

OVERPARAMETRIZATION BENDS THE LANDSCAPE: BBP TRANSITIONS AT INITIALIZATION IN SIMPLE NEURAL NETWORKS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 High-dimensional non-convex loss landscapes play a central role in the theory
 014 of Machine Learning. Gaining insight into how these landscapes interact with
 015 gradient-based optimization methods, even in relatively simple models, can shed
 016 light on this enigmatic feature of neural networks. In this work, we will focus on
 017 a prototypical simple learning problem, which generalizes the Phase Retrieval
 018 inference problem by allowing the exploration of overparametrized settings. Using
 019 techniques from field theory, we analyze the spectrum of the Hessian at initial-
 020 ization and identify a Baik–Ben Arous–Péché (BBP) transition in the amount of
 021 data that separates regimes where the initialization is informative or uninformative
 022 about a planted signal of a teacher-student setup. Crucially, we demonstrate how
 023 overparameterization can *bend* the loss landscape, shifting the transition point,
 024 even reaching the information-theoretic weak-recovery threshold in the large over-
 025 parameterization limit, while also altering its qualitative nature. We distinguish
 026 between continuous and discontinuous BBP transitions and support our analytical
 027 predictions with simulations, examining how they compare to the finite- N behav-
 028 ior. In the case of discontinuous BBP transitions strong finite- N corrections allow
 029 the retrieval of information at a signal-to-noise ratio (SNR) smaller than the pre-
 030 dicted BBP transition. In these cases we provide estimates for a new lower SNR
 031 threshold that marks the point at which initialization becomes entirely uninfor-
 032 mative.

1 INTRODUCTION

033 The geometry of high-dimensional, non-convex loss, risk, or cost landscapes plays a central role in
 034 modern machine learning and data science. Such landscapes hide important structural features of
 035 the data into specific local structures and mostly deep configurations. Despite their complexity, the
 036 optimization of these landscapes is typically performed using local iterative algorithms, most
 037 notably gradient descent and its stochastic variants. Understanding the success and limitations of these
 038 algorithms remains a fundamental open problem. It has been first observed that in regimes where
 039 the dataset is large relative to the problem dimension N , *i.e.*, at high signal-to-noise ratio (SNR),
 040 the landscape can undergo an effective trivialization, becoming nearly convex and devoid of spuri-
 041 ous local minima (Fyodorov, 2004; Soudry & Carmon, 2016; Cai et al., 2022). In this setting, each
 042 point in the landscape contains a clear directional signal guiding the optimization toward informative
 043 minima. Furthermore, it has been widely reported that overparameterization of the learning model
 044 can induce a smoothing of the loss landscape even in regimes with moderate or low SNR, thereby
 045 facilitating optimization (Shevchenko & Mondelli, 2020; Cooper, 2021). Perhaps more surprisingly,
 046 even in settings where spurious non-informative minima remain prevalent, gradient-based methods
 047 often still succeed (Baity-Jesi et al., 2018; Liu et al., 2020; Ros et al., 2019; Mannelli et al., 2019).
 048 This apparent paradox has been addressed in a series of works on high-dimensional inference prob-
 049 lems such as matrix-tensor PCA (Sarao Mannelli et al., 2019) and phase retrieval (Sarao Mannelli
 050 et al., 2020a). These studies reveal that gradient flow dynamics can avoid these poor solutions due
 051 to the local geometry of high-dimensional basins of attraction, which are typically explored by the
 052 dynamics. The high dimensional basins of attraction of gradient flow, although still non informative
 053 themselves, develop an instability towards the signal at relatively low SNR. This phenomenon is

054 sometimes referred to as the "blessing of dimensionality". Crucially, the emergence of such insta-
 055 bilities at increasing SNR is associated with a qualitative change in the spectrum of the local Hessian
 056 in a transition known as the Baik–Ben Arous–Péché (BBP) transition (Baik et al., 2005).

057 Alternative learning approaches, mostly applied to signal reconstruction problems, are based on the
 058 use of spectral methods (Netrapalli et al., 2013; Montanari & Sun, 2018) to define a warm start to
 059 subsequent local iterative algorithms, with the aim of boosting their performances. Typically, in
 060 spectral methods such initial guess is provided by the leading eigenvector of a matrix, which is a
 061 function of the input data tailored to the structure of the specific problem (Montanari & Sun, 2018;
 062 Lu & Li, 2020; Mondelli & Montanari, 2018; Maillard et al., 2022; Defilippis et al., 2025; Kovačević
 063 et al., 2025). Interestingly in some cases, for instance phase retrieval or tensor PCA, such *ad hoc*
 064 procedure can be also linked to the risk landscape as the matrix used for spectral initialization corre-
 065 sponds to the negative Hessian of a suitably defined cost function evaluated at random configurations
 066 and averaged over many of them (Biroli et al., 2020). Therefore its leading eigenvector represents
 067 the direction with the most negative (or smallest positive) curvature found at the initial condition in
 068 such averaged landscape. Also in this case, when the SNR increases, the spectrum of such matrix
 069 undergoes a BBP transition, after which the leading eigenvector develops a finite correlation with
 070 the signal. A similar phenomenon occurs in the Hessian of the cost function evaluated at individ-
 071 ual random configurations (Bonnaire et al., 2025; Arous et al., 2025), but it is less known how this
 072 landscape feature is also affected by overparametrization. Moreover, very recent work (Bonnaire
 073 et al., 2025) has shown that the information contained in the curvature of the landscape in random
 074 configurations, for finite input dimensions N , could further automatically help gradient-based meth-
 075 ods in finding the deep informative minima. The interplay between the gradient flow algorithmic
 076 transitions and the emergence of the signal in the Hessian at the initial condition then defines an
 077 effective algorithmic transition in the SNR, which slowly changes with the dimensionality of the
 078 data set. This already nontrivial mechanism may be further modified in the presence of overparam-
 079 eterization, motivating a deeper exploration of its role in shaping the optimization landscape and the
 080 dynamics therein.

081 In this work, we consider an extended version of the classical phase retrieval problem by focusing
 082 on a teacher-student setting based on two-layer soft-committee machines with quadratic activations.
 083 The widths of the hidden layers of the student and teacher networks, denoted by p and p^* respec-
 084 tively, are generic and finite, while the dimensionality N of the input samples will be considered
 085 very large and diverging, except in numerical tests. When $p = p^* = 1$, the setting reduces to the
 086 standard phase retrieval problem, which involves recovering a hidden signal from magnitude-only
 087 projections. It notoriously results in a non-convex optimization problem with broad relevance in
 088 optics (Millane, 1990), signal processing (Bendory et al., 2017), quantum mechanics (Orl et al.,
 089 1994), and which has often served as a prototypical example for exploring the interplay between
 090 optimization dynamics and high-dimensional geometry (Sun et al., 2018).

091 For general p and p^* , this setting is a particular case of what is known in the literature as a *multi-*
 092 *index model* Li (1991); Defilippis et al. (2025); Troiani et al. (2024). Here we focus on the case
 093 $p > p^*$, and explore the effect of overparametrization on the landscape structure. In particular, we
 094 focus on the information contained in the local curvature in random positions of a suitably defined
 095 class of loss landscapes spanned by a parameter a . We study how it changes with a , p and p^* . As
 096 previously mentioned, the Hessian at initialization could contain more information than expected,
 097 which could lower the SNR of algorithmic transitions for gradient-based algorithms, or could be
 098 explicitly used in a sort of generalized spectral method.

099 Our analysis shows that overparametrization generally shifts the BBP transition in the Hessian spec-
 100 tra of random configurations toward lower SNR. The corresponding spectral initialization method
 101 based on such local Hessian matrices is therefore expected to extract information earlier than in the
 102 underparametrized case and even gradient-based learning dynamics is expected to work better with
 103 overparametrization in finite-dimensional practical implementations of the problem. However, we
 104 also obtain that in few very specific instances overparametrization may slightly harm the efficiency
 105 of signal recovery obtained through the diagonalization of the Hessian at initialization. We also
 106 observe that the nature of the BBP transition changes from underparametrized students to students
 107 benefitting from overparametrization. When overparametrization increases the standard BBP transi-
 108 tion tends to be replaced by a BBP transition associated with a discontinuous jump in the amount of
 109 information retrieved. The emergence of discontinuous BBP transitions has been only very recently
 110 discussed in association to signal reconstruction in phase retrieval problems (Bocchi et al., 2025a;

Bousseyroux & Potters, 2024), and previously only conjectured on theoretical grounds (Potters & Bouchaud, 2020). With this work, we illustrate how they become central when phase retrieval is generalized to an overparametrized learning setup. Moreover, strong finite size effects are expected to affect numerical observation of discontinuous BBP transitions (Bocchi et al., 2025a). We highlight this aspect in the results of the signal recovery in the overparametrized cases. Interestingly, we observe that higher overparametrization renders the transition more discontinuous. This effect tends to counterbalance the small shift to higher SNR of the signal recovery transition—in the large dimensional limit—obtained at higher overparametrization in specific instances, effectively reinstating a generalized advantage of overparametrization in realistic applications. Finally, we discuss the large overparametrization limit $p \rightarrow \infty$ for fixed p^* and we reobtain the weak recovery algorithmic transition at an SNR equal to $p^*/2$, already discussed in the literature for $p^* = 1$ in Mondelli & Montanari (2018) and for $p^* > 1$ in the Bayes optimal setting in Maillard et al. (2024); Troiani et al. (2024).

2 THE MODEL

The teacher–student framework provides a simplified yet powerful setting for studying supervised learning. In this setup, a student network $\hat{y}(\mathbf{x}) : \mathbb{R}^N \rightarrow \mathbb{R}$ is trained to match the outputs of an unknown teacher function $y(\mathbf{x}) : \mathbb{R}^N \rightarrow \mathbb{R}$ using a set of $M = \alpha N$ labeled examples. In this model the parameter α , which controls the size of the dataset compared to the input size, acts as the SNR described in the previous section. The examples consist of input vectors $\{\mathbf{x}^\mu\}_{\mu=1}^M$ drawn independently from a Gaussian distribution $\mathcal{N}(0, \mathbb{I}_N/N)$, along with their corresponding teacher outputs $y^\mu = y(\mathbf{x}^\mu)$. In the case of soft-committee machines with quadratic activations, for a given input vector \mathbf{x}^μ , the output of the teacher network is:

$$y(\mathbf{x}^\mu) = \frac{1}{p^*} \sum_{l=1}^{p^*} (\mathbf{w}_l^* \cdot \mathbf{x}^\mu)^2 \equiv \frac{1}{p^*} \sum_{l=1}^{p^*} (u_l^\mu)^2, \quad (1)$$

where p^* is the width of the hidden layer of the teacher network and $u_l^\mu \equiv \mathbf{w}_l^* \cdot \mathbf{x}^\mu$ is the pre-activation output of the l -th teacher node \mathbf{w}_l^* . Each teacher node \mathbf{w}_l^* is independently sampled from the sphere $S_{N-1}(\sqrt{N})$. Similarly, the output of the student network is defined as:

$$\hat{y}(\mathbf{x}^\mu) = \frac{1}{p} \sum_{k=1}^p (\mathbf{w}_k \cdot \mathbf{x}^\mu)^2 \equiv \frac{1}{p} \sum_{k=1}^p (\lambda_k^\mu)^2, \quad (2)$$

where p is the width of the hidden layer of the student network and $\lambda_k^\mu \equiv \mathbf{w}_k \cdot \mathbf{x}^\mu$ is the pre-activation output of the k -th student node \mathbf{w}_k . Standard gradient descent algorithms iteratively modify the weights $\{\mathbf{w}_k\}_{k=1}^p$ to minimize an empirical loss on the training data $\{\mathbf{x}^\mu\}_{\mu=1}^M$. Following previous works (Bonnaire et al., 2025), we define a family of normalized quadratic loss functions:

$$\mathcal{L}_w = \sum_{\mu=1}^{M=\alpha N} \ell_w(\mathbf{x}^\mu) \equiv \frac{1}{2} \sum_{\mu=1}^{M=\alpha N} \frac{[y(\mathbf{x}^\mu) - \hat{y}(\mathbf{x}^\mu)]^2}{a + y(\mathbf{x}^\mu)}, \quad (3)$$

where the parameter $a > 0$ controls the strength of the normalization that prevents pathologies due to rare very small or very large teacher outputs. By regulating the conditioning of the Hessian eigenspectrum, the denominator ensures the appearance of a finite left edge, an essential feature for our analytical analysis focusing on an isolated eigenvalue exiting from the left.

Instead of studying the dynamics of the learning process, for which we only provide preliminary results in Appendix F, we focus here on the structure of the loss landscape itself. In particular, we are interested in the local curvature of the empirical loss at initialization, which is governed by the spectral properties of its Hessian matrix $\mathcal{H} \in \mathbb{R}^{pN \times pN}$. This can be seen as a block matrix, comprising of p^2 blocks of $N \times N$ matrices $\mathcal{H}_{qq'}$, defined as

$$(\mathcal{H}_{qq'})_{ij} = \frac{\partial^2}{\partial(\mathbf{w}_q)_i \partial(\mathbf{w}_{q'})_j} \sum_{\mu=1}^{\alpha N} \ell(\{u_l^\mu\}, \{\lambda_k^\mu\}, \{\mathbf{x}^\mu\}) \equiv \sum_{\mu=1}^{\alpha N} F_{qq'}^\mu x_i^\mu x_j^\mu, \quad (4)$$

$$\text{where } F_{qq'}^\mu = \frac{2}{p} \cdot \frac{\frac{2}{p} \lambda_q^\mu \lambda_{q'}^\mu + \delta_{qq'} \left[\frac{1}{p} \sum_{k=1}^p (\lambda_k^\mu)^2 - \frac{1}{p^*} \sum_{l=1}^{p^*} (u_l^\mu)^2 \right]}{a + \frac{1}{p^*} \sum_{l=1}^{p^*} (u_l^\mu)^2}, \quad (5)$$

162 where the pre-activations $\{\lambda_k^\mu\}$ and $\{u_l^\mu\}$ are random iid variables $\mathcal{N}(0, 1)$.
 163

164 Let $\{h_i\}$ denote the eigenvalues of \mathcal{H} . In the large- N limit, the spectrum consists of a continuous
 165 "bulk" component, described by the density

$$166 \quad \rho(\lambda) = \lim_{N \rightarrow \infty} \frac{1}{pN} \sum_{i=1}^{pN} \delta(\lambda - h_i), \quad (6)$$

167 along with a finite number of outlier eigenvalues. From these, one can extract information about
 168 the geometry of the loss landscape, such as the presence of directions correlated with the signal.
 169 This procedure can be connected to a broader class of techniques known as *spectral methods* (Lu
 170 & Li, 2020; Mondelli & Montanari, 2018; Maillard et al., 2022). These approaches are based on
 171 constructing matrices of the form
 172

$$173 \quad \mathcal{D} = \sum_{i=1}^{\alpha N} T(y(\mathbf{x}^\mu)) \mathbf{x}^\mu (\mathbf{x}^\mu)^T, \quad (7)$$

174 where $T : \mathbb{R} \rightarrow \mathbb{R}$ is an appropriate pre-processing function, to study the simple phase retrieval
 175 problem (which in our notation corresponds to the $p = p^* = 1$ case). The leading eigenvector, *i.e.*
 176 the eigenvector associated with the largest or smallest eigenvalue, depending on the sign convention,
 177 is then computed to provide an estimate of the underlying signal. This estimate can be used directly
 178 as a proxy for the signal or serve as an initialization for a subsequent descent-like optimization
 179 algorithm.
 180

181 Whether this spectral reconstruction successfully aligns with the true signal depends on the signal-
 182 to-noise ratio α . This phenomenon is captured by the Baik–Ben Arous–Péché (BBP) transition (Baik
 183 et al., 2005), which describes a phase boundary in the spectrum: only when the signal-to-noise ratio
 184 exceeds a critical threshold α_{BBP} does a leading eigenvalue detach from the bulk of the spectrum,
 185 allowing its associated eigenvector to carry non-trivial information about the signal. Below this
 186 threshold, the spectrum remains uninformative, and the leading eigenvector fails to align with the
 187 teacher.
 188

189 Interestingly, for $p = p^* = 1$ the forms of matrices \mathcal{H} and \mathcal{D} are similar, the main difference being
 190 that the pre-processing function T only depends on the labels $y(\mathbf{x}^\mu)$ while the factors F_{11}^μ depend
 191 both on the labels and the student outputs $\hat{y}(\mathbf{x}^\mu)$. For the right function T however, \mathcal{H} can be
 192 mapped into \mathcal{D} by averaging over the student weights \mathbf{w} . Spectral methods then can be interpreted
 193 as extracting information from this averaged Hessian. This was first noted in Biroli et al. (2020),
 194 where authors use this perspective to develop a spectral method for a different inference problem
 195 called *tensor PCA*.
 196

197 In this work, rather than studying the averaged Hessian, we study the spectral properties of the
 198 actual Hessian, following the lines of Bonnaire et al. (2025). We extend this analysis to the more
 199 general case of arbitrary student and teacher widths (p, p^*) . Specifically, in this work we study the
 200 BBP transition of the training loss Hessian at initialization, *i.e.*, when the student network weights
 201 are randomly and independently sampled from the sphere $S_{N-1}(\sqrt{N})$, for a teacher with a generic
 202 number of nodes ($p^* \geq 1$), and examine the effect of student overparameterization ($p > p^*$). In
 203 some sense, overparameterization can be viewed as implicitly averaging the loss landscape across
 204 the many student nodes. Indeed, we will show that in the limit of infinite overparameterization,
 205 the performance converges to that of the optimal spectral method found in Mondelli & Montanari
 206 (2018) for $p^* = 1$.
 207

208 To build intuition for how the BBP transition extends beyond the phase retrieval setting, we begin
 209 by recalling the simpler case. In phase retrieval, for signal-to-noise ratios larger than a critical
 210 threshold α_{BBP} a single eigenvalue λ^* separates from the bulk of the spectrum, and its associated
 211 eigenvector \mathbf{v}^* exhibits nontrivial alignment with the signal vector \mathbf{v} . This alignment is quantified
 212 by the normalized overlap
 213

$$214 \quad m = \frac{\mathbf{v}^* \cdot \mathbf{v}}{\|\mathbf{v}^*\| \|\mathbf{v}\|}. \quad (8)$$

215 In the more general two-layer teacher setting, isolated eigenvalues similarly correspond to alignments
 216 between student and teacher nodes. The student output can be rewritten as
 217

$$218 \quad \hat{y}(\mathbf{x}^\mu) = (\mathbf{x}^\mu)^\top \frac{\mathbf{W}^\top \mathbf{W}}{p} \mathbf{x}^\mu; \quad \mathbf{W} \in \mathbb{R}^{p \times N}, \quad W_{ki} = (\mathbf{w}_k)_i, \quad (9)$$

where the matrix \mathbf{W} collects the student weight vectors \mathbf{w}_k . This expression is invariant under rotations $\mathbf{W} \mapsto \mathbf{OW}$ with $\mathbf{O} \in \mathbb{R}^{p \times p}$ an orthogonal matrix, implying that the learned configuration is only identifiable up to orthogonal transformations (Sarao Mannelli et al., 2020b; Martin et al., 2024; Bocchi et al., 2025b). For an eigenvector \mathbf{v}^{kl} associated with alignment between student node k and teacher node l , the overlap is defined as:

$$m_{kl} = \sqrt{\sum_{i=1}^p \sum_{j=1}^{p^*} (M_{ij}^{kl})^2}, \quad (10)$$

where $M^{kl} = \mathbf{V}^{kl}(\mathbf{W}^*)^\top$, \mathbf{W}^* collects the teacher weight vectors \mathbf{w}_k^* and $\mathbf{V}^{kl} \in \mathbb{R}^{p \times N}$ is the reshaped eigenvector matrix. This represents the Frobenius norm of the overlap matrix between the eigenvector and teacher weights. Since all student-teacher overlaps are equivalent, they can be summarized by a single scalar parameter $m = m_{kl} \forall k, l$. Further details can be found in appendix C.

3 METHODOLOGICAL OVERVIEW

In this section we give a brief overview of the analytical methods used to compute the spectrum of the matrix \mathcal{H} in the case $p = p^* = 1$. We refer to the appendix the full details of the computation, and how it can be extended to calculate α_{BBP} . Our analysis is based on field-theoretic techniques first introduced in Zee (1996), but rarely employed in the Statistical Physics/Machine Learning community. The objective is the computation of the Stieltjes transform of the spectral distribution

$$g(z) = \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{N} \text{Tr} \left(\frac{1}{z\mathbf{I} - \mathcal{H}} \right). \quad (11)$$

This quantity can be cast in the field-theoretic formalism by introducing an N -dimensional scalar field ψ and using a basic identity for Gaussian integration to write

$$g(z) = \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{\mathcal{Z}} \int d\psi e^{-\frac{1}{2} \psi^T (z\mathbf{I} - \mathcal{H}) \psi} \frac{\|\psi\|^2}{N} \quad (12)$$

where \mathcal{Z} is the normalization constant. This integral cannot be computed exactly, however we can expand the exponential $e^{-\frac{1}{2} \psi^T \mathcal{H} \psi}$, and take the average of every term with respect to the gaussian measure of the fields ψ and $\{\mathbf{x}^\mu\}_{\mu=1}^P$. According to Wick's probability theorem, these averages can be expressed as the sum over all possible pairings between fields of their covariances. For example the average

$$\langle \psi_i \psi_k x_k^\mu x_l^\mu \psi_l \psi_j \rangle = \langle x_k^\mu x_l^\mu \rangle (\langle \psi_i \psi_k \rangle \langle \psi_l \psi_j \rangle + \langle \psi_i \psi_l \rangle \langle \psi_k \psi_j \rangle + \langle \psi_i \psi_j \rangle \langle \psi_k \psi_l \rangle) \quad (13)$$

To track such combinations, a graphical method due to Feynman is used, and each term is expressed as a diagram. We represent each $\langle \psi_i \psi_j \rangle$ with a straight black line, and every $\langle x_i^\mu x_j^\mu \rangle$ with a double blue line. For example, the first term in the expansion can be written in a diagram form as

Weight: $\frac{1}{N^2} \frac{1}{z^2} \sum_{\mu,i} F_{11}^\mu$,

By understanding the general form of these diagrams, it is possible to rule out a whole family of subdominating ones, and to express the Stieltjes transform as a function of the sum of a certain type of diagrams, that are called in Physics *1-Particle Irreducible* (1PI) diagrams. If we call $\Sigma(z)$ the sum of all such diagrams, then we get the final expression

$$g(z) = \frac{1}{z - \Sigma(z)} \quad (14)$$

The problem of computing the Stieltjes transform is thus reduced to that of understanding which 1PI diagrams are dominating. We will see in the appendix that although the number of such diagrams is infinite, their contribution can be summed analytically, and a convenient elegant form for $\Sigma(z)$ can be derived.

270 **4 RESULTS**
 271

272 In this section we present the main analytical predictions for the BBP thresholds and their compari-
 273 son with finite- N simulations. All derivations, including the field theory techniques used to compute
 274 the bulk distribution and outlier eigenvalue, are deferred to the Appendices A and B.
 275

276 **4.1 ANALYTICAL BBP TRANSITION**
 277

288 Figure 1: Overlap between the signal estimate and the true signal as a function of α for continuous
 289 BBP (Left) and discontinuous BBP (Right), with $p = 2$ and $p^* = 1$.

290 The critical value α_{BBP} is analytically determined by imposing the condition

291
$$\lambda_*(\alpha_{BBP}) = \lambda_-(\alpha_{BBP}), \quad (15)$$

294 where λ_- denotes the left edge of the bulk spectrum and λ_* denotes the outlier eigenvalue. Depend-
 295 ing on how the eigenvalue spectrum $\rho(\lambda)$ vanishes near its left edge when equation 15 is satisfied,
 296 the nature of the BBP transition can be one of two types, either **continuous** or **discontinuous** (Boc-
 297 chi et al., 2025a; Bouchbinder et al., 2021; Potters & Bouchaud, 2020). A more detailed analysis
 298 of discontinuous BBP transitions and their finite size effects is addressed in Bocchi et al. (2025a).
 299 For the sake of completeness here we re-discuss some aspects in relation to their application to our
 300 teacher-student learning problem.

301 In the continuous BBP transition, the overlap m between the eigenvector associated with the outlier
 302 eigenvalue and the signal(s) continuously grows from 0 to finite values as the signal-to-noise ratio α
 303 increases above the threshold α_{BBP} . This case corresponds to a *sharp* edge of the spectrum, where
 304 the eigenvalue density vanishes with a square-root singularity:

305
$$\rho(\lambda) \underset{\lambda \rightarrow \lambda_-^{sh}}{\propto} (\lambda - \lambda_-^{sh})^{1/2}. \quad (16)$$

307 In contrast, if the BBP transition is discontinuous the value of the overlap immediately jumps from
 308 0 to a finite value as soon as $\alpha > \alpha_{BBP}$. This occurs when the left edge of the spectrum is *smooth*,
 309 with the density decaying exponentially as

311
$$\rho(\lambda) \underset{\lambda \rightarrow \lambda_-^{sm}}{\propto} \exp\left[-\frac{A}{(\lambda - \lambda_-^{sm})}\right], \quad \text{for some constant } A > 0. \quad (17)$$

314 In Figure 1 we show the behavior of the overlap in the two different scenarios. While their difference
 315 is clear in the large dimensional limit $N \rightarrow \infty$, a distinction between the two types of transitions is
 316 also visible for finite system sizes, as discontinuous BBP transitions are characterized by a strong
 317 anticipation of the transition at N finite, which we discuss in Section 4.2.

318 Depending on the student and teacher number of nodes p, p^* , as well as the normalizing constant a ,
 319 either type of transition can occur. In what follows, we present results for $p^* = 1$, but we verify in the
 320 appendix D that varying p^* does not qualitatively alter the overall picture. Figure 2 shows the critical
 321 ratio α_{BBP} , revealing two principal effects. First, $\alpha_{BBP}(a)$ shows non-monotonic dependence on
 322 a at fixed p , with its minimum placed at a critical value $a_c(p)$ where the transition changes from
 323 continuous (left) to discontinuous (right). In other words, for given p (and p^*), the most convenient
 a allowing for an earliest recovery transition is the one where the BBP transition is at the verge of

324 becoming discontinuous. Second, while increasing p at fixed a generally reduces α_{BBP} , we again
 325 observe a critical threshold $p_c(a)$ beyond which the transition becomes discontinuous. Note that in
 326 its vicinity (see middle inset of Figure 2) a non-monotonic $\alpha_{BBP}(p)$ behavior is sometimes visible:
 327 the subsequent small increase of $\alpha_{BBP}(p)$ with p , *i.e.* increasing overparametrization, is at odds
 328 with the general expectation of the benefits of overparametrization in smoothening the landscape
 329 to let the signal emerge. However, as we will see in Section 4.2, this weak effect obtained in
 330 the infinite dimensional limit can be masked by strong, non-trivial finite-size effects, reinstating
 331 a general advantage of overparametrization for all practical purposes.

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360 Figure 2: α_{BBP} as a function of a for $p^* = 1$ and several values of p . The point at which the curves
 361 start increasing almost linearly is the point in which the transition becomes discontinuous. The
 362 dashed line shows $\alpha_{BBP}(a)$ in the large overparametrization limit where the transition is always
 363 discontinuous. The insets show α_{BBP} as a function of p for three fixed values of a . Here, red points
 364 indicate the transition is continuous, while blue points that it is discontinuous. The red crosses are
 365 estimates of α_0 , a "finite- N " estimate of the transition described in section 4.2.

366 **Infinite overparametrization limit** Before analyzing finite-size effects, we consider the limit of
 367 infinite overparametrization, $p \rightarrow \infty$. This limit is taken after the $N \rightarrow \infty$ limit, so we remain in
 368 the regime where $p \ll N$. In appendix B we show that in this limit the BBP transition is always
 369 discontinuous, with a threshold given by

370

371

372

373

374 For any value of p^* , the minimum of $\alpha_{BBP}^{p=\infty}$ occurs at $a = 0$ and is equal to $p^*/2$, matching the
 375 information-theoretic weak recovery threshold identified in Maillard et al. (2024). Note that our
 376 setting is far from being Bayes optimal as in Maillard et al. (2024) since the overparametrized
 377 student, by definition, does not match the teacher structure. Yet, this result shows how powerful
 378 overparametrization can be, as in the large overparametrization limit, even simply extracting spectral

378 information from the Hessian at random configurations, the optimal weak recovery threshold can be
 379 achieved.
 380

381 4.2 NUMERICAL SIMULATIONS AND FINITE N BBP TRANSITION 382

383 In this section we compare the BBP thresholds calculated above with the empirical BBP threshold
 384 obtained in simulations of finite-dimensional problems with $p = p^* = 1$. For a fixed value of a ,
 385 and over a range of values of α , we generate the Hessian \mathcal{H} for several values of the dimensionality
 386 N of the problem, look at its eigenvalue spectrum, and count the number of times the eigenvalue
 387 associated to the eigenvector with maximum overlap with the signal is the smallest. In theory, this
 388 frequency, which we denote with the letter ϕ , should go from 0 to 1 discontinuously in the $N \rightarrow \infty$
 389 limit at α_{BBP} . We perform this experiment for values of a for which the transition is both continuous
 390 and discontinuous.
 391

402 Figure 3: Comparison of BBP transitions for $p = p^* = 1$. On the y axis we plot ϕ , defined as
 403 the fraction of times the eigenvector with the maximum overlap with the signal corresponds to the
 404 smallest eigenvalue. On the left a value of a for which the transition is continuous, on the right
 405 a value for which it is discontinuous. The vertical blue lines show our prediction for the BBP
 406 threshold, while for the discontinuous case the red line shows our estimate of α_0 .
 407

408 We observe that when the transition is continuous, the predicted α_{BBP} threshold matches the point
 409 in which the curves for different values of N intersect, while when it is discontinuous the threshold
 410 evaluated in the large N -limit is always above this point. That is, in the discontinuous case, our
 411 $N \rightarrow \infty$ prediction for α_{BBP} greatly overestimates the finite N behavior. The explanation of this
 412 phenomenon is related to the shape of $\rho(\lambda)$ near the edge. When the transition is continuous the left
 413 edge is *sharp* and for a finite N matrix then the typical deviation of the smallest eigenvalue of the
 414 bulk from the left edge is of the order of $N^{-2/3}$. When the BBP transition is discontinuous the left
 415 edge is *smooth* and, as a consequence, for a finite N matrix it is much harder to sample this tail of
 416 the eigenvalue distribution and the smallest eigenvalue of the bulk will be larger than the $N \rightarrow \infty$
 417 edge by a distance of the order of $1/\log(N) \gg N^{-2/3}$ (Bocchi et al., 2025a). Therefore the tails
 418 of the eigenvalue distributions for finite dimensional problems are much shorter than expected and
 419 allow the BBP eigenvalue to exit the bulk earlier. Unlike continuous BBP transitions, here the BBP
 420 eigenvalue retains a finite amount of information about the signal at the transition point and con-
 421 tinues to do so for $\alpha < \alpha_{BBP}$, at least long as it remains the smallest eigenvalue of the finite- N
 422 matrices. These strong finite-size effects and the residual information explain why the observed al-
 423 gorithmic threshold (Figure 3, right panel) lies below the predicted α_{BBP} in the discontinuous case.
 424 To corroborate this explanation we conjecture¹ that the residual information m about the teacher
 425 carried by the BBP eigenvalue for $\alpha < \alpha_{BBP}$ must decrease following a square root behavior until
 426 its vanishing at a smaller α_0 . Calculating the values of m^2 for various values of $\alpha > \alpha_{BBP}$, it is
 427 possible to perform a linear fit and obtain α_0 from the intersection of its extrapolation to lower α
 428 with the x axis. The result of this analysis is shown in Figure 4. The inset shows how the value
 429

¹The conjecture is based on the fact that for smaller N the domain where g is not real, due to the singularity
 430 arising in the denominator of Equation equation 42, shrinks as $c_{min} < 0$ increases and $c_{max} > 0$ decreases.
 431 As a consequence it is possible to approach closer the point where $\frac{dz}{dg}$ vanishes and triggers the square root
 432 vanishing of m as it is the case when approaching the continuous transition .

Figure 4: α_{BBP} (solid) and α_0 (crosses) for two different values of p as a function of a .

of the threshold is extracted. On the right side of the plot we see the predicted discontinuous BBP transition as a function of a for a couple of p and $p^* = 1$ and the extrapolated signal to noise ratio α_0 at which it is expected that the BBP eigenvalue will completely lose its information about the teacher. As we can see, this threshold lies below the corresponding predicted discontinuous BBP transition and slightly below the empirical transition for the finite dimensional version of the problem as shown in the right panel of Figure 3. The expectation is that α_0 must represent a lower bound for the empirical transition at finite N described above - as there is no hope that the lowest eigenvalue carries a finite correlation to signal when even the BBP eigenvalue has lost it - and that the empirical transition will very slowly move to the higher α as N increases as the bulk eigenvalues will populate the tail progressively hiding the BBP eigenvalue. We also reported the estimated threshold α_0 for the loss of information in the BBP eigenvalue in the middle and left insets of Figure 2. Note that it appears to always monotonically decrease with p , finally supporting the intuitive principle that overparametrization should favor learning.

5 CONCLUSION AND DISCUSSION

In this work, we presented a theoretical analysis of the loss landscape at initialization for a teacher-student setup with quadratic activation, considering networks with a generic, but finite, number of nodes, both for the teacher and the student. We investigated whether it is possible to extract information about the teacher simply by looking at the spectral properties of the Hessian at initialization, which reflects the curvature of the loss landscape in random configurations, without using iterative algorithms like gradient descent. In the high-dimensional data limit where both the input dimension N and dataset size M diverge while maintaining a finite signal-to-noise ratio $\alpha = M/N \sim O(1)$, we obtain that at small α the initial Hessian contains no information about the teacher, while at larger α one or more Hessian's principal eigenvectors develop a finite correlation with the teacher in a phenomenon called BBP transition. This approach resembles that of spectral algorithms (Mondelli & Montanari, 2018; Kovačević et al., 2025), which employ matrices that for some inference problems can be seen (Biroli et al., 2020) as Hessians averaged over many random choices of the student weights, to recover signals via spectral analysis. Nevertheless, our approach makes it possible to isolate the effect of overparametrization on this signal recovery transition. We complemented our theoretical findings with numerical simulations, fully characterizing this phenomenon for both finite and infinite N . Our analysis leads to the following key results:

The BBP transition varies qualitatively with overparameterization and choice of loss. Depending on the number of student nodes p and the loss function's normalization constant a , the transition can be either continuous or discontinuous. The key difference between the two cases lies in the overlap behavior at the transition: in the continuous case, the correlation with the teacher increases smoothly from zero when α increases, while in the discontinuous case, the outlier eigen-

486 vectors exhibit a finite overlap with the teacher immediately at the transition. Note that larger over-
 487 parametrization is systematically associated to a discontinuous BBP transition for signal recovery
 488 from the spectra of the Hessian at initialization. This result comes as the first practical application
 489 of the concept of a discontinuous BBP transition—very recently introduced and discussed in Potters
 490 & Bouchaud (2020); Bocchi et al. (2025a)—in association with overparametrization for a machine
 491 learning problem.

492 **Overparameterization tends to anticipate the transition, with notable exceptions.** Increasing
 493 p (i.e., overparameterizing the student) for fixed a generally lowers α_{BBP} , so that larger networks
 494 need less data to develop informative modes. Yet, for each fixed normalizing constant a , there exists
 495 a critical student size $p_c(a)$ beyond which the transition becomes discontinuous. Near this threshold,
 496 $\alpha_{\text{BBP}}(p)$ can be non-monotonic and its precise shape depends on a . On the one hand, the overall
 497 trend confirms the generally established intuition that overparametrization is beneficial to learning,
 498 even extending it to the possibility to retrieve information about the teacher at initialization. On the
 499 other hand we observe notable, despite of small entity, exceptions to such behaviour. Surprisingly
 500 the entity of such exceptions ends up being further mitigated by finite size correction in empirical
 501 observations, reinstating a general advantage of overparametrization for most practical purposes.

502 **The large overparametrization limit achieves optimal performances.** In the limit of infinite
 503 overparameterization ($p \rightarrow \infty$), information about the teacher emerges through a discontinuous
 504 transition for all values of a . Intuitively, a highly overparameterized student can reproduce the
 505 teacher’s weights an infinite number of times. This idea, discussed in other contexts (Biroli et al.,
 506 2020), helps explain why heavily overparameterized models can avoid overfitting and achieve better
 507 generalization, as if accessing an average view of the loss landscape. In our setting, the averaged
 508 Hessian at initialisation has a similar form to the spectral matrices used in (Mondelli & Montanari,
 509 2018). However signal recovery via this spectral analysis, examined in (Bocchi et al., 2025a),
 510 does not quantitatively match the BBP transition in the large- p limit, since it requires a stronger
 511 signal-to-noise ratio. Finally, as $a \rightarrow 0$, the BBP threshold α_{BBP} in the large overparameterization
 512 limit converges to the information-theoretic threshold for weak recovery—a surprising result
 513 showing how strongly overparameterization can reshape the loss landscape to reveal the hidden sig-
 514нал. Remarkably, simple spectral analysis of the Hessian at initialization, far from Bayes-optimal
 515 conditions, suffices to match the weak recovery threshold in optimal settings.

516 **Finite-size correction affects the discontinuous BBP transition.** We compared the predictions
 517 for the BBP transition at different values of p , p^* , and a with its numerical estimation for prob-
 518 lems with finite-dimensional datasets, for several value of the dimensionality N . We obtained very
 519 good agreement in the case of continuous BBP transition but we observed a strong mismatch in
 520 the case of discontinuous BBP transitions. As also discussed in general in Bocchi et al. (2025a),
 521 we argued that these effects must be very strong—logarithmic in N . They are due to the smooth
 522 nature of the spectral edge, which finite- N matrices fail to properly sample, and the large amount of
 523 residual information of the leading eigenvector even below the transition point. The undersampling
 524 of the tails gets stronger the lower N and it allows the BBP eigenvalue to emerge earlier than the
 525 predicted BBP threshold, resulting in a numerical signal-recovery transition much lower than the
 526 predicted BBP transition. We also extract a lower bound α_0 to the numerical transition evaluat-
 527 ing the signal-to-noise ratio where the extrapolated overlap of the leading eigenvalue vanishes as a
 528 square root. The empirical transition is expected to slowly move from α_0 to higher α approaching
 529 the BBP transition only in the large N limit. Finally, surprisingly α_0 is found to decrease with p
 530 so that in the accessible finite- N cases overparametrization turns out to be effectively advantageous
 531 for the empirical signal-recovery transition even when the predicted discontinuous BBP transition
 532 gets anomalously postponed. As suggested in Bonnaire et al. (2025), the fate of standard gradient
 533 descent should be influenced by the interplay between the emergence of the signal in the Hessian
 534 at initialization and the gradient-flow algorithmic transition. The latter can be predicted by evalua-
 535 ting the signal-to-noise ratio at which threshold states develop an instability toward the signal, also
 536 through a BBP transition. Understanding how overparameterization affects this second transition,
 537 both quantitatively and qualitatively, remains a very interesting open problem.
 538 Finally, although our analysis focuses on the case of networks with quadratic activation functions,
 539 we show in appendix E that a qualitatively similar behavior is expected to hold in the more generic
 case with arbitrary activation functions.

540 REFERENCES
541

542 Gerard Ben Arous, Reza Gheissari, Jiaoyang Huang, and Aukosh Jagannath. Local geometry of
543 high-dimensional mixture models: Effective spectral theory and dynamical transitions. *arXiv
544 preprint arXiv:2502.15655*, 2025.

545 Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for
546 nonnull complex sample covariance matrices. 2005.

547

548 Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, Gérard Ben Arous, Chiara Cam-
549 marota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing dynamics: Deep neural
550 networks versus glassy systems. In *International Conference on Machine Learning*, pp. 314–323.
551 PMLR, 2018.

552 Tamir Bendory, Yonina C Eldar, and Nicolas Boumal. Non-convex phase retrieval from stft mea-
553 surements. *IEEE Transactions on Information Theory*, 64(1):467–484, 2017.

554

555 Giulio Biroli, Chiara Cammarota, and Federico Ricci-Tersenghi. How to iron out rough landscapes
556 and get optimal performances: averaged gradient descent and its application to tensor pca. *Journal
557 of Physics A: Mathematical and Theoretical*, 53(17):174003, 2020.

558 Dario Bocchi, Giulio Biroli, Chiara Cammarota, and Federico Ricci Tersenghi. Discontinuous bbp
559 transitions. *preprint*, 2025a.

560

561 Dario Bocchi, Theotime Regimbeau, Carlo Lucibello, Luca Saglietti, and Chiara Cammarota. On-
562 line learning for soft committee machines. *preprint*, 2025b.

563

564 Tony Bonnaire, Giulio Biroli, and Chiara Cammarota. The role of the time-dependent hessian in
565 high-dimensional optimization. *Journal of Statistical Mechanics: Theory and Experiment*, 2025
566 (8):083401, 2025.

567 Eran Bouchbinder, Edan Lerner, Corrado Rainone, Pierfrancesco Urbani, and Francesco Zamponi.
568 Low-frequency vibrational spectrum of mean-field disordered systems. *Physical Review B*, 103
569 (17):174202, 2021.

570

571 Pierre Bousseyroux and Marc Potters. Spectral initialization for high-dimensional phase retrieval
572 with biased spatial directions. *arXiv preprint arXiv:2403.15548*, 2024.

573

574 Jian-Feng Cai, Meng Huang, Dong Li, and Yang Wang. Solving phase retrieval with random ini-
575 tial guess is nearly as good as by spectral initialization. *Applied and Computational Harmonic
576 Analysis*, 58:60–84, 2022.

577

578 Yaim Cooper. Global minima of overparameterized neural networks. *SIAM Journal on Mathematics
of Data Science*, 3(2):676–691, 2021.

579

580 Cirano De Dominicis and Irene Giardina. *Random fields and spin glasses: a field theory approach*.
Cambridge University Press, 2006.

581

582 Leonardo Defilippis, Yatin Dandi, Pierre Mergny, Florent Krzakala, and Bruno Loureiro. Optimal
583 spectral transitions in high-dimensional multi-index models. *arXiv preprint arXiv:2502.02545*,
584 2025.

585

586 Yan V Fyodorov. Complexity of random energy landscapes, glass transition, and absolute valuee of
587 the spectral determinant of random matrices. *Physical review letters*, 92(24):240601, 2004.

588

589 Filip Kovačević, Yihan Zhang, and Marco Mondelli. Spectral estimators for multi-index models:
Precise asymptotics and optimal weak recovery. *arXiv preprint arXiv:2502.01583*, 2025.

590

591 Ker-Chau Li. Sliced inverse regression for dimension reduction. *Journal of the American Statistical
592 Association*, 86(414):316–327, 1991.

593

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and sgd
can reach them. *Advances in Neural Information Processing Systems*, 33:8543–8552, 2020.

594 Yue M Lu and Gen Li. Phase transitions of spectral initialization for high-dimensional non-convex
 595 estimation. *Information and Inference: A Journal of the IMA*, 9(3):507–541, 2020.
 596

597 Antoine Maillard, Florent Krzakala, Yue M Lu, and Lenka Zdeborová. Construction of optimal
 598 spectral methods in phase retrieval. In *Mathematical and Scientific Machine Learning*, pp. 693–
 599 720. PMLR, 2022.

600 Antoine Maillard, Emanuele Troiani, Simon Martin, Florent Krzakala, and Lenka Zdeborová.
 601 Bayes-optimal learning of an extensive-width neural network from quadratically many samples.
 602 *Advances in Neural Information Processing Systems*, 37:82085–82132, 2024.
 603

604 Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborova. Passed &
 605 spurious: Descent algorithms and local minima in spiked matrix-tensor models. In *international
 606 conference on machine learning*, pp. 4333–4342. PMLR, 2019.

607 Simon Martin, Francis Bach, and Giulio Biroli. On the impact of overparameterization on the
 608 training of a shallow neural network in high dimensions. In *International Conference on Artificial
 609 Intelligence and Statistics*, pp. 3655–3663. PMLR, 2024.
 610

611 Rick P Millane. Phase retrieval in crystallography and optics. *Journal of the Optical Society of
 612 America A*, 7(3):394–411, 1990.

613 Marco Mondelli and Andrea Montanari. Fundamental limits of weak recovery with applications to
 614 phase retrieval. In *Conference On Learning Theory*, pp. 1445–1450. PMLR, 2018.
 615

616 Andrea Montanari and Nike Sun. Spectral algorithms for tensor completion. *Communications on
 617 Pure and Applied Mathematics*, 71(11):2381–2425, 2018.

618 Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating minimiza-
 619 tion. *Advances in Neural Information Processing Systems*, 26, 2013.
 620

621 Arkadiusz Orl, Harry Paul, et al. Phase retrieval in quantum mechanics. *Physical Review A*, 50(2):
 622 R921, 1994.

623 Marc Potters and Jean-Philippe Bouchaud. *A first course in random matrix theory: for physicists,
 624 engineers and data scientists*. Cambridge University Press, 2020.
 625

626 Valentina Ros, Gerard Ben Arous, Giulio Biroli, and Chiara Cammarota. Complex energy land-
 627 scapes in spiked-tensor and simple glassy models: Ruggedness, arrangements of local minima,
 628 and phase transitions. *Physical Review X*, 9(1):011003, 2019.

629 Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, and Lenka Zdeborová.
 630 Who is afraid of big bad minima? analysis of gradient-flow in spiked matrix-tensor models.
 631 *Advances in neural information processing systems*, 32, 2019.
 632

633 Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, Pierfrancesco Urbani,
 634 and Lenka Zdeborová. Complex dynamics in simple neural networks: Understanding gradient
 635 flow in phase retrieval. *Advances in Neural Information Processing Systems*, 33:3265–3274,
 636 2020a.

637 Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and gener-
 638 alization of shallow neural networks with quadratic activation functions. *Advances in Neural
 639 Information Processing Systems*, 33:13445–13455, 2020b.
 640

641 Alexander Shevchenko and Marco Mondelli. Landscape connectivity and dropout stability of sgd
 642 solutions for over-parameterized neural networks. In *International Conference on Machine Learn-
 643 ing*, pp. 8773–8784. PMLR, 2020.

644 Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
 645 for multilayer neural networks. *arXiv preprint arXiv:1605.08361*, 2016.
 646

647 Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. *Foundations of Com-
 648 putational Mathematics*, 18(5):1131–1198, 2018.

648 Terence Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.
 649

650 Emanuele Troiani, Yatin Dandi, Leonardo Defilippis, Lenka Zdeborová, Bruno Loureiro, and Flo-
 651 rent Krzakala. Fundamental limits of weak learnability in high-dimensional multi-index mod-
 652 els. In *High-dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning*,
 653 2024.

654 Anthony Zee. Law of addition in random matrix theory. *Nuclear Physics B*, 474(3):726–744, 1996.
 655

656 **LLM Disclosure** LLMs were employed in this work to review the manuscript, correct grammati-
 657 cal errors, and polish the writing to improve clarity and readability.

659 A FIELD THEORY APPROACH 660

661 In this technical section, we give an overview of a field-theoretic approach (Zee, 1996; De Dominicis
 662 & Giardina, 2006) used to derive a self-consistent equation for the Stieltjes Transform of the Hessian,
 663 defined as

$$664 \quad g(z) = \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{Np} \text{Tr} \mathbf{G}(z) = \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{Np} \text{Tr} \left(\frac{1}{z\mathbf{I} - \mathcal{H}} \right). \quad (19)$$

666 The eigenvalue spectrum density can be obtained via the Stieltjes inversion formula:

$$667 \quad \rho(\lambda) = \lim_{\epsilon \rightarrow 0^+} \frac{1}{\pi} \text{Im} g(\lambda - i\epsilon). \quad (20)$$

669 Furthermore, we will build on the same formalism to obtain a self-consistent equation for the outlier
 670 eigenvalue λ^* , when it exists.

671 The first step is to use the rotational invariance of the teacher weight vectors. Without loss of gener-
 672 ality, we fix them to lie along the first p^* canonical directions $\mathbf{w}_{q_*}^* = \sqrt{N} \mathbf{e}_{q_*}$ for $q_* \in \{1, \dots, p^*\}$,
 673 where the \sqrt{N} ensures the correct normalization. With this choice, the teacher pre-activations re-
 674 duce to $u_l^\mu = \sqrt{N} x_l^\mu \sim \mathcal{N}(0, 1)$. To separate the parts of the matrix where the coefficients $F_{qq'}$
 675 are correlated to the components of the vectors \mathbf{x}^μ , we permute the rows and columns of \mathcal{H} so that
 676 the first p^* rows and columns of each block $\mathcal{H}_{qq'}$ are grouped together in the top-left corner in a
 677 submatrix with elements $(\mathcal{H}^s)_{qq'}^{q_*q'_*} = \sum_\mu F_{qq'}^\mu x_{q_*}^\mu x_{q'_*}^\mu$ for $q, q' \in \{1, \dots, p\}$, $q_*, q'_* \in \{1, \dots, p^*\}$.
 678 \mathcal{H}^s should be understood as a block matrix, consisting of $(p^*)^2$ blocks, where each block is a $p \times p$
 679 matrix $(\mathcal{H}^s)^{q_*q'_*}$. The final shape of this permuted \mathcal{H} is
 680

$$682 \quad \mathcal{H} = \begin{pmatrix} \mathcal{H}^s & \mathcal{H}^c \\ (\mathcal{H}^c)^T & \mathcal{H}^b \end{pmatrix} \quad \mathcal{H}^s \in \mathbb{R}^{pp^* \times pp^*}, \mathcal{H}^b \in \mathbb{R}^{(N-p^*)p \times (N-p^*)p}, \mathcal{H}^c \in \mathbb{R}^{pp^* \times (N-p^*)p}. \quad (21)$$

685 In section A.1 we calculate the spectral distribution of its bulk eigenvalues $\rho(\lambda)$. It is a standard
 686 Random Matrix Theory result (see for example exercise 2.4.3 of Tao (2012)) that the spectral dis-
 687 tribution does not change if we remove a number of rows and columns whose Frobenius norm is
 688 $o(N)$. Since every element of \mathcal{H} is $O(1)$, the Frobenius norm of \mathcal{H}^s is clearly $O(1)$, while by the
 689 strong law of large numbers the Frobenius norm of \mathcal{H}^c is $O(\sqrt{N})$. For the purpose of computing
 690 the spectrum bulk then we can simply discard them, and compute directly the Stieltjes transform of
 691 the matrix \mathcal{H}^b . We will see that this leads to a great simplification.

692 In section A.2 instead we focus on the pp^* outlier eigenvalues, which are not captured by the distri-
 693 bution $\rho(\lambda)$. In this case we cannot simply ignore the other blocks of the matrix \mathcal{H} . Indeed, if we
 694 divide the resolvent matrix $\mathbf{G}(z)$ in blocks in the same way,

$$696 \quad \mathbf{G} = \begin{pmatrix} \tilde{\mathbf{G}} & \hat{\mathbf{G}} \\ \hat{\mathbf{G}}^T & \bar{\mathbf{G}} \end{pmatrix} \quad \tilde{\mathbf{G}} \in \mathbb{R}^{pp^* \times pp^*}, \bar{\mathbf{G}} \in \mathbb{R}^{(N-p^*)p \times (N-p^*)p}, \hat{\mathbf{G}} \in \mathbb{R}^{pp^* \times (N-p^*)p}, \quad (22)$$

699 we have that the top left corner $\tilde{\mathbf{G}}$ encodes precisely for these outlier eigenvalues. Since \mathbf{G} and \mathcal{H}
 700 are related by an inverse, $\tilde{\mathbf{G}}$ will depend on all four blocks of \mathcal{H} . We will calculate it exactly using
 701 field theory.

702 A.1 SPECTRUM BULK
703704 Following Zee (1996), the starting point for the calculation of the Stieltjes transform of \mathcal{H}^b is to use
705 a basic identity for Gaussian integration to write

706
707
$$g(z) = \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{Np} \text{Tr} \left(\frac{1}{z \mathbf{I}_{(N-p^*)p} - \mathcal{H}^b} \right) =$$

708
709
$$= \lim_{N \rightarrow \infty} \mathbb{E}_{\mathbf{x}} \frac{1}{Z} \int \prod_{q=1}^p d\psi_q e^{-\frac{1}{2} \sum_{qq'} (\psi_q)^T (z \mathbf{I}_{(N-p^*)p} - \mathcal{H}^b)_{qq'} \psi_{q'}} \sum_q \frac{1}{Np} \|\psi_q\|^2. \quad (23)$$

710
711

712 Here, we introduced p ($N - p^*$)-dimensional scalar fields ψ_q , and denoted by $(z \mathbf{I} - \mathcal{H}^b)_{qq'}$ the
713 qq' -th block of the matrix $z \mathbf{I} - \mathcal{H}^b$. The next step is to get rid of the normalization constant $\frac{1}{Z}$ using
714 the replica trick $\frac{1}{Z} = \lim_{n \rightarrow 0} Z^{n-1}$ and introducing $n - 1$ replicas of the scalar fields $\{\psi_q^a\}_{a=1}^n$:
715
716

717
$$g(z) = \lim_{N \rightarrow \infty} \lim_{n \rightarrow 0} \mathbb{E}_{\mathbf{x}} \int \prod_{a=1}^n \prod_{q=1}^p d\psi_q^a e^{-\frac{1}{2} \sum_{aqq'} (\psi_q^a)^T (z \mathbf{I} - \mathcal{H}^b)_{qq'} \psi_{q'}^a} \sum_q \frac{1}{Np} \|\psi_q^1\|^2$$

718
719
$$= \lim_{N \rightarrow \infty} \lim_{n \rightarrow 0} \left\langle \sum_q \frac{1}{Np} \|\psi_q^1\|^2 \right\rangle_{n,N}. \quad (24)$$

720
721
722

723 This integral cannot be performed analytically, as the \mathbf{x}^μ appear in the covariance matrix of the fields
724 ψ_q^a . However, if we expand the exponential $e^{-\frac{1}{2} \sum_{aqq'} (\psi_q^a)^T \mathcal{H}_{qq'}^b \psi_{q'}^a}$, we are reduced to computing
725 the average of every term with respect to the "bare" measure, namely the measure that appears in
726 equation 24 with \mathcal{H}^b set to zero. Since for every element of the Hessian in the bulk

727
728
$$(\mathcal{H}_{qq'}^b)_{ij} = \sum_{\mu=1}^{\alpha N} F_{qq'}^\mu x_{p^*+i}^\mu x_{p^*+j}^\mu, \quad (25)$$

729
730

731 $F_{qq'}^\mu$ is independent of $x_{p^*+i}^\mu$, we can use Wick's probability theorem—according to which every
732 higher order moment can be expressed as a function of second moments—to compute each term of
733 the expansion. To wield the power of Feynman diagrams we identify two fields, one for ψ_{iq}^a and
734 one for x_i^μ , which in accordance with Zee (1996) we call "quark" and "gluon" fields. Their bare
735 propagators, g^0 , are defined as the correlations of the fields in the "bare" measure. We will represent
736 the former as straight lines and the latter as double lines.

737
$$a, i, q \xrightarrow{\quad} a, i, q \quad g_{\text{quark}}^0 = \frac{1}{z},$$

738
739
$$i, \mu \xrightarrow{\quad} i, \mu \quad g_{\text{gluon}}^0 = \mathbb{E}_{\mathbf{x}} x_i^2 = \frac{1}{N}.$$

740
741

742 The interaction between the two fields can be read off \mathcal{H}^b , and can be represented with a vertex of
743 the following kind and its corresponding weight

744
745
$$i, \mu \quad j, \mu$$

746
747
$$a, i, q \xrightarrow{\quad} a, j, q' \quad \text{Weight: } \frac{1}{2} F_{qq'}^\mu.$$

748
749
750

751 Note that although we are interested in the propagators $\langle (\psi_{iq}^1)^2 \rangle$, to derive a self-consistent equation
752 we will have to consider also propagators between different blocks $\langle \psi_{iq}^1 \psi_{iq'}^1 \rangle$, which don't depend
753 on the index i . From now on we will use \mathbf{G}^b to indicate the $p \times p$ matrix formed by these elements,
754 and with $\mathbf{G}_{\text{quark}}^0 = g_{\text{quark}}^0 \mathbf{I}_p$ the diagonal $p \times p$ matrix that contains the bare quark propagators on
755 the diagonal. The Stieltjes Transform can be then obtained from $g(z) = \frac{1}{p} \text{Tr } \mathbf{G}^b(z)$.

Let us begin by examining the first set of diagrams. Since the contribution is identical for any index i , we may, without loss of generality, fix $i = 1$. In the diagrams shown below, propagators associated with $a, i = 1$ will be left unlabelled. When a propagator corresponds to a generic i or a , we will explicitly annotate it on the line as a reminder that the corresponding index must be summed over. For each diagram, we will also indicate its total weight.

With one vertex we have diagrams:

Note that the total contribution of diagrams of type 2 is proportional to the number of replicas, which in the limit $n \rightarrow 0$ goes to 0. In general, this holds for any disconnected diagram, so in the following we will focus on connected ones. Note also that in diagrams of type 1 the $1/2$ factor that comes from the weight of the vertex is canceled by a factor 2 that comes from the number of ways in which the vertex can be connected. Other than this $1/2$ factor, each diagram also carries an $1/n!$ factor, where n is the number of vertices in the diagram, from the exponential expansion in equation 24. However, this is canceled by a factor $n!$ that comes from the number of ways the n vertices can be aligned. This cancellation happens at all orders, so we will ignore such factors from now on.

Let us now consider two vertex diagrams:

The total weight of diagrams of type 4 is $o(1)$, so their contribution is negligible in the $N \rightarrow \infty$ limit. In general, this holds for all diagrams where gluon propagators intersect, so we will exclude these from now on.

Diagram 5 is instead obtained by connecting two diagrams of type 1 "in series". This is a general property of diagrammatic expansion: new diagrams can always be generated combining earlier ones in series through bare quark propagators. If we sum the contributions of all diagrams that are not obtained in this way, which in Quantum Field Theory are known as *one-particle irreducible* (1PI) diagrams, we can exploit this recursive structure to derive a self-consistent equation for the propagator \mathbf{G}^b . Let us call Σ^b the $p \times p$ matrix whose elements $\Sigma_{qq'}^b$ are the sum of all such 1PI diagrams connecting fields with block indices q and q' , with external bare quark propagators

removed (so-called *amputated* diagrams). Then we can express the sum of all diagrams as

$$G^b = G_{\text{quark}}^0 + G_{\text{quark}}^0 \Sigma^b G_{\text{quark}}^0 + G_{\text{quark}}^0 \Sigma^b G_{\text{quark}}^0 \Sigma^b G_{\text{quark}}^0 + \dots, \quad (26)$$

Factoring out G_{quark}^0 reveals a geometric series, leading to

$$G^b = G_{\text{quark}}^0 (I_p + \Sigma^b G_{\text{quark}}^0 + \Sigma^b G_{\text{quark}}^0 \Sigma^b G_{\text{quark}}^0 + \dots) = ((g_{\text{quark}}^0)^{-1} I_p - \Sigma^b)^{-1}, \quad (27)$$

This gives a self-consistent equation for the matrix G^b , since Σ^b depends on G^b , that in Physics is known as the *Dyson* equation. This allows us to focus on 1PI diagrams from now on.

Let us look at diagrams with 3 vertices.

As we can see, diagrams of type 7 are just diagrams of type 3 with a diagram of type 1 added to the inner quark propagator. This is a general property that is unique to this field theory: new diagrams can be obtained from previous ones by adding them to the inner quark propagators. If the starting diagram is 1-Particle Irreducible, then so is the new diagram. Since the sum of all possible diagrams is just the propagator, this form of combination can be accounted for by substituting $G_{qq'}^b$ to every inner bare quark line.

Indeed, the self-energy can be obtained from the sum of all leading order diagrams mentioned above, where the incoming and outgoing propagators are "amputated", and where every inner bare quark propagator is substituted by a propagator $G_{qq'}^b$, which we indicate graphically with a blob.

The first term in the sum is diagram of type 1, which gives a total contribution of $\frac{1}{N} \sum_\mu F_{qq'}^\mu$. The second term is given by diagram of type 3 with a $G_{qq'}^b$ propagator on its inner quark line

Note that the incoming and outgoing propagators are shorter to indicate that we are considering amputated diagrams. The third term is diagram of type 6 where again we substitute propagators $G_{qq'}^b$

Note that we do not have to consider diagram of type 7 with propagators because it is already included in the second term. The next term is just the equivalent of the previous diagram but with

three inner arches, from which we can guess the general form of the diagrams that appear in the self-energy.

Summing the weights of these diagrams, we can write in matrix form

$$\begin{aligned}
\Sigma^b &= \frac{1}{N} \sum_{\mu} \mathbf{F}^{\mu} + \frac{1}{N} \sum_{\mu} \mathbf{F}^{\mu} \mathbf{G}^b \mathbf{F}^{\mu} + \frac{1}{N} \sum_{\mu} \mathbf{F}^{\mu} \mathbf{G}^b \mathbf{F}^{\mu} \mathbf{G}^b \mathbf{F}^{\mu} + \dots = \\
&= \frac{1}{N} \sum_{\mu} \mathbf{F}^{\mu} (\mathbf{I}_p + \mathbf{G}^b \mathbf{F}^{\mu} + \mathbf{G}^b \mathbf{F}^{\mu} \mathbf{G}^b \mathbf{F}^{\mu} + \dots) = \frac{P}{N} \frac{1}{P} \sum_{\mu} \mathbf{F}^{\mu} (\mathbf{I}_p - \mathbf{G}^b \mathbf{F}^{\mu})^{-1} \rightarrow \\
&\rightarrow \alpha \mathbb{E} \mathbf{F} (\mathbf{I}_p - \mathbf{G}^b \mathbf{F})^{-1}, \tag{28}
\end{aligned}$$

where in the last identity we assumed that in the $N \rightarrow \infty$ the sum concentrates to its mean with respect to the dataset distribution.

Plugging this expression into equation 27, we get that the propagator satisfies the self-consistent equation

$$(\mathbf{G}^b)^{-1} = z\mathbf{I}_p - \alpha \mathbb{E} \mathbf{F} \left(\mathbf{I}_p - \mathbf{G}^b \mathbf{F} \right)^{-1}. \quad (29)$$

Note that the \mathbf{F} matrix is of the form $\mathbf{F} = \alpha \boldsymbol{\lambda} \boldsymbol{\lambda}^T + \beta \mathbf{I}_p$ where $\boldsymbol{\lambda}$ is a standard Gaussian vector. In particular, it is rotationally invariant, so this equation should hold also for $\mathbf{O}^T \mathbf{F} \mathbf{O}$ where \mathbf{O} is a rotation matrix.

$$(\mathbf{G}^b)^{-1} = z\mathbf{I}_p - \alpha \mathbb{E} \mathbf{O}^T \mathbf{F} \mathbf{O} \left(\mathbf{I}_p - \mathbf{G}^b \mathbf{O}^T \mathbf{F} \mathbf{O} \right)^{-1}, \quad (30)$$

from which

$$(OG^bO^T)^{-1} = zI_p - \alpha \mathbb{E}F (I_p - OG^bO^T F)^{-1}. \quad (31)$$

This must hold for any rotation matrix \mathbf{O} , so this implies that the matrix \mathbf{G} must be proportional to the identity matrix. If we call $g(z)$ the value on the diagonal, equation 29 can be written in scalar form

$$g^{-1}(z) = z - \alpha \frac{1}{p} \sum_{l=1}^p \mathbb{E} \text{Tr} \left[\mathbf{F} (\mathbf{I}_p - g(z) \mathbf{F})^{-1} \right] = z - \alpha \frac{1}{p} \sum_{l=1}^p \mathbb{E} \left[\frac{c_l}{1 - g(z)c_l} \right], \quad (32)$$

where the c_i are the eigenvalues of the F matrix.

A.2 OUTLIER EIGENVALUE

The starting point for the calculation of the outlier eigenvalues is similar, with the exception that we have to consider the full matrix \mathcal{H} to calculate the elements of $\tilde{G}(z)$:

$$\begin{aligned} \tilde{G}_{qq'}^{q_*q'_*}(z) = & \lim_{n \rightarrow 0} \mathbb{E}_{\boldsymbol{\psi}} \int \prod_{a=1}^n \prod_{q=1}^p d\psi_q^a e^{-\frac{1}{2} \sum_a (\psi^a)_<^T (z \mathbf{I}_{pp^*} - \mathcal{H}^s) (\psi^a)_< + \sum_a (\psi^a)_<^T \mathcal{H}^c (\psi^a)_>} \times \\ & \times e^{-\frac{1}{2} \sum_a (\psi^a)_>^T (z \mathbf{I}_{p(N-p^*)} - \mathcal{H}^b) (\psi^a)_>} \psi_{q_*q}^1 \psi_{q'q'}^1. \end{aligned} \quad (33)$$

Here, we introduce the notation $(\psi^a)_{<}$ to denote for each a the pp^* -dimensional vector with components ψ_{iq}^a for $q \in \{1, \dots, p\}, i \in \{1, \dots, p^*\}$, and similarly $(\psi^a)_{>}$ the $p(N - p^*)$ -dimensional vector of components ψ_{iq}^a for $q \in \{1, \dots, p\}, i \in \{p^* + 1, \dots, N\}$. The vectors are flattened in a way that the first p components of $(\psi^a)_{<}$ and $(\psi^a)_{>}$ are respectively $\{\psi_{1q}^a\}_{q=1}^p$ and $\{\psi_{(p^*+1)q}^a\}_{q=1}^p$, the second p components are $\{\psi_{2q}^a\}_{q=1}^p$ and $\{\psi_{(p^*+2)q}^a\}_{q=1}^p$ and so on.

As before, we can calculate this integral using diagrammatic expansion, with the only difference that we cannot average over the first p^* components of the x^μ field, since they appear in F_{qq}' and we cannot simply use Wick's probability theorem. Indicating this time by a curly line the bare propagator between fields with indexes that belong to $(\psi^a)_<$, and with straight lines indexes belonging to $(\psi^a)_>$, we have that the bare propagators are

918 $a, i, q \xrightarrow{\quad} a, i, q \quad g_{quark}^0 = \frac{1}{z}$
 919

920 $i, \mu \xrightarrow{\quad} i, \mu \quad g_{gluon}^0 = \frac{1}{N}$
 921

922 The vertices are instead given by the old one
 923

931 and a new one
 932

939 As before, let us define the self-energy $\tilde{\Sigma}_{qq'}^{q_* q'_*}$ as the sum of all 1PI diagrams connecting the curly
 940 fields with indices q, q_* and q', q'_* . Again interpreting $\tilde{\Sigma}$ as a block matrix, with $(p^*)^2$ blocks of
 941 $p \times p$ -dimensional matrices $\tilde{\Sigma}^{q_* q'_*}$, then we can write a matrix Dyson equation for the resolvent
 942

943
$$\tilde{\mathbf{G}} = \left((\tilde{g}^0)^{-1} \mathbf{I}_{pp^*} - \tilde{\Sigma} \right)^{-1}. \quad (34)$$

 944

945 We expect the matrix $\tilde{\mathbf{G}}$ to be singular when z is equal to the outlier eigenvalue, so a self-consistent
 946 equation can be obtained by imposing the singularity of $(\tilde{g}^0)^{-1} \mathbf{I}_p - \tilde{\Sigma}$.
 947

948 Let us now calculate the self-energy directly, using the same rules we found above, namely that
 949 disconnected and gluon-intersected diagrams are subleading. As we are looking for the self-energy
 950 of the "curly" field, we will necessarily need two vertices of the second kind.
 951

The first term is given precisely by two such vertices
 952

958 Next, we can add a vertex of the first kind to get the diagrams
 959

970 Diagrams of type 3 however are already counted in diagrams of type 1. We could also add two
 971 vertices of the second kind, but we would not obtain 1PI diagrams.

The next diagram is obtained by stacking one more arch to diagram 2, and again we can guess the iterative form of the diagrams that contribute. Summing the weight of all such diagrams, and remembering that $\mathbf{G}^b = g(z)\mathbf{I}_p$, we get that the self-energy is

$$\begin{aligned}\tilde{\Sigma}^{q_*q'_*} &= \frac{1}{N} \sum_{\mu} u_{q_*}^{\mu} u_{q'_*}^{\mu} \left(g(z) \mathbf{F}^{\mu} \mathbf{F}^{\mu} + g^2(z) \mathbf{F}^{\mu} \mathbf{F}^{\mu} \mathbf{F}^{\mu} + \dots \right) = \\ &= \frac{1}{N} \sum_{\mu} u_{q_*}^{\mu} u_{q'_*}^{\mu} \left[g(z) (\mathbf{F}^{\mu})^2 (\mathbf{I}_p - \mathbf{F}^{\mu} g(z))^{-1} \right] \rightarrow \alpha \mathbb{E} u_{q_*} u_{q'_*} \left[g(z) \mathbf{F}^2 (\mathbf{I}_p - \mathbf{F} g(z))^{-1} \right],\end{aligned}\quad (35)$$

where again in the last equation we supposed that the sum concentrates to its mean with respect to the dataset.

Since \mathbf{F} is an even function of u_{q_*} , $\tilde{\Sigma}_{qq'}^{q_*q'_*}$ is 0 for $q_* \neq q'_*$ (and in particular, the expectation will be the same for every index q_*). Using the fact that \mathbf{G}^b is diagonal we can write

$$\tilde{\Sigma}^{q_*q_*} = \alpha \mathbb{E} u_{q_*}^2 \left[g(z) \mathbf{F}^2 (\mathbf{I}_p - \mathbf{F} g(z))^{-1} \right] \quad (36)$$

Again, \mathbf{F} is rotationally invariant, so the same equation should hold for a rotated \mathbf{F}

$$\tilde{\Sigma}^{q_*q_*} = \alpha \mathbb{E} u_{q_*}^2 \left[g(z) \mathbf{O}^T \mathbf{F}^2 \mathbf{O} (\mathbf{I}_p - \mathbf{O}^T \mathbf{F} \mathbf{O} g(z))^{-1} \right] \quad (37)$$

from which

$$\mathbf{O} \tilde{\Sigma}^{q_*q_*} \mathbf{O}^T = \alpha \mathbb{E} u_{q_*}^2 \left[g(z) \mathbf{F}^2 (\mathbf{I}_p - \mathbf{F} g(z))^{-1} \right] \quad (38)$$

For this equation to hold for every rotation matrix \mathbf{O} , the matrix $\tilde{\Sigma}^{q_*q_*}$ must be proportional to the identity. Consequently, we obtain $\tilde{\Sigma}_{qq'}^{q_*q_*} = \tilde{\Sigma}(z) \delta_{qq'} \delta_{q_*q'_*}$. Imposing the singularity of the RHS of equation 34, we get the equation

$$\left(\lambda^* - \alpha \mathbb{E} F_{11} u_1^2 - \tilde{\Sigma}(\lambda^*) \right)^{pp^*} = 0. \quad (39)$$

In other words, the pp^* outliers all coincide with a value λ^* which can be found by solving the self-consistent equation

$$\begin{aligned}\lambda^* &= \alpha \mathbb{E} u_1^2 \frac{1}{p} \text{Tr} \left[\mathbf{F} \left(1 + g(\lambda^*) \mathbf{F} (\mathbf{I}_p - \mathbf{F} g(\lambda^*))^{-1} \right) \right] = \alpha \frac{1}{p} \mathbb{E} u_1^2 \text{Tr} \left[\mathbf{F} \left(\mathbb{I} - \mathbf{F} g(\lambda^*) \right)^{-1} \right] \\ &= \alpha \mathbb{E} u_1^2 \frac{1}{p} \sum_{l=1}^p \frac{c_l}{1 - g(\lambda^*) c_l} \equiv \Xi(\lambda^*).\end{aligned}\quad (40)$$

Combining this last expression with equation 32, one can rewrite a self-consistent equation for $g^* \equiv g(\lambda^*)$:

$$\frac{1}{g^*} = \alpha \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{c_i (u_1^2 - 1)}{1 - g^* c_i} \right]. \quad (41)$$

B ANALYTICAL COMPUTATIONS FOR THE BBP

In the large dimensional limit, in order to obtain an expression for the left edge of the spectrum bulk we define the inverse function $z(g)$ of the resolvent $g(z)$, using equation 32, as

$$z(g) = \frac{1}{g} + \alpha \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{c_i}{1 - g c_i} \right]. \quad (42)$$

The density of eigenvalues $\rho(\lambda)$ of the spectrum bulk as a function of $z = \lambda$ will be obtained as the imaginary part of the g solution to equation 42. In particular the edges correspond to the $z = \lambda$ where

a non null imaginary part develops, which can occur by means of two different mechanisms. First: the domain of a g real is constrained by the requirement that all denominators in equation 42 do not vanish. In particular equation 42 is well-defined for $g \in \mathbb{R} \setminus (\text{supp}(1/c) \cup \{0\})$, where $\text{supp}(1/c)$ denotes the support of $1/c$ across all c_i , i.e., $\text{supp}(1/c) = \bigcup_{i=1}^p \left\{ \frac{1}{x} \mid x \in \text{supp}(c_i) \right\}$. Assuming each c_i has support within $[c_{i,\min}, c_{i,\max}]$, we define $c_{\min} = \min_i(c_{i,\min})$ and $c_{\max} = \max_i(c_{i,\max})$. If $c_{\min} < 0$ and $c_{\max} > 0$ (which will correspond to our case), then

$$g \in \left(\frac{1}{c_{\min}}, 0 \right) \cup \left(0, \frac{1}{c_{\max}} \right) \equiv (g_{\min}, 0) \cup (0, g_{\max}). \quad (43)$$

Second: within this domain it can occur that $\frac{dz}{dg}$ vanishes. Beyond that point the solution to equation 42 cannot be real and a non zero imaginary part develops with a square-root behaviour. The second case corresponds to the standard square-root singularity at the edge of an eigenvalue distribution.

Sharp edge If there exists a point $g_-^{sh} \in (g_{\min}, 0)$ at which the derivative of the inverse function

$$\frac{dz}{dg} = -\frac{1}{g^2} + \alpha \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{c_i^2}{(1 - gc_i)^2} \right] \quad (44)$$

vanishes, the left edge of the spectrum can be obtained by applying the inverse function to this value, i.e., $\lambda_-^{sh} \equiv z(g_-^{sh})$. The corresponding self-consistent condition is

$$g_-^{sh} = - \left\{ \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{\alpha c_i^2}{(1 - g_-^{sh} c_i)^2} \right] \right\}^{-1/2}. \quad (45)$$

In this case, the left edge of the spectrum is *sharp*, meaning that the derivative of the eigenvalue density diverges as λ approaches the edge from the right. This behavior arises through a standard square-root singularity at the edge:

$$\rho(\lambda) \underset{\lambda \rightarrow \lambda_-^{sh}}{\propto} (\lambda - \lambda_-^{sh})^{1/2}. \quad (46)$$

Smooth edge If no solution $g_-^{sh} \in (g_{\min}, 0)$ exists such that the derivative of $z(g)$ vanishes, that is, if equation 45 cannot be satisfied within the domain of definition—then the left edge of the bulk spectrum is determined by the boundary of the domain itself. In this case, the edge of the resolvent is located at

$$g_-^{sm} = g_{\min} = \frac{1}{c_{\min}}, \quad (47)$$

and the corresponding spectral edge is given by $\lambda_-^{sm} = z(g_-^{sm})$. This edge is referred to as *smooth*, in the sense that the derivative of the spectral density $\rho(\lambda)$ vanishes as $\lambda \rightarrow \lambda_-^{sm}$. In our setting, this occurs via an exponential decay of the spectral density near the edge:

$$\rho(\lambda) \underset{\lambda \rightarrow \lambda_-^{sm}}{\propto} \exp \left[-\frac{A}{(\lambda - \lambda_-^{sm})} \right], \quad (48)$$

for some constant $A > 0$ (see Bocchi et al. (2025a) for more details about the derivation and the explicit form of the constants), indicating an essential singularity at the edge. In the case of our teacher-student setup, the eigenvalues c_i are

$$\begin{cases} c_1 = \frac{2}{p} \frac{1}{a + \frac{1}{p^*} \sum_{j=1}^{p^*} u_j^2} \left(\frac{3}{p} \sum_{i=1}^p \lambda_i^2 - \frac{1}{p^*} \sum_{j=1}^{p^*} u_j^2 \right) \\ c_{2,\dots,p} = \frac{2}{p} \frac{1}{a + \frac{1}{p^*} \sum_{j=1}^{p^*} u_j^2} \left(\frac{1}{p} \sum_{i=1}^p \lambda_i^2 - \frac{1}{p^*} \sum_{j=1}^{p^*} u_j^2 \right), \end{cases} \quad (49)$$

which have the same support $c_i \in (-2/p, +\infty) \forall i \in [1, p]$. This implies that for our setting $g_{\min} = -p/2$. As we increase α , for fixed values of p , p^* and a , the left edge goes from being smooth to being sharp. That is, for α smaller than some value α_c , the left edge is obtained from equation 47,

1080 while for larger α it is obtained from equation 45. The precise point in which this transition takes
 1081 places, α_c , can be determined by imposing the equation
 1082

$$1083 -\frac{p}{2} = \left\{ \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{\alpha_c c_i^2}{(1 + \frac{p}{2} c_i)^2} \right] \right\}^{-1/2}. \quad (50)$$

1084
 1085

1086 Depending on the student and teacher number of nodes p , p^* , as well as the normalizing constant a ,
 1087 either type of transition can occur, as illustrated in Figure 5. In what follows, we present results for
 1088 $p^* = 1$, but we verify in section D of the appendix that varying p^* does not qualitatively alter the
 1089 overall picture.

Figure 5: In Panel 5a, a continuous BBP is shown: the α_{BBP} corresponds to the crossing of the $g^*(\alpha)$ and $g_-(\alpha)$ curves. In Panel 5b, a discontinuous BBP is shown: the α_{BBP} corresponds to the crossing of the $g^*(\alpha)$ and $g_{\min}(\alpha)$ curves.

Infinite overparametrization limit In this paragraph we consider the limit of infinite overparametrization, $p \rightarrow \infty$. This limit is taken after the $N \rightarrow \infty$ limit, so we remain in the regime where $p \ll N$. We begin by computing the critical value α_c below which the transition is discontinuous. For large p we can approximate equation 50 as

$$1111 \quad \frac{p}{2} \approx \left\{ \alpha_c \mathbb{E} \left[\frac{4}{p^2} \cdot \frac{\left(1 - \frac{1}{p^*} \sum_l u_l^2\right)^2}{(1+a)^2} \right] \right\}^{-1/2}, \quad (51)$$

1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

which yields

$$1117 \quad \alpha_c = \frac{p^*(a+1)^2}{2}. \quad (52)$$

1118

We now turn to the BBP threshold $\alpha_{\text{BBP}}^{p=\infty}(a)$ in the $p \rightarrow \infty$ limit. This expression will be valid only for values of a such that $\alpha_{\text{BBP}}^{p=\infty}(a) < \alpha_c(a)$. Evaluating equation 41 at $g^* = -p/2$, we obtain

$$1122 \quad -\frac{p}{2} = \left\{ \alpha_{\text{BBP}}^{p=\infty} \mathbb{E} \left[\frac{1}{p} \sum_{i=1}^p \frac{c_i(u_1^2 - 1)}{1 + \frac{p}{2} c_i} \right] \right\}^{-1}, \quad (53)$$

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

which leads to the solution

$$1126 \quad \alpha_{\text{BBP}}^{p=\infty} = \frac{p^*(a+1)}{2}. \quad (54)$$

1127
 1128
 1129
 1130
 1131
 1132
 1133

Note that for all $a > 0$, we have $\alpha_{\text{BBP}}^{p=\infty}(a) < \alpha_c(a)$, implying that the BBP transition is always discontinuous in the $p \rightarrow \infty$ limit. Furthermore, for general p^* , the minimum of $\alpha_{\text{BBP}}^{p=\infty}(a)$ occurs at $a = 0$ and is equal to $p^*/2$, matching the information-theoretic weak recovery threshold identified in Maillard et al. (2024). Note that our setting is far from being Bayes optimal setting as in Maillard et al. (2024) since the overparametrized student, by definition, does not match the teacher structure. Yet, this result shows how powerful overparametrization can be, as in the large overparametrization limit, even simply extracting spectral information from the Hessian at random configurations, the optimal weak recovery threshold is achieved.

1134 **C DERIVATION OF THE OVERLAP**

1135

1136 In the general multi-index setting, each isolated eigenvalue may correspond to an alignment between
1137 a specific student node \mathbf{w}_k and a teacher node \mathbf{w}_l^* . We denote the corresponding eigenvectors by
1138 $\mathbf{v}^{kl} \in \mathbb{R}^{pN}$ and reshape them into matrices $\mathbf{V}^{kl} \in \mathbb{R}^{p \times N}$, where the first N entries of \mathbf{v}^{kl} form the
1139 first row, and so on.

1140 We define the overlap matrix:

1141
$$1142 \mathbf{M}^{kl} = \mathbf{V}^{kl}(\mathbf{W}^*)^\top \in \mathbb{R}^{p \times p^*}, \quad (55)$$
1143

1144 where $\mathbf{W}^* \in \mathbb{R}^{p^* \times N}$ is the matrix whose rows are the teacher weight vectors. Ideally, \mathbf{M}^{kl} contains
1145 a single non-zero entry m at position (k, l) , i.e., $(\mathbf{M}^{kl})_{k'l'} = m_{kl} \delta_{k,k'} \delta_{l,l'}$.

1146 However, the output of the student network in equation 2 can be equivalently written as

1147
$$1148 \hat{y}(\mathbf{x}^\mu) = (\mathbf{x}^\mu)^\top \frac{\mathbf{W}^\top \mathbf{W}}{p} \mathbf{x}^\mu, \quad (56)$$
1149

1150 where $\mathbf{W} \in \mathbb{R}^{p \times N}$ is the matrix whose rows are the student weight vectors. This expression reveals
1151 that the output is invariant under rotations of the matrix \mathbf{W} in the p -dimensional space. That is,
1152 for any orthogonal matrix $\mathbf{O} \in \mathbb{R}^{p \times p}$, the transformation $\mathbf{W} \mapsto \mathbf{OW}$ leaves the output function
1153 unchanged. A similar argument applies to the teacher network.

1154 This rotational invariance implies that the student and teacher configurations are only identifiable up
1155 to orthogonal transformations, provided that the norms of the student nodes are unconstrained. As a
1156 consequence, the overlap matrix observed in practice takes the form

1157
$$1158 \mathbf{M}^{kl} = \mathbf{OV}^{kl}(\mathbf{W}^*)^\top \tilde{\mathbf{O}}^\top, \quad (57)$$
1159

1160 where $\mathbf{O} \in \mathbb{R}^{p \times p}$ and $\tilde{\mathbf{O}} \in \mathbb{R}^{p^* \times p^*}$ are random orthogonal matrices². The scalar overlap m can
1161 then be extracted using the Frobenius norm:

1162
$$1163 m_{kl} = \sqrt{\sum_{i,j} (M_{ij}^{kl})^2}. \quad (58)$$
1164

1165 Furthermore, due to the symmetry of the problem, all the overlaps will be equivalent:

1166
$$1167 m_{kl} = m \quad \text{for } k = 1, \dots, p, \quad l = 1, \dots, p^*. \quad (59)$$
1168

1169 We now derive an analytic equation for m . Let us again choose the teacher vectors such that they
1170 are the first p^* canonical directions, as we already did in the previous section. The starting point is
1171 to write the resolvent as

1172
$$1173 \mathbf{G}(z) = (z\mathbf{I}_{pN} - \mathcal{H})^{-1} = \sum_{i=1}^{pN} \frac{\mathbf{v}_i \mathbf{v}_i^T}{z - \lambda_i} \quad (60)$$
1174

1175 where $\{\lambda_i, \mathbf{v}_i\}_{i=1}^{pN}$ is the set of eigenvalues/eigenvectors. Without loss of generality, let us assume
1176 that we are in a base in which the first eigenvector is aligned with the first teacher. That is, if we call
1177 $\bar{\mathbf{e}}_1$ the first canonical direction in a pN dimensional space, the overlap is $m = \mathbf{v}_1 \cdot \bar{\mathbf{e}}_1$. Multiplying
1178 equation 60 on the right and on the left by $\bar{\mathbf{e}}_1$, and taking the limit $\lambda \rightarrow \lambda^*$ we get that

1179
$$1180 \lim_{z \rightarrow \lambda^*} \underbrace{\bar{\mathbf{e}}_1^T (z\mathbf{I}_{pN} - \mathcal{H})^{-1} \bar{\mathbf{e}}_1}_{\tilde{G}_{11}^{11}(z)} = \lim_{z \rightarrow \lambda^*} \frac{m^2}{z - \lambda^*} \quad (61)$$
1181

1182

1183 ²Note that such orthogonal transformations, while preserving the output, don't preserve the individual norms
1184 of the network nodes. If we apply this rotation to the teacher vector, which is taken to be normalized such that
1185 each node lies on the $S_{N-1}(\sqrt{N})$ sphere, such normalization property is lost. However, since the dataset
1186 is invariant under this rotation, the student cannot infer this normalization from the data, and will align to a
1187 randomly rotated teacher $\tilde{\mathbf{O}}\mathbf{W}^*$.

1188 The square overlap is the residue of the function $\tilde{G}_{11}^{11}(z)$ at the pole $z = \lambda^*$. Using the relation found
 1189 in the previous section $\tilde{G}_{11}^{11}(z) = (z - \Xi(z))^{-1}$, it can be calculated as
 1190

$$1192 \quad m^2 = \lim_{z \rightarrow \lambda^*} \frac{z - \lambda^*}{z - \Xi(z)} \quad (62)$$

1195 where we remind the reader that
 1196

$$1198 \quad \Xi(\lambda) = \alpha \frac{1}{p} \sum_{i=1}^p \mathbb{E} u_1^2 \frac{c_i}{1 - g(\lambda)c_i}. \quad (63)$$

1202 This limit gives the undetermined form $0/0$, but can be calculated using l'Hopital's rule
 1203

$$1205 \quad m^2 = \lim_{z \rightarrow \lambda^*} \frac{\partial_z(z - \lambda^*)}{\partial_z(z - \Xi(z))} = \frac{1}{1 - \partial_z \Xi(z)|_{z=\lambda^*}} \quad (64)$$

1209 D DEPENDENCY ON p^* AND UNDERPARAMETRIZATION

1212 In this appendix we consider cases where $p^* \neq 1$. In figure 6 we show the equivalent of figure 2 for
 1213 $p^* = 2$. As we can see the behaviour is qualitatively similar. For the values of p we chose α_{BBP} is
 1214 always monotonically decreasing as a function of p , although we don't expect this to hold for larger
 1215 values of p .

1235 Figure 6: α_{BBP} as a function of a for $p^* = 2$ for various values of p . In the inset we show α_{BBP}
 1236 as a function of p for a fixed value of $a = 0.5$

1240 In figure 7 we explore the effect of underparametrization, by keeping a and p fixed and plotting
 1241 α_{BBP} as a function of p^* . Perhaps unsurprisingly we observe that α_{BBP} increases, making the
 problem increasingly harder as the network is more underparametrized.

Figure 7: α_{BBP} as a function of p^* for $p = 1$ and $a = 0.7$

E EXTENSION TO OTHER NON-LINEARITIES

In this section we consider the extension to arbitrary non-linearities of the learning task. We consider a generic non-linear activation function $\sigma(x)$. The teacher and student outputs become

$$\hat{y}(\mathbf{x}^\mu) = \frac{1}{p} \sum_{l=1}^p \sigma(\mathbf{w}_l \cdot \mathbf{x}^\mu) \equiv \frac{1}{p} \sum_{l=1}^p \sigma(u_l^\mu) \quad (65)$$

$$y(\mathbf{x}^\mu) = \frac{1}{p^*} \sum_{l=1}^{p^*} \sigma(\mathbf{w}_l^* \cdot \mathbf{x}^\mu) \equiv \frac{1}{p^*} \sum_{l=1}^{p^*} \sigma(\lambda_l^\mu), \quad (66)$$

The expression for the Hessian becomes

$$(\mathcal{H}_{qq'})_{ij} = \sum_{\mu=1}^{\alpha N} F_{qq'}^\mu x_i^\mu x_j^\mu \quad F_{qq'}^\mu = \frac{1}{p} \sum_{\mu} \left[\frac{\frac{1}{p} \sigma'(u_q^\mu) \sigma'(u_{q'}^\mu) + \delta_{qq'}(y^\mu - \hat{y}^\mu) \sigma''(u_q^\mu)}{a + y^\mu} \right], \quad (67)$$

Although repeating the theoretical derivation for such a matrix is beyond the scope of this work, let us comment that we expect a qualitatively similar behavior to the one outlined above. To support this claim, we show in figure 8 the overlap of the smallest eigenvector with the teacher \mathbf{w}^* for two non-linear activation functions, $\sigma(x) = (1 + e^{-x})^{-1}$ the sigmoid function and $\sigma(x) = \tanh(x)$ the tanh function. In the both cases we choose $p^* = 1$ and $p = 3$. Let us note that, while the denominator in the loss function ($a + y$) is a reasonable choice for a positive activation function, it is not for a function that can become equal to $-a$. In the case $\sigma(x) = \tanh(x)$ we choose a large value of a , such that the loss we are studying effectively reduces to the simple MSE loss. As we can see in both cases an outlier that is correlated with the teacher emerges, thus showing that this phenomenon is not restricted to the quadratic activation function.

Figure 8: Overlap between smallest eigenvector of the Hessian and the true signal as a function of α for a sigmoid activation function (left) and for the tanh activation function (right). For the sigmoid activation $a = 1$, while to avoid the divergence of the denominator in the tanh case we set $a = 50$. Points are averaged over $n_{runs} = 60$ runs.

1296 F CONNECTION TO DYNAMICS
1297
1298
1299

1300 To understand how the static BBP transition at initialization correlates with gradient descent dynamics,
1301 we performed simulations across different values of p , N , and a , keeping $p^* = 1$ for simplicity.
1302 We selected two values of a : $a = 0.1$, where the transition is continuous for all p , and $a = 2.0$,
1303 where it is discontinuous. Each simulation ran for 20,000 gradient descent steps, with the learning
1304 rate chosen so that the average initial update per student component was of order 0.1.

1305 At initialization, the overlaps between student and teacher nodes, defined in equation 10, are all
1306 equivalent, and one could simply plot their average across all student-teacher pairs. However, the
1307 dynamics can break this symmetry and change student norms, consequently altering their relative
1308 importance. For example, condensation can occur: in the simple case of $p = 2$ and $p^* = 1$ one
1309 student could perfectly align with the teacher ($m_{11}^2 = 1$) and have order one norm, while the other
1310 has negligible norm and is uncorrelated ($m_{12}^2 = 0$). Such a network can achieve zero generalization
1311 error, yet a simple average of the magnetizations would yield $\langle m^2 \rangle = 0.5$. Since network perfor-
1312 mance is best captured by the most aligned student, we plot the maximum overlap as a proxy for
1313 final performance versus α .

1314 The results, shown in Figures 9 and 10, demonstrate that the BBP transition at initialization cor-
1315 relates with the point where dynamics begin to yield networks that perform better than random
1316 guesses, even in overparameterized settings. This earlier transition enables improved performance
1317 with fewer samples. The plots also suggest that as N increases, the transition point shifts rightward,
1318 approaching the (currently unknown) BBP transition of the threshold states, which are the config-
1319 urations that ultimately trap the dynamics for large N . Thus, while these preliminary results align
1320 with our intuition, a complete characterization of the BBP transition at the threshold states remains
1321 necessary to confirm this picture.

Figure 9: Maximum squared magnetization m^2 vs. α for $a = 0.1$. The BBP transition at initialization
correlates with the onset of weak recovery.

Figure 10: Maximum squared magnetization m^2 vs. α for $a = 2.0$. Also in the discontinuous case, the BBP transition correlates with the onset of weak recovery.