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ABSTRACT

High-dimensional non-convex loss landscapes play a central role in the theory
of Machine Learning. Gaining insight into how these landscapes interact with
gradient-based optimization methods, even in relatively simple models, can shed
light on this enigmatic feature of neural networks. In this work, we will focus on
a prototypical simple learning problem, which generalizes the Phase Retrieval in-
ference problem by allowing the exploration of overparametrized settings. Using
techniques from field theory, we analyze the spectrum of the Hessian at initial-
ization and identify a Baik–Ben Arous–Péché (BBP) transition in the amount of
data that separates regimes where the initialization is informative or uninformative
about a planted signal of a teacher-student setup. Crucially, we demonstrate how
overparameterization can bend the loss landscape, shifting the transition point,
even reaching the information-theoretic weak-recovery threshold in the large over-
parameterization limit, while also altering its qualitative nature. We distinguish
between continuous and discontinuous BBP transitions and support our analytical
predictions with simulations, examining how they compare to the finite-N behav-
ior. In the case of discontinuous BBP transitions strong finite-N corrections allow
the retrieval of information at a signal-to-noise ratio (SNR) smaller than the pre-
dicted BBP transition. In these cases we provide estimates for a new lower SNR
threshold that marks the point at which initialization becomes entirely uninforma-
tive.

1 INTRODUCTION

The geometry of high-dimensional, non-convex loss, risk, or cost landscapes plays a central role in
modern machine learning and data science. Such landscapes hide important structural features of
the data into specific local structures and mostly deep configurations. Despite their complexity, the
optimization of these landscapes is typically performed using local iterative algorithms, most no-
tably gradient descent and its stochastic variants. Understanding the success and limitations of these
algorithms remains a fundamental open problem. It has been first observed that in regimes where
the dataset is large relative to the problem dimension N , i.e., at high signal-to-noise ratio (SNR),
the landscape can undergo an effective trivialization, becoming nearly convex and devoid of spuri-
ous local minima (Fyodorov, 2004; Soudry & Carmon, 2016; Cai et al., 2022). In this setting, each
point in the landscape contains a clear directional signal guiding the optimization toward informative
minima. Furthermore, it has been widely reported that overparameterization of the learning model
can induce a smoothing of the loss landscape even in regimes with moderate or low SNR, thereby
facilitating optimization (Shevchenko & Mondelli, 2020; Cooper, 2021). Perhaps more surprisingly,
even in settings where spurious non-informative minima remain prevalent, gradient-based methods
often still succeed (Baity-Jesi et al., 2018; Liu et al., 2020; Ros et al., 2019; Mannelli et al., 2019).
This apparent paradox has been addressed in a series of works on high-dimensional inference prob-
lems such as matrix-tensor PCA (Sarao Mannelli et al., 2019) and phase retrieval (Sarao Mannelli
et al., 2020a). These studies reveal that gradient flow dynamics can avoid these poor solutions due
to the local geometry of high-dimensional basins of attraction, which are typically explored by the
dynamics. The high dimensional basins of attraction of gradient flow, although still non informative
themselves, develop an instability towards the signal at relatively low SNR. This phenomenon is
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sometimes referred to as the ”blessing of dimensionality”. Crucially, the emergence of such insta-
bilities at increasing SNR is associated with a qualitative change in the spectrum of the local Hessian
in a transition known as the Baik–Ben Arous–Péché (BBP) transition (Baik et al., 2005).

Alternative learning approaches, mostly applied to signal reconstruction problems, are based on the
use of spectral methods (Netrapalli et al., 2013; Montanari & Sun, 2018) to define a warm start to
subsequent local iterative algorithms, with the aim of boosting their performances. Typically, in
spectral methods such initial guess is provided by the leading eigenvector of a matrix, which is a
function of the input data tailored to the structure of the specific problem (Montanari & Sun, 2018;
Lu & Li, 2020; Mondelli & Montanari, 2018; Maillard et al., 2022). Interestingly in some cases, for
instance phase retrieval or tensor PCA, such ad hoc procedure can be also linked to the risk land-
scape as the matrix used for spectral initialization corresponds to the negative Hessian of a suitably
defined cost function evaluated at random configurations and averaged over many of them (Biroli
et al., 2020). Therefore its leading eigenvector represents the direction with the most negative (or
smallest positive) curvature found at the initial condition in such averaged landscape. Also in this
case, when the SNR increases, the spectrum of such matrix undergoes a BBP transition, after which
the leading eigenvector develops a finite correlation with the signal. A similar phenomenon occurs
in the Hessian of the cost function evaluated at individual random configurations (Bonnaire et al.,
2024; Arous et al., 2025), but it is less known how this landscape feature is also affected by over-
parametrization. Moreover, very recent work (Bonnaire et al., 2024) has shown that the information
contained in the curvature of the landscape in random configurations, for finite input dimensions N ,
could further automatically help gradient-based methods in finding the deep informative minima.
The interplay between the gradient flow algorithmic transitions and the emergence of the signal in
the Hessian at the initial condition then defines an effective algorithmic transition in the SNR, which
slowly changes with the dimensionality of the data set. This already nontrivial mechanism may be
further modified in the presence of overparameterization, motivating a deeper exploration of its role
in shaping the optimization landscape and the dynamics therein.

In this work, we consider an extended version of the classical phase retrieval problem by focusing
on a teacher-student setting based on two-layer soft-committee machines with quadratic activations.
The widths of the hidden layers of the student and teacher networks, denoted by p and p∗ respec-
tively, are generic and finite, while the dimensionality N of the input samples will be considered
very large and diverging, except in numerical tests. When p = p∗ = 1, the setting reduces to the
standard phase retrieval problem, which involves recovering a hidden signal from magnitude-only
projections. It notoriously results in a non-convex optimization problem with broad relevance in
optics (Millane, 1990), signal processing (Bendory et al., 2017), quantum mechanics (Orl et al.,
1994), and which has often served as a prototypical example for exploring the interplay between
optimization dynamics and high-dimensional geometry (Sun et al., 2018).

For general p and p∗, and in particular for p > p∗ we explore the effect of overparametrization on
the landscape structure. In particular, we focus on the information contained in the local curvature
in random positions of a suitably defined class of loss landscapes spanned by a parameter a. We
study how it changes with a, p and p∗. As previously mentioned, the Hessian at initialization could
contain more information than expected, which could lower the SNR of algorithmic transitions for
gradient-based algorithms, or could be explicitly used in a sort of generalized spectral method.

Our analysis shows that overparametrization generally shifts the BBP transition in the Hessian spec-
tra of random configurations toward lower SNR. The corresponding spectral initialization method
based on such local Hessian matrices is therefore expected to extract information earlier than in the
underparametrized case and even gradient-based learning dynamics is expected to work better with
overparametrization in finite-dimensional practical implementations of the problem. However, we
also obtain that in few very specific instances overparametrization may slightly harm the efficiency
of signal recovery obtained through the diagonalization of the Hessian at initialization. We also
observe that the nature of the BBP transition changes from underparametrized students to students
benefitting from overparametrization. When overparametrization increases the standard BBP transi-
tion tends to be replaced by a BBP transition associated with a discontinuous jump in the amount of
information retrieved. The emergence of discontinuous BBP transitions has been only very recently
discussed in association to signal reconstruction in phase retrieval problems (Bocchi et al., 2025a;
Bousseyroux & Potters, 2024), and previously only conjectured on theoretical grounds (Potters &
Bouchaud, 2020). With this work, we illustrate how they become central when phase retrieval is
generalized to an overparametrized learning setup. Moreover, strong finite size effects are expected
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to affect numerical observation of discontinuous BBP transitions (Bocchi et al., 2025a). We high-
light this aspect in the results of the signal recovery in the overparametrized cases. Interestingly,
we observe that higher overparametrization renders the transition more discontinuous. This effect
tends to counterbalance the small shift to higher SNR of the signal recovery transition—in the large
dimensional limit—obtained at higher overparametrization in specific instances, effectively reinstat-
ing a generalized advantage of overparametrization in realistic applications. Finally, we discuss the
large overparametrization limit p → ∞ for fixed p∗ and we reobtain the weak recovery algorithmic
transition at an SNR equal to p∗/2, already discussed in the literature for p∗ = 1 in Mondelli &
Montanari (2018) and for p∗ > 1 in the Bayes optimal setting in Maillard et al. (2024).

2 THE MODEL

The teacher–student framework provides a simplified yet powerful setting for studying supervised
learning. In this setup, a student network ŷ(x) : RN → R is trained to match the outputs of an un-
known teacher function y(x) : RN → R using a set ofM = αN labeled examples. These examples
consist of input vectors {xµ}Mµ=1 drawn independently from a Gaussian distribution N (0, IN/N),
along with their corresponding teacher outputs yµ = y(xµ). In the case of soft-committee machines
with quadratic activations, for a given input vector xµ, the output of the teacher network is:

y(xµ) =
1

p∗

p∗∑
l=1

(w∗
l · xµ)

2 ≡ 1

p∗

p∗∑
l=1

(uµl )
2
, (1)

where p∗ is the width of the hidden layer of the teacher network and uµl ≡ w∗
l · xµ is the pre-

activation output of the l-th teacher node w∗
l . Each teacher node w∗

l is independently sampled from
the sphere SN−1(

√
N). Similarly, the output of the student network is defined as:

ŷ(xµ) =
1

p

p∑
k=1

(wk · xµ)
2 ≡ 1

p

p∑
k=1

(λµk)
2
, (2)

where p is the width of the hidden layer of the student network and λµk ≡ wk ·xµ is the pre-activation
output of the k-th student node wk. Standard gradient descent algorithms iteratively modify the
weights {wk}pk=1 to minimize an empirical loss on the training data {xµ}Mµ=1. Following previous
works (Bonnaire et al., 2024), we define a family of normalized quadratic loss functions:

Lw =

M=αN∑
µ=1

ℓw(xµ) ≡ 1

2

M=αN∑
µ=1

[y(xµ)− ŷ(xµ)]
2

a+ y(xµ)
, (3)

where the parameter a > 0 controls the strength of the normalization that prevents pathologies
due to rare very small or very large teacher outputs. By regulating the conditioning of the Hessian
eigenspectrum, the denominator ensures the appearance of a hard left edge, an essential feature for
our analytical analysis.

Instead of studying the dynamics of the learning process, we focus here on the structure of the
loss landscape itself. In particular, we are interested in the local curvature of the empirical loss at
initialization, which is governed by the spectral properties of its Hessian matrix H ∈ RpN×pN . This
can be seen as a block matrix, comprising of p2 blocks of N ×N matrices Hqq′ , defined as

(Hqq′)ij =
∂2

∂(wq)i ∂(wq′)j

αN∑
µ=1

ℓ
(
{uµl }, {λ

µ
k}, {x

µ}
)
≡

αN∑
µ=1

Fµ
qq′x

µ
i x

µ
j , (4)

where Fµ
qq′ =

2

p
·

2
pλ

µ
qλ

µ
q′ + δqq′

[
1
p

∑p
k=1 (λ

µ
k)

2 − 1
p∗

∑p∗

l=1 (u
µ
l )

2
]

a+ 1
p∗

∑p∗

l=1 (u
µ
l )

2 , (5)

when the pre-activations {λµk} and {uµl } are random iid variables N (0, 1).

Let {hi} denote the eigenvalues of H. In the large-N limit, the spectrum consists of a continuous
”bulk” component, described by the density

ρ(λ) = lim
N→∞

1

pN

pN∑
i=1

δ(λ− hi), (6)
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along with a finite number of outlier eigenvalues. From these, one can extract information about
the geometry of the loss landscape, such as the presence of directions correlated with the signal.
This procedure can be connected to a broader class of techniques known as spectral methods (Lu
& Li, 2020; Mondelli & Montanari, 2018; Maillard et al., 2022). These approaches are based on
constructing matrices of the form

D =

αN∑
i=1

T
(
y(xµ)

)
xµ(xµ)T , (7)

where T : R → R is an appropriate pre-processing function, to study the simple phase retrieval
problem (which in our notation corresponds to the p = p∗ = 1 case). The leading eigenvector, i.e.
the eigenvector associated with the largest or smallest eigenvalue, depending on the sign convention,
is then computed to provide an estimate of the underlying signal. This estimate can be used directly
as a proxy for the signal or serve as an initialization for a subsequent descent-like optimization
algorithm.

Whether this spectral reconstruction successfully aligns with the true signal depends on the signal-
to-noise ratio α. This phenomenon is captured by the Baik–Ben Arous–Péché (BBP) transition (Baik
et al., 2005), which describes a phase boundary in the spectrum: only when the signal-to-noise ratio
exceeds a critical threshold αBBP does a leading eigenvalue detach from the bulk of the spectrum,
allowing its associated eigenvector to carry non-trivial information about the signal. Below this
threshold, the spectrum remains uninformative, and the leading eigenvector fails to align with the
teacher.

Interestingly, for p = p∗ = 1 the forms of matrices H and D are similar, the main difference being
that the pre-processing function T only depends on the labels y(xµ) while the factors Fµ

11 depend
both on the labels and the student outputs ŷ(xµ). For the right function T however, H can be
mapped into D by averaging over the student weights w. Spectral methods then can be interpreted
as extracting information from this averaged Hessian. This was first noted in Biroli et al. (2020),
where authors use this perspective to develop a spectral method for a different inference problem
called tensor PCA.

In this work, rather than studying the averaged Hessian, we study the spectral properties of the
actual Hessian, following the lines of Bonnaire et al. (2024). We extend this analysis to the more
general case of arbitrary student and teacher widths (p, p∗). Specifically, in this work we study the
BBP transition of the training loss Hessian at initialization, i.e., when the student network weights
are randomly and independently sampled from the sphere SN−1(

√
N), for a teacher with a generic

number of nodes (p∗ ≥ 1), and examine the effect of student overparameterization (p > p∗). In
some sense, overparameterization can be viewed as implicitly averaging the loss landscape across
the many student nodes. Indeed, we will show that in the limit of infinite overparameterization,
the performance converges to that of the optimal spectral method found in Mondelli & Montanari
(2018) for p∗ = 1.

To build intuition for how the BBP transition extends beyond the phase retrieval setting, we begin
by recalling the simpler case. In phase retrieval, for signal-to-noise ratios larger than a critical
threshold αBBP a single eigenvalue λ∗ separates from the bulk of the spectrum, and its associated
eigenvector v∗ exhibits nontrivial alignment with the signal vector v. This alignment is quantified
by the normalized overlap

m =
v∗ · v

∥v∗∥∥v∥
. (8)

In the more general two-layer teacher setting, isolated eigenvalues similarly correspond to align-
ments between student and teacher nodes. The student output can be rewritten as

ŷ(xµ) = (xµ)
⊤ W⊤W

p
xµ; W ∈ Rp×N , Wki = (wk)i, (9)

where the matrix W collects the student weight vectors wk. This expression is invariant under
rotations W 7→ OW with O ∈ Rp×p an orthogonal matrix, implying that the learned configuration
is only identifiable up to orthogonal transformations (Sarao Mannelli et al., 2020b; Martin et al.,
2024; Bocchi et al., 2025b). As a consequence, all student–teacher overlaps are equivalent and, also
in this case, can be summarized by a single scalar parameter m. Further details can be found in
appendix C.
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3 RESULTS

In this section we present the main analytical predictions for the BBP thresholds and their compari-
son with finite-N simulations. All derivations, including the field theory techniques used to compute
the bulk distribution and outlier eigenvalue, are deferred to the Appendices A and B.

3.1 ANALYTICAL BBP TRANSITION

Figure 1: Overlap between the signal estimate and the true signal as a function of α for continuous
BBP (Left) and discontinuous BBP (Right), with p = 2 and p∗ = 1.

The critical value αBBP is analytically determined by imposing the condition

λ∗(αBBP ) = λ−(αBBP ), (10)

where λ− denotes the left edge of the bulk spectrum and λ∗ denotes the outlier eigenvalue. Depend-
ing on how the eigenvalue spectrum ρ(λ) vanishes near its left edge when equation 10 is satisfied,
the nature of the BBP transition can be one of two types, either continuous or discontinuous (Boc-
chi et al., 2025a; Bouchbinder et al., 2021; Potters & Bouchaud, 2020). A more detailed analysis
of discontinuous BBP transitions and their finite size effects is addressed in Bocchi et al. (2025a).
For the sake of completeness here we re-discuss some aspects in relation to their application to our
teacher-student learning problem.

In the continuous BBP transition, the overlap m between the eigenvector associated with the outlier
eigenvalue and the signal(s) continuously grows from 0 to finite values as the signal-to-noise ratio α
increases above the threshold αBBP . This case corresponds to a sharp edge of the spectrum, where
the eigenvalue density vanishes with a square-root singularity:

ρ(λ) ∝
λ→λsh

−

(λ− λsh− )1/2. (11)

In contrast, if the BBP transition is discontinuous the value of the overlap immediately jumps from
0 to a finite value as soon as α > αBBP . This occurs when the left edge of the spectrum is smooth,
with the density decaying exponentially as

ρ(λ) ∝
λ→λsm

−

exp

[
− A

(λ− λsm− )

]
, for some constant A > 0. (12)

In Figure 1 we show the behavior of the overlap in the two different scenarios. While their difference
is clear in the large dimensional limit N → ∞, a distinction between the two types of transitions is
also visible for finite system sizes, as discontinuous BBP transitions are characterized by a strong
anticipation of the transition at N finite, which we discuss in Section 3.2.

Depending on the student and teacher number of nodes p, p∗, as well as the normalizing constant a,
either type of transition can occur. In what follows, we present results for p∗ = 1, but we verify in the
appendix D that varying p∗ does not qualitatively alter the overall picture. Figure 2 shows the critical
ratio αBBP, revealing two principal effects. First, αBBP(a) shows non-monotonic dependence on
a at fixed p, with its minimum placed at a critical value ac(p) where the transition changes from
continuous (left) to discontinuous (right). In other words, for given p (and p∗), the most convenient
a allowing for an earliest recovery transition is the one where the BBP transition is at the verge of

5
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becoming discontinuous. Second, while increasing p at fixed a generally reduces αBBP, we again
observe a critical threshold pc(a) beyond which the transition becomes discontinuous. Note that in
its vicinity (see middle inset of Figure 2) a non-monotonic αBBP(p) behavior is sometimes visible:
the subsequent small increase of αBBP(p) with p, i.e. increasing overparametrization, is at odds
with the general expectation of the benefits of overparametrization in smoothening the landscape
to let the signal emerge. However, as we will see in Section 3.2, this weak effect obtained in
the infinite dimensional limit can be masked by strong, non-trivial finite-size effects, reinstating
a general advantage of overparametrization for all practical purposes.

Figure 2: αBBP as a function of a for p∗ = 1 and several values of p. The point at which the curves
start increasing almost linearly is the point in which the transition becomes discontinuous. The
dashed line shows αBBP (a) in the large overparametrization limit where the transition is always
discontinuous. The insets show αBBP as a function of p for three fixed values of a. Here, red points
indicate the transition is continuous, while blue points that it is discontinuous. The red crosses are
estimates of α0, a ”finite-N” estimate of the transition described in section 3.2.

Infinite overparametrization limit Before analyzing finite-size effects, we consider the limit of
infinite overparametrization, p → ∞. This limit is taken after the N → ∞ limit, so we remain in
the regime where p ≪ N . In appendix B we show that in this limit the BBP transition is always
discontinuous, with a threshold given by

αp=∞
BBP =

p∗(a+ 1)

2
. (13)

For any value of p∗, the minimum of αp=∞
BBP occurs at a = 0 and is equal to p∗/2, matching the

information-theoretic weak recovery threshold identified in Maillard et al. (2024). Note that our
setting is far from being Bayes optimal as in Maillard et al. (2024) since the overparametrized
student, by definition, does not match the teacher structure. Yet, this result shows how powerful
overparametrization can be, as in the large overparametrization limit, even simply extracting spectral

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

information from the Hessian at random configurations, the optimal weak recovery threshold can be
achieved.

3.2 NUMERICAL SIMULATIONS AND FINITE N BBP TRANSITION

In this section we compare the BBP thresholds calculated above with the empirical BBP threshold
obtained in simulations of finite-dimensional problems with p = p∗ = 1. For a fixed value of a,
and over a range of values of α, we generate the Hessian H for several values of the dimensionality
N of the problem, look at its eigenvalue spectrum, and count the number of times the eigenvalue
associated to the eigenvector with maximum overlap with the signal is the smallest. In theory, this
frequency, which we denote with the letter ϕ, should go from 0 to 1 discontinuously in the N → ∞
limit atαBBP . We perform this experiment for values of a for which the transition is both continuous
and discontinuous.

Figure 3: Comparison of BBP transitions for p = p∗ = 1. On the y axis we plot ϕ, defined as
the fraction of times the eigenvector with the maximum overlap with the signal corresponds to the
smallest eigenvalue. On the left a value of a for which the transition is continuous, on the right
a value for which it is discontinuous. The vertical blue lines show our prediction for the BBP
threshold, while for the discontinuous case the red line shows our estimate of α0.

We observe that when the transition is continuous, the predicted αBBP threshold matches the point
in which the curves for different values of N intersect, while when it is discontinuous the threshold
evaluated in the large N -limit is always above this point. That is, in the discontinuous case, our
N → ∞ prediction for αBBP greatly overestimates the finite N behavior. The explanation of this
phenomenon is related to the shape of ρ(λ) near the edge. When the transition is continuous the left
edge is sharp and for a finite N matrix then the typical deviation of the smallest eigenvalue of the
bulk from the left edge is of the order of N−2/3. When the BBP transition is discontinuous the left
edge is smooth and, as a consequence, for a finite N matrix it is much harder to sample this tail of
the eigenvalue distribution and the smallest eigenvalue of the bulk will be larger than the N → ∞
edge by a distance of the order of 1/ log(N) ≫ N−2/3 (Bocchi et al., 2025a). Therefore the tails
of the eigenvalue distributions for finite dimensional problems are much shorter than expected and
allow the BBP eigenvalue to exit the bulk earlier. Unlike continuous BBP transitions, here the
BBP eigenvalue retains a finite amount of information about the signal at the transition point and
continues to do so for α < αBBP , at least long as it remains the smallest eigenvalue of the finite-N
matrices. These strong finite-size effects and the residual information explain why the observed
algorithmic threshold (Figure 3, right panel) lies below the predicted αBBP in the discontinuous
case. To corroborate this explanation we conjecture that the residual informationm about the teacher
carried by the BBP eigenvalue for α < αBBP must decrease following a square root behavior until
its vanishing at a smaller α0. Calculating the values of m2 for various values of α > αBBP , it is
possible to perform a linear fit and obtain α0 from the intersection with the x axis. The result of
this analysis is shown in Figure 4. The inset shows how the value of the threshold is extracted. On
the right side of the plot we see the predicted discontinuous BBP transition as a function of a for
a couple of p and p∗ = 1 and the extrapolated signal to noise ratio α0 at which it is expected that
the BBP eigenvalue will completely loose its information about the teacher. As we can see, this
threshold lies below the corresponding predicted discontinuous BBP transition and slightly below
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Figure 4: αBBP (solid) and α0 (crosses) for two different values of p as a function of a.

the empirical transition for the finite dimensional version of the problem as shown in the right panel
of Figure 3. The expectation is that α0 must represent a lower bound for the empirical transition at
finite N described above and that the empirical transition will very slowly move to the higher α as
N increases as the bulk eigenvalues will populate the tail progressively hiding the BBP eigenvalue.

We also reported the estimated threshold α0 for the loss of information in the BBP eigenvalue in
the middle and left insets of Figure 2. Note that it appears to always monotonically decrease with p,
finally supporting the intuitive principle that overparametrization should favor learning.

4 CONCLUSION AND DISCUSSION

In this work, we presented a theoretical analysis of the loss landscape at initialization for a teacher-
student setup with quadratic activation, considering networks with a generic, but finite, number of
nodes, both for the teacher and the student. We investigated whether it is possible to extract infor-
mation about the teacher simply by looking at the spectral properties of the Hessian at initialization,
which reflects the curvature of the loss landscape in random configurations, without using iterative
algorithms like gradient descent. In the high-dimensional data limit where both the input dimension
N and dataset size M diverge while maintaining a finite signal-to-noise ratio α = M/N ∼ O(1),
we obtain that at small α the initial Hessian contains no information about the teacher, while at
larger α one or more Hessian’s principal eigenvectors develop a finite correlation with the teacher in
a phenomenon called BBP transition. This approach resembles that of spectral algorithms (Mondelli
& Montanari, 2018), which employ matrices that for some inference problems can be seen (Biroli
et al., 2020) as Hessians averaged over many random choices of the student weights, to recover
signals via spectral analysis. Nevertheless, our approach makes it possible to isolate the effect of
overparametrization on this signal recovery transition. We complemented our theoretical findings
with numerical simulations, fully characterizing this phenomenon for both finite and infiniteN . Our
analysis leads to the following key results:

The BBP transition varies qualitatively with overparameterization and choice of loss. De-
pending on the number of student nodes p and the loss function’s normalization constant a, the
transition can be either continuous or discontinuous. The key difference between the two cases lies
in the overlap behavior at the transition: in the continuous case, the correlation with the teacher
increases smoothly from zero when α increases, while in the discontinuous case, the outlier eigen-
vectors exhibit a finite overlap with the teacher immediately at the transition. Note that larger over-
parametrization is systematically associated to a discontinous BBP transition for signal recovery
from the spectra of the Hessian at initialization. This result comes as the first practical application
of the concept of a discontinuous BBP transition–very recently introduced and discussed in Potters
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& Bouchaud (2020); Bocchi et al. (2025a)–in association with overparametrization for a machine
learning problem.

Overparameterization tends to anticipate the transition, with notable exceptions. Increasing
p (i.e., overparameterizing the student) for fixed a generally lowers αBBP, so that larger networks
need less data to develop informative modes. Yet, for each fixed normalizing constant a, there exists
a critical student size pc(a) beyond which the transition becomes discontinuous. Near this threshold,
αBBP(p) can be non-monotonic and its precise shape depends on a. On the one hand, the overall
trend confirms the generally established intuition that overparametrization is beneficial to learning,
even extending it to the possibility to retrieve information about the teacher at initialization. On the
other hand we observe notable, despite of small entity, exceptions to such behaviour. Surprisingly
the entity of such exceptions ends up being further mitigated by finite size correction in empirical
observations, reinstating a general advantage of overparametrization for most practical purposes.

The large overparametrization limit achieves optimal performances. In the limit of infinite
overparameterization (p → ∞) the information about the teacher appears through a discontinuous
transition for all values of a. The large overparametrization limit could be intuitively understood
as having a student able to reproduce the teacher’s choice of weights an infinite number of times.
This aspect has been already discussed in other contexts (Biroli et al., 2020) to highlight how largely
overparametrized students can avoid overfitting and reach better generalization results as if they had
access to a sort of average information of the loss landscape. For the learning problem discussed
here, the spectral study of the averaged curvature of the loss landscape at initialization corresponds
to preexistent spectral initialization methods (Mondelli & Montanari, 2018). In particular, signal
recovery from such spectral analysis has been studied in Bocchi et al. (2025a), and it does not
quantitatively match the BBP transition in the large overparametrization limit, since the former
requires a stronger signal-to-noise ratio. Finally, for a→ 0, the BBP threshold αBBP obtained in the
large overparametrization limit converges to the information-theoretic transition for weak recovery.
This last observation is particularly surprising and highlights how powerful overparametrization can
be in deforming the loss landscape so to favor the emergence of the hidden signal. Simple spectral
analysis of the Hessian at initialization in the large overparametrization limit, and therefore far
from the Bayes optimal settings, is indeed enough to match the weak recovery threshold in optimal
conditions.

Finite-size correction affects the discontinuous BBP transition. We compared the predictions
for the BBP transition at different values of p, p∗, and a with its numerical estimation for problems
with finite-dimensional datasets, for several value of the dimensionality N . We obtained very good
agreement in the case of continuous BBP transition but we observed a strong mismatch in the case
of discontinuous BBP transitions. As also discussed in general in Bocchi et al. (2025a), we argued
that these effects must be very strong–logarithmic in N . They are due to the smooth nature of the
spectral edge, which finite-N matrices fail to properly sample, and the large amount of residual
information of the leading eigenvector even below the transition point. The undersampling of the
tails gets stronger the lower N and it allows the BBP eigenvalue to emerge earlier than the predicted
BBP threshold, resulting in a numerical signal-recovery transition much lower than the predicted
BBP transition. We also extract a lower bound α0 to the numerical transition evaluating the signal-
to-noise ratio where the extrapolated overlap of the leading eigenvalue vanishes as a square root.
The empirical transition is expected to slowly move from α0 to higher α approaching the BBP
transition only in the large N limit. Finally, surprisingly α0 is found to decrease with p so that
in the accessible finite-N cases overparametrization turns out to be effectively advantageous for
the empirical signal-recovery transition even when the predicted discontinuous BBP transition gets
anomalously postponed.

As suggested in Bonnaire et al. (2024), the fate of standard gradient descent should be influenced by
the interplay between the emergence of the signal in the Hessian at initialization and the gradient-
flow algorithmic transition. The latter can be predicted by evaluating the signal-to-noise ratio at
which threshold states develop an instability toward the signal, also through a BBP transition. Un-
derstanding how overparameterization affects this second transition, both quantitatively and qualita-
tively, remains a very interesting open problem.

9
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spectral methods in phase retrieval. In Mathematical and Scientific Machine Learning, pp. 693–
720. PMLR, 2022.

Antoine Maillard, Emanuele Troiani, Simon Martin, Florent Krzakala, and Lenka Zdeborová.
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A FIELD THEORY APPROACH

In this technical section, we give an overview of a field-theoretic approach (Zee, 1996; De Dominicis
& Giardina, 2006) used to derive a self-consistent equation for the Stieltjes Transform of the Hessian,
defined as

g(z) = lim
N→∞

Ex
1

Np
TrG(z) = lim

N→∞
Ex

1

Np
Tr
(

1

zI−H

)
. (14)

The eigenvalue spectrum density can be obtained via the Stieltjes inversion formula:

ρ(λ) = lim
ϵ→0+

1

π
Im g(λ− iϵ). (15)

Furthermore, we will build on the same formalism to obtain a self-consistent equation for the outlier
eigenvalue λ∗, when it exists.

The first step is to use the rotational invariance of the teacher weight vectors. Without loss of gener-
ality, we fix them to lie along the first p∗ canonical directions w∗

q∗ =
√
Neq∗ for q∗ ∈ {1, . . . , p∗},

where the
√
N ensures the correct normalization. With this choice, the teacher pre-activations re-

duce to uµl =
√
Nxµl ∼ N (0, 1). To separate the parts of the matrix where the coefficients Fqq′

are correlated to the components of the vectors xµ, we permute the rows and columns of H so that
the first p∗ rows and columns of each block Hqq′ are grouped together in the top-left corner in a

submatrix with elements (Hs)
q∗q

′
∗

qq′ =
∑

µ F
µ
qq′x

µ
q∗x

µ
q′∗

for q, q′ ∈ {1, . . . , p}, q∗, q′∗ ∈ {1, . . . , p∗}.
Hs should be understood as a block matrix, consisting of (p∗)2 blocks, where each block is a p× p

matrix (Hs)q∗q
′
∗ . The final shape of this permuted H is

H =

(
Hs Hc

(Hc)T Hb

)
Hs ∈ Rpp∗×pp∗

,Hb ∈ R(N−p∗)p×(N−p∗)p,Hc ∈ Rpp∗×(N−p∗)p.

(16)
In section A.1 we calculate the spectral distribution of its bulk eigenvalues ρ(λ). It is a standard
Random Matrix Theory result (see for example exercise 2.4.3 of Tao (2012)) that the spectral dis-
tribution does not change if we remove a number of rows and columns whose Frobenius norm is
o(N). Since every element of H is O(1), the Frobenius norm of Hs is clearly O(1), while by the
strong law of large numbers the Frobenius norm of Hc is O(

√
N). For the purpose of computing

the spectrum bulk then we can simply discard them, and compute directly the Stieltjes transform of
the matrix Hb. We will see that this leads to a great simplification.
In section A.2 instead we focus on the pp∗ outlier eigenvalues, which are not captured by the distri-
bution ρ(λ). In this case we cannot simply ignore the other blocks of the matrix H. Indeed, if we
divide the resolvent matrixG(z) in blocks in the same way,

G =

(
G̃ Ĝ

ĜT Ḡ

)
G̃ ∈ Rpp∗×pp∗

, Ḡ ∈ R(N−p∗)p×(N−p∗)p, Ĝ ∈ Rpp∗×(N−p∗)p, (17)

we have that the top left corner G̃ encodes precisely for these outlier eigenvalues. Since G and H
are related by an inverse, G̃ will depend on all four blocks of H. We will calculate it exactly using
field theory.

A.1 SPECTRUM BULK

Following Zee (1996), the starting point for the calculation of the Stieltjes transform of Hb is to use
a basic identity for Gaussian integration to write

g(z) = lim
N→∞

Ex
1

Np
Tr

(
1

zI(N−p∗)p −Hb

)
=

= lim
N→∞

Ex
1

Z

∫ p∏
q=1

dψqe
− 1

2

∑
qq′ (ψq)

T (zI(N−p∗)p−Hb)
qq′
ψq′
∑
q

1

Np
∥ψq∥2. (18)
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Here, we introduced p (N − p∗)-dimensional scalar fields ψq , and denoted by
(
zI −Hb

)
qq′

the

qq′-th block of the matrix zI−Hb. The next step is to get rid of the normalization constant 1
Z using

the replica trick 1
Z = limn→0 Zn−1 and introducing n− 1 replicas of the scalar fields {ψa

q }na=1:

g(z) = lim
N→∞

lim
n→0

Ex
∫ n∏

a=1

p∏
q=1

dψa
q e

− 1
2

∑
aqq′ (ψ

a
q )

T (zI−Hb)
qq′
ψa

q′
∑
q

1

Np
∥ψ1

q∥2

≡ lim
N→∞

lim
n→0

〈∑
q

1

Np
∥ψ1

q∥2
〉

n,N

. (19)

This integral cannot be performed analytically, as the xµ appear in the covariance matrix of the fields
ψa

q . However, if we expand the exponential e−
1
2

∑
aqq′ (ψ

a
q )

THb
qq′ψ

a
q′ , we are reduced to computing

the average of every term with respect to the ”bare” measure, namely the measure that appears in
equation 19 with Hb set to zero. Since for every element of the Hessian in the bulk

(Hb
qq′)ij =

αN∑
µ=1

Fµ
qq′x

µ
p∗+ix

µ
p∗+j , (20)

Fµ
qq′ is independent of xµp∗+i, we can use Wick’s probability theorem–according to which every

higher order moment can be expressed as a function of second moments–to compute each term of
the expansion. To wield the power of Feynman diagrams we identify two fields, one for ψa

iq and
one for xµi , which in accordance with Zee (1996) we call ”quark” and ”gluon” fields. Their bare
propagators, g0, are defined as the correlations of the fields in the ”bare” measure. We will represent
the former as straight lines and the latter as double lines.

a, i, q a, i, q g0quark = 1
z ,

i, µ i, µ g0gluon = Exx2i = 1
N .

The interaction between the two fields can be read off Hb, and can be represented with a vertex of
the following kind and its corresponding weight

a, i, q

i, µ j, µ

a, j, q′

Weight: 1
2F

µ
qq′ .

Note that although we are interested in the propagators ⟨(ψ1
iq)

2⟩, to derive a self-consistent equation
we will have to consider also propagators between different blocks ⟨ψ1

iqψ
1
iq′⟩, which don’t depend

on the index i. From now on we will useGb to indicate the p× p matrix formed by these elements,
and withG0

quark = g0quarkIp the diagonal p× p matrix that contains the bare quark propagators on
the diagonal. The Stieltjes Transform can be then obtained from g(z) = 1

pTrGb(z).

Let us begin by examining the first set of diagrams. Since the contribution is identical for any index
i, we may, without loss of generality, fix i = 1. In the diagrams shown below, propagators associated
with a, i = 1 will be left unlabelled. When a propagator corresponds to a generic i or a, we will
explicitly annotate it on the line as a reminder that the corresponding index must be summed over.
For each diagram, we will also indicate its total weight.
With one vertex we have diagrams:

1.

q µ q′

1
N

1
z2

∑
µ F

µ
qq′ ,

13
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2.

q q

a, i, q′ µ µ a, i, q′
1

2Nz2

∑
aµiq′ F

µ
q′q′ = n 1

2z2

∑
µq′ F

µ
q′q′ .

Note that the total contribution of diagrams of type 2 is proportional to the number of replicas, which
in the limit n→ 0 goes to 0. In general, this holds for any disconnected diagram, so in the following
we will focus on connected ones. Note also that in diagrams of type 1 the 1/2 factor that comes
from the weight of the vertex is canceled by a factor 2 that comes from the number of ways in which
the vertex can be connected. Other than this 1/2 factor, each diagram also carries an 1/n! factor,
where n is the number of vertices in the diagram, from the exponential expansion in equation 19.
However, this is canceled by a factor n! that comes from the number of ways the n vertices can be
aligned. This cancellation happens at all orders, so we will ignore such factors from now on.
Let us now consider two vertex diagrams:

3.
q µ µ q′

i, q′′

1
N2

1
z3

∑
µiq′′ F

µ
qq′′F

µ
q′′q′ ,

4.
q µ µ q′

q′′

1
N2

1
z3

∑
µq′′ F

µ
qq′′F

µ
q′′q′ ,

5.

q µ ν q′
q′′

1
N2

1
z3

∑
µνq′′ F

µ
qq′′F

µ
q′′q′ .

The total weight of diagrams of type 4 is o(1), so their contribution is negligible in the N → ∞
limit. In general, this holds for all diagrams where gluon propagators intersect, so we will exclude
these from now on.
Diagram 5 is instead obtained by connecting two diagrams of type 1 ”in series”. This is a general
property of diagrammatic expansion: new diagrams can always be generated combining earlier
ones in series through bare quark propagators. If we sum the contributions of all diagrams that are
not obtained in this way, which in Quantum Field Theory are known as one-particle irreducible
(1PI) diagrams, we can exploit this recursive structure to derive a self-consistent equation for the
propagator Gb. Let us call Σb the p × p matrix whose elements Σb

qq′ are the sum of all such
1PI diagrams connecting fields with block indices q and q′, with external bare quark propagators
removed (so-called amputated diagrams). Then we can express the sum of all diagrams as

Gb = G0
quark +G0

quarkΣ
bG0

quark +G0
quarkΣ

bG0
quarkΣ

bG0
quark + . . . , (21)

Factoring outG0
quark reveals a geometric series, leading to

Gb = G0
quark

(
Ip +ΣbG0

quark +ΣbG0
quarkΣ

bG0
quark + . . .

)
=
(
(g0quark)

−1Ip −Σb
)−1

,
(22)

This gives a self-consistent equation for the matrix Gb, since Σb depends on Gb, that in Physics is
known as the Dyson equation. This allows us to focus on 1PI diagrams from now on.
Let us look at diagrams with 3 vertices.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

6.
q µ µ q′µ

i, q′′ j, q′′′

1
N3

1
z4

∑
µijq′′q′′′ F

µ
qq′′F

µ
q′′q′′′F

µ
q′′′q′ ,

7.
q µ µ q′ν

i, q′′ j, q′′′

1
N3

1
z4

∑
µνijq′′q′′′ F

µ
qq′′F

ν
q′′q′′′F

µ
q′′′q′ .

As we can see, diagrams of type 7 are just diagrams of type 3 with a diagram of type 1 added to the
inner quark propagator. This is a general property that is unique to this field theory: new diagrams
can be obtained from previous ones by adding them to the inner quark propagators. If the starting
diagram is 1-Particle Irreducible, then so is the new diagram. Since the sum of all possible diagrams
is just the propagator, this form of combination can be accounted for by substituting Gb

qq′ to every
inner bare quark line.
Indeed, the self-energy can be obtained from the sum of all leading order diagrams mentioned above,
where the incoming and outgoing propagators are ”amputated”, and where every inner bare quark
propagator is substituted by a propagator Gb

qq′ , which we indicate graphically with a blob.
The first term in the sum is diagram of type 1, which gives a total contribution of 1

N

∑
µ F

µ
qq′ . The

second term is given by diagram of type 3 with a Gb
qq′ propagator on its inner quark line

q µ µ q′
i i

Gb
q′′q′′′

1
N2

∑
µi

(
F µGbF µ

)
qq′
.

Note that the incoming and outgoing propagators are shorter to indicate that we are considering
amputated diagrams. The third term is diagram of type 6 where again we substitute propagators
Gqq′

q µ µ q′µ

Gb
q′′q′′′ Gb

q′′′′q′′′′′

i i jj

1
N3

∑
µij

(
F µGbF µGbF µ

)
qq′
.

Note that we do not have to consider diagram of type 7 with propagators because it is already
included in the second term. The next term is just the equivalent of the previous diagram but with
three inner arches, from which we can guess the general form of the diagrams that appear in the
self-energy.

Summing the weights of these diagrams, we can write in matrix form

Σb =
1

N

∑
µ

F µ +
1

N

∑
µ

F µGbF µ +
1

N

∑
µ

F µGbF µGbF µ + · · · =

=
1

N

∑
µ

F µ
(
Ip +G

bF µ +GbF µGbF µ + . . .
)
=
P

N

1

P

∑
µ

F µ
(
Ip −GbF µ

)−1 →

→αEF
(
Ip −GbF

)−1
, (23)
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where in the last identity we assumed that in the N → ∞ the sum concentrates to its mean with
respect to the dataset distribution.

Plugging this expression into equation 22, we get that the propagator satisfies the self-consistent
equation

(Gb)−1 = zIp − αEF
(
Ip −GbF

)−1
. (24)

Note that the F matrix is of the form F = αλλT + βIp where λ is a standard Gaussian vector.
In particular, it is rotationally invariant, so this equation should hold also for OTFO where O is a
rotation matrix.

(Gb)−1 = zIp − αEOTFO
(
Ip −GbOTFO

)−1
, (25)

from which
(OGbOT )−1 = zIp − αEF

(
Ip −OGbOTF

)−1
. (26)

This must hold for any rotation matrix O, so this implies that the matrix G must be proportional to
the identity matrix. If we call g(z) the value on the diagonal, equation 24 can be written in scalar
form

g−1(z) = z − α
1

p

p∑
l=1

ETr
[
F (Ip − g(z)F )

−1
]
= z − α

1

p

p∑
l=1

E
[

cl
1− g(z)cl

]
, (27)

where the cl are the eigenvalues of the F matrix.

A.2 OUTLIER EIGENVALUE

The starting point for the calculation of the outlier eigenvalues is similar, with the exception that we
have to consider the full matrix H to calculate the elements of G̃(z):

G̃
q∗q

′
∗

qq′ (z) = lim
n→0

Ex
∫ n∏

a=1

p∏
q=1

dψa
q e

− 1
2

∑
a(ψ

a)T<(zIpp∗−Hs)(ψa)<+
∑

a(ψ
a)T<Hc(ψa)>×

× e−
1
2

∑
a(ψ

a)T>(zIp(N−p∗)−Hb)(ψa)>ψ1
q∗qψ

1
q′∗q

′ . (28)

Here, we introduce the notation (ψa)< to denote for each a the pp∗-dimensional vector with com-
ponents ψa

iq for q ∈ {1, . . . , p}, i ∈ {1, . . . , p∗}, and similarly (ψa)> the p(N − p∗)-dimensional
vector of components ψa

iq for q ∈ {1, . . . , p}, i ∈ {p∗ + 1, . . . , N}. The vectors are flattened in a
way that the first p components of (ψa)< and (ψa)> are respectively {ψa

1q}
p
q=1 and {ψa

(p∗+1)q}
p
q=1,

the second p components are {ψa
2q}

p
q=1 and {ψa

(p∗+2)q}
p
q=1 and so on.

As before, we can calculate this integral using diagrammatic expansion, with the only difference
that we cannot average over the first p∗ components of the xµ field, since they appear in Fµ

qq′

and we cannot simply use Wick’s probability theorem. Indicating this time by a curly line the
bare propagator between fields with indexes that belong to (ψa)<, and with straight lines indexes
belonging to (ψa)>, we have that the bare propagators are

q, q∗ q, q∗ g̃0 = 1
z− 1

N

∑
µ Fµ

qq(u
µ
q∗ )

2 → 1
z−αEFqqu2

q∗

a, i, q a, i, q g0quark = 1
z

i, µ i, µ g0gluon = 1
N

The vertices are instead given by the old one

a, i, q

i, µ j, µ

a, j, q′

Weight: 1
2F

µ
qq′

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and a new one

i, q µ

i, q

q′, q∗

Weight: 1√
N
Fµ
qq′u

µ
q∗

As before, let us define the self-energy Σ̃
q∗q

′
∗

qq′ as the sum of all 1PI diagrams connecting the curly
fields with indices q, q∗ and q′, q′∗. Again interpreting Σ̃ as a block matrix, with (p∗)2 blocks of
p× p-dimensional matrices Σ̃q∗q

′
∗ , then we can write a matrix Dyson equation for the resolvent

G̃ =
(
(g̃0)−1Ipp∗ − Σ̃

)−1

. (29)

We expect the matrix G̃ to be singular when z is equal to the outlier eigenvalue, so a self-consistent
equation can be obtained by imposing the singularity of (g̃0)−1Ip − Σ̃.

Let us now calculate the self-energy directly, using the same rules we found above, namely that
disconnected and gluon-intersected diagrams are subleading. As we are looking for the self-energy
of the ”curly” field, we will necessarily need two vertices of the second kind.
The first term is given precisely by two such vertices

1. q, q∗ µ µ q′, q′∗

Gb
q′′q′′′

i i

1
N2

∑
µi

(
F µGbF µ

)
qq′
uµq∗u

µ
q′∗

Next, we can add a vertex of the first kind to get the diagrams

2. q, q∗ µ µ q′, q′∗µ

Gb
q′′q′′′ Gb

q′′′′q′′′′′

i ji j
1

N3

∑
µij

(
F µGbF µGbF µ

)
qq′
uµq∗u

µ
q′∗

3. q, q∗ µ µ q′, q′∗ν

Gb
q′′q′′′ Gb

q′′′′q′′′′′

i ii i

1
N3

∑
µνi

(
F µGbF νGbF µ

)
qq′
uµq∗u

µ
q′∗

Diagrams of type 3 however are already counted in diagrams of type 1. We could also add two
vertices of the second kind, but we would not obtain 1PI diagrams.
The next diagram is obtained by stacking one more arch to diagram 2, and again we can guess
the iterative form of the diagrams that contribute. Summing the weight of all such diagrams, and
remembering thatGb = g(z)Ip, we get that the self-energy is

Σ̃q∗q
′
∗ =

1

N

∑
µ

uµq∗u
µ
q′∗

(
g(z)F µF µ + g2(z)F µF µF µ + . . .

)
= (30)

=
1

N

∑
µ

uµq∗u
µ
q′∗

[
g(z) (F µ)

2 (
Ip − F µg(z)

)−1
]
→ αEuq∗uq′∗

[
g(z)F 2

(
Ip − F g(z)

)−1
]
,

where again in the last equation we supposed that the sum concentrates to its mean with respect to
the dataset.
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Since F is an even function of uq∗ , Σ̃q∗q
′
∗

qq′ is 0 for q∗ ̸= q′∗ (and in particular, the expectation will be
the same for every index q∗). Using the fact thatGb is diagonal we can write

Σ̃q∗q∗ = αEu2q∗
[
g(z)F 2

(
Ip − F g(z)

)−1
]

(31)

Again, F is rotationally invariant, so the same equation should hold for a rotated F

Σ̃q∗q∗ = αEu2q∗
[
g(z)OTF 2O

(
Ip −OTFOg(z)

)−1
]

(32)

from which

OΣ̃q∗q∗OT = αEu2q∗
[
g(z)F 2

(
Ip − F g(z)

)−1
]

(33)

For this equation to hold for every rotation matrix O, the matrix Σ̃q∗q∗ must be proportional to the
identity. Consequently, we obtain Σ̃q∗q∗

qq′ = Σ̃(z)δqq′δq∗q′∗ . Imposing the singularity of the RHS of
equation 29, we get the equation

(
λ∗ − αEF11u

2
1 − Σ̃(λ∗)

)pp∗

= 0. (34)

In other words, the pp∗ outliers all coincide with a value λ∗ which can be found by solving the
self-consistent equation

λ∗ = αEu21
1

p
Tr
[
F
(
1 + g(λ∗)F

(
Ip − F g(λ∗)

)−1
)]

= α
1

p
Eu21Tr

[
F
(
I− F g(λ∗)

)−1]
= αEu21

1

p

p∑
l=1

cl
1− g(λ∗)cl

≡ Ξ(λ∗). (35)

Combining this last expression with equation 27, one can rewrite a self-consistent equation for
g∗ ≡ g(λ∗):

1

g∗
= αE

[
1

p

p∑
i=1

ci(u
2
1 − 1)

1− g∗ci

]
. (36)

B ANALYTICAL COMPUTATIONS FOR THE BBP

In the large dimensional limit, in order to obtain an expression for the left edge of the spectrum bulk
we define the inverse function z(g) of the resolvent g(z), using equation 27, as

z(g) =
1

g
+ αE

[
1

p

p∑
i=1

ci
1− gci

]
. (37)

The density of eigenvalues ρ(λ) of the spectrum bulk as a function of z = λ will be obtained as the
imaginary part of the g solution to equation 37. In particular the edges correspond to the z = λwhere
a non null imaginary part develops, which can occur by means of two different mechanisms. First:
the domain of a g real is constrained by the requirement that all denominators in equation 37 do not
vanish. In particular equation 37 is well-defined for g ∈ R \ (supp(1/c) ∪ {0}), where supp(1/c)
denotes the support of 1/c across all ci, i.e., supp(1/c) =

⋃p
i=1

{
1
x

∣∣ x ∈ supp(ci)
}
.Assuming each

ci has support within [ci,min, ci,max], we define cmin = mini(ci,min) and cmax = maxi(ci,max). If
cmin < 0 and cmax > 0 (which will correspond to our case), then

g ∈
(

1

cmin
, 0

)
∪
(
0,

1

cmax

)
≡ (gmin, 0) ∪ (0, gmax). (38)

Second: within this domain it can occur that dz
dg vanishes. Beyond that point the solution to equa-

tion 37 cannot be real and a non zero imaginary part develops with a square-root behaviour. The
second case corresponds to the standard square-root singularity at the edge of an eigenvalue distri-
bution.
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Sharp edge If there exists a point gsh− ∈ (gmin, 0) at which the derivative of the inverse function

dz

dg
= − 1

g2
+ αE

[
1

p

p∑
i=1

c2i
(1− gci)2

]
(39)

vanishes, the left edge of the spectrum can be obtained by applying the inverse function to this value,
i.e., λsh− ≡ z(gsh− ). The corresponding self-consistent condition is

gsh− = −

{
E

[
1

p

p∑
i=1

αc2i
(1− gsh− ci)2

]}−1/2

. (40)

In this case, the left edge of the spectrum is sharp, meaning that the derivative of the eigenvalue
density diverges as λ approaches the edge from the right. This behavior arises through a standard
square-root singularity at the edge:

ρ(λ) ∝
λ→λsh

−

(λ− λsh− )1/2. (41)

Smooth edge If no solution gsh− ∈ (gmin, 0) exists such that the derivative of z(g) vanishes, that
is, if equation 40 cannot be satisfied within the domain of definition—then the left edge of the bulk
spectrum is determined by the boundary of the domain itself. In this case, the edge of the resolvent
is located at

gsm− = gmin =
1

cmin
, (42)

and the corresponding spectral edge is given by λsm− = z(gsm− ). This edge is referred to as smooth,
in the sense that the derivative of the spectral density ρ(λ) vanishes as λ→ λsm− . In our setting, this
occurs via an exponential decay of the spectral density near the edge:

ρ(λ) ∝
λ→λsm

−

exp

[
− A

(λ− λsm− )

]
, (43)

for some constant A > 0 (see Bocchi et al. (2025a) for more details about the derivation and the
explicit form of the constants), indicating an essential singularity at the edge. In the case of our
teacher-student setup, the eigenvalues ci are

c1 =
2

p

1

a+ 1
p∗

∑p∗

j=1 u
2
j

3

p

p∑
i=1

λ2i −
1

p∗

p∗∑
j=1

u2j


c2,...,p =

2

p

1

a+ 1
p∗

∑p∗

j=1 u
2
j

1

p

p∑
i=1

λ2i −
1

p∗

p∗∑
j=1

u2j

 ,

(44)

which have the same support ci ∈ (−2/p,+∞) ∀i ∈ [1, p]. This implies that for our setting gmin =
−p/2. As we increase α, for fixed values of p, p∗ and a, the left edge goes from being smooth to
being sharp. That is, for α smaller than some value αc, the left edge is obtained from equation 42,
while for larger α it is obtained from equation 40. The precise point in which this transition takes
places, αc, can be determined by imposing the equation

−p
2
=

{
E

[
1

p

p∑
i=1

αcc
2
i

(1 + p
2ci)

2

]}−1/2

. (45)

Depending on the student and teacher number of nodes p, p∗, as well as the normalizing constant a,
either type of transition can occur, as illustrated in Figure 5. In what follows, we present results for
p∗ = 1, but we verify in section D of the appendix that varying p∗ does not qualitatively alter the
overall picture.
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(a) p = 1, p∗ = 1, a = 1 (b) p = 2, p∗ = 1, a = 1

Figure 5: In Panel 5a, a continuous BBP is shown: the αBBP corresponds to the crossing of the
g∗(α) and g−(α) curves. In Panel 5b, a discontinuous BBP is shown: the αBBP corresponds to the
crossing of the g∗(α) and gmin(α) curves.

Infinite overparametrization limit In this paragraph we consider the limit of infinite over-
parametrization, p → ∞. This limit is taken after the N → ∞ limit, so we remain in the regime
where p≪ N . We begin by computing the critical value αc below which the transition is discontin-
uous. For large p we can approximate equation 45 as

p

2
≈

αc E

 4

p2
·

(
1− 1

p∗

∑
l u

2
l

)2
(1 + a)2




−1/2

, (46)

which yields

αc =
p∗(a+ 1)2

2
. (47)

We now turn to the BBP threshold αp=∞
BBP (a) in the p→ ∞ limit. This expression will be valid only

for values of a such that αp=∞
BBP (a) < αc(a). Evaluating equation 36 at g∗ = −p/2, we obtain

−p
2
=

{
αp=∞
BBP E

[
1

p

p∑
i=1

ci(u
2
1 − 1)

1 + p
2ci

]}−1

, (48)

which leads to the solution

αp=∞
BBP =

p∗(a+ 1)

2
. (49)

Note that for all a > 0, we have αp=∞
BBP (a) < αc(a), implying that the BBP transition is always

discontinuous in the p→ ∞ limit. Furthermore, for general p∗, the minimum of αp=∞
BBP (a) occurs at

a = 0 and is equal to p∗/2, matching the information-theoretic weak recovery threshold identified
in Maillard et al. (2024). Note that our setting is far from being Bayes optimal setting as in Maillard
et al. (2024) since the overparametrized student, by definition, does not match the teacher structure.
Yet, this result shows how powerful overparametrization can be, as in the large overparametrization
limit, even simply extracting spectral information from the Hessian at random configurations, the
optimal weak recovery threshold is can be achieved.

C DERIVATION OF THE OVERLAP

In the general multi-index setting, each isolated eigenvalue may correspond to an alignment between
a specific student node wk and a teacher node w∗

l . We denote the corresponding eigenvectors by
vkl ∈ RpN and reshape them into matrices V kl ∈ Rp×N , where the first N entries of vkl form the
first row, and so on.

We define the overlap matrix:

Mkl = V kl(W ∗)⊤ ∈ Rp×p∗
, (50)
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whereW ∗ ∈ Rp∗×N is the matrix whose rows are the teacher weight vectors. Ideally,Mkl contains
a single non-zero entry m at position (k, l), i.e., (Mkl)k′l′ = mklδk,k′δl,l′ .

However, the output of the student network in equation 2 can be equivalently written as

ŷ(xµ) = (xµ)
⊤ W

⊤W

p
xµ, (51)

whereW ∈ Rp×N is the matrix whose rows are the student weight vectors. This expression reveals
that the output is invariant under rotations of the matrix W in the p-dimensional space. That is,
for any orthogonal matrix O ∈ Rp×p, the transformation W 7→ OW leaves the output function
unchanged. A similar argument applies to the teacher network.

This rotational invariance implies that the student and teacher configurations are only identifiable up
to orthogonal transformations, provided that the norms of the student nodes are unconstrained. As a
consequence, the overlap matrix observed in practice takes the form

Mkl = OV kl(W ∗)⊤Õ⊤, (52)

where O ∈ Rp×p and Õ ∈ Rp∗×p∗
are random orthogonal matrices1. The scalar overlap m can

then be extracted using the Frobenius norm:

mkl =

√∑
i,j

(
Mkl

ij

)2
. (53)

Furthermore, due to the symmetry of the problem, all the overlaps will be equivalent:

mkl = m for k = 1, . . . , p, l = 1, . . . , p∗. (54)

We now derive an analytic equation for m. Let us again choose the teacher vectors such that they
are the first p∗ canonical directions, as we already did in the previous section. The starting point is
to write the resolvent as

G(z) = (zIpN −H)
−1

=

pN∑
i=1

viv
T
i

z − λi
(55)

where {λi,vi}pNi=1 is the set of eigenvalues/eigenvectors. Without loss of generality, let us assume
that we are in a base in which the first eigenvector is aligned with the first teacher. That is, if we call
ē1 the first canonical direction in a pN dimensional space, the overlap is m = v1 · ē1. Multiplying
equation 55 on the right and on the left by ē1, and taking the limit λ→ λ∗ we get that

lim
z→λ∗

ēT1 (zIpN −H)
−1
ē1︸ ︷︷ ︸

G̃11
11(z)

= lim
z→λ∗

m2

z − λ∗
(56)

The square overlap is the residue of the function G̃11
11(z) at the pole z = λ∗. Using the relation found

in the previous section G̃11
11(z) = (z − Ξ(z))

−1, it can be calculated as

m2 = lim
z→λ∗

z − λ∗

z − Ξ(z)
(57)

where we remind the reader that

Ξ(λ) = α
1

p

p∑
i=1

Eu21
ci

1− g(λ)ci
. (58)

This limit gives the undetermined form 0/0, but can be calculated using l’Hopital’s rule

m2 = lim
z→λ∗

∂z(z − λ∗)

∂z(z − Ξ(z))
=

1

1− ∂zΞ(z)
∣∣
z=λ∗

(59)

1Note that such orthogonal transformations, while preserving the output, don’t preserve the individual norms
of the network nodes. If we apply this rotation to the teacher vector, which is taken to be normalized such that
each node lies on the SN−1(

√
N) sphere, such normalization property is lost. However, since the dataset

is invariant under this rotation, the student cannot infer this normalization from the data, and will align to a
randomly rotated teacher ÕW̃ ∗.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D DEPENDENCY ON p∗ AND UNDERPARAMETRIZATION

In this appendix we consider cases where p∗ ̸= 1. In figure 6 we show the equivalent of figure 2 for
p∗ = 2. As we can see the behaviour is qualitatively similar. For the values of p we chose αBBP is
always monotonically decreasing as a function of p, although we don’t expect this to hold for larger
values of p.

Figure 6: αBBP as a function of a for p∗ = 2 for various values of p. In the inset we show αBBP

as a function of p for a fixed value of a = 0.5

In figure 7 we explore the effect of underparametrization, by keeping a and p fixed and plotting
αBBP as a function of p∗. Perhaps unsurprisingly we observe that αBBP increases, making the
problem increasingly harder as the network is more underparametrized.

Figure 7: αBBP as a function of p∗ for p = 1 and a = 0.7
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