15o +30o +45o +60o Avg
Landmark LBP[3] 35.5 52.8 71.4 83.9 94.9 82.9 68.2 48.3 32.1 63.2
FIP+LDA[26] 49.3 66.1 78.9 91.4 94.3 90.0 82.5 62.0 42.5 72.9
RL+LDA[26] 44.6 63.6 77.5 90.5 94.3 89.8 80.0 59.5 38.9 70.8
MTL+RL+LDA[27] 51.5 70.4 80.1 91.7 93.8 89.6 83.3 63.8 50.2 74.8
Z.Zhu+LDA[27] 60.2 75.2 83.4 93.3 95.7 92.2 83.9 70.6 60.0 79.3
CPI 55.8 71.8 80.0 90.1 98.4 90.2 82.7 71.0 52.9 77.0
CPF 63.2 80.4 88.1 94.5 99.5 95.4 88.9 79.4 60.6 83.3
CPF-FC1600 45.4 72.7 80.8 885 96.8 90.3 79.6 70.22 42.5 74.1
CPF-Pool1 9.7 39.1 51.6 69.9 92.5 70.8 51.1 39.4 9.3 48.1

Table 3. Recognition rates (%) for the various poses under Setting 2. The CPF-FC1600 and the CPF-Pool1 indicates the features extracted
from the first FC(1600) layer and the first pooling layer, respectively. Best results are written in bold.

the output layer is converting high level features into target
images, some of the discriminative features useful for dis-
cerning face identities may be lost at the output layer. This
is why the high level feature just before the output layer,
CPF, performs the best. Our model achieves remarkable
performance on 0o. Showing a 99.5% recognition rate, our
method clearly outperforms the state-of-the-art algorithm,
which reports a 95% recognition rate on 0o. Indeed, the
recognition rate of our method amounts to 14 misclassifica-
tions out of 2740 images.

Although the above final results are produced by vot-
ing among the multiple results which are produced by each
CPFs, most of the correct results are generated by large
number of votes meaning high confidence as shown in Fig-
ure 6. This result indicates that face recognition based on
synthesized face images at each target pose gives quite con-
sistent result and that the proposed DNN can generate high
quality multi-view face images across pose. In addition, as
described in Figure 7, proposed model can preserve identity
while changed pose as well.

Figure 6. The percentage of the number of CPFs contributing
to final result. Most of the incorrect results are generated by low
confidence, e.g. 5 out of 9 CPFs are voted. On the other hand,
most correct results are produced from high confidence. We can
infer that each CPF has an ability to preserve identity.

5.3. Compare to Single Task Learning

We constructed a new experiment to demonstrate the ef-
fectiveness of appending the reconstruction task layer after
the output layer. We prepared two models, the multi-task
model the same as Figure 4 and the single task model as
only the first task of the first model. As the CPF outper-
forms the CPI, we take CPF for both models in the same
experiment as Setting 1. The recognition rates for vari-
ous poses and illuminations are shown in Table 4 and 5,
respectively. For all pose and illumination settings, multi-
task model is better than single task model. The first task
of multitask model is to construct a target pose image that
the Remote Code represents, the same as the single task
model’s objective. However, the second task is to recon-
struct the input image and the input Remote Code from the
output layer features. Since the output layer of the multi-
task model must contain identity preserving features to re-
construct the input layer in the second task, the multitask

Figure 7. The feature space of 6000 features from the second
pooling layer with Setting 2. Each pale dot color represents a dif-
ferent Remote Code. 54 dots with the same deep colors represent
the features from a single identity. In the feature space, not only
are the features united among the Remote Codes, but also the deep
dots are united among the same identity in each pose.



−45o −30o −15o +15o +30o +45o Avg
Single 65.4 76.5 85.9 85.8 76.3 63.2 75.5
Multi 73.0 81.7 89.4 89.5 80.4 70.3 80.7

Table 4. Recognition rates (%) for the various poses under Setting
1, comparing with single task model and multitask model. Best
results are written in bold.

00 01 02 03 04 05 06
Single 45.4 64.3 72.9 74.9 82.0 86.9 89.8
Multi 59.7 70.6 76.3 79.1 85.1 89.4 91.3

08 09 10 11 12 13 14
Single 89.7 87.9 81.7 76.5 72.2 66.7 76.9
Multi 92.3 90.6 86.5 81.2 77.5 72.8 82.3

15 16 17 18 19 Avg
Single 80.9 82.7 79.9 76.5 47.1 75.5
Multi 84.2 86.5 85.9 82.9 59.2 80.7

Table 5. Recognition rates (%) for the various illuminations under
Setting 1, comparing with single task model and multitask model.
Best results are written in bold.

model retains identity features more effectively than the sin-
gle task model.

5.4. Effectiveness of Early FC layer

Most DNN models are composed of two large parts,
feature extraction and combination of the features. As a
large-scale input size is difficult to handle, convolutional
layers or locally connected layers are usually used at the
beginning of the network for feature extraction. In addi-
tion, fully connected layer is used to combine features in
the rear. However, as described in Figure 4, our model
uses a fully connected layer at the beginning. To ex-
amine the effectiveness of an early fully connected layer
model (EFC), we constructed an experiment with Set-
ting 2. Our model is described in Section 5.2.2. We
designed another model (LFC) in which the fully con-
nected layer is located just before the output layer, not
at the beginning. The whole parameter set is defined
as Input(33×33)-L(5,16)-P(2,2)-L(5,16)-P(2,2)-FC(1600)-
FC(1156)-FC(1600)-L(7,16)-P(2,2)-FC(1089). All param-
eters are the same, except the position of the fully connected
layer, the first FC(1600) layer. The recognition rates of the
two models are noted in Table 6. We also include the results
of using the CPI and CPF for each model. CPF-LFC and
CPI-LFC are extracted from the FC(1600) and FC(1156),
respectively.

As the locally connected layer filter acts on local parts,
only the fully connected layer operates globally. Accord-
ingly, at the fully connected layer, the Remote Code starts
to change features to contain the target pose that the Re-
mote Code represents. Thus in the early fully connected
layer model, the features that contain the target poses ap-
pear earlier than in the late fully connected model. As the
results show, although CPI-LFC results are better than those

CPI-EFC CPF-EFC CPI-LFC CPF-LFC
Result 77.0 83.3 78.3 79.7

Table 6. Recognition rates (%) compared with our model, which
has an FC layer at the beginning, and Late FC model, which has
no FC layer at the beginning. Best results are written in bold.

of CPI-EFC, the early fully connected model is better than
the late fully connected model in the case of the best perfor-
mance feature, CPF.

6. Conclusion
In this paper, we proposed a novel type of multi-task net-

work that can synthesize the desired pose and frontal illu-
mination face image by utilizing user’s Remote Code repre-
sents. By attaching a second task model which reconstructs
the input image, after the first task model which rotates an
input image to a certain pose, proposed multi-task network
produced better performance at preserving identity than the
single task model. Activation values of the second pooling
layer at the first task model can be used as the pose- and
illumination- invariant feature. In the face recognition task
under arbitrary poses and illuminations, our model clearly
win against the previous state-of-the art model by more than
4∼6%.
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