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Abstract

While most machine learning models can pro-
vide confidence in their predictions, confidence
is insufficient to understand a prediction’s relia-
bility. For instance, the model may have a low
confidence prediction if the input is not well-
represented in the training dataset or if the input
is inherently ambiguous. In this work, we investi-
gate the relationship between how atypical (rare) a
sample or a class is and the reliability of a model’s
predictions. We first demonstrate that atypicality
is strongly related to miscalibration and accuracy.
In particular, we empirically show that predictions
for atypical inputs or atypical classes are more
overconfident and have lower accuracy. Using
these insights, we show incorporating atypical-
ity improves uncertainty quantification and model
performance for discriminative neural networks
and large language models. In a case study, we
show that using atypicality improves the perfor-
mance of a skin lesion classifier across different
skin tone groups without having access to the
group attributes. Overall, we propose that models
should use not only confidence but also atypicality
to improve uncertainty quantification and perfor-
mance. Our results show that simple atypicality
estimators already provide large benefits.

1. Introduction

Typicality is an item’s resemblance to other category mem-
bers ( s ). While a dove and a sparrow
are typical birds, a penguin is an atypical bird. Many works
from cognitive science (e.g., ( s ; , ;

, )) suggest that typicality plays a crucial
role in category understanding. For instance, humans have
been shown to learn, remember, and refer to typical items
faster ( , ). The representativeness heuristic is
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the tendency of humans to use the typicality of an event as a
basis for decisions ( , ). This bias
is effective for making fast decisions but can lead to poor
judgments. For instance, the likelihood of typical events can
be overestimated ( , ) or poorly
estimated for atypical ones ( , ).

While it is hard to quantify the uncertainty of human judg-
ments, machine learning models provide confidence in their
predictions. However, confidence alone can be insufficient
to understand the reliability of a prediction. For instance,
a low-confidence prediction could arise from an ambigu-
ity that is easily communicated, or due to the sample be-
ing underrepresented in the training distribution. Similarly,
a high-confidence prediction could be reliable or miscali-
brated. Our main proposal is that models should quantify
not only the confidence but also the atypicality to understand
the reliability of predictions or the coverage of the training
distribution. Contributions: To support our position, we
show that with a simple formalization of atypicality, we can:

Understand Prediction Quality: With experiments and
theory, we show that atypicality leads to low-quality predic-
tions. Predictions for atypical inputs and atypical classes
are more overconfident with lower accuracy.

Improve Calibration and Accuracy: We show that models
need different adjustments according to the atypicality of
inputs and classes and propose Atypicality-Aware Recalibra-
tion. We show that complementing recalibration methods
with atypicality improves uncertainty quantification and ac-
curacy. We further show that atypicality awareness can
improve fairness without access to group annotations.

Improve Uncertainty Sets: We investigate methods to pro-
vide uncertainty sets (e.g. Conformal Prediction) with atypi-
cality and show that uncertainty sets could underperform for
atypical or low-confidence samples. By using atypicality,
we demonstrate the potential for improving uncertainty sets.

Overall, we propose that models should also consider atyp-
icality, and we show simple- and easy-to-implement atyp-
icality estimators can provide significant value.



Beyond Confidence: Reliable Models Should Also Consider Atypicality

Hig|
Reliable Quadrant

Untrustworthy

Figure 1. Atypicality in Uncertainty. Left: We show examples
from the ImageNet-R dataset with our atypicality framework.
Right: We provide a conceptualization of the quadrants. Us-
ing atypicality, we can understand prediction quality (§3), improve
predictions (§4), and uncertainty sets (§B).

2. Interpreting Uncertainty with Atypicality

In many machine learning applications, we have access to
a model’s confidence. However, the uncertainty in confi-
dence can stem from different sources that require different
treatment ( , ). We propose that atypical-
ity provides a natural way to understand reliability when
combined with confidence. A sample is typical if it is well-
represented in the previously observed samples, e.g., an
image of a dog that is similar to other dogs in training data.

High-confidence and representative: Reliable predictions are
often in the Reliable Quadrant, with typical, high-confidence
samples. These samples are well-represented in training
data (typical), we expect the confident prediction to be reliable.
Having high-
confidence does not always indicate reliability. If the sample
does not have support in the training distribution, the confi-
dence could be miscalibrated. Such samples lie in the
with atypical, high-confidence samples.
Low confidence due to ambiguity: In contrast, low con-
fidence could also be reliable when it correctly reflects an
ambiguity. Such samples are in the Ambiguous Quadrant
that contains typical, low-confidence samples. These are typ-
ical since they may represent multiple classes; yet, due to
ambiguity, the model’s confidence is low.

Low confidence and rare: For samples that are not well-
represented in training data, we expect to have low-quality
predictions. Untrustworthy Quadrant comprises atypical,
low-confidence samples that can include rare subgroups, for
which we expect miscalibration and lower accuracy.

These examples suggest that relying only on confidence
does not provide a complete understanding of reliability,
and we can use atypicality to improve reliability.

Formalizing Atypicality: Atypicality here is defined with
respect to the training distribution. Informally, an input
or a class is atypical if it is not well-represented in the
training distribution. For instance, if there are no or lim-
ited similar examples to an input, it can be called atypi-
cal. Note that this notion is not restricted to being ‘out-
of-distribution’ ( s ), since in-
distribution groups could also be atypical or rare, and our
goal is to perform reliably for the entire spectrum.

Definition 2.1 (Input Atypicality). We define the atypicality
of the input z as' ax (z) = — max, logP(X = z|Y =y).

We use the logarithm of the class-conditional densities due
to high dimensionality and density values being close to
zero. Intuitively, for a dog image x, if P(X = z|Y = dog)
has a low value, we call z an atypical dog image. Overall, if
a(x) is high, then we call = an atypical input. Specifically,
if an input is not typical for any class, then it is atypical with
respect to the training distribution. Similarly, we can also
use marginal density, P(X = z), or distance.

Similarly, the notion of atypical (rare) classes is prevalent
in imbalanced classification ( , ; s

). Ensuring reliable performance for atypical classes
can be safety-critical, e.g., for a rare presence of dangerous
melanoma ( s ).

Definition 2.2 (Class Atypicality). For a class y, atypicality
of a class is defined as ay (y) = — log P(Y = y).2

Atypicality for Discriminative Models: Quantifying input
atypicality requires access to the class-conditional / marginal
distributions which are unavailable and we need to perform
the estimation. This estimation can be challenging if the
dimensionality is large, or the data is unstructured, requiring
assumptions about the distributions. Prior works (

; , ) showed that Gaussian Mixture
Models (GMMs) in the embedding space of neural networks
can be used to model these distributions. See Appendix C.1
for further details on the estimation procedure.

Atypicality for LLMs: LLMs are increasingly used for
classification ( , ). Modern LLMs are au-
toregressive models that compute a marginal distribution,
I@’LLM(X ). We compute the negative log-likelihood of a
prompt or a label to quantify atypicality, i.e. ax(z) =
— logﬁDLLM(x), ay (y) = —log I@LLM(y). For instance, be-
low are typical and atypical prompts for AGNews dataset:

Classify the news articles into the categories of World, Sports, Business, and Technology.
Article: Safin tallest obstacle to host #39;s patriotic games hope AS tennis fans go, Houston
#39;s Jim #39;Mattress Mack #39; McIngvale is very rich, extremely forthright, exceedingly
patriotic and unflinchingly Republican.
Answer: Atypicality: 353.45, Percentile: %94.5
Classify the news articles into the categories of World, Sports, Business, and Technology.
Article: Delta Air Lines Prepares Chapter 11 Filing Delta Air Lines Inc. could file for Chapter
11 bankruptcy protection as soon as next week, a source familiar with the matter said yesterday.
Answer: Atypicality: 171.50. Percentile: %0.9

3. Understanding the Prediction Quality with
Atypicality

In this section, we show how our framework can be applied
to understand the quality of predictions. We experiment

"Here atypicality differs from ’typical sets’ in information the-
ory that refers to a sequence of variables ( s ).

2When the meaning is unambiguous, we omit the subscript to
denote a(X) or a(Y") for notational brevity.
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with Balanced Supervised Classification, Imbalanced
Supervised Classification, and Classification with LLMs.
Details on datasets, models, and prompts are in Appendix D.
Our experiments were run on a single NVIDIA A100-80GB
GPU. We report error bars over 10 random splits.

3.1. Atypicality is Correlated with Miscalibration

We first explore the importance of atypicality to understand
model calibration ( s ). In practice,
we use Expected Calibration Error (ECE) ( ,

; , ), to estimate Calibration Error, and
report results with ECE and other similar calibration metrics.
See Appendix E.1 for a formal definition. Here, we aim
to examine the relationship between model calibration and
atypicality. Given any K > 1, we consider the quantiles of
a(X),a1,az,...,ax+1 suchthatP(a(X) € (ak, agt+1]) =
1/K for k € [K]. For imbalanced classification problems,
we compute the quantiles using the class atypicality. We
look at the atypicality-conditional calibration error ECE [IF" |
a(X) € (ak,ak41]], i-e., the expected calibration error of
an input that falls within the atypicality quantile %.

Poorly  Calibrated:
Figure 2 shows the dis-
tribution of miscalibra-
tion where each bin
0.22 within the grid con-
TR tains the intersection of
the corresponding con-
fidence and atypical-
ity quantiles. We ob-
serve that within the
same confidence range,
predictions for atypical
points have lower ac-
curacies and are more
overconfident. In Fig-
ure 3, we split inputs
into quantiles according
to atypicality and com-
pute the ECE and Accu-
racy for each group. Re-
sults show a monotonic relationship between atypicality and
ECE or Accuracy across the three settings. Specifically,
we see that predictions for atypical inputs or samples from
rare classes are more miscalibrated and have lower accuracy.
For samples from rare classes, the model overpredicts the
probabilities of the typical class, hence we have overconfi-
dence (Appendix E.3 has all model and dataset pairs).

Atypical Examples are

ResNet18 on ImageNet + ImageNet-R
Confidence(B,,)-Accuracy(B,,)

1 2 4
Input Atypicality Quantile

Figure 2. Atypical Samples Have
Low-Quality Predictions. Here,
samples are grouped according to
the Input Atypicality (x) and Con-
fidence (y), to the right meaning
more atypical. Values show the
difference between the confidence
and the accuracy, lighter color indi-
cates more overconfidence. Within
the same confidence range, atypi-
cal groups have more miscalibra-
tion (overconfidence).

Theoretical Analysis: Characterizing Calibration Error
with Atypicality: We characterize how calibration error
varies with atypicality in a logistic model that is commonly
used in ML theory ( , ;b; , ;

, ). The concrete setting can be found in I.1.

Theorem 3.1. Consider the data generative model and the
learning setting in I.1. For any K > 1, suppose we con-
sider the quantiles of a(X), a1, as, ..., 0, ax 1 such that
P(a(X) € (ak,ags1]) = 1/K for k € [K]|. We assume
|18*|| < co, and d/n = &k, for some sufficiently small cy.
Then, for sufficiently large n, fork = 2,..., K, we have

Eufu—PY =1|Py(X) =u) | a(X) € (ar, aps1]] >
Eufu—PY =1|Py(X)=u)]|a(X) € (ar_1,ax] > 0.

The resulting classifier is over-confident, and the level of
over-confidence becomes larger when the data is more atyp-
ical (with larger a(X)). Further, the gap becomes larger for
smaller sample sizes n. The proof is in Appendix 1.3.

4. Using Atypicality to Improve Recalibration

Here, we show how atypicality can complement and im-
prove post-hoc calibration. We observed that predictions
for atypical inputs and samples from atypical classes are
more overconfident with lower accuracy. We next show that
taking atypicality into account improves calibration.

Parametric Recalibration: Different Groups need Dif-
ferent Temperatures: Temperature scaling (TS), a single
parameter variant of Platt Scaling ( s ),is a
simple recalibration method that calibrates the model us-
ing a single parameter. To understand the behavior of TS,
we separately perform TS on points grouped according to
the atypicality quantiles. Let us denote the temperature fit-
ted to the quantile covering a(X) € (ax—1,ax] by 74,. In
Appendix Figure 9 we observe an increasing relationship
between ay, and 7,, . Different atypicality groups need dif-
ferent adjustments, atypical groups need larger temperatures.
This suggests that being atypicality-aware can improve cali-
bration. While a single temperature value improves average
calibration, it may hurt certain groups.

Atypicality-Aware Recalibration: We showed that pre-
dictions are more reliable when the input is typical. How-
ever, predictions are less reliable for atypical inputs, and
we may need further revision. An analogy can be drawn
to decision-making literature where opinions of individu-
als are combined with geometric averagmg weighted by
their expertise (

). Analogously, we propose Atyptcalzty Aware Recalt-
bration (AAR) a method designed to address the reliability
issues identified in dealing with atypical inputs:

PV |X)¥(@(X)) exp(Sy )L ¥(a(X)
Z(X)

Paar(Y]X) = (1

where 1(a(X)) is a function of input atypicality, Sy is a
tunable score for class Y, Z(X) is the normalization term.



Beyond Confidence: Reliable Models Should Also Consider Atypicality

ResNet50 - ImageNet

=7

ResNet18 - ImageNet
0.08
H0.05

0.04 w
fir}

(a) 0.02
0.25 0.50 0.75 1.00
Input Atypicality Quantile

ECE

0.03

0.25 0.50 0.75 1.00
Input Atypicality Quantile

ROBERTa - MNLI WideResNet28 - CIFAR10

0.10 ;
0.00
0.25 0.50 0.75 1.00
Input Atypicality Quantile

w
[}
o

0.25 0.50 0.75 1.00
Input Atypicality Quantile

== Uncalibrated ==TS == AdaTS == AAR(Ours)

ResNext50 - ImageNet-LT

0.20
50.20 5]
o T o0.10
0.00
025 0.50 0.75 1.00
Class Atypicality Quantile

>
0-50|Y
WWW :
3

S

<

025 050 0.75 1.00
Class Atypicality Quantile

0.5

== Uncalibrated ==TS

()

205
e
5
3
S
<0

0.0

ResNext50(+P.B.) - ImageNet-LT

ResNet152 - Places365-LT ResNet18 - CIFAR100-LT
0.40 0.40

w / w
1 0.20 & 0.20
% —

025 050 0.75 1.00
Class Atypicality Quantile

0.38
02.W.

<(OO

025 0.50 0.75 1.00
Class Atypicality Quantile
0.5

0.0

uracy

Accuracy

= AdaTS == AAR(Ours) |

Alpaca7B - AG News

0.40 0.50

Alpaca7B - TREC

015 Alpaca7B - IMDB

w w w 0.10
0 0.20 0 0.25 0,05 —
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(C) Input Atypicality Quantile Input Atypicality Quantile Input Atypicality Quantile

ccuracy

g 0.75
©
SOSW.
o
O
<0

0.80
- W W W
<00

ccuracy

0.91
<0.0

== Uncalibrated ==TS e=CF —AAR(Ours

Figure 3. Post-hoc Recalibration for Classification. (a) Balanced Supervised Classification: Atypicality-Aware Recalibration
improves the calibration of models trained with balanced datasets, across atypicality groups. (b) Imbalanced Supervised Classification:
Atypicality-Aware Recalibration improves both the calibration across groups and the overall accuracy of models trained with imbalanced
datasets. (c) Classification with LL.Ms: Atypicality-Aware Recalibration improves both the calibration across groups and the overall

accuracy of LLMs performing classification.

Intuitively, when the input is typical, we trust the model
confidence; otherwise, we use a score for the given class
estimated from the calibration set. Note that this form sim-
plifies to log Paar(Y]X) o é(a(X))logP(Y|X) + Sy
where we subsume (1 — ¢(a(X)) into ¢(a(X)). We give a
simple interpretation of this form: the multiplicative term
is an atypicality-dependent temperature, and the additive
term is a class-dependent correction where exp (Sy ) can be
considered to induce a correction distribution over classes
estimated from the calibration set. In Appendix Figure 10,
we show how these values behave with class atypicality.
We find that rare classes require larger positive correc-
tions with larger Sy. With the temperature-atypicality
relationship observed in Figure 9 we choose to instanti-
ate the multiplicative factor as a quadratic function, where
#(a(X)) = caa(X)? + c1a(X) + co and in total we have
I{S1, .., S|y, co, 1, c2}| = |V|+3 interpretable parameters.
We give more details on baselines in Appendix F.

For Balanced Supervised Classification, in Figure 3a we
observe that being atypicality aware improves recalibration
across all groups. We perform comparably to AdaTS, where
the temperature function has in the order of millions of
parameters, whereas AAR has only || + 3 parameters.

In Imbalanced Supervised Classification (Figure 3b), our
algorithm not only provides better calibration rates across
all classes but also improves overall accuracy. Note that
only our method can change accuracy (due to the additive

term), and it performs better than other baselines in terms of
ECE across all classes. Further, the second column shows
using Progressive Balancing (Zhao et al., 2021) in training,
showing that our post-hoc method can complement methods
that modify training procedures.

For Classification with LLMs, we add an LLM calibration
baseline Content-Free Calibration (CF) (Zhao et al., 2021).
We cannot use AdaTS as the embeddings are not fixed in
size. In Figure 3c, we see AAR has better calibration and
accuracy across the three datasets. Namely, by adjusting the
LLM output using the LLM atypicality, we can adjust the
probabilities to increase the prediction quality.

Case Study: Fairness through Atypicality-Awareness
Machine learning models reportedly have performance dis-
parity across subgroups (Barocas et al.,, 2017). For in-
stance, skin lesion classifiers can exhibit performance dis-
parity across different skin tones. Fitzpatrick17k (Groh
et al.,, 2021) is a dataset of clinical images with Fitzpatrick
skin tone annotations. In Appendix H Figure 12 we show
how AAR improves the calibration and accuracy of mod-
els across different skin tone groups. With AAR, we can
improve both the worst group performance and overall per-
formance significantly without using group attributes. Our
findings suggest that Atypicality-Awareness can complement
fairness-enforcing methods, and improve performance even
when the group annotations are unavailable.
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Improving Conformal Prediction: We further experiment
with improving Conformal Prediction with Atypicality. In
Section B we examine the coverage of existing confor-
mal calibration methods APS ( s ) and
RAPS ( , ). Even though marginal
coverage is satisfied, models do not satisfy conditional cov-
erage for atypical inputs or low-confidence predictions. We
observe that being Atypicality-Aware in implementing Con-
formal Prediction can improve coverage across otherwise
underperforming groups (Figure 6).
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A. Additional Related Work

Uncertainty and Atypicality: ( , ; , ) use density estimation to disentangle epistemic
and aleatoric uncertainty. Following this, they show improvements in active learning and OOD detection ( ,

). We note that our goal is not this disentanglement (e.g. Untrustworthy quadrant can have both aleatoric or epistemic
uncertainty), or Ambiguity could be due to a lack of features or noise. ( , ) propose the related notion of
distance awareness, and that it leads to better uncertainty quantification. They offer architecture and training modifications
whereas we analyze existing models using our framework including imbalanced and LLM settings, and propose simple
and post-hoc approaches. ‘OOD’ ( , ) or ‘anomaly’ ( , ) notions are tied to
atypicality, yet our goal is not to make a binary distinction between ‘in’ or ‘out’. We argue that in-distribution samples could
also be atypical (e.g. rare groups), and the goal is to perform reliably in the entire spectrum. Other works with an atypicality

notion include bounding calibration of groups by the excess risk ( , ), miscalibration under distribution
shifts ( , ), uncertainty in Gaussian Processes ( , ), forgetting time for rare examples (
, ), the poor performance of groups with lower sample sizes ( , ), energy-based models improving
calibration ( , ), relating perplexity to zero-shot classification performance for LLMs ( ,
), grouping loss and local definitions of miscalibration ( , ), the relationship between active
learning and atypicality ( , ), sample size as a factor for subgroup performance disparity ( ,

). Our new findings include showing that predictions for atypical samples are more miscalibrated and overconfident,
and atypicality awareness improves prediction quality. Overall, while there are other relevant notions in the literature, our
distinct goal is to show that post-hoc atypicality estimation and recalibration is a simple yet useful framework to understand
and improve uncertainty quantification that complements existing methods.

Recalibration: There is a rich literature on post-hoc recalibration methods: TS ( R ), Platt Scaling ( s

), conformal calibration ( s ; , ) among many. ( s ;

, ; s ; s ) make a relevant observation, showing that the coverage of conformal
prediction is not equal across all groups. They propose group conformal calibration, which requires group labels whereas
our proposal is unsupervised and does not depend on any attribute information. Concurrent work ( , ) explores
AdaTsS, where they train a separate VAE and MLP to produce an adaptive temperature. However, our parameterization of
temperature has 3 parameters and is interpretable.

B. Improving Uncertainty Sets with Atypicality

Conformal Prediction ( R ; s ) is a framework that assigns a calibrated
uncertainty set to each instance. The goal is to find a function C : X — 27 that returns a subset of the label space such
that Y € C(X) with high probability. The framework aims to guarantee marginal coverage,i.e.,P(Y € C(X)) > 1 — «,
for a choice of . We investigate two conformal calibration methods, Adaptive Prediction Sets (APS) ( R

) and Regularized APS (RAPS) ( s ). Let (X)) be the permutation of the label set that sorts
]f”(Y = ¢|X), i.e. the predicted probabilities for each class c after TS. The uncertainty sets are produced by the function
C(xz) = {y : s(z,y) < ¢}, and these methods fit the threshold ¢ for a choice of the scoring function. APS uses the
cumulative sum of the predicted probabilities s(z,y) = Z§=1 P(Y = j|X), where y = 7.(X). Intuitively, if the model
was perfectly calibrated, we would have expected to have § = 1 — «.. Similarly, RAPS builds on the idea that tail probabilities
are noisy and regularizes the number of samples in the uncertainty set.

Building on our ideas in the previous sections we implement Atypicality-Aware uncertainty sets, namely AA-APS and
AA-RAPS in the following way: We group points according to their confidence and atypicality quantiles, and fit separate
thresholds to each group with APS or RAPS as subroutines. This allows us to have adaptive threshold depending on the
atypicality and confidence of predictions.

In Figure 6, we provide the coverage plots for APS and RAPS in the first and third columns. Even though marginal coverage
is satisfied, models do not satisfy conditional coverage for atypical inputs or low-confidence predictions. We observe that
being Atypicality-Aware improves coverage across otherwise underperforming groups. Further, AA-APS has lower set sizes
on average than APS (15.6 vs 21.3). While RAPS has a lower average set size than AA-RAPS (4.2 vs 9.1) AA-RAPS has
smaller set sizes for high-confidence samples, whereas a larger set size for low-confidence samples where the coverage is not
met for RAPS. In Appendix F.3, we provide the same analysis for ResNet18,50,152 at different coverage levels along with
analyzing the performance in the Confidence and Atypicality dimensions individually. For instance in Figure 7, we observe
that RAPS and APS do not satisfy coverage for high atypicality regions, even when averaged across different confidence
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levels.

C. Atypicality Estimation
C.1. Inputy Atypicality Estimation

To estimate input atypicality, we use two ways to estimate the likelihood of a point under the training distribution. First, we
give methods for the discriminative models.

Fitting individual Gaussians to Class Conditionals Here, we follow a similar approach to ( , ).
Namely, we model the clas-conditionals with a gaussian, where the covariance matrix is tied across classes:

P(X|Y =y) ~ N(X;p,,%) )

We fit the parameters (i, and 3 with maximum likelihood estimation. The reason to tie the covariance matrix is due to the
number of samples required to fit the density. Namely, for a d-dimensional problem, the total number of parameters to fit
individual matrices become O(yd?), which results in low-quality estimates. Then, the atypicality becomes

ax(r) = —maxlogP(X = z|]Y = y) 3)
yeY

Computing distance with k-Nearest Neighbors k-Nearest Neighbors: Similarly, we can use the nearest neighbor
distance. Concretely, we use the nearest neighbor distance, ax(2) = dmin (%, Dyain) = mingep,,, |2’ — x| , as the
atypicality metric. Alternatively, we can use different notions such as the average of k-nearest neighbors, or the distance to
the kth neighbor. Below, we report the results by using the average distance to 5-nearest neighbors.

Fitting the estimators For all of the atypicality estimators, we fit the estimators using samples from the training sets and
make inference for the calibration and test sets. For instance, we use the training split of ImageNet to fit the corresponding
density estimator and compute the atypicality for the samples from the validation/test split of ImageNet. All of our results
using atypicality are reported for the test splits of the below datasets.

Atypicality Estimation with LLLMs: For language models we simply compute the negative log-likelihood of each
prompt as the atypicality metric: ax () = — log I@’LLM(Q:). To define confidence, we use the logits of the language model,
conditioned on the prompt. We use the logit of the first token of each class label and compute the predicted probabilities by
applying softmax to the logits of each class.

C.2. Class Atypicality

To estimate class atypicality, we simply count the fraction of examples from a particular label in the training dataset. Let us

have a training dataset Dyin = {(z1,41), (22, 92),- .., (z~,yn)}. Then, we estimate class atypicality with
> Ly =yl
ay (y) = —log % %)

C.3. Atypicality and Confidence

Are atypicality and confidence equally informative? Beyond the data perspective given in Figure 1, here we provide
quantitative results to demonstrate the difference. In Figure 4, we give a grid plot where the x-axis indicates the typicality
quantile of a point, and the y-axis indicates the confidence of a point. The coloring on the left indicates the accuracy within
a bin split according to accuracy, and the right has the difference between average confidence and accuracy. Observe that for
a specific confidence interval, larger values of typicality mean better quality probabilistic estimates and larger atypicality
means more miscalibration.
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Figure 4. Input Atypicality and Confidence. Here, the x-axis reflects the input atypicality quantile, and the y-axis indicates confidence.
The coloring for the figure on the left indicates the accuracy within a bin, and the figure on the right has the difference between confidence
and accuracy within a bin. We observe that even within the same confidence range, atypical examples tend to be more miscalibrated and
overconfident compared to typical examples.

D. Experimental Details

D.1. Balanced Supervised Classification

D.1.1. DATASETS

Below is a full list of datasets for balanced classification:

1. ImageNet (Deng et al., 2009) from Torchvision (Marcel & Rodriguez, 2010) is an object recognition dataset with 1000
classes. We use the ImageNet-1k version.

2. CIFAR10/100 (Krizhevsky, 2009) from Torchvision (Marcel & Rodriguez, 2010) are object recognition datasets with
10/100 classes.

3. MINLI (Williams et al., 2018) from Huggingface Datasets (Lhoest et al., 2021) is a natural language inference dataset
with 3 classes, indicating entailment, neutral, and contradiction outcomes.
D.1.2. MODELS
Most of the models are public models, e.g., obtained from the Transformers Library (Wolf et al., 2020) or Torchvision (Marcel

& Rodriguez, 2010). Below we give the full model details and how one can access them:

1. RoBERTa(HuggingFace roberta-large-mnli) trained on the MNLI dataset. One can use the id given here
on HuggingFace to download the model.

2. ResNet18, ResNet50, ResNet152 from (Torchvision (Marcel & Rodriguez, 2010)) trained on ImageNet.

3. WideResNet28 trained on CIFAR10,100 obtained from (Mulkhoti et al., 2020).

For all BERT (Devlin et al., 2019) style models we use the [CLS] token embeddings in the final layer to perform
classification. For all vision models, we use the penultimate layer embeddings to fit the density estimators and perform the
analyses. In the experiments, we randomly split the test sets into two equal halves to have a calibration split and a test split,
and repeat the experiments over 10 random seeds.
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D.2. Imbalanced Supervised Classification
D.2.1. DATASETS
All of our imbalanced classification datasets are previous benchmarks obtained from the GitHub repository> of (

) with corresponding training, validation, and test splits. All of these datasets have an exponential class imbalance.

1. ImageNet-LT is the long-tailed variant of ImageNet with 1000 classes.
2. CIFAR10/100-LT is the long-tailed variant of CIFAR10/100 with 10/100 classes.

3. Places365-LT is the long-tailed variant of Places365 ( s ) with 365 classes.

D.2.2. MODELS

Similarly, most of these models are obtained from (

1. ResNeXt50 trained on ImageNet-LT with and without Progressive Balancing, which is a strategy to address class
imbalance during training.

2. ResNet152 trained on Places365-LT

3. ResNet18 trained on CIFAR100-LT trained by us. This model is pretrained on ImageNet and finetuned on CIFAR100-
LT.

We use the validation splits of these datasets as the calibration set, and report the results on the test set.

D.3. Classification with LLMs
D.3.1. MODEL

We use Alpaca-7B ( , ) in a zero-shot setting, where we simply prompt the model with the classification
question. We use the prompting strategy from Content-Free Calibration ( , ).

Below, we show examples of each dataset and prompt.

D.3.2. DATASETS

IMDB is a binary classification dataset of movie reviews, where the goal is to classify the sentiment in a review. The
example prompt has the form ‘The following review was written for a movie: [Review].\n What is the sentiment, Positive or
Negative? Answer: *. Below is an example:

The following review was written for a movie: I and a friend rented this movie. We both found the movie soundtrack
and production techniques to be lagging. The movie’s plot appeared to drag on throughout with little surprise in the
ending. We both agreed that the movie could have been compressed into roughly an hour giving it more suspense
and moving plot.

What is the sentiment, Positive or Negative? Answer:

where the correct answer should be ‘Negative’. We noticed that the ‘validation’ split of IMDB leads to significantly worse
calibration compared to splitting the test set. Thus, for all experiments, we use the test split of IMDB and split it into 2
sets (instead of using the validation split as a calibration set as in the other two datasets).

TREC is a 6-class question classification dataset where the goal is to predict whether a question will have an answer that
is an ‘Abbreviation’, ‘Entity’, ‘Description’, ‘Human’, ‘Location’, or a ‘Number’. We format the prompts with ‘Classify
the questions based on their Answer Type. Potential Answer Types are: Number, Location, Person, Description, Entity, or
Abbreviation.\n\nQuestion: [question]\n\nAnswer Type: ’. Below is an example prompt:

*https://github.com/dvlab-research/MiSLAS
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Classify the questions based on their Answer Type. Potential Answer Types are: Number, Location, Person,
Description, Entity, or Abbreviation.

Question: What county is Modesto , California in ?
Answer Type:

where the correct answer should be ‘Location’.

AG News is a news classification dataset. The goal is to classify a given news into 4 potential classes: ‘“World’, ‘Sports’,
‘Business’, or ‘Science and Technology’. We format the prompts with ‘Classify the news articles into the categories of
World, Sports, Business, and Technology.\n\n Article: [article]\n\nAnswer: ’. Below is an example prompt:

Classify the news articles into the categories of World, Sports, Business, and Technology.

Article: Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band of
ultra-cynics, are seeing green again.
Answer:

where the correct answer should be ‘Business’.

Furthermore, we also use ( s ) as another calibration baseline. Following their paper, we use N/A, [MASK],
and the empty string as content-free. Concretely, we follow their paper to first obtain the average predicted probabilities for
each label token for the content-free input, denoted by p. ;. We then let

W = diag(pes)

When making test-time predictions, we compute Softmax (W7 p) as the new predicted probabilities. In our experiments, we
observe that it does not perform as well in this setting, as was previously suggested by ( , ).

E. Calibration

We run all our experiments with 10 different random seeds, where the seeds are {0, 1,2, ...,9}. Randomness is over fitting
the atypicality estimators, and calibration-test splits (we use the same splits with the recalibration experiments for the sake
of consistency).

E.1. Expected Calibration Error

To compute ECE, we generate B = {Bj, Ba, ..., By}, M equally-spaced bins where samples are sorted and grouped
according to their confidence, to compute

ECE[P Z |Bm|| (By) — conf(B,,)| )

where acc(B,,) = |B . Z ”"I 1[§; = ;] is the accuracy for the bin m, and conf(B,,) = IB ‘ ZIB””‘ P(Y = 4| X = 2;)

gives the average confidence Wlthm the bin. |B,,| is the size of the bin m, N is the total number of samples, and 1[] is the
indicator function.

Throughout our experiments, we let the number of bins |B| = 10 by default when computing ECE.

Similarly, below we report results with RMSCE (Root Mean Squared Error) ( s ) as another calibration
metric, which is formulated as the following:

RMSCE[P] = Z' Bl ace(By) = cont(Bn)2 (6)
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E.2. ECE and Atypicality Results with Different Atypicality Metrics

We further experiment with different atypicality metrics, such as the average distance to the 5-nearest neighbors (Figure 5).
We broadly observe that while there are slight differences in the quantitative results between different atypicality metrics,
the qualitative phenomena remain intact. In Tables 1, 2, and 3 we give all the results in the tabular form.

ResNetl8 - ImageNet ResNet50 - ImageNet RoBERTa - MNLI WideResNet28 - CIFAR10
[ 0.08- F [
[ i 0.05- 0.10-
0.04
oo G 0.05- o o
“oot W % 0.03- LD
002-__——— 003" :
0.00 - Fr———
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Input Atypicality Quantile Input Atypicality Quantile Input Atypicality Quantile Input Atypicality Quantile

== Uncalibrated TS e= AdaTS == AAR(Ours)

Figure 5. Atypicality with 5-nearest neighbors and Uncertainty. Here, we report the results of the same experiments as Figure 3 with
the average of the distance to the 10-nearest neighbors as the atypicality metric. See Tables 1 for the results in tabular format.

E.3. Results in the Tabular Format
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F. Recalibration

Through all our recalibration results, we first split the test set into two equally sized calibration and test splits. Then, we fit
the recalibration method using the calibration split and compute the performance on the test split. We run all our experiments
with 10 different random seeds.

F.1. Temperature Scaling

To perform temperature scaling (Guo et al., 2017), we use the calibration set to fit the temperature parameter. To perform the
optimization, we use the LBFGS (Liu & Nocedal, 1989) algorithm from PyTorch with strong Wolfe line search, following
(Guo et al., 2017). Namely, we optimize the parameter 7 with

Prs(X) = Softmax(f(X)/7) @)

and then use it during inference to rescale the logits produced by f. We use 0.1 learning rate and 3000 maximum iterations
across all experiments and initialize the temperature value as 1, although find that TS is pretty robust to the choice of
hyperparameters.

F.2. Atypicality-Aware Recalibration

Here we describe the implementation details For Atypicality-Aware Recalibration (AAR). We formulate AAR with:

log Paar(Y]X) x ¢(a(X))logP(Y|X) + Sy, (8)

In total, this gives us || + 3 parameters. Using exactly the same setting as TS, we use LBEGS with strong wolfe search to
optimize the three parameters, with the same splits as temperature scaling. We normalize the atypicality values (subtract
the mean and divide by standard deviation of the calibration set) for numerical stability. We use the same hyperparameters
as TS (with 0.1 learning rate and 3000 maximum iterations) without any modification across all experiments, initialize
o, C1, 2 as 0 and Sy parameters as 1. We run the recalibration procedure on a CPU with precomputed logits.

F.2.1. ADAPTIVE TEMPERATURE SCALING

For AdaT$S (Joy et al., 2023) we use the implementation provided with the paper . We identically use the hyperparameters
and the architecture provided in the paper and their repository. They use an encoder and decoder architecture with
[1024, 512, 512] hidden units each, and a temperature predictor network with [128, 128] hidden units. They use an Adam
Optimizer with a learning rate of be — 4 with 128 batch size.

F.3. Conformal Prediction

APS(0.95) Coverage AA-APS(0.95) Coverage APS(0.95) Set Size
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
19 | 21 | 23 | 21
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249 27.1 28.8 30.3 .
79.6 115.5 136.2 126.5 111.9 87.0

1 2 3 4 5 6

AA-APS(0.95) Set Size
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9.5 10.3 9.9 [143
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RAPS(0.95) Coverage AA-RAPS(0.95) Set Size

RAPS(0.95) Set Size

SUERRPXY 17.2 191
17.9 249 32,6 49.6 64.5 73.5
1 2 3 4 s 6

Figure 6. Improving Conformal Calibration with Atypicality for ResNet50 on ImageNet. Here we show that Atypicality-Awareness
improves conformal calibration performance across different groups. Methods are fitted to satisfy 95% coverage. We observe that APS
and RAPS do not satisfy conditional coverage for high atypicality regions or low confidence regions.

*“https://github.com/thwjoy/adats
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We follow the presentation in ( s ; s ). Let w(X) be the permutation of
Y ={1,...,C} that sorts P(Y = ¢|X), i.e. the predicted probabilities for each class c. We define a score function

2:]19> = j|X), where y = 7. 9)

This means greedily including classes until the set contains the true label, and using the cumulative sum of the probabilities
as the score function. We compute all of the scores for the calibration set, Scain = {s(21,%1), ..., $(zn,yn)}, we the
Wth quantile of the scores, ¢. Then, the uncertainty set is defined as

C(z) ={y:s(x,y) <4} (10)

We can further add randomization to the procedure where we have the uncertainty set function to be C(x, u) : X x [0, 1] for
randomization purposes to satisfy exact coverage. We refer to ( , ; , ;
, ) for a more thorough presentation.

RAPS is a variant of APS that regularizes the set sizes. They modify the scoring function to add a regularization term. This
is controlled by the test size offset k..., that controls the value beyond which the regularization is applied, and the A,  gives
the strength of the regularization. To fit the k,.q, Arcy parameters in RAPS, we follow the procedure in (

, ) to fit both parameters. Namely, we fit k..., by Algorithm 4 in their paper that leverages the set sizes in the
calibration set, and we fit A,..4 by the largest regularization parameter that achieves the smallest set sizes, searched over a
grid of {0.001,0.01,0.1,0.2,0.5} following their presentation.

F.4. Atypicality-Aware Conformal Prediction

We have a simple discrete grouping scheme to make conformal prediction atypicality aware. Namely, we group points
using their atypicality and confidence percentiles and fit individual thresholds. Concretely, we construct a dataset of
Daa = {(ci;cit1]s (aj,a541], Gij }i jen) using the calibration set where (c;, c;41] denotes the confidence range for
quantile ¢, (a;, a;11] denotes the atypicality range for quantile j and ¢; ; denotes the threshold fitted to the group specified
by these intervals. We let N = 6 as the number of groups, and in total, we end up with 36 thresholds. At test time, we check
the quantile of the confidence and atypicality of a point and use the corresponding temperature. For AA-RAPS, we use
the same k.4 and A4 values as was found with the RAPS procedure. For practical purposes, we do not allow zero sets
(uncertainty sets at least include the top prediction).

We would like to make the remark that sometimes the marginal coverage can exceed the desired value (e.g. Figure 8). This
is often because the underlying model is already very confident for a majority of data points (e.g. More than half of the data
points have 92% confidence). The gains we provide are often for points with lower confidence regions, as the coverage is
not satisfied in those regions.
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Figure 7. Atypicality-Aware Conformal Prediction for ResNet18 and ImageNet. Target coverage rate is 95%.
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Figure 8. Atypicality-Aware Conformal Prediction for ResNet152 and ImageNet. Target coverage rate is 95%.

G. Tables for Results

Here, we present the table version of the results in Figure 3. Tables 1,2 contain the ECE analysis.

H. Case Study: Fairness through Atypicality-Awareness for Fitzpatrick17k and Skin Lesion
Classification

Machine learning models reportedly have performance disparity across subgroups (Barocas et al., 2017) due to factors such
as varying sample size or noise levels (Chen et al., 2018). For instance, skin lesion classifiers can exhibit performance
disparity across different skin tones (Daneshjou et al., 2022). Fitzpatrickl7k (Groh et al., 2021) is a dataset of clinical
images with Fitzpatrick skin tone annotations between 1-to-6, where a larger number means darker skin tones, and when
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Figure 9. Fitted Temperature vs Atypicality. We observe a monotonically increasing relationship between the atypicality of a group and
the temperature parameter fitted to that group with TS.
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Figure 10. Fitted Additive Correction Factor vs Class Atypicality. We observe a monotonically increasing relationship between the
atypicality of a class and the additive correction parameter fitted to that class with AAR.

annotators do not agree, it is labeled as ‘Unknown’. We explore the classification problem with 9 classes indicating the
malignancy and the type of skin condition, using a ResNet18/34 pretrained on ImageNet and finetuned on this task (See
Appendix H).

When the goal is to improve performance across groups, one can use group annotations and optimize performance within
each group (Hébert-Johnson et al., 2018; Kim et al., 2019). Here, we investigate how complementing recalibration with
atypicality can improve prediction quality across all groups without group annotations. For comparison, we perform 3
recalibration methods: TS, AAR, and Skin-Tone Conditional TS which calibrates the model individually for each skin-tone
group with TS. Since the skin-tone conditional calibration uses group attributes, ideally it should act as an oracle. In
Figure 12, we give the Accuracy and ECE analyses where AAR improves performance across all groups. For instance,
the worst-group Accuracy (0.69) or ECE (0.072) with AAR is close to the best-group Accuracy (0.63) or ECE (0.062)
with the other two methods. Overall, our findings suggest that Atypicality-Awareness can complement fairness-enforcing
methods, and improve performance even when the group annotations are unavailable. We hypothesize that with AAR, we
can perform better than using supervised group attributes since groups may not have sufficient sample size in the calibration
set (131, 1950, 1509, 555 samples for Unknown, 1&2, 3&4, and 5&6 respectively), and we can leverage atypicality to offer
some mitigation. Further investigating how to leverage atypicality to improve fairness and factors affecting performance
disparities is a promising direction for future work (Chen et al., 2018).

We use the training script from (Groh et al., 2021) to finetune models on the Fitzpatrick17k dataset. We train the models for
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Figure 11. Atypicality-Aware Conformal Prediction for ResNet50 and ImageNet. Target coverage rate is 95%.
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Figure 12. Improving Group Performance through Atypicality-Awareness. Here we show that AAR improves the calibration and
accuracy of models across different skin tone groups. With AAR, we can improve both the worst group performance and overall
performance significantly without using group attributes. TS curve is less visible since it significantly overlaps with Skin Tone Conditional.

50 epochs, fixing the backbone and training only the probe on top of the penultimate layer. The probe consists of 2 layers,
one layer of 256 units followed by ReLLU and Dropout with probability 0.4, followed by the classifier layer with an output
dimensionality of 9. We use an Adam optimizer with a 0.0001 learning rate.

The entire dataset consists of 16,577 images, where the potential labels are: 10, 886 inflammatory, 1,352 malignant
epidermal, 1,194 genodermatoses, 1,067 benign dermal, 931 benign epidermal, 573 malignant melanoma, 236 benign
melanocyte, 182 malignant cutaneous lymphoma, and 156 malignant dermal. We split the dataset into 3 sets (Training (0.5),
Validation (0.25), and Test (0.25)). We use the validation set as the calibration set and perform the experiments with 10
random splits.
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L. Proofs
L.1. Theoretical Setting

Data Generative Model: We consider the well-specified logistic model for binary classification with Gaussian data, where
Y € {—1,1} and the P(Y = 1|X) is defined by the sigmoid function:

PY=1|X)=0((8",X)), X~N(0,I,).

Where I; denotes the d-dimensional identity matrix, 5* is the ground truth coefficient vector, o(x) = 1/(1 + ™), and we
have i.i.d. observations {(x;,y;)}_; sampled from the above distribution.

The Estimator: We focus on studying the solution produced by minimizing the logistic loss

n

o 1

B = argmin ~ > llog(1+ exp(87 1)) i - 8.
i=1

For k € {—1,1}, P(z) is an estimator of P(y = k|z), with the form P (2) = L

e—kBTa 1"

Calibration: We consider all = where P;(x) > 1/2, as Py1(x) < 1/2 can be analyzed similarly by symmetry (see
Appendix I). For v € (1/2, 1), the signed calibration error at a confidence level v is

u—PY =1|P (X)) =u).

I.2. Detailed derivation of the claim on Page 5

When P, (X) < 1/2, the signed calibration error at level u € (1/2,1) becomes u — P(Y = —1 | P_(X) = u) =
u—PY =-1|Pi(-X)=u)=u—-PY =1|P1(X) =u).

The last inequality is due to symmetry. More specifically, we claim (X, Y) 4 (=X, -Y), where the notation £ denotes
equal in distribution. In fact, as X 4 —X, it suffices to show that for any y € {—1,1}, and = € R?, we have

PY=y|X=z)=P(-Y=y|-X=u2).
When y = —1, the right hand side
P-Y=-1|-X=2)=PY =1|X=—-z)=0((8",—1))
=l1—-0c((f%2)=1-PY =1|X=2)=PY =-1| X =2x).
Similarly, when y = 1,
P-Y=1|-X=2)=PY =-1|X=-2)=1-0((8% —x))
=o((8*,2)) =P(Y =1| X =x).

We complete the proof.

1.3. Proof of Theorem 3.1

Theorem I.1 (Restatement of Theorem 3.1). Consider the data generative model with the algorithm described in Section 3.
For any K > 1, suppose we consider the quantiles of a(X), a1, ag, ..., ax, ax 41 such that P(a(X) € (ak, ary1]) = 1/K
for k € [K). In addition, we assume ||3*|| < co, and d/n = k for some sufficiently small cy, & > 0. Then for sufficiently
large n, we have
Eulu—P(Y =1|Py(X) =) | a(X) € [ar—1,ax]] >
Eufu— P(Y = 1] By(X) = ) | a(X) € (ax, ags1],

fork=2,. K.
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Proof. Following ( , ), we have
w—PY =1|Py(X) = u) = u—Ez[o( ||%|| cosd- o (u) 4+ sind - | 5[ 2],
5 3Tpr N
where cos ) = T and Z ~ N(0,1).
According to the results in Section 2.2 of ( , ), we have ||3]] — R* = R*(x, %) and cosf — ¢* =

c*(k, B*), for two quantities R* and ¢* that depend on ~ and 5*. We then have

u—PY =1|P(X)=u) = u _EZ[O'(”%*Hc* o7 ) + V1 =2 ||8%1Z2).
Using the proof of Theorem 3 in ( s ), we have that
u—B(Y = 1| Bi(X) = u) = Cu(u) - 5+ o(r),

where
Crolu) = c10” (07" (w)) - 07 (u) — c20” (07 (u),
for two positive constants ¢y, ca.
As a result, we have
u—P(Y =1|P(X)=u)>0 (11)
In addition, since when z € [—1,1], z - ¢/(z) and —o”(z) are both increasing, we then have C;(u) increasing for

BT = o tu) € (—1,1).

Proving the result for {k = 2,..., K — 1} In addition, by our model assumption = ~ N (0, I;), we have that ||z|| and
ﬁ are independent, and ﬁ ~ S where S is a uniform distribution on the sphere in the d-dimensional space. As the

monotonic transformations will not change the events defined by quantiles, and exp(—||z||?/2) is a monotonic function in
||z ||, for the simplicity of presentation we use a(X) = || X || in the rest of this proof. As a result, given ||z|| = a, we have

Blal||lzl=aLa-BTS=a-|B]- 5,

where S is the first coordinate of S.

Consequently, if we further condition on the event where B T > 0 (as we assume u > 0 throughout Section 3), we have

Zn N Zy

- s a-R _—
VZi+Q ‘ VZi+Q

BleLa |B)-5 15 >02La |3 -

where Q ~ x2_,, Z1 ~ N(0,1) and they are independent.

Due to the monotonicity of C(u) on u, we have that for any a; > ao,
d
Cr(w) | z]| = ar > Cu(u) | ||lz]| = a2,

d
where the notation > denotes stochastic dominance.
Consequently, we have
Eufu—PY =1|Py(X)=u)|a(X) € [ar_1,ar]] <Eufu—PY =1|Py(X)=u)|a(X) € (ar, ars1]],

fork=2,.., K — 1.
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Proving the result for £ = K To complete the proof, it suffices to show that the inequality is also true for Kth quantile:
Eufu—P(Y =1|P(X)=u) | a(X) € lag_1,ax]] < EuJu—PY =1|Py(X) =u) | a(X) € (ar, ari1]],

which is equivalent to

E,[(u—B(Y = 1| By(X) = w) - 1{a(X) € [ax—1,ax]}] < Eu[(u—B(Y = 1| By(X) = u))-1{a(X) € (ar, ar1]})-

In the above inequality, the right hand side can be decomposed into

E,[(u~B(Y = 1| B1(X) = w) - 1{a(X) € (ar, ar11]}]
—E,[(u~B(Y = 1| By(X) = ) - {a(X) € [ax, 2p]}]
FEJ(u—B(Y = 1| B(X) =) - 1{a(X) € [2p,axcs1]}-

€
S

Denote the a quantile of X;% by Xi,p' We then have a;, = x2, v We further decompose the equation into

Euf(u—P(Y = 1| Py (X) = w) - 1{a(X) € arc, 20]}]
—Euf(u =PV = 1| P1(X) = ) - {a(X) € [oxc, g 1]
+Bal(w = P(Y = 1] Bi(X) = ) - 1{a(X) € [xiess 200}

In the following, we proceed to prove

E [(u=P(Y =1|P1(X) = u))- H{a(X) € [X%7p72p]}} > Ey[(u—P(Y = 1| Py (X) = u))- Ha(X) € [ax—1,ax}].
12)

We now use the approximation of the chi-square quantile: when p — co, we have

1
ax V2 2+ 0(1), and x%.s b= 5(2% +/2p)? 4+ o(1)

K+1°

where z, denotes the a-quantile of a standard normal random variable.

Then

Using the fact that 2, _ 1 = v/2log K’ + o(1) for K* — oo, then we have

ZK+s — Z_K ZM—&-O(U.

K1 E+1 2log K

In addition, for any a € [x%_.s . 2p] and @’ € [ax_1, ak], we have
K+1°

Eu[(u—PY =1|Pi(X) =) [ a(X) = a] = E[(u—PY = 1| Py(X) = )) | a(X) = d]

S Ao

for some universal constant C.

Therefore

Euf(u—P(Y =1|Py(X) =) | a(X) € [X%igp,?pﬂ —Eu[(u =P(Y = 1| P1(X) =) | a(X) € [ax—1,ax]]
).

=

>C(ZK+5 — Z_K
K+1 K+1
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Then

Eul(u—B(Y = 1| By(X) = u)) - 1{a(X) € [zs 28]}

=E.[(u—P(Y = 1| P1(X) = ) | a(X) € [ess . 2]] - Pla(X) € [XQII%a ,2p))

> (Bul(w ~ (Y = 1 Bi(X) =) [ a(X) € fax1,0k]] + Clogas 2,06 (5 — ey + 00 7))

“E,[(u~ B(Y = 1| By(X) = 0)) - 1{a(X) € [ax—1.ax}]
Ol =2 pe) = (L o(1) g - Eullu —B(Y = 1| Bi(X) = u)) | a(X) € [axc—1, ax]].

K+1 K+1
The last equality uses the fact that P(a(X) € [ax—1,ak]) = 1/K, and therefore

Eul(u—B(Y = 1| B1(X) =) | a(X) € arc_1,ax] - % = Eul(u—P(Y = 1| B1(X) = ) 1{a(X) € farxc 1,0}

Then use the fact that |E, [(u — P(Y = 1| Py(X) = u)) | a(X) € [ax_1,ax]]] = O(1) and we choose § = o(1/log K)
S0
0 log(1 —§)

K= 0(|7W )-
Consequently,
Clogrs — 22 ) = (L+o(1 ))Ki - Euf(u—P(Y = 1| Py(X) =u)) | a(X) € [axc -1, ax]] > 0,

which implies

Eu[(u—B(Y = 1| By(X) =) - H{a(X) € (s 29} > Euf(u—B(Y = 1| B1(X) = u)) - 1{a(X) € [ax—1,ax })-

5op

>

Combining with equation 11, we prove equation 12 and complete the proof. O

L4. Theoretical Justification of the calibration improvement using the atypicality score

In this section, we provide the theoretical justification to understand why incorporating the atypicality score will improve
calibration. In particular, we consider the binary classification problem with prediction f : X € [0, 1] indicating the
predicted probability of Y = 1 given X = z.

For a predictor f, let us denote its conditional calibration error at an atypicality level v by CE,(f) = E[(f(X) —
E[Y]f(X)])*|a(X) = 1].
Theorem 1.2. Consider the same setting as Theorem 3.1.  Suppose the temperature function 7(a(X)) =

arg min,. E[[(Y, Softmax(f(X)/7(a(X))))] with | being the cross entropy loss, and let Paag(X) =
Softmax (f(X)/7(a(X))). Then

CE, (Paar) < min{CE, (Prs), CE,(f)}. (13)

Proof: For a prediction function f, we first define the conditional mean squared error of f at an atypicality level v by

MSE, (f) =E[(f(X) = Y)? | a(X) = 7], then we have
MSE, (f) = CE,(f) =E[(f(X) = Y)? | a(X) =] = E[(f(X) — E[Y | f(X),a(X) =7])* | a(X) =]
=E[E}Y | f(X),a(X) =1] =Y) - 2f(X) = E[Y | f(X),a(X) =] =Y) [ a(X) =]
=E[E[Y | f(X),a(X) =1] =Y) - (E[Y [ f(X),a(X) =] =Y) [a(X) = 1]
+2E[(E[Y" | f(X),a(X) =1] =Y) - (f(X) —E[Y | f(X),a(X) =7])) | a(X) =]

Since
EYE[Y | f(X),a(X) =1] | a(X) =]
=Ex)ja(x)=E[YE[Y | f(X),a(X) =9]| f(X),a(X) =7]]
=E[(E[Y | f(X),a(X) =])*| af
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we have
EIEY [ f(X),a(X) =9 =Y) - (f(X) = E[Y | f(X),a(X) =19]) | a(X) =~] =0,
and therefore
MSE, (f) = CE,(f) = E[(E[Y | f(X),a(X) =1] = Y)? | a(X) =]

Now that P4 4 (f(2), a(z)) is monotonic on the P(x), we have

E)Y | f(2),a(X) =] =E[Y | Paag(f(z),a(X)),a(X) =,
implying
MSE,(Paagr) — CE,(Paar) = MSE,(P) — CE,(P). (14)

Similarly, we have
MSE, (Prs) — CE,(Prs) = MSE, (P) — CE,(P). (15)

In the following, we will show that

MSE,, (Paar) < min{MSE, (Prs), MSE, (P)}. (16)

First, as we consider the binary classification setting, with [ being the cross-entropy loss, we have

1(Y, Softmax(f (X)/7(a(X)))) = Ylog(o(f(X)/7(a(X))) + (1 = Y)log(1 — o(f(X)/7(a(X))),
where o(z) = 1/(1 + 7).
Then, by the definition of #(a(X)), we have that

#(a(X)) = argmin E[Y log(o(f(X)/7(a(X))) + (1 = Y) log(1 — o (f(X)/7(a(X)))]

=argmin E[E[Y log(o(f(X)/7(a(X))) + (1 = Y)log(1 — o(f(X)/7(a(X))) | a(X)]].

-
Taking the derivative on the last line and setting it to zero, we have

Y B 1-Y
(f(X)/7(a(X)) 1 =o(f(X)/7(a(X)

B[ 7 1a(X)] =0,

implying

Elo(f(X)/7(a(X)) | a(X)] = E[Y [ a(X)].
This makes the derivative of E[(Y — o(f(X)/7(a(X))))? | a(X)] zero and therefore 7(a(X)) is also a minimizer of
E[(Y = o(f(X)/7(a(X))))* | a(X)]:

7(a(X)) = arg min E[Y log(o(f(X)/7(a(X)))+(1-Y) log(1-0 (f(X)/7(a(X)))] = arg min E[(Y —o(f(X)/7(a(X))))?].

T

Letting g(v) = argmin, E[(Y — o(f(X)/c))? | a(X) = ~], we have that

g(a(X)) = arnginE[(Y —o(f(X)/7(a(X)))? | a(X)),
and therefore
g9(a(X)) = argmin E[E[(Y — o(f(X)/7(a(X))))? | a(X)] = 7(a(X)).

T
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As a result,

MSE. (P4 4r)

=E[(Paar(X) = Y)* | a(X) =]
=E[(Paar(X) = Y)? | a(X) =]
=E[(o(f(X)/7(a(X)) = ¥)* | a(X) =]
=E|(Softmax(P(X)/g(a(X)) = Y)* | a(X) =]
=argminE[(o(f(X)/c = Y)? | a(X) =]

Similarly, we have MSE, (I@’ a4ar) < MSE, (I@’TS), and therefore equation 16 holds.

Combining with equation 14 and equation 15, we have

CE,(Paar) < min{CE, (Prs), CE,(P)}.
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Figure 13. Post-hoc Recalibration for Classification with 5-NN distance as an Atypicality Metric. (a) Balanced Supervised
Classification: Atypicality-Aware Recalibration improves the calibration of models trained with balanced datasets, across atypicality
groups. (b) Imbalanced Supervised Classification: Atypicality-Aware Recalibration improves both the calibration across groups and the
overall accuracy of models trained with imbalanced datasets with 5-nearest neighbors distance as an atypicality metric.

J. Limitations
J.1. Quantifying Atypicality

Since we do not have access to the true distribution of P(X), we estimate it through the model, e.g. using the embeddings.
This means we are capturing the atypicality not solely with respect to the training distribution but also the model. It is
possible that a model that does not fit the data well and produces low-quality atypicality estimates. We would like to stress
that our goal here is to show that even simple estimators can demonstrate significant benefits. In general, we observe that
our findings hold for large datasets and widely used models, and atypicality gives a semantically meaningful way to group
data points qualitatively. Our findings suggest that we can unify the understanding and improve uncertainty quantification
and recalibration methods with atypicality, however, practitioners should be careful about incorporating atypicality, as poor
atypicality estimates can lead to worse performance.

J.2. Subgroup Fairness Experiments

While the literature on algorithms to satisfy group fairness is rich (Kim et al., 2019; Hébert-Johnson et al., 2018), here
we wanted to give a case study with skin-lesion classification. Our goal was to provide further evidence that atypicality
awareness could improve fairness algorithms. In this domain, there is more verification to do to better characterize how and
when atypicality helps thus to better understand which subgroups could benefit more from atypicality-aware algorithms and
whether these findings apply generally in the literature.

J.3. Theoretical Analysis

Following the earlier work (Bai et al., 2021a; Sur & Candes, 2019), we analyzed the calibration behavior of well-specified
logistic regression. However, our empirical findings suggest that the phenomena are much more broadly applicable. We
suggest that future work can analyze the behavior in more general settings to better understand the dynamics.
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Figure 14. Distribution of Input Atypicality. Here, we give the distribution of Atypicality for ResNet18 on ImageNet, using GMM and
KNN methods.
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Figure 15. Label Atypicality and Confidence. Here, the x-axis reflects the label atypicality quantile, and the y-axis indicates confidence.
The coloring for the figure on the left indicates the accuracy within a bin, and the figure on the right has the difference between confidence
and accuracy within a bin. Similar to Figure 4, we observe that atypical examples have lower accuracy, and predictions are more
overconfident.
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Table 1. Recalibration Results for Balanced Classification. For each dataset and atypicality quantile, the best results are marked in bold.
‘We provide the standard errors next to the means over 10 random seeds.

Uncalibrated TS AdaTS Atypicality-Aware
Atypicality ECE RMSE ECE RMSE ECE RMSE ECE RMSE
GMM ResNet152 ImageNet 0.2 0.0294+0.001 0.07740.001 0.01440.001 0.066 +0.002 0.014£0.001 0.064 +0.002 0.016 +0.001  0.065 = 0.001

0.4 0.039£0.001 0.086£0.001 0.020+0.001 0.074+0.001  0.020 £ 0.002 0.07540.002 0.01940.001 0.070 £ 0.001
0.6 0.050£0.001 0.097 £0.001 0.026 £0.001 0.079 £0.002 0.02540.002 0.08140.002 0.026 & 0.000 0.078 £ 0.001
0.8 0.062+0.001 0.106 £0.001 0.024+0.001 0.076 +0.001 0.023 +£0.002 0.078 +0.002 0.024 +0.001 0.077 £ 0.001
1.0 0.084£0.001 0.123+£0.001 0.037£0.001 0.088+0.001 0.03340.004 0.08540.003 0.026 4 0.001  0.080 £ 0.001
ResNet18 ImageNet 0.2 0.01740.001 0.07440.001 0.03140.001 0.084 40.001 0.028 £0.004 0.081 £0.004 0.016 £0.001  0.069 £ 0.001
0.4 0.016 £0.001 0.074£0.001 0.020+0.001 0.079+0.001 0.023 +0.003 0.079 +0.003 0.015+0.001 0.072 £ 0.002
0.6 0.025+£0.001 0.080£0.001 0.023£0.001 0.077£0.001 0.024 £ 0.003 0.080 4+ 0.002 0.019 4+ 0.001  0.074 £ 0.001
0.8 0.040£0.001 0.092£0.001 0.024 £0.001 0.078 £0.001 0.029 +0.002 0.08240.003 0.018 +0.001 0.074 £ 0.001
1.0 0.054£0.001 0.100£0.001 0.033+0.001 0.085+0.001 0.03240.003 0.08340.003 0.017+0.002 0.073 £ 0.002
ResNet50 ImageNet 0.2 0.021£0.001 0.069 £0.002 0.018 £0.001 0.071£0.001 0.017 £0.001  0.068 £0.002 0.018 £0.001  0.067 & 0.002
0.4 0.029£0.001 0.079£0.001 0.023£0.001 0.077£0.001 0.020£0.002 0.074+£0.001 0.022+0.001 0.074 £ 0.001
0.6 0.041£0.001 0.091£0.001 0.023+0.001 0.078£0.001 0.026 +0.002 0.079 +0.002  0.026 +0.001  0.078 £ 0.001
0.8 0.042£0.001 0.092£0.001 0.024 £0.001 0.078 £0.001  0.024 £ 0.001  0.080 & 0.002  0.020 & 0.001  0.075 £ 0.001
1.0 0.078 £0.000 0.118 £0.000 0.049+£0.001 0.095+0.001 0.047+0.004 0.096 +0.003 0.031 +0.001 0.082 £ 0.001
RoBERTa MNLI 02 0.005£0.001 0.062£0.004 0.013£0.001 0.077£0.002 0.006 +0.002 0.063 = 0.005 0.006 & 0.001  0.063 £ 0.002
0.4 0.016 £0.001 0.091 £0.004 0.013£0.001 0.083£0.002 0.0104£0.002 0.07540.005 0.008 £ 0.001 0.072 £ 0.002
0.6 0.034£0.002 0.116 £0.002 0.015+0.001 0.092+0.004 0.016 +0.001  0.093 +0.005 0.017 +0.002 0.090 £ 0.004
0.8 0.061£0.002 0.153£0.003 0.031£0.002 0.113+£0.004 0.024+0.002 0.10440.004 0.028 +0.002 0.114 £ 0.004
1.0 0.065£0.002 0.156 £0.002 0.028 £0.002 0.112+0.003 0.0214£0.002 0.106 & 0.004  0.023 £ 0.003  0.107 £ 0.004
WideResNet28 CIFARI0 0.2 0.003 £0.000 0.041 £0.001 0.009 £ 0.000 0.057+0.000 0.00340.000 0.05140.002 0.00140.000 0.041 £ 0.001
0.4 0.005£0.001 0.051£0.002 0.007£0.001 0.055+£0.001 0.002=40.001 0.04740.002 0.002 £ 0.000 0.048 £ 0.002
0.6 0.004£0.001 0.050+0.003 0.008+0.001 0.058+0.001 0.004=+0.001 0.04940.004 0.002=+0.000 0.044 £ 0.002
0.8 0.009£0.001 0.066 £0.003 0.004+0.001 0.056+0.002 0.00340.001 0.058 +0.003 0.002=40.001 0.055 £ 0.002
1.0 0.142£0.002 0.240 £0.002 0.073 £0.002 0.168 £0.003  0.046 +0.002  0.129 4 0.004  0.041 £0.002  0.123 £ 0.002
WideResNet28 CIFAR100 0.2 0.007 £0.001 0.059 £0.003 0.018 £0.001 0.084 +0.001 0.021 +0.003 0.089 +0.005 0.021 +0.001 0.094 £ 0.002
0.4 0.029£0.001 0.110£0.002 0.005+£0.001 0.070 £0.003 0.008 +0.002 0.07340.003  0.005 4 0.001 0.078 £ 0.003
0.6 0.101£0.002 0.201 £0.002 0.052£0.001 0.136 £0.002 0.044 £0.004 0.124 +0.007 0.049 £ 0.001  0.132 £ 0.003
0.8 0.257£0.004 0.297£0.002 0.106 +£0.003 0.191+0.003 0.101+0.003 0.18740.002 0.105=40.003 0.190 £ 0.003
1.0 0.371£0.004 0.351£0.002 0.105+£0.004 0.200 £ 0.003 0.101 £0.004 0.199 4+ 0.003  0.109 & 0.005  0.207 £ 0.005

KNN ResNet152 ImageNet 0.2 0.035+0.001 0.085=+0.001 0.014=+0.001 0.062+0.002 0.016 +0.002 0.068 +0.001 0.011+0.001 0.061 +0.001
0.4 0.039£0.001 0.085£0.001 0.015+0.001 0.067+0.001 0.018+0.001 0.069 4+ 0.002 0.017+0.001 0.071 £ 0.001

0.6 0.035£0.001 0.083£0.001 0.021£0.001 0.076 £0.002 0.024 £ 0.003 0.079 & 0.004 0.019 4 0.001  0.072 £ 0.001

0.8 0.057£0.002 0.102£0.001 0.031£0.001 0.084+0.001 0.033+0.003 0.08540.003 0.03240.001 0.082 =+ 0.001

1.0 0.099 £0.001 0.129+£0.001 0.036 £0.001  0.090 £ 0.001  0.042 4+ 0.006  0.093 4+ 0.004 0.037 £ 0.001  0.091 £ 0.001

ResNet18 ImageNet 0.2 0.025+0.001 0.077£0.002 0.020 £0.001 0.074 £0.001 0.037 £0.021 0.115+0.042 0.019+0.001  0.072 % 0.001
0.4 0.017£0.001 0.072£0.001 0.021£0.001 0.076 +0.001  0.045+0.025 0.1204+0.046 0.01940.001 0.074 £ 0.001

0.6 0.021£0.001 0.074£0.001 0.027 £0.001 0.083 £0.001 0.052+0.029 0.130+0.050 0.020 & 0.001  0.074 £ 0.002

0.8 0.033+£0.002 0.085+0.001 0.022+0.001 0.079+£0.001 0.061+0.038 0.136 £0.058 0.021 £0.001 0.077 £ 0.001

1.0 0.054£0.001 0.102+0.001 0.030£0.001 0.084+0.001 0.079+0.045 0.15240.064 0.027 +0.001 0.081 £ 0.002

ResNet50 ImageNet 0.2 0.0294+0.001 0.078 +0.001 0.016 4 0.001  0.066 4 0.001  0.015 £ 0.002 0.068 £0.002 0.016 £0.001  0.067 £ 0.001
0.4 0.029£0.001 0.078£0.001 0.018 £0.001 0.072+0.001 0.019+0.001 0.07440.002 0.017+0.001 0.070 £ 0.002

0.6 0.029£0.001 0.078£0.001 0.021£0.001 0.077£0.001  0.020 £ 0.002 0.077 £ 0.002  0.020 £ 0.001  0.075 £ 0.001

0.8 0.046 £0.001 0.096 £0.001 0.028 £0.001 0.079 £0.001  0.026 £ 0.001  0.079 4 0.001  0.031 £ 0.001  0.082 £ 0.001

1.0 0.076 £0.001 0.116 £0.001  0.039 £0.002 0.092+0.001 0.040 +0.004 0.091 4 0.003 0.038 +0.002  0.090 £ 0.001

RoBERTa MNLI 0.2 0.003£0.000 0.056£0.003 0.011£0.001 0.079£0.002 0.011£0.002 0.067 4 0.005 0.003 +0.001 0.061 £ 0.003
0.4 0.014£0.001 0.080£0.003 0.015+0.002 0.091+0.003 0.016 +0.004 0.092 4 0.007 0.008 & 0.001  0.074 £ 0.002

0.6 0.029£0.002 0.111£0.003 0.014+£0.001 0.077£0.002 0.023 +£0.005 0.09540.008 0.01540.001 0.081 £ 0.005

0.8 0.067£0.002 0.156 £0.003 0.034 £0.002 0.108 £0.004 0.030 £ 0.003 0.107 +0.004  0.026 & 0.003  0.101 £ 0.005

1.0 0.064+0.002 0.153+0.003 0.027 +£0.002 0.110+0.003 0.033 +£0.007 0.119+0.009 0.026 + 0.003  0.107 & 0.005

WideResNet28 CIFARI0 0.2 0.001 £0.000 0.031£0.003 0.011+£0.000 0.061+0.001 0.00540.001 0.049 4+ 0.004 0.003 & 0.000 0.037 £ 0.001
0.4 0.000£0.000 0.010£0.005 0.012£0.000 0.062+0.001 0.007£0.001 0.054 4 0.004 0.004 & 0.000 0.037 £ 0.001

0.6 0.005=+0.000 0.049£0.002 0.007+0.001 0.055+0.002 0.003+0.001 0.046 +0.004 0.001 +0.000 0.048 £ 0.002

0.8 0.009£0.001 0.061£0.001 0.004£0.001 0.058+0.001 0.004=40.001 0.062=40.003 0.003 £ 0.000 0.052 £ 0.002

1.0 0.148 £0.002 0.241 £0.002 0.079 £0.003 0.170 £0.003  0.053 £ 0.004 0.136 & 0.005 0.039 & 0.003  0.121 £ 0.003

WideResNet28 CIFAR100 0.2 0.006 £0.000 0.054 £0.002 0.020 £0.001 0.089+0.001 0.0214+0.002 0.089 4+ 0.003 0.01440.001 0.083 & 0.001
0.4 0.022£0.001 0.092£0.002 0.004 £0.001 0.070 £0.002 0.006 £ 0.001  0.067 4 0.004  0.005 £ 0.001  0.076 £ 0.002

0.6 0.090£0.001 0.183£0.002 0.054£0.001 0.140 £0.002 0.049 +0.003 0.13240.004 0.041 £0.002 0.120 £ 0.002

0.8 0.266 £0.005 0.295+0.003 0.124+0.004 0.205+0.003 0.118+0.004 0.20240.003 0.091 4 0.003 0.185 £ 0.003

1.0 0.380£0.003 0.356 +0.002  0.086 4 0.003  0.187 4 0.004 0.087 £0.004 0.185£0.005 0.117 £0.005 0.216 £ 0.004
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Table 2. Recalibration Results for Imbalanced Classification. For each dataset and atypicality quantile, the best results are marked in
bold. We provide the standard errors next to the means over 10 random seeds.

Uncalibrated TS AdaTS Atypicality-Aware
Atypicality ECE RMSE Accuracy ECE RMSE Accuracy ECE RMSE Accuracy ECE RMSE Accuracy
GMM ResNet152 Places365-LT 0.2 0.159+0.000 0.144%0.000 0.492+0.000 0.064+0.000 0.099%0.000 0.492+0.000 0.044%0.004 0.088+0.002 0.492%0.000 0.065+0.000 0.101 £0.000 0.412 % 0.000

0.4 0.208 +0.000 0.166 £ 0.000
0.6 0.270 +0.000  0.186 £ 0.000
0.8 0.334 4 0.000
1.0 0.437 +0.000
ResNet18 CIFARIO-LT 0.2 0.017 + 0.000

0.000  0.06140.000 0.09540.000 0.387 £0.000 0.053 £0.001  0.099 +0.001  0.387 4 0.000 0.042 £ 0.000 0.090 £ 0.000  0.415 % 0.000
0.000  0.07340.000 0.11140.000 0.317£0.000 0.076 £0.005 0.111+0.003 0.317 4+ 0.000 0.054 £0.000 0.097 +0.000 0.398 % 0.000
0.000  0.120 £ 0.000  0.150 £ 0.000  0.218 £ 0.000  0.127 £0.006  0.152 £ 0.002  0.218 £ 0.000  0.058 £ 0.000  0.103 £ 0.000  0.371 £ 0.000
0.000  0.21140.000 0.18540.000 0.081£0.000 0.212+0.007 0.187 +0.002 0.081 4 0.000 0.103 £0.000 0.137 £ 0.000 0.283 %+ 0.000
0.000  0.060 +0.000  0.164 & 0.000  0.927 £ 0.000 0.084 £0.008 0.190 +0.008  0.927 4 0.000  0.030 £ 0.000 0.104 £ 0.000 0.874 + 0.000
0.4 0.05440.000 0.145 4 0.000 0.000  0.08240.000 0.18240.000 0.825+0.000 0.102+0.008 0.201 +0.006 0.825 4 0.000  0.027 £ 0.000  0.104 £ 0.000  0.741 % 0.000

0.6 0.152+0.000 0.236 & 0.000 0.000  0.0494+0.000 0.133£0.000 0.672£0.000 0.069 £0.005 0.174+0.007 0.67240.000 0.044 £0.000 0.127 +0.000 0.770 + 0.000

0.8 0.098£0.000 0.1884+0.000 0.779 £0.000 0.022+£0.000 0.107 £0.000 0.779 £ 0.000 0.03240.005 0.113 £0.007 0.779 £ 0.000  0.034 £ 0.000 0.104 £ 0.000  0.810 = 0.000

1.0 0.24440.000 0.286 4 0.000  0.584 £0.000 0.128 +0.000  0.206 +0.000  0.584 £ 0.000 0.157 £0.011  0.248 = 0.009  0.584 4 0.000 0.034 £0.000  0.109 £ 0.000  0.829 %+ 0.000

CIFARIO0-LT 0.2 0.138+0.000 0.2314+0.000 0.660 = 0.000 0.106 £ 0.000 0.203 £0.000 0.660 +0.000 0.105+0.012  0.198 £0.010  0.660 +0.000 0.031 +0.000 0.112£0.000 0.594 + 0.000

0.4 0.23540.000 0.29140.000 0.523 £0.000 0.056 +0.000 0.137 +0.000 0.523 £ 0.000 0.058 £ 0.006  0.145 +0.007  0.523 4 0.000  0.040 £ 0.000  0.109 £ 0.000  0.556 + 0.000

0.6 0.295+0.000 0.320+0.000 0.431£0.000 0.063 +0.000 0.166 +0.000 0.431£0.000 0.067 £0.009 0.160 +0.010 0.431 4 0.000 0.043 £0.000 0.142+0.000 0.508 % 0.000

0.8 0.381+0.000 0.360+0.000 0.344 £0.000 0.121+0.000 0.221 +0.000 0.344 £0.000 0.100 £0.016 0.193 £0.013  0.344 4 0.000 0.080 £0.000  0.179 £ 0.000  0.432 % 0.000

1.0 0.403 +0.000  0.38240.000 0.269 £ 0.000 0.116 +0.000  0.234 +0.000  0.269 £ 0.000  0.129 £0.015  0.233 +£0.010  0.269 4 0.000  0.051 £ 0.000  0.165 £ 0.000  0.423 = 0.000

ResNext50 ImageNet-LT 0.2 0.019£0.000 0.0614+0.000 0.716 +0.000 0.073 £0.000 0.097 £0.000 0.716 +0.000 0.069 £ 0.006  0.095+0.003 0.716 +0.000 0.013 +0.000 0.062 £ 0.000  0.627 £ 0.000

0.4 0.032+£0.000 0.07540.000 0.592£0.000 0.059 +0.000 0.089 £ 0.000 0.592 £ 0.000 0.056 £ 0.006 0.087 +0.003  0.592 4 0.000 0.022 £ 0.000 0.068 £ 0.000  0.576 + 0.000

0.6 0.081+0.000 0.103£0.000 0.481£0.000 0.04540.000 0.07940.000 0.481£0.000 0.046 £0.002 0.081 +0.001  0.481 4 0.000 0.020 £ 0.000  0.063 £ 0.000  0.525 % 0.000

0.8 0.171+0.000 0.14440.000 0.309 £0.000 0.079+0.000 0.11540.000 0.309 £0.000 0.086 +£0.007 0.116 +0.002  0.309 4 0.000 0.032£0.000 0.080 £ 0.000 0.446 + 0.000

1.0 0. £0.000 0.1984£0.000 0.113 £0.000 0.230 £0.000 0.174 £0.000 0.113 £ 0.000 0.23540.008 0.175+0.002  0.113 £ 0.000 0.082 £ 0.000 0.113 £ 0.000  0.318 £ 0.000

ResNext50(+P.B.)  ImageNet-LT ~ 0.2 0.017+0.000 0.064 +0.000 0.653 =0.000 0.081 £0.000 0.100 £ 0.000 0.653 +0.000 0.084 +0.004 0.101 £0.002 0.653 +0.000 0.020 = 0.000 0.070 £ 0.000  0.579 £ 0.000

0.4 0.023+£0.000 0.068+0.000 0.579£0.000 0.062+0.000 0.090 +0.000 0.579 £0.000 0.063 £0.004 0.089 +0.002 0.579 4 0.000 0.013 £0.000 0.064 £ 0.000 0.535 % 0.000

0.6 0.065 % 0.000  0.090 £ 0.000  0.508 £ 0.000  0.027 +0.000  0.074 4+ 0.000  0.508 £ 0.000  0.027 £ 0.003  0.070 +0.002  0.508 4 0.000  0.018 £ 0.000  0.067 £ 0.000  0.508 = 0.000

0.8 0.129+0.000 0.12140.000 0.388+0.000 0.04240.000 0.08240.000 0.388£0.000 0.043 £0.003 0.083 +0.002 0.38840.000 0.039£0.000 0.076 £ 0.000 0.444 + 0.000

1.0 0.236 £0.000 0.164 £ 0.000 0.224 £ 0.000 0.147 £ 0.000  0.134 £0.000 0.224 £ 0.000 0.147 £0.004  0.133 £0.002  0.224 4 0.000 0.078 £ 0.000  0.100 £ 0.000  0.359 = 0.000

KNN ResNet152 Places365-LT 0.2 0.159 £0.000  0.144 +0.000  0.492 = 0.000  0.064 £ 0.000  0.099 £ 0.000  0.492 4+ 0.000 0.047 +0.004  0.089 £0.002  0.492+0.000 0.091 +0.000 0.116 £ 0.000  0.387 £ 0.000
0.4 0.208+0.000 0.166 £ 0.000 0.387 £0.000 0.061 +0.000 0.095+0.000 0.387 £0.000 0.054 £0.001 0.097 +0.001  0.387 4 0.000 0.048 £0.000 0.090 £ 0.000 0.448 + 0.000

0.6 0.270 +0.000 0.186 4 0.000  0.317 £ 0.000  0.073 4+ 0.000 0.111 4 0.000 0.317 £ 0.000 0.068 £ 0.004 0.107 +0.002  0.317 4 0.000  0.057 £ 0.000  0.098 £ 0.000  0.416 + 0.000

0.8 0.334+0.000 0.214+0.000 0.218£0.000 0.120+0.000 0.150 +0.000 0.218 £0.000 0.117 £0.004 0.149 +0.002 0.218 +0.000 0.065 £ 0.000  0.106 £ 0.000  0.367 + 0.000

1.0 0.4374£0.000 0.24340.000 0.081£0.000 0.2114+0.000 0.185+0.000 0.081£0.000 0.202+0.004 0.184 +£0.001 0.08140.000 0.111£0.000 0.152+0.000 0.207 + 0.000

ResNetl8 CIFARIO-LT 0.2 0.017£0.000 0.077 +0.000 0.927 0.000  0.060 £ 0.000  0.164 £ 0.000  0.927 +0.000  0.098 4 0.009  0.204 £ 0.008  0.927 +0.000  0.025 +0.000  0.085 = 0.000  0.873 £ 0.000

0.4 0.054+0.000 0.145+0.000 0.825+0.000 0.08240.000 0.18240.000 0.825+0.000 0.127£0.008 0.220+0.005 0.82540.000 0.024 £0.000 0.106 £ 0.000 0.742 + 0.000

0.6 0.152+£0.000 0.236 4 0.000 0.672£0.000 0.049 £0.000 0.133 £0.000 0.672£0.000 0.054 £0.005 0.157 £0.005 0.67240.000 0.039 £0.000 0.124 £ 0.000 0.768 + 0.000

0.8 0.098+0.000 0.18840.000 0.779 £0.000 0.022+0.000 0.107 +0.000 0.779 £0.000  0.028 £0.002  0.106 = 0.005 0.779 4 0.000  0.029 £ 0.000  0.102 £ 0.000  0.810 % 0.000

1.0 0.244+0.000 0.286 4 0.000 0.584 £0.000 0.128 +0.000 0.206 +0.000 0.584 £0.000 0.153 £0.009 0.248 +£0.007 0.58440.000 0.037 £0.000 0.123 +0.000 0.832 %+ 0.000

CIFARIOO-LT 0.2 0.138£0.000 0.23140.000 0.660 = 0.000  0.106 + 0.000  0.203 £ 0.000  0.660 £ 0.000  0.088 £ 0.008  0.184 £ 0.008  0.660 & 0.000  0.029 = 0.000  0.108 £ 0.000  0.595 = 0.000

0.4 0.235+0.000 0.291+0.000 0.523 £0.000 0.056 +0.000 0.137 +0.000 0.523 £0.000 0.049 £0.003 0.135+0.004 0.523 4+ 0.000 0.049 £0.000 0.123 £ 0.000 0.554 + 0.000

0.6 0.295+0.000  0.320 £ 0.000 4314+ 0.000 0.063 £ 0.000 0.166 +0.000 0.431 +0.000 0.07340.008 0.171£0.008 0.431 +£0.000 0.030 +0.000 0.113 £ 0.000  0.509 £ 0.000

0.8 0.3814+0.000 0.360 4 0.000 0.344 £0.000 0.121 +0.000 0.221 +0.000 0.344 £ 0.000 0.119 £0.012  0.210 +0.009  0.344 4 0.000  0.078 £ 0.000  0.175 £ 0.000  0.435 + 0.000

1.0 0.403£0.000 0.38240.000 0.269£0.000 0.116 +0.000 0.234 +0.000 0.269 +0.000 0.145+0.011  0.244 +£0.008 0.269 4 0.000 0.059 £0.000 0.163 £ 0.000 0.424 + 0.000

ResNext50 ImageNet-LT ~ 0.2 0.019£0.000 0.061 +0.000 0.716 £ 0.000 0.073 £ 0.000 0.097 £0.000 0.716 +0.000 0.067 4 0.004  0.094 £0.002  0.716 £ 0.000  0.014 +0.000  0.065 = 0.000  0.626 + 0.000

0.4 0.032+0.000 0.075=40.000 0.592£0.000 0.059 +0.000 0.089 +0.000 0.592£0.000 0.052£0.004 0.086 +0.002 0.592 4 0.000 0.023 £0.000 0.068 £ 0.000 0.575 %+ 0.000

0.6 0.081+0.000 0.103+0.000 0.481£0.000 0.04540.000 0.07940.000 0.481£0.000 0.042+0.001 0.080+0.001 0.48140.000 0.023 £0.000 0.068 £0.000 0.524 +0.000

0.8 0.171£0.000 0.144 £ 0.000  0.309 £ 0.000 0.079 £ 0.000 0.115£0.000 0.309 £ 0.000 0.088 4 0.005 0.116 £ 0.002  0.309 £ 0.000  0.037 £ 0.000  0.079 £ 0.000  0.447 £ 0.000

1.0 0.324+0.000 0.19840.000 0.113£0.000 0.230 +0.000 0.1744+0.000 0.113£0.000 0.238 £0.005 0.176 +0.001  0.113 4 0.000  0.086 £ 0.000  0.116 £ 0.000  0.318 % 0.000

ResNext50(+P.B.) ImageNet-LT ~ 0.2 0.017£0.000 0.064 £0.000 0.653 +0.000 0.08140.000 0.100 £ 0.000 0.653 £0.000 0.083+0.005 0.100 £+ 0.003 0.653 £0.000 0.018 +£0.000 0.069 4+ 0.000 0.578 £ 0.000

0.4 0.02340.000 0.068 4 0.000 0.579 £ 0.000 0.062 +0.000 0.090 +0.000 0.579 £ 0.000  0.062 £ 0.005 0.089 +0.003  0.579 4 0.000  0.015 £ 0.000  0.062 £ 0.000  0.535 + 0.000

0.6 0.065+0.000 0.090 £ 0.000 0.508 £0.000 0.027+0.000 0.0744+0.000 0.508 £0.000 0.028 £0.003 0.073 +0.001  0.508 +0.000 0.024 £0.000 0.069 £ 0.000 0.507 + 0.000

0.8 0.129+0.000 0.12140.000 0.388£0.000 0.04240.000 0.08240.000 0.388£0.000 0.043 £0.005 0.083 +0.002 0.388 4 0.000 0.038 £0.000 0.080 + 0.000 444 £ 0.000

1.0 0.236 +0.000 0.164 4 0.000 0.224 £0.000  0.147 +0.000  0.134 4+ 0.000 0.224£0.000 0.148 £ 0.005 0.134 +0.002  0.224 4 0.000  0.076 £ 0.000  0.101 + 0.000 .358 4 0.000

Table 3. Recalibration Results for LLM Classification. For each dataset and atypicality quantile, the best results are marked in bold.
We provide the standard errors next to the means over 10 random seeds.

Uncalibrated Content-Free Atypicality-Aware
ECE RMSE Accuracy ECE RMSE Accuracy ECE RMSE Accuracy

LLM Alpaca7B  AG News 0.25 0.180£0.000 0.2194+0.000 0.68140.000 0.452£0.000 0.411 £0.000 0.527 £0.000 0.070 & 0.000 0.142 £ 0.000  0.760 £ 0.000
0.50  0.165+0.000 0.202 4 0.000 0.671 4 0.000 0.413 £0.000 0.370 £0.000 0.57140.000 0.027 4 0.000 0.101 £ 0.000  0.775 £ 0.000

0.75  0.169 £0.000 0.204 +0.000  0.657 & 0.000  0.429 £ 0.000  0.364 £0.000 0.549 +0.000 0.030 & 0.000  0.099 £ 0.000  0.752 £ 0.000

1.00 0.202+0.000 0.22240.000 0.580 £ 0.000 0.448 £0.000 0.350 + 0.000 0.524 4+ 0.000 0.028 £ 0.000 0.110 £ 0.000  0.715 % 0.000

IMDB 0.25 0.023+£0.001 0.08740.002 0.887 4 0.001 0.141 £0.001 0.194 £0.001 0.883 £0.001 0.011 4 0.001  0.068 & 0.002  0.927 £ 0.001
0.50  0.024 £0.001  0.09540.002 0.85140.001 0.117£0.002 0.185£0.002 0.838+£0.002 0.0144+0.001 0.078 £0.002  0.920 £ 0.001

0.75 0.051+£0.002 0.12440.002 0.79540.002 0.110£0.001  0.181 £0.002 0.823 +0.002 0.009 4+ 0.001  0.069 £ 0.001  0.895 + 0.001

1.00  0.063 +0.001 0.136 £0.001  0.756 £0.001  0.12240.001  0.201 +0.001  0.752 £0.001  0.021 £0.001  0.088 +0.002  0.883 4 0.001

TREC 0.25 0.139+0.000 0.35540.000 0.74440.000 0.286 4+ 0.000 0.265+0.000 0.776 +0.000 0.109 £ 0.000 0.266 £ 0.000  0.896 £ 0.000
0.50  0.217+£0.000 0.444 +0.000 0.680 4 0.000 0.314 £ 0.000 0.503 £ 0.000 0.672 4+ 0.000 0.068 4 0.000 0.148 4 0.000  0.816 =+ 0.000

0.75  0.238£0.000 0.48240.000 0.592 4 0.000 0.464 £ 0.000 0.622 £0.000 0.520 £ 0.000 0.067 & 0.000 0.198 £ 0.000  0.784 £ 0.000

1.00  0.207+£0.000 0.451 4 0.000 0.544 £ 0.000 0.528 £0.000 0.685+ 0.000 0.432 4 0.000 0.150 £ 0.000 0.199 £ 0.000  0.696 + 0.000




Beyond Confidence: Reliable Models Should Also Consider Atypicality

Table 4. Conformal Calibration with Atypicality-Awareness.

Model Dataset Input Atypicality Group ~ Confidence Group APS AA-APS RAPS AA-RAPS
Coverage SetSize Coverage SetSize Coverage SetSize Coverage SetSize
ResNet152  ImageNet 1 1 0.982 +£0.002 51.192 £ 1.570 0.970 £0.003  32.694 £ 3.517 0.951 £0.004 7.168 £ 0.127 0.963 £0.004  14.408 £ 2.275
2 0.984£0.001  80.425+2.506  0.961 £0.002 39.75241.670  0.940 £0.003 7.771£0.180  0.966 +0.004 15.713 £ 0.977
3 0.980 £ 0.001  114.526 +1.293  0.955+£0.004 55.887 +2.830  0.885+0.005 8.485+0.217  0.95240.004 25.191 + 1.349
4 0.979+£0.001 118.819 4 1.787 0.949 +0.002 60.998 + 1.293 0.833 +£0.005 8.677 4 0.235 0.949 +0.002  33.256 + 0.812
5 0.975+£0.001  111.696 £ 1.090 0.953 £ 0.002 66.884 & 1.347  0.807 +0.006 8.801 £ 0.242 0.948 £0.002  42.109 £ 0.829
6 0.958 £0.002  90.283 £ 1.460 0.949 £0.002  77.404 £ 1.682 0.777 £0.005  8.565 % 0.229 0.946 £0.003  52.214 & 1.401
2 1 0.961+£0.004 16.767 +£0.389  0.953 £0.004 14.533+1.036  0.977+0.002 5.279+0.035  0.954+0.005 3.88840.102
2 0.964 £0.002 18.3594+0.530  0.951£0.003 12.9024+0.814  0.974+0.001 5.801 £0.046  0.950 +0.003 4.484 4 0.079
3 0.961£0.001 21.4094+0.413  0.948 £0.002 14.636 +0.318  0.966 £0.002 5.964 £0.051  0.952+0.003 5.17240.112
4 0.964 £0.002 23.16240.321  0.956 £0.003 20.246 +0.634  0.966 +£0.002 6.253 £0.081  0.962 4 0.004 6.485 4 0.112
5 0.953 £0.002 24.8334+0.486  0.952+£0.003 25.47040.829  0.938+£0.002 6.331 £0.092  0.953 4 0.003 9.446 & 0.332
6 0.929 £0.003  21.124 £ 0.290 0.943 +£0.004 32.341 +1.343 0.909 £0.003  6.409 + 0.106 0.952 £0.002 16.970 & 0.828
3 1 0.957 £0.002  6.843 +0.249 0.954 £0.004  5.860 & 0.354 0.984 £0.001  4.839 4+ 0.046 0.951 £0.004 3.015 4 0.098
2 0.963 £0.003  6.654 £+ 0.202 0.965 £0.003  6.689 £ 0.406 0.986 £0.001  5.274 £ 0.044 0.966 £ 0.003  3.494 £+ 0.071
3 0.951£0.002  7.609 +0.195 0.955+0.003  8.542 4 0.472 0.968 +£0.001  5.435+0.042  0.951+0.003 4.052 +0.097
4 0.938 £0.002  8.415 + 0.205 0.955+£0.002 12476 +0.349  0.961 £0.002 5.728 £0.048  0.951 +0.002 5.085 + 0.085
5 0.945 £ 0.002  8.500 =+ 0.204 0.955+£0.003 12.539+0.815  0.964 £0.002 5.724+£0.050  0.956 +0.003 5.531 + 0.154
6 0.932£0.004  8.009 £ 0.199 0.953£0.004 13.942+0.657  0.944£0.003 5.744£0.048  0.953 +0.003 7.718 £ 0.745
4 1 0.958 £0.001  1.480 & 0.034 0.962 £0.003  1.828 4+ 0.131 0.985 £0.001  3.810 4+ 0.132 0.962 +£0.003 1.613 £ 0.078
2 0.953 £0.002  1.388 & 0.021 0.958 £0.002 1.9134+0.118 0.982£0.001 3.816 +0.141 0.957 £0.002 1.692 4+ 0.070
3 0.931£0.002 1.451 £0.028 0.947 £0.003  2.699 £ 0.146 0.967 £0.002  3.920 £ 0.148 0.951 £0.003  2.237+0.071
4 0.935+0.001  1.450 £ 0.020 0.958 £0.003  3.488 4 0.224 0.976 £0.002 3.880+0.128  0.957+0.003 2.577 +0.117
5 0.928 £0.002 1.424 +0.018 0.951+£0.003 5.173 +0.391 0.963 £0.002  4.160 +0.127  0.952+0.002 3.185 + 0.077
6 0.902 £ 0.003  1.476 + 0.028 0.958 £0.005  8.900 + 0.726 0.955+0.004 3.925+0.130  0.959 +0.004 4.235 +0.163
5 1 0.988 £ 0.001  1.000 = 0.000 0.988 4 0.001  1.000 = 0.000 0.989 4 0.001  1.34440.116  0.988 +0.001  1.000 + 0.000
2 0.982 £ 0.001  1.000 £ 0.000 0.982 £0.001  1.000 % 0.000 0.984 +£0.001  1.363 £ 0.122 0.982 £0.001  1.000 £ 0.000
3 0.976 £ 0.001  1.000 % 0.000 0.976 £0.001  1.001 & 0.001 0.980 £0.002 1.351 +0.122 0.976 £0.001  1.001 % 0.001
4 0.977 £0.001  1.000 £ 0.000 0.977 £0.001  1.020 £ 0.009 0.980 £0.001  1.363 £ 0.109 0.977 £0.001  1.004 £ 0.003
5 0.965 £ 0.001  1.000 £ 0.000 0.965+0.001  1.137 4 0.055 0.968 £0.002 1.342+0.115  0.965+0.001  1.063 +0.028
6 0.970 £0.002  1.000 £ 0.000 0.972+£0.003 1.607 4 0.125 0.973+£0.003 1.339+0.107  0.973+0.003 1.539 + 0.080
6 1 0.992 £ 0.000  1.000 = 0.000 0.992 £ 0.000  1.000 = 0.000 0.992 4 0.000  1.000 £ 0.000  0.992 +0.000  1.000 + 0.000
2 0.989 £ 0.001  1.000 = 0.000 0.989 £ 0.001  1.000 = 0.000 0.989 4 0.001  1.000 £ 0.000  0.989 +0.001  1.000 + 0.000
3 0.992 £ 0.000  1.000 =+ 0.000 0.992 £ 0.000  1.000 % 0.000 0.992 £ 0.000  1.000 % 0.000 0.992 £ 0.000  1.000 £ 0.000
4 0.995 £ 0.001  1.000 % 0.000 0.995 £ 0.001  1.000 % 0.000 0.995 £ 0.001  1.000 % 0.000 0.995 £ 0.001  1.000 % 0.000
5 0.989 £0.001  1.000 = 0.000 0.989 £ 0.001  1.000 £ 0.000 0.989 £ 0.001  1.000 +0.000  0.989 +0.001  1.000 + 0.000
6 0.991£0.001  1.000 £ 0.000 0.991£0.001  1.000 £ 0.000 0.991£0.001  1.000 +0.000  0.991 +0.001  1.000 % 0.000
ResNetl8  ImageNet 1 1 0.982+0.001  167.265+2.058 0.952+£0.004 79.307+3.180  0.876 £0.008 20.623 +1.724 0.95240.003 67.925 + 2.552
2 0.986 £0.001  157.710 £1.132  0.956 £0.002 85.303 4+ 1.015  0.848 £0.009 20.740 +1.745 0.958 4+ 0.003  80.333 + 3.054
3 0.970 £0.001  147.730 £ 1.267 0.943 £0.003  95.80542.283  0.810£0.009 20.689 +1.725 0.938 4 0.003 91.786 + 1.213
4 0.963 +0.002 129.188+1.035 0.954 +0.003 109.238 +1.837 0.815+0.009 20.328 +£1.592  0.953 £ 0.002 102.926 + 2.651
5 0.957£0.002 111.271 £1.097 0.952+0.002 103.457 £2.047 0.809+0.011 19.932+1.441 0.942+0.004 91.695 & 3.655
6 0.941£0.004 82.127 £ 1.167 0.951 £0.005 96.879 & 4.165 0.828 £0.008 19.108 =1.138 0.950 £0.004  87.490 & 3.277
2 1 0.972£0.001 37918 £1.031  0.958 £0.001  25.001 +£0.687  0.978 £0.002 15.096 +0.135 0.959 4+ 0.003 10.650 £ 0.322
2 0.959 £0.002 42.117+0.743  0.951 £0.004 31.357+1.294  0.954 £0.002 15.879+0.162 0.951 +0.004 16.748 £ 0.617
3 0.964 £0.003 43.3124+0.868  0.957£0.003 39.329 4+ 1.425  0.951 £0.003 16.138+0.225 0.960 +0.002 22.619 +1.125
4 0.951+£0.003 41.8034+0.701  0.955+0.003 45.6174+1.420  0.930 £0.002 16.357 +0.295 0.953 4+ 0.003 31.513 + 1.447
5 0.945 +0.002  36.697 + 0.482 0.957 £0.002  45.379 +1.101 0.935+0.002 16.094 +0.249 0.961 4+ 0.001  32.569 + 0.974
6 0.930 £0.003 27.148 4 0.321 0.949 £0.005 43.307 £ 2.384 0.924 £0.003 15.730 £0.144 0.948 +0.005 28.152 + 1.657
3 1 0.964 £0.001  15.809 £ 0.414 0.954 £0.002  13.080 £ 0.586 0.985£0.002 13.208 +=0.471 0.955£0.002 6.864 £ 0.146
2 0.960 £0.002 18.034 +0.515  0.956 £0.003 16.515+0.618  0.978 £0.001 13.659 +0.394 0.955+0.002 8.275 4+ 0.221
3 0.964 £0.002 19.2314+0.344  0.957 £0.003 17.463+0.722  0.979+£0.001 13.901 +£0.310 0.957+0.003 8.794 4 0.163
4 0.950 £0.001  19.479+0.207  0.952+£0.003 21.47040.744  0.974£0.001 13.899+0.304 0.955 4 0.003 11.390 £0.313
5 0.940 £0.002  17.801 +£0.160  0.953 £0.003 22.066 +0.545  0.957 £0.002 14.036 +0.296 0.951 +0.003 12.743 £ 0.271
6 0.931£0.002 13.096 +0.153  0.949 £0.004 21.3524+1.080  0.956 £0.002 13.169 4 0.394 0.949 4 0.005 12.924 + 0.663
4 1 0.964 £0.002  5.377 &+ 0.082 0.957 £0.003  4.595 4 0.226 0.990 £0.002 11.670£0.870 0.957 +0.004 3.823 +0.144
2 0.958 £0.002  6.371 +0.130 0.954 £0.003  5.887 +0.275 0.986 £0.003 11.954 4+ 0.767 0.953 £0.003 4.648 £ 0.106
3 0.946 £0.002  5.810 % 0.109 0.953 £0.002 7.575+0.321 0.9844£0.003 12.1454+0.751  0.954 +0.003  5.364 + 0.157
4 0.940 £0.001  6.698 + 0.159 0.950 £0.003  9.025 4 0.498 0.980 £0.002  12.432+0.700  0.950 +0.004  6.110 +0.225
5 0.926 £0.003  5.817 £ 0.102 0.949£0.004 10234 +£0.682  0.977£0.003 12.325+0.750 0.950 +0.004  6.925 + 0.198
6 0.915£0.002  4.948 £ 0.098 0.949£0.003 11.054 +0.601  0.968 £0.004 11.478 +0.813 0.948 +0.003 7.368 +0.183
5 1 0.963 £ 0.002  1.193 £ 0.008 0.968 = 0.002  1.497 4 0.052 0.989 £ 0.002  8.5594+1.391  0.967 +0.002 1.413 £0.041
2 0.959 £0.002  1.2324+0.014 0.963 £0.002  1.456 4 0.063 0.984 +£0.003  8.755 + 1.352 0.962 £0.002  1.485+0.057
3 0.957 £0.001 1.243 +0.012 0.961 £0.002  1.693 & 0.085 0.986 £0.003 8.947 +1.344 0.961 £0.002 1.637+0.071
4 0.945+£0.002 1.264 £0.013 0.959 £0.002  2.492 £+ 0.131 0.985£0.003 8.933 £ 1.325 0.959 £0.002  2.309 £ 0.082
5 0.943 £0.002 1.234+0.013 0.953 £0.002  2.770 4 0.345 0.976 £0.004 8.913+1.365  0.9544+0.002 2.540 +0.195
6 0.932+£0.002 1.214 +0.010 0.961 +0.002  3.875 4 0.249 0.976 £0.004 8.459+1.351  0.963 +0.003 3.635 + 0.192
6 1 0.991£0.001  1.000 = 0.000 0.991 £ 0.001  1.000 = 0.000 0.993 £0.001  4.540 £1.729  0.991 +0.001  1.000 + 0.000
2 0.986 £ 0.001  1.000 = 0.000 0.986 = 0.001  1.000 = 0.000 0.990 £ 0.002  4.395+1.738  0.986 +0.001  1.000 + 0.000
3 0.988 £0.001  1.000 =% 0.000 0.988 £0.001  1.000 % 0.000 0.992 +£0.001  4.449 + 1.739 0.988 £0.001  1.000 % 0.000
4 0.988 £0.001  1.000 % 0.000 0.988 £0.001  1.000 % 0.000 0.991 £0.002 4.481 +1.729 0.988 £0.001  1.000 % 0.000
5 0.986 £ 0.001  1.000 £ 0.000 0.986 £0.001  1.000 £ 0.000 0.990 £0.002  4.390 £+ 1.741 0.986 £ 0.001  1.000 £ 0.000
6 0.981+0.001  1.000 £ 0.000 0.981+0.001  1.003 % 0.003 0.987+£0.002 4.146 £ 1.767  0.981+0.001  1.009 + 0.007
ResNet50  ImageNet 1 1 0.980 £0.002 80.190 +1.594  0.955+0.004 50.203 +2.778  0.945+0.002 9.874+0.169  0.964 +0.002 16.099 + 0.593
2 0.986 £0.002 118.839 £1.737 0.955+£0.003 52.066 +2.094  0.896 £0.003 10.681 +0.209 0.950 & 0.003  25.545 + 0.845
3 0.979 £0.001  134.702+0.697 0.951+£0.003 60.743+1.012  0.848 £0.004 11.056 +0.228 0.940 4+ 0.002  35.518 £ 0.870
4 0.976 £0.001  126.8924+0.939 0.952+0.003 79.627 + 2.106 0.835+0.004 11.079+0.230 0.95340.004 51.339 & 1.445
5 0.964 £0.001  114.559 £0.975 0.954 £0.003 93.609 +3.277  0.797 £0.005 11.011£0.232 0.942+£0.003 63.441 £+ 1.422
6 0.949 £0.002  88.034 £0.799 0.950 £0.003  88.418 £ 1.898 0.806 £0.005 10.744 £0.221  0.957 £ 0.002 62.049 + 1.862
2 1 0.961£0.002 17.461+0.533  0.952+£0.004 14.757+0.785  0.976 £0.002 7.080 £0.116  0.956 +0.004 5.205 4 0.127
2 0.967 £0.002 24.896+0.732  0.958 £0.002 20.892+ 1.441  0.965+0.002 8.013+0.106  0.958 +0.002 6.879 +0.191
3 0.961+0.001  29.101 +£0.759  0.947£0.003 21.754 +1.123  0.963£0.001 8.134£0.126  0.956 +0.003  8.773 +0.321
4 0.958 £0.002 30.078 £0.379  0.956 £0.003 28.19940.951  0.946 £0.002 8.398£0.129  0.951 +0.003 11.264 + 0.347
5 0.944 +0.001  29.401 + 0.357 0.946 £0.002  32.362 £ 1.180 0.937 £0.003  8.559 £ 0.143 0.952 +0.002  15.040 + 0.547
6 0.939 £0.002  22.100 £ 0.488 0.954 £0.004  33.527 + 1.955 0.922 £0.003  8.269 +0.135 0.955 £0.001  18.645 + 0.283
3 1 0.958 £0.002  9.385 & 0.202 0.953 £0.002  7.633 +0.346 0.988 £0.001 6.4714+0.129 0.955 £0.002  3.820 +0.076
2 0.951£0.003 9.619 £+ 0.194 0.949 £0.005 8.739 4+ 0.516 0.977+£0.002 6.919+0.118  0.950 +0.004  4.648 +0.082
3 0.957£0.002 11.44940.274  0.957 £0.003 10.853+0.446  0.975+0.001 7.163+£0.112  0.954+0.004 5.130 4 0.102
4 0.953 £0.001  10.809 +0.223  0.951 £0.002 10.546 +0.396  0.972+0.001 7.600 £0.113  0.952+0.003 5.872 4 0.235
5 0.947£0.002 11.507 +£0.228  0.951£0.003 14.754 +0.650  0.966 +0.003 7.414£0.114  0.953 +0.004 6.874 +0.157
6 0.920 £0.003  9.150 4 0.188 0.951 +0.005 20.041 + 1.624 0.944 +£0.002  7.143 4+ 0.101 0.950 £ 0.002  9.505 + 0.576
4 1 0.955 £0.002  1.739 & 0.025 0.953 £0.002 1.667 4+ 0.070 0.985 £0.002 5.088 +0.196 0.954 +£0.002 1.574 £ 0.038
2 0.948 £0.002  1.958 +0.016 0.950 £0.002  1.964 4 0.083 0.983 £0.001  5.28540.189 0.951 £0.003  1.845 4 0.061
3 0.936 £0.003  2.082 £ 0.034 0.955+0.002  4.255 4 0.202 0.976 £0.002  5.495+0.164  0.957 +0.003 3.423 +0.123
4 0.936 £0.003  2.173 £0.045 0.955£0.003  4.508 4 0.303 0.973+£0.002 5.573+0.170  0.952+0.002 3.013 +0.110
5 0.928 £0.002  2.071 £ 0.041 0.953 £0.003  8.483 4 0.789 0.968 £0.002 5.720+0.167  0.951 +0.002 4.338 +0.138
6 0.895 £ 0.004  1.932 + 0.026 0.950 £0.005 10.274 +1.147  0.950 £0.003 5.379£0.151  0.948 +0.004 5.270 + 0.220
5 1 0.979 £ 0.001  1.000 = 0.000 0.979£0.001  1.001 = 0.001 0.98540.001  1.918 £0.222  0.979 +0.001  1.000 + 0.000
2 0.982 £0.001  1.000 £ 0.000 0.982 £0.001  1.015 4 0.008 0.985 £0.001  1.880 + 0.221 0.982 £0.001  1.019 £ 0.007
3 0.964 £0.002  1.000 % 0.000 0.964 £0.002  1.126 4 0.028 0.971 £0.002 1.977 +0.222 0.965 £0.002 1.178 +0.045
4 0.972£0.002  1.000 £ 0.000 0.973£0.002  1.186 4 0.047 0.978 £0.002 1.958+0.205  0.973+0.002 1.156 + 0.050
5 0.968 +0.002  1.000 £ 0.000 0.971£0.002 1.417 4+ 0.102 0.974£0.002 1.911£0.222  0.971 £0.002 1.293 £ 0.067
6 0.946 £ 0.002  1.000 = 0.000 0.957£0.002 1.84240.143 0.956 +0.003 1.833+0.193  0.957 +0.002 1.763 +0.112
6 1 0.991 £ 0.001  1.000 = 0.000 0.991 £ 0.001  1.000 = 0.000 0.991 4 0.001  1.000 £ 0.000  0.991 +0.001  1.000 = 0.000
2 0.991 £ 0.001  1.000 = 0.000 0.991 £ 0.001  1.000 4 0.000 0.99140.001  1.000 £ 0.000  0.991 +0.001  1.000 + 0.000
3 0.994 £ 0.001  1.000 £ 0.000 0.994 +0.001  1.000 £ 0.000 0.994 +0.001  1.000 £ 0.000 0.994 +0.001  1.000 £ 0.000
a4 Nao2 0001 100040000 Na992 0001 1 000 40 000 0902 0001 1000 40000 0902 0001 1000 40 000



Beyond Confidence: Reliable Models Should Also Consider Atypicality

ResNetl52 on ImageNet

ResNet152 on ImageNet
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Figure 16. Input Atypicality and Confidence for ResNet152. We provide the input atypicality for ResNet152, in the same structure as
Figure 15.



