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Abstract001

The widespread adoption of cloud-based pro-002
prietary large language models (LLMs) has in-003
troduced significant challenges, including op-004
erational dependencies, privacy concerns, and005
the necessity of continuous internet connectiv-006
ity. In this work, we introduce an LLMOps007
pipeline, “LlamaDuo”, for the seamless migra-008
tion of knowledge and abilities from service-009
oriented LLMs to smaller, locally manageable010
models. This pipeline is crucial for ensuring011
service continuity in the presence of opera-012
tional failures, strict privacy policies, or offline013
requirements. Our LlamaDuo involves fine-014
tuning a small language model against the ser-015
vice LLM using a synthetic dataset generated016
by the latter. If the performance of the fine-017
tuned model falls short of expectations, it is au-018
tomatically improved through additional fine-019
tuning using extra similar data generated by020
the service LLM. This multi-turn process guar-021
antees that the smaller model can eventually022
match or even surpass the service LLM’s capa-023
bilities in specific downstream tasks, offering a024
practical and scalable solution for managing AI025
deployments in constrained environments. Ex-026
tensive experiments with leading-edge LLMs027
are conducted to demonstrate the effectiveness,028
adaptability, and affordability of LlamaDuo029
across various downstream tasks. Our pipeline030
implementation is anonymously available at031
https://anonymous.4open.science/r/llamaduo.032

1 Introduction033

The emergence of LLMs has significantly trans-034

formed a myriad of tasks and domains (Chowdhery035

et al., 2023; Gemini Team, 2023; Achiam et al.,036

2023; Touvron et al., 2023; Zhao et al., 2023; Jiang037

et al., 2024a,b). In particular, cloud-based propri-038

etary LLMs, referred to as service models, such as039

GPT-4 (Achiam et al., 2023), Gemini 1.5 (Gemini040

Team, 2023), and Claude 3 (Anthropic, 2024), have041

exhibited exceptional capabilities when compared042

to their smaller, open-source counterparts (Chang043

et al., 2024). A notable survey involving 70 AI in- 044

dustry leaders from diverse enterprises reveals that 045

approximately 80% of the enterprise market share 046

is dominated by closed-source platforms, with a 047

significant portion of this share attributed to Ope- 048

nAI (Wang and Xu, 2024). 049

However, the increasing reliance on cloud-based 050

service models presents significant challenges in 051

terms of operational dependencies (Achiam et al., 052

2023), privacy concerns (Wu et al., 2024), and 053

accessibility challenges (Ray, 2023). These chal- 054

lenges manifest in various ways, including poten- 055

tial service disruptions, heightened risks to data 056

privacy due to the transmission of sensitive infor- 057

mation to external providers, mandatory internet 058

connectivity for utilization, and inconsistencies 059

stemming from updates to service providers’ LLMs 060

(Hadi et al., 2023; Zhao et al., 2023). Additionally, 061

the transition from proof-of-concept (PoC) devel- 062

opment utilizing service LLMs to deployment with 063

local models frequently leads to diminished prompt 064

effectiveness owing to differences between models, 065

subsequently resulting in a suboptimal experience 066

for end-users (Naveed et al., 2023; Lyu et al., 2024). 067

To address these concerns and ensure consistent ser- 068

vice delivery, it is imperative to develop smaller, 069

locally manageable LLMs that can operate inde- 070

pendently of cloud-based infrastructures. 071

Recent studies have demonstrated that the strate- 072

gic fine-tuning of smaller and open-source LLMs 073

with high-quality synthetic data (Wang et al., 074

2023b; Xu et al., 2023) generated by service LLMs 075

can achieve performances that are on par with, or 076

even surpass, those of proprietary LLMs in specific 077

downstream tasks (Chiang et al., 2023; Taori et al., 078

2023a; Luo et al., 2023; Abdin et al., 2024; Zhou 079

et al., 2024). Motivated by these findings, we in- 080

troduce an LLMOps pipeline namely LlamaDuo 081

designed to automatically facilitate the seamless 082

migration from service-oriented LLMs to smaller, 083

locally manageable models without the need for hu- 084
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man intervention. Our pipeline begins with utiliz-085

ing a task-specific initial dataset, referred to as the086

coverage dataset, to fine-tune a smaller open-source087

LLM. The performance of fine-tuned local LLMs088

is evaluated using a service LLMs-as-a-Judge strat-089

egy (Zheng et al., 2024). If the performance of090

the fine-tuned model falls short of expectations, we091

improve it by iteratively fine-tuning on additional092

synthetic data generated by the service LLM. Lla-093

maDuo ensures that the smaller model is capable of094

eventually matching or even surpassing the service095

LLM’s performance in specific downstream tasks,096

offering superior long-term economic advantages.097

Therefore, it presents a practical and scalable solu-098

tion for managing AI deployments in environments099

where resources are limited. We conduct exten-100

sive experiments and analysis across a range of101

typical tasks, with most popular service such as102

GPT4o, Claude 3 Sonnet, and Gemini 1.5 Flash,103

as well as local LLMs, including Gemma 2B and104

7B, Mistral 7B, and LLaMA3 8B, to demonstrate105

that our LlamaDuo guarantees the smaller local106

LLMs possesses the potential to eventually match107

or even exceed the performance of service LLMs108

in specific downstream tasks. To summarize, our109

contributions are as follows:110

• We introduce LlamaDuo, an efficient and af-111

fordable LLMOps pipeline designed to facili-112

tate seamless migration from service-oriented113

LLMs to smaller, locally manageable models114

without human intervention, ensuring service115

continuity in constrained environments.116

• We employ a multi-turn approach using task-117

specific synthetic data generated by service118

LLMs to ensure that LlamaDuo empowers the119

smaller model to eventually match or even120

exceed the performance of the service LLM121

in specific downstream tasks.122

• We substantiate the pipeline’s robust perfor-123

mance and adaptability in real-world context124

through comprehensive experiments across a125

range of typical tasks, employing most popu-126

lar service LLMs as synthetic data generators127

and judges for well-know small local LLMs.128

• We emphasize the significant economic advan-129

tages of LlamaDuo for investing in smaller,130

locally manageable LLMs and their deploy-131

ment for sustained use, as opposed to the tran-132

sient benefits derived from the token-based133

API usage of service LLMs.134

2 Related Work 135

2.1 Alignment with Instruction Tuning 136

LLMs pretrained on massive corpora demonstrate 137

remarkable capabilities across a wide range of tasks 138

(Zhao et al., 2023; Cai et al., 2024; Yoo et al., 139

2024; Wang et al., 2024a). Despite their capa- 140

bilities, a notable challenge with LLMs is their 141

misalignment with user instructions, which limits 142

their practical application in real-world scenarios 143

(Xu et al., 2023; Wang et al., 2023b). The misalign- 144

ment stems from the initial pretraining objective 145

of LLMs, which focuses on minimizing genera- 146

tion errors rather than adhering to human instruc- 147

tions (Ouyang et al., 2022; Chung et al., 2024). To 148

solve the mismatch, instruction tuning is proposed, 149

which enables LLMs to complete diverse tasks 150

from instructions without significant computational 151

resources or alterations to the model’s architec- 152

ture(Longpre et al., 2023; Muennighoff et al., 2023; 153

Taori et al., 2023b). Specifically, instruction tun- 154

ing involves supplementary training of pretrained 155

LLMs with datasets structured as instruction-output 156

pairs (Zhang et al., 2023). The efficacy of instruc- 157

tion tuning is largely contingent upon the quality 158

and diversity of the instruction datasets employed 159

(Wang et al., 2024b). However, the process of cu- 160

rating high-quality, diversified data is fraught with 161

challenges, including the extensive time required 162

for creation, privacy concerns, high costs, and the 163

need for substantial human labor (Xu et al., 2023). 164

In response to these challenges, recent studies have 165

explored innovative methods for constructing in- 166

struction datasets, notably the utilization of LLMs 167

for data synthesis (Liu et al., 2024). 168

2.2 LLM-synthetic Instruction Data 169

LLMs have demonstrated an unprecedented ability 170

to comprehend and execute natural language in- 171

structions (Ouyang et al., 2022; Chung et al., 2024; 172

Touvron et al., 2023). This ability is attributed to 173

the process of training LLMs using substantial in- 174

struction datasets (Wang et al., 2023b). However, 175

acquiring massive instruction datasets is challeng- 176

ing due to data scarcity, privacy issues, low data 177

quality, and prohibitive costs associated with man- 178

ual data curation (Abay et al., 2019; Xu et al., 2023; 179

Liu et al., 2024). Given these constraints, recent 180

studies probe into utilizing LLMs to automatically 181

generate synthetic instruction data (Whitehouse 182

et al., 2023; Dai et al., 2023; Taori et al., 2023b). 183

Specifically, these approaches involve prompting 184
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powerful LLMs with limited seed data to gener-185

ate additional synthetic data. These data are sub-186

sequently employed to fine-tune smaller models,187

aiming to transfer knowledge to small LLMs and188

enhance their performance (Wang et al., 2023a).189

Leveraging LLMs to generate data can signifi-190

cantly reduce the costs and time for data curation191

(Liu et al., 2024), while simultaneously improv-192

ing the efficacy of the fine-tuned models for des-193

ignated downstream tasks (Yang et al., 2020; Puri194

et al., 2020; Guo et al., 2023; Samuel et al., 2023;195

Schlegel et al., 2023).196

3 LLMOps Pipeline: LlamaDuo197

In this section, we elaborate on the details of the198

proposed LlamaDuo, which are depicted in Fig-199

ure 1. This LLMOps pipeline aims to ensure200

service LLMs continuity by transitioning knowl-201

edge and abilities from service-oriented LLMs to202

smaller, locally manageable LLMs without the203

need for human intervention.204

3.1 Coverage Dataset205

Users interact with service LLMs through prompt206

engineering efforts. The historical trials composed207

of the user input prompt and the responses of ser-208

vice LLMs, and potential errors will be recorded209

and saved in local storage. Subsequently, users an-210

notate and collect the most satisfied prompt and211

response pairs conformed with their real-world212

use cases. The resulting instruction dataset is213

termed as coverage dataset, denoted as D(0) :=214

{I(0)i ,R(0)
i }Ni=1, and split as train and test subsets215

by ratio Φ. Here, I(0)i denotes the i-th instruc-216

tion (prompt) in D(0), R(0)
i is the corresponding217

response for the i-th instruction, and N is the num-218

ber of samples inD(0). Since coverage dataset is of219

high quality and satisfying the user’s intent in real-220

world context, the train subsets | D(0)
train |= Φ ·N221

will be served as seeds for synthetic datasets gener-222

ation, while the test subset | D(0)
test |= (1− Φ) ·N223

is reserved for performance evaluation of the fine-224

tuned local LLMs.225

3.2 Fine-tuning226

To efficiently and effectively adapt the local model227

to specific downstream task(s), we finetune the lo-228

cal LLM with the supervised learning paradigm on229

high-quality instruction data. At the initial cycli-230

cality of the pipeline, the selected local LLM is231

fine-tuned on the train subsets D(0)
train of the cov- 232

erage dataset, obtaining the fine-tuned model π(0). 233

At subsequent cyclicality t, if the performance of 234

fine-tuned model does not reach or surpass the 235

predetermined evaluation threshold ε of specific 236

tasks, the local LLM π(t) will be continuously fine- 237

tuned on the increasing number of synthetic data 238

{D(1)
synth,D

(2)
synth, . . . ,D

(t−1)
synth} generated from ser- 239

vice LLMs with D(0)
train as seed dataset. Conse- 240

quently, when t ≥ 1, the objective of the fine- 241

tuning phase can be formulated as 242

LSFT(π(t),D(t)) = −E
[
logPπ(t−1)(R(t) | I(t))

]
,

(1) 243

where R(t) ∼ {D(0)
train, {D

(τ)
synth}

t−1
τ=1} and I(t) ∼ 244

D(0)
train. 245

3.3 Batch Inference 246

After the fine-tuning stage, the fine-tuned local 247

model is prompted with prompts I(0) sampled from 248

the test subsets D(0)
test of the coverage dataset to 249

produce corresponding response R̂ ∼ π(t)(R(0) | 250

I(0)). To improve the diversity and robustness 251

of responses, the local model generates a batch 252

of K responses {R̂1, R̂2, . . . , R̂K} for each given 253

prompt I(0). Totally, it will construct prompt and 254

responses pairs {(I(0)i , R̂i)}(1−Φ)·N ·K
i=1 . Formally, 255

R̂k ∼ π(t)(R(0) | I(0)), (2) 256

where k ∈ {1, 2, . . . ,K}, I(0) ∼ D(0)
test. 257

3.4 Evaluation 258

In the evaluation stage, we employ “service 259

LLMs-as-judge”, denoted as ELLM(·), to con- 260

duct performance evaluation of local model on 261

{(I(0)i , R̂i)}(1−Φ)·N ·K
i=1 . Following the works 262

(Zheng et al., 2024; Yuan et al., 2024), the 263

service LLMs evaluate each response triple 264

(I(0), R̂,R(0)), comprising prompt, the corre- 265

sponding generated response, and the ground truth, 266

by M times with pairwise comparison and single 267

answer grading strategies. This evaluation process 268

guarantees the trustworthy and reduces the inher- 269

ent bias of results. Moreover, when employing 270

LLMs as evaluators, the evaluation metrics can 271

be more flexibly adapted to specific tasks, along 272

with a thorough evaluation guide. In this paper, 273

we measure the similarity between R̂ and R(0), 274

and how precise (I(0), R̂) the responses generated 275

by the local LLM answer the given instructions. 276
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Figure 1: The LLMOps pipeline namely LlamaDuo for migrating from service LLMs to small-scale local LLMs
involves three phases. In the Development/PoC phase, 1⃝ users manually engineer prompts to interact with service
LLMs and 2⃝ collect satisfying (prompt, response) pairs into train and test datasets. In the Alignment phase, 3⃝
local LLMs are aligned with the train dataset, 4⃝ tested on the test dataset, and 5⃝ evaluated by service LLMs.
6⃝ Synthetic data is generated iteratively until the performance of the aligned model meets a threshold. In the

Deployment phase, 7⃝ the satisfactory model is deployed in constrained environments.

These two metrics are provided simultaneously277

through a prompt, as shown in Figure 5 of Ap-278

pendix A. Therefore, {(I(0)i , R̂i,R(0)
i )}(1−Φ)·N ·K

i=1279

invokes service LLMs to perform evaluation by280

(1− Φ) ·N ·K ·M times. Subsequently, the eval-281

uation results can be leveraged according to the282

intention of the operator performing this LLMOps283

pipeline. For example, actions can be taken to284

increase the reliability of service LLM as an eval-285

uator by calculating the mean or median. In this286

study, we adopt the mean score Vπ(t) and coverage287

percentage Cπ(t) with ζ score as evaluation results.288

Here, the coverage percentage Cπ(t) indicates the289

proportion of responses that have met or exceeded290

the quality benchmark. Formally,291

Vπ(t) =
1

(1− Φ) ·N ·K

(1−Φ)·N ·K∑
j=1

V j

π(t) , (3)292

Cπ(t) =
1

(1− Φ) ·N ·K

(1−Φ)·N ·K∑
j=1

1(V j

π(t) ≥ ζ),

(4)

293

V j

π(t) =
1

M

M∑
m=1

ELLM(prompt(eval), dj), (5)294

dj ∼ {(I(0)i , R̂i,R(0)
i )}(1−Φ)·N ·K

i=1 , (6)295

where Vπ(t) and Cπ(t) denote the performance of296

local LLM at t-th cyclicality, 1(·) is an indica-297

tor function, ζ denotes a threshold score of Cπ(t) ,298

prompt(eval) is the system prompt used for LLM-299

as-a-Judge.300

3.5 Data Synthesis 301

If the performance of fine-tuned local LLM Vπ(t) 302

or Cπ(t) fails to reach or surpass the predetermined 303

evaluation threshold ε of specific tasks, it indi- 304

cates that fine-tuned local LLM’s capabilities are 305

insufficient for the tasks at hand. Thus, the lo- 306

cal LLM cannot yet serve as a substitute for the 307

service LLM and necessitates further refinement. 308

To achieve this, we utilize service LLMs to gen- 309

erate additional synthetic datasets for fine-tuning 310

local LLM in the next cyclicality. To maintain the 311

consistency of data distribution of coverage dataset 312

D(0) constructed from real-world scenarios, we em- 313

ploy the train subsets D(0)
train as seeds and apply the 314

same framework (Wang et al., 2023b; Taori et al., 315

2023a) for synthetic dataset generation. During 316

synthetic dataset generation, we perform data dedu- 317

plication to exclude identical samples from D′ = 318

{D(0)
train, {D

(1)
synth,D

(2)
synth, . . . ,D

(t−1)
synth}} and filter 319

out low-quality samples based on carefully de- 320

signed rules. Finally, we conduct rigorous data 321

decontamination for the synthetic dataset to remove 322

samples that closely resemble those in the test sub- 323

set D(0)
test of the coverage dataset. Formally, the 324

data synthesis stage can be formulated as 325

D(t)
synth ←

⋃
ψ(D(t)

synth,D
′,D(0)

test), (7) 326

D(t)
synth ∼ SLLM(prompt(synth), seed), (8) 327

seed ∼ D(0)
train, for Vπ(t) < ε or Cπ(t) < ε, (9) 328

where
⋃
ψ(·, ·, ·) represent a series of data post- 329

processing operations, D(t)
synth denotes synthetic 330

data generated from service LLMs at t-th cyclical- 331
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ity, SLLM and prompt(synth) are the service LLM332

and system prompt used for the data synthesis, re-333

spectively.334

4 Experiments335

In this section, we present a comprehensive evalu-336

ation of our LlamaDuo across a series of settings,337

demonstrating its robust performance and adapt-338

ability in real-world scenarios.339

4.1 Experimental Settings340

Tasks and coverage dataset. We select four cat-341

egories of downstream tasks-summarization, clas-342

sification, coding, and closed QA-based on their343

prevalent use and relevance to the operational scope344

of service LLMs. We utilize the open-source “No345

Robots” (Rajani et al., 2023) dataset as the cover-346

age dataset. This coverage dataset consists of 10K347

high-quality prompt and response pairs across 10348

categories, crafted by expert annotators. Specif-349

ically, we utilize four subsets of the coverage350

dataset, each corresponding to our targeted tasks.351

These subsets serve as seeds for generating syn-352

thetic data that can closely align with user expecta-353

tions for LLM interactions.354

Service and local LLMs. Considering the API355

cost effectiveness, rate limit, and model utility,356

we select most popular service LLMs including357

GPT4o by OpenAI, Claude 3 Sonnet by Anthropic,358

and Gemini 1.5 Flash by Google to serve as syn-359

thetic data generator and judges. As for the small-360

scale local LLMs to be fine-tuned, we opt for the361

open-source Gemma 2B and 7B (Gemma Team,362

2024), Mistral 7B (Jiang et al., 2023), and LLaMA3363

8B (Meta, 2024) as the base models. This selec-364

tion is motivated by our aim to rigorously evalu-365

ate the efficacy and adaptability of our proposed366

pipeline across diverse settings. The varying scales367

of base models facilitate a nuanced comparison,368

allowing us to assess the impact of model scale on369

performance improvements. However, as a model-370

agnostic LLMOps pipeline, our LlamaDuo can be371

generalized to various forms of service and local372

LLMs beyond the aforementioned models.373

4.2 Implementation Details374

We implement LlamaDuo using PyTorch and con-375

duct experiments on 8×A100 (80GB) GPUs.376

Synthetic dataset by service LLMs. We utilize377

the seeds selected from the train subset of the cov-378

erage dataset to prompt service LLMs to generate379

datasets, each comprising 300k samples. The spe- 380

cific prompt for data generation is presented in 381

Figure 6 of Appendix A. Subsequently, we employ 382

Locality-Sensitive Hashing (LSH) with MinHash 383

and Rouge scoring mechanisms for data deduplica- 384

tion. Specifically, the LSH MinHash can efficiently 385

identify and remove duplicate data samples, while 386

the Rouge scoring mechanism ensures that the cu- 387

rated data exhibits high-quality and meaningful 388

variations. After that, we acquire 256k samples for 389

summarization tasks and 128k for other tasks. 390

Fine-tuning Local LLMs. We proceed to 391

fine-tune the small local LLMs with 2nk, n ∈ 392

{0, 1, . . . , 8} volumes of the synthetic dataset. To 393

efficiently customize local LLM for a specific 394

downstream task within constrained environments, 395

we leverage QLoRA (Dettmers et al., 2024) for 396

parameter-efficient fine-tuning with superior cost- 397

effectiveness. The detailed configurations, which 398

are tailored according to dataset sizes and tasks, 399

can be found in Appendix B. 400

Batch inference. Each fine-tuned local model is 401

prompted to generate K = 4 distinct responses, 402

with each prompt sampled from the test subsets of 403

the coverage dataset. To ensure fair comparisons, 404

we maintain a consistent batch inference configu- 405

ration across all fine-tuned models. The detailed 406

configuration is depicted in Appendix B. 407

Service LLMs as judges. Following (Zheng et al., 408

2024), we employ pairwise comparison and sin- 409

gle answer grading strategies to evaluate the re- 410

sponse quality of the fine-tuned local LLMs. The 411

corresponding prompts are given in Figure 5 of Ap- 412

pendix A. We utilize similarity and precision met- 413

rics. The similarity metric assesses the degree of 414

correspondence between the generated responses 415

and the ground truth, while the precision metric 416

evaluates the accuracy of the match between the 417

input prompts and their corresponding responses. 418

To ensure reliability and mitigate inherent biases 419

in the results, both metrics are quantified on a 0 to 420

100 scale, with each sample undergoing evaluation 421

M = 10 times. The score of coverage percentage 422

is set to ζ ∈ {50, 70}. 423

4.3 Experimental Results 424

This section delves into the effectiveness and adapt- 425

ability of the LlamaDuo pipeline, spanning differ- 426

ent tasks with varying degrees of complexity, in- 427

cluding summarization, classification, coding, and 428

closed QA. We utilize GPT-4o, Claude 3 Sonnet, 429

and Gemini 1.5 Flash as judges to evaluate the 430
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Table 1: Performance of the service LLMs and local LLMs fine-tuned on 128K synthetic dataset produced by
GPT4o, evaluated by GPT4o, Claude 3 Sonnet, and Gemini 1.5 Flash as judges on test subsets of coverage dataset.
Each entry is presented as mean score / coverage percentage (%) with 50 score / coverage percentage (%) with 70
score. The best results from service and local LLMs are highlighted in bold. “P-Match” represents performance
matching, which is defined as the best performance of the local LLM divided by the best performance of the service
LLM, with the best results highlighted in bold across different judges.

Task Model GPT4o Claude 3 Sonnet Gemini 1.5 Flash

Precision↑ Similarity↑ Precision↑ Similarity↑ Precision↑ Similarity↑

Summarization

GPT4o 90.71 / 97 % / 96% 82.00 / 95% / 89% 93.25 / 100% / 100% 86.60 / 100% / 95% 87.10 / 100% / 92% 67.45 / 85% / 48%
Claude 3 Sonnet 88.04 / 97% / 92% 78.18 / 95% / 78% 93.39 / 100% / 99% 85.55 / 100% / 95% 86.70 / 100% / 92% 64.10 / 80% / 36%
Gemini 1.5 Flash 87.90 / 96% / 96% 79.14 / 95% / 88% 91.95 / 100% / 98% 85.05 / 100% / 95% 85.65 / 98% / 96% 66.45 / 89% / 40%

Gemma 2B 57.60 / 64% / 35% 54.49 / 61% / 35% 74.89 / 86% / 69% 64.09 / 73% / 50% 61.90 / 78% / 40% 42.15 / 38% / 12%
Gemma 7B 73.54 / 85% / 65% 68.58 / 85% / 59% 86.19 / 99% / 93% 77.41 / 94% / 77% 74.59 / 95% / 69% 53.92 / 65% / 22%
Mistral 7B 76.38 / 93% / 70% 69.65 / 88% / 56% 86.20 / 99% / 92% 78.44 / 96% / 80% 72.74 / 95% / 62% 50.15 / 54% / 14%

LLaMA3 8B 75.67 / 88% / 75% 70.54 / 86% / 69% 87.02 / 99% / 94% 78.42 / 93% / 86% 72.74 / 91% / 64% 52.23 / 64% / 25%
P-Match↑ 84.20% / 95.88% / 78.13% 86.02% / 92.63% / 77.53% 93.18% / 99% / 94% 90.58% / 96% / 90.53% 85.64% / 95% / 71.88% 79.94% / 73.03% / 52.08%

Classification

GPT4o 83.62 / 94% / 81% 74.45 / 80% / 66% 87.50 / 92% / 92% 72.28 / 72% / 66% 82.68 / 94% / 80% 63.06 / 67% / 44%
Claude 3 Sonnet 82.32 / 92% / 78% 71.53 / 81% / 70% 92.89 / 100% / 100% 75.07 / 81% / 73% 87.34 / 97% / 97% 67.18 / 80% / 45%
Gemini 1.5 Flash 85.43 / 94% / 91% 72.73 / 81% / 75% 89.03 / 94% / 89% 77.96 / 81% / 81% 83.35 / 94% / 84% 64.25 / 78% / 47%

Gemma 2B 58.47 / 58% / 42% 52.76 / 50% / 39% 69.98 / 73% / 62% 56.31 / 58% / 47% 62.17 / 62% / 48% 48.54 / 50% / 39%
Gemma 7B 70.73 / 69% / 55% 64.67 / 62% / 53% 78.78 / 81% / 75% 67.76 / 69% / 62% 70.73 / 75% / 61% 59.77 / 59% / 52%
Mistral 7B 67.53 / 70% / 53% 61.65 / 67% / 47% 76.01 / 80% / 72% 64.43 / 70% / 52% 67.90 / 73% / 53% 54.27 / 53% / 45%

LLaMA3 8B 81.64 / 88% / 73% 78.02 / 77% / 67% 89.20 / 94% / 94% 82.18 / 88% / 75% 83.63 / 94% / 77% 72.54 / 73% / 64%
P-Match↑ 95.56% / 93.62% / 80.22% 104.80% / 95.06% / 89.33% 96.03% / 94% / 94% 105.41% / 108.64% / 92.59% 95.75% / 96.91% / 79.38% 107.98% / 91.25% / 136.17%

Coding

GPT4o 90.31 / 100% / 98% 75.18 / 92% / 70% 94.57 / 100% / 100% 86.32 / 100% / 91% 90.78 / 100% / 100% 58.43 / 62% / 25%
Claude 3 Sonnet 88.76 / 100% / 92% 75.23 / 94% / 67% 93.82 / 100% / 100% 87.42 / 100% / 100% 89.84 / 100% / 100% 60.46 / 69% / 31%
Gemini 1.5 Flash 88.51 / 98% / 94% 75.62 / 91% / 73% 93.59 / 100% / 100% 82.92 / 97% / 84% 90.62 / 100% / 98% 64.21 / 84% / 41%

Gemma 2B 62.31 / 70% / 44% 56.48 / 66% / 41% 80.92 / 89% / 84% 67.24 / 78% / 48% 72.98 / 89% / 66% 44.08 / 50% / 8%
Gemma 7B 80.56 / 92% / 80% 71.92 / 89% / 70% 90.47 / 100% / 98% 80.26 / 92% / 84% 84.66 / 100% / 88% 61.23 / 72% / 36%
Mistral 7B 68.32 / 77% / 56% 61.01 / 69% / 45% 81.25 / 92% / 81% 69.10 / 83% / 55% 72.39 / 86% / 69% 45.25 / 50% / 8%

LLaMA3 8B 77.47 / 88% / 72% 69.46 / 88% / 61% 83.97 / 94% / 83% 73.51 / 88% / 67% 75.55 / 89% / 73% 51.10 / 58% / 17%
P-Match↑ 89.20% / 92% / 81.63% 95.11% / 94.68% / 95.89% 95.66% / 100% / 98% 91.81% / 92% / 84% 93.26% / 100% / 88% 95.36% / 85.71% / 97.80%

Closed QA

GPT4o 95.45 / 100% / 100% 84.23 / 93% / 80% 97.21 / 100% / 100% 92.56 / 100% / 97% 93.58 / 100% / 100% 75.58 / 85% / 63%
Claude 3 Sonnet 94.03 / 100% / 98% 85.28 / 100% / 82% 97.60 / 100% / 100% 93.95 / 100% / 100% 93.66 / 100% / 100% 76.33 / 92% / 65%
Gemini 1.5 Flash 94.63 / 100% / 97% 87.43 / 95% / 87% 98.25 / 100% / 100% 97.41 / 100% / 100% 95.00 / 100% / 100% 85.66 / 97% / 83%

Gemma 2B 67.25 / 65% / 53% 67.41 / 67% / 57% 80.22 / 85% / 78% 70.20 / 73% / 72% 70.33 / 73% / 60% 59.68 / 62% / 50%
Gemma 7B 81.85 / 88% / 83% 79.02 / 85% / 78% 88.83 / 93% / 93% 83.95 / 87% / 83% 82.51 / 93% / 80% 72.24 / 75% / 67%
Mistral 7B 83.63 / 87% / 82% 81.36 / 85% / 83% 88.25 / 93% / 85% 84.77 / 88% / 83% 82.04 / 85% / 78% 73.95 / 78% / 70%

LLaMA3 8B 75.55 / 78% / 75% 72.62 / 77% / 72% 86.03 / 88% / 85% 77.64 / 80% / 80% 79.09 / 85% / 77% 68.78 / 75% / 65%
P-Match↑ 87.62% / 88% / 83% 93.06% / 85% / 95.40% 90.41% / 93% / 93% 87.02% / 88% / 83% 86.85% / 93% / 80% 86.33% / 80.41% / 84.34%

fine-tuned model performance on test subsets of431

the coverage dataset. As demonstrated in Table432

1, the fine-tuned local LLMs, despite their signif-433

icantly smaller scale, achieve comparable perfor-434

mance on diverse tasks compared to much larger435

service LLMs. For instance, in the summarization436

task, LLaMA3 8B achieved a comparable preci-437

sion score of 87.02 / 99% / 94%, compared to438

GPT4o’s score of 93.25 / 100% / 100%, Claude 3439

Sonnet’s score of 93.39 / 100% / 99%, and Gem-440

ini 1.5 Flash’s score of 91.95 / 100% / 98%, with441

Claude 3 Sonnet serving as judge. These results442

underscore the efficacy of LlamaDuo in seamlessly443

transferring knowledge and capabilities from ser-444

vice LLMs to smaller local LLMs without a sub-445

stantial decrease in performance.446

In Table 1, we observe distinct performance447

across four fine-tuned models when applied to dif-448

ferent tasks. Specifically, Mistral 7B stands out449

in summarization tasks, achieving the best perfor-450

mance in 7 out of 12 cases. Moreover, LLaMA3451

8B consistently outperforms competitors across all452

metrics and evaluators in the classification task.453

Conversely, in coding tasks, Gemma 7B is iden-454

tified as the leading model, excelling across all455

metrics and evaluations. Mistral 7B shows supe-456

rior performance in the closed QA task, leading457

in 8 out of 12 cases. Within the realm of ser-458

vice LLMs, Claude 3 Sonnet and Gemini 1.5 Flash 459

demonstrates exceptional performance in classifica- 460

tion and closed QA tasks, securing the best results 461

in 8 and 10 out of 12 cases, respectively. Lastly, 462

GPT4o emerges as the leading model in summa- 463

rization and coding tasks, achieving the best per- 464

formance in 10 and 7 out of 12 cases, respectively. 465

Notably, although Gemma 2B exhibits inferior per- 466

formance compared to larger 7B models overall, 467

the disparity in results is not markedly substantial, 468

with Gemma 2B attaining closely comparable per- 469

formance in certain tasks. For example, in closed 470

QA tasks, Gemma 2B secures a mean precision 471

score of 80.22, while Gemma 7B achieves 88.83, 472

Mistral 7B reaches 88.25, and LLaMA3 8B obtains 473

86.03, as evaluated by Claude 3 Sonnet. This ob- 474

servation lends further support to the notion that 475

through the strategic fine-tuning of smaller local 476

LLMs on synthetic datasets via the LlamaDuo, it 477

is possible to closely approximate the performance 478

of their larger counterparts. Consequently, it of- 479

fers increased flexibility and solutions for users 480

and scenarios with budgetary considerations. More 481

experimental results are presented in Appendix C. 482

4.4 In-depth LLMOps Pipeline Analysis 483

In this section, we conduct an in-depth analysis 484

of LlamaDuo through summarization task. No- 485
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Figure 2: Performance of Gemma 7B fine-tuned on
varied volumes of synthetic dataset producted by vari-
ous service LLMs including GPT4o, Claude 3 Sonnet,
and Gemini 1.5 Flash. The first to third columns repre-
sent the performance of the model evaluated by GPT4o,
Claude 3 Sonnet, and Gemini 1.5 Flash as judges, re-
spectively. The first row show mean scores, while the
second and third rows shows the coverage percentage
with 50 and 70 scores, respectively.

tably, the experimental findings exhibit a consistent486

pattern across various tasks, underscoring the gen-487

eralizability of LlamaDuo.488

Impact of synthetic dataset volume. We explore489

how the volume of synthetic dataset influences the490

performances of fine-tuned local LLMs, aiming to491

elucidate a scaling law (Kaplan et al., 2020; Hoff-492

mann et al., 2022) on how the performance of fine-493

tuned models changes as the number of synthetic494

dataset samples increases. Overall, the Gemma495

7B model exhibit consistent performance improve-496

ments and come closer to the performance of ser-497

vice LLMs with increasing volumes of synthetic498

data, as assessed through precision and similarity499

metrics by diverse evaluators, as depicted in Figure500

2. This suggests that fine-tuning local LLMs with501

synthetic data, which mimics the characteristics502

and patterns of real-world data, can bring the same503

effect as actual data. Thus, it paves a new way to504

eliminate the challenges of data scarcity, privacy505

concerns, and high costs associated with crafting506

data (Liu et al., 2024). Notably, we observe that the507

synthetic data generated by Claude 3 Sonnet results508

in the highest-performing models, outperforming509
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Figure 3: The KDE Plots of Precision v.s. Similar-
ity by varied synthetic dataset volumes with 2nk, n ∈
{0, 1, . . . , 8} and various evaluators with GPT4o,
Claude 3 Sonnet, Gemini 1.5 Flash as judges from first
to third columns, while the first and second rows repre-
sent the results of Gemma 2B (first row) and Gemma
7B (second row), respectively.

those fine-tuned with data produced by GPT4o and 510

Gemini 1.5 Flash, in descending order. Moreover, 511

when the synthetic dataset volume ranges from 64k 512

to 256k, the Gemma 7B model reach the perfor- 513

mance saturation point and achieve performance 514

that is much closer to, or equal to, that of service 515

LLMs. This demonstrates the efficacy of our Lla- 516

maDuo in enabling smaller models to replicate or 517

even surpass the performance of service LLMs in 518

specific downstream tasks. 519

Impact of service LLMs as data generator and 520

judge. As shown in Figure 2, we observe that the 521

choice of service LLM for data generation does not 522

significantly impact the performance of the fine- 523

tuned models. Specifically, (1) a consistent trend 524

of performance enhancement is observed with the 525

increased volume of synthetic data, irrespective 526

of the service LLM employed for data generation; 527

(2) the local LLMs fine-tuned on synthetic data 528

generated by GPT4o and Claude3 Sonnet typically 529

lead to slightly better performance than those by 530

Gemini 1.5 Flash. On the other hand, employing 531

different service LLMs as judges manifests a more 532

pronounced impact on the performance of the fine- 533

tuned local LLMs. Overall, GPT4o and Gemini 534

1.5 Flash emerge as more rigorous judges com- 535

pared to Claude 3 Sonnet, with Gemini 1.5 Flash 536

assigning notably lower similarity scores. More- 537

over, we observe that in data sparsity scenarios (1k 538

to 4k), the type of evaluators has minimal influ- 539

ence on the performance of the Gemma 7B model, 540

suggesting that larger local LLMs exhibit dimin- 541

ished sensitivity to the choice of service LLM as a 542
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Table 2: Monthly operational cost comparison between
Gemma 7B and GPT-4o under different workloads. For
GPT4o, input and output token counts are represented
in the format input/output.

Light Workload Heavy Workload

Gemma 7B GPT-4o Gemma 7B GPT-4o

Fine-tuning
Cloud - Cloud -
$800 - $800 -

Serving Specs.
1 x L4 300M/30M 8 x L4 1500M/150M
$2,539 $1,950 $20,312 $9,750

Serving Elec.
165 kWh - 1319 kWh -

$30 - $240 -

2 Months $3,369 $3,900 $21,592 $19,500

12 Months $3,699 $23,400 $23,992 $117,000

judge. To qualitatively demonstrate the differences543

when using various types of service LLMs as eval-544

uators, Figure 3 presents the results as KDE plots,545

characterized by the dataset volume. We observe546

that GPT-4 maintains consistency in its evaluations547

across both similarity and precision metrics. In con-548

trast, Claude 3 Sonnet is found to be more lenient549

in scoring, while Gemini 1.5 Flash assigns higher550

precision scores but significantly lower similarity551

scores. This underscores the importance of strate-552

gically aligning the selection of service LLMs with553

specific task requirements.554

4.5 Cost of Long-term Deployment555

We elucidate the cost-effectiveness of our proposed556

LlamaDuo pipeline, by conducting a long-term op-557

erational cost comparison between the fine-tuning558

of the small LLMs (Gemma 7B) and the token-559

based API usage of service LLMs (GPT4o). In the560

context of local LLM deployment, the QLoRA fine-561

tuning process of Gemma 7B, utilizing a dataset562

containing 256K samples, necessitates approxi-563

mately one hour to complete a single experiment564

on 8 × A100 GPUs. This process incurs an esti-565

mated cost of $50, based on the price provided by566

Google Cloud Platform. Accounting for multiple567

iterations of hyperparameter optimization, we esti-568

mate that the total fine-tuning cost remains below569

$800, which is deemed to be negligible. Deploying570

a single instance of the Gemma 7B model with sup-571

port for a 1024 context length necessitates 24GB of572

GPU memory, making the L4 GPU an appropriate573

choice. Depending on the projected workload, the574

Gemma 7B model can be deployed either on a sin-575

gle server equipped with one L4 GPU ($2,539) or576

across eight servers, each with one L4 GPU, with577

each server hosting a replica of the model instance578

($20,312). In addition, the power consumption579

for each server is approximately $30 per month.580

For GPT4o, as of August 2024, the pricing is $5581

A

B C

Figure 4: Long-term operational cost comparison be-
tween fine-tuning a local LLM and API-based token
usage of GPT4o.

and $15 per million tokens for input and output, 582

respectively. We estimate that a light workload, uti- 583

lizing 10 million input tokens and 1 million output 584

tokens per day, incurs a daily cost of $65. Con- 585

versely, a heavy workload, consuming 50 million 586

input tokens and 10 million output tokens per day, 587

is estimated to cost $325 daily. The monthly oper- 588

ational cost comparison between Gemma 7B and 589

GPT-4o under different workloads is summarized 590

in Table 2, demonstrating a significant advantage 591

in fine-tuning and deploying a local LLM. More- 592

over, as depicted in Figure 4, after the first two 593

months, the cost of using GPT-4 under both light 594

and heavy workloads exceeds that of setting up and 595

running a local model deployed on 1×L4 GPU and 596

8× L4 GPU, respectively, as indicated by markers 597

A and B. After one year, GPT-4’s costs surpass 598

those of deploying a local model in all scenarios, 599

as denoted by marker C. These findings highlight 600

the substantial economic benefits of investing in 601

local LLM fine-tuning and deployment for long- 602

term use. Avoiding recurring token-based charges 603

and maintaining control over model customization 604

further enhances the appeal of the LlamaDuo for 605

cost-conscious users and scenarios. 606

5 Conclusion 607

In this study, we introduce LlamaDuo, the first au- 608

tomatic LLMOps pipeline designed to facilitate the 609

seamless migration from service-oriented LLMs to 610

smaller, locally manageable models. We conduct 611

extensive experiments and analysis across a range 612

of tasks with most popular service and local LLMs 613

to substantiate that LlamaDuo guarantees smaller 614

local LLMs possesses the potential to match or 615

even exceed the performance of service LLM in 616

specific downstream tasks, providing a promising 617

research direction to maintain cloud-based LLMs’ 618

service continuity in constrained environments. 619
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Limitations620

While our LlamaDuo pipeline presents a promising621

solution for migrating capabilities from service-622

oriented LLMs to smaller local models, as de-623

picted in Table 1, several limitations must be624

acknowledged. First, the reliance on synthetic625

datasets generated by the service LLM may in-626

troduce biases and safety issues inherent in the627

original model, potentially affecting the fine-tuned628

model’s performance on specific tasks or datasets629

(Liu et al., 2024). Additionally, the effectiveness of630

the pipeline in transferring knowledge is contingent631

upon the quality and diversity of the synthetic data632

generated. If the data does not adequately cover the633

necessary scope, the fine-tuned model may strug-634

gle with tasks outside of the provided examples635

(Razeghi et al., 2022; Kandpal et al., 2023). Fur-636

thermore, the iterative fine-tuning process, while637

beneficial for performance enhancement, can be638

computationally intensive and time-consuming, po-639

tentially offsetting some gains in model efficiency,640

cost, and affordability. Another limitation is the641

potential plateau in performance gains after several642

SFT iterations, which could necessitate alternative643

strategies for further improvement, e.g., reinforce-644

ment learning (RL) (Ouyang et al., 2022; Rafailov645

et al., 2023). Lastly, the pipeline assumes access646

to the service LLM for data generation, which may647

not always be feasible due to proprietary restric-648

tions or API access limitations.649

Ethical Considerations650

Our work introduces several ethical considerations651

that require careful examination. Primarily, the pro-652

cess of generating synthetic datasets raises ques-653

tions about data privacy and security, especially if654

the data contains sensitive or proprietary informa-655

tion. There is a risk that such data, if not properly656

anonymized and secured, could lead to privacy vi-657

olations or unauthorized data exposure (Liu et al.,658

2024; Das et al., 2025). Moreover, the transfer of659

biases from the service LLM to the smaller model660

could perpetuate or even exacerbate existing biases,661

leading to unfair or discriminatory outcomes in cer-662

tain applications. It is crucial to implement robust663

bias detection and mitigation strategies within the664

pipeline to safeguard against these risks. Addition-665

ally, the use of proprietary models for generating666

synthetic data necessitates transparency regarding667

data handling practices and the potential limitations668

of the resultant models (Wang et al., 2023b).669

Broader Impact 670

Beyond the immediate focus of this paper, we 671

believe that the introduction of the LlamaDuo 672

pipeline has the potential to significantly impact 673

the landscape of LLMs deployment, particularly in 674

environments with constrained resources or strin- 675

gent privacy requirements. By enabling the mi- 676

gration of capabilities from large service-oriented 677

LLMs to smaller, locally manageable models, 678

the pipeline empowers organizations to maintain 679

LLMs functionalities independently of external ser- 680

vice providers, enhancing operational resilience 681

and reducing dependency. This can lead to in- 682

creased accessibility to advanced LLMs for smaller 683

entities or those operating in regions with limited 684

internet connectivity. 685
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A Prompt Templates967

In the LlamaDuo pipeline, we employ two prompt968

templates that serve different purposes: one for969

the generation of synthetic datasets and another970

for the evaluation of the outputs produced by the971

fine-tuned LLMs.972

Figure 5 illustrates the prompt template used to973

assess the precision and similarity of the response974

$lm_response generated by fine-tuned small-scale975

LLMs, based on the prompt $instruction and976

response $human_response from the test subset of977

the coverage dataset. It is important to note that the978

$ symbol indicates a placeholder, designed to be979

substituted with actual data during the runtime.980

Given an instruction and two responses—one generated by a human and the other by a 
language model—I'm seeking to evaluate how closely the language model's response 
mirrors the human-generated one. Additionally, I want to assess the accuracy and 
relevance of the language model's response to the original instruction. 

Instruction: 
``` 
$instruction 
``` 

Human Response: 
``` 
$human_response 
``` 

Language Model Response: 
``` 
$lm_response 
``` 
You are quality assessor who analyzes the similarity between the Human Response and 
the Language Model Response on a scale of 1 to 100, where 1 indicates no similarity and 
100 indicates identical responses. 

Also you analyze the Language Model Response how it accurately answers the given 
Instruction on a scale of 1 to 100. Analysis MUST be rigorous and thorough. Provide the 
assessment in the following JSON format: 

{ 
  "similarity_assessment": { 
    "score": [Insert similarity score here] 
  }, 
  "precision_assessment": { 
    "score": [Insert precision score here] 
  } 
}

Figure 5: Prompt template to evaluate the fine-tuned
model’s response.

Figure 6 shows the prompt template designed for981

the generation of synthetic data tailored to the sum-982

marization task while Figure 7 shows the prompt983

template for other tasks. Specifically, we use a984

prompt $instruction alongside its corresponding985

response $response, both sourced from the train986

subset of the coverage dataset, serving as an exam-987

ple pair. This example pair is utilized to instruct988

service LLMs to generate analogous data samples.989

In addition, our template is designed to generate990

multiple synthetic data samples through a singular991

request, thereby enhancing the efficiency of API992

utilization. Due to the unique features of different993

downstream tasks, there is no optimal prompt tem-994

plate that universally applies. The actual content995

of the prompt template is adjusted to align with996

the specific requirements of the task for which the997

synthetic dataset is being generated. 998

Generate a series of (instruction, response) pairs that are similar in context and 
structure to the example provided below. Each pair should consist of a concise 
instruction followed by an appropriate, detailed response. The instruction should pose a 
clear task or question, while the response should provide a comprehensive answer or 
solution that could be understood by someone with a basic understanding of the subject.  

Example pair:  
Instruction: $instruction 
Response: $response 

Your task is to generate more pairs that maintain this level of clarity and detail. The 
topic is $topic. Write a long text of instruction by yourself, then summarize the given 
instruction in a response. Ensure that the responses are informative and accurate, 
suitable for an educational context.  

Store the generated pairs in JSON format, with each pair as an object within an array. 
Each object should have two key-value pairs: "instruction" and "response". For instance:  

{ 
  "contents":  
    [ 
      {"instruction": "text", "response": "text"},  
      {"instruction": "text", "response": "text"},  
      … 
    ] 
}  

Remember to maintain consistency in the format and ensure the generated pairs are 
diverse and cover a broad range of subjects. You must return the response in the asked 
format and you must not add any additional text in your response.

Figure 6: Prompt template of data synthesis for summa-
rization tasks.

Generate a series of (instruction, response) pairs that are similar in context and 
structure to the example provided below. Each pair should consist of a concise 
instruction followed by an appropriate, detailed response. The instruction should pose a 
clear task or question, while the response should provide a comprehensive answer or 
solution that could be understood by someone with a basic understanding of the subject. 

Example pair: 
Instruction: $instruction 
Response: $response 

Your task is to generate more pairs that maintain this level of clarity and detail. The 
topic is $topic. Ensure that the responses are informative and accurate, suitable for an 
educational context. 

Store the generated pairs in JSON format, with each pair as an object within an array. 
Each object should have two key-value pairs: "instruction" and "response". For instance: 

{ 
  "contents":  
    [ 
      {"instruction": "text", "response": "text"},  
      {"instruction": "text", "response": "text"},  
      … 
    ] 
}  

Remember to maintain consistency in the format and ensure the generated pairs are 
diverse and cover a broad range of subjects. You must return the response in the asked 
format and you must not add any additional text in your response.

Figure 7: Prompt template of data synthesis for classifi-
cation, coding, and closed QA tasks.

B Implementation Configuration 999

This section delineates the statistical information 1000

of the coverage dataset and synthetic dataset gener- 1001

ated by service LLMs. In addition, we present the 1002

details of the training configurations of our exper- 1003

iments. The detailed pipeline implementation of 1004

LlamaDuo is available at https://github.com/ 1005

deep-diver/llamaduo. 1006

B.1 Coverage Datasets 1007

The foundational coverage dataset employed in our 1008

study is the “No Robots” dataset (Rajani et al., 1009

2023). We leverage four subsets of the coverage 1010

dataset, namely summarization, classification, cod- 1011

ing, and closed QA, for synthetic data generation. 1012
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Table 3: Volume of coverage dataset before and after
LlamaDuo pipeline.

Task Split Before After

Summarization(GPT4o)
train 395 256K
test 25 100

Summarization(Claude 3 Sonnet)
train 395 256K
test 25 100

Summarization(Gemini 1.5 Flash)
train 395 256K
test 25 100

Classification(GPT4o)
train 334 128K
test 16 64

Coding(GPT4o)
train 334 128K
test 16 64

Closed QA(GPT4o)
train 245 128K
test 15 60

Table 4: Token-level statistics of the coverage and syn-
thetic datasets.

Task Min Max Avg. Std.

Summarization (Coverage-Train) 85 2386 389 256
Summarization (Coverage-Test) 148 1150 426 245
Summarization (GPT4o) 10 2386 95 53
Summarization (Claude 3 Sonnet) 10 2386 118 64
Summarization (Gemini 1.5 Flash) 10 2386 108 62

Classification (Coverage-Train) 18 2159 207 244
Classification (Coverage-Test) 46 520 119 109
Classification (GPT4o) 6 2159 67 37

Coding (Coverage-Train) 38 6518 350 502
Coding (Coverage-Test) 49 821 317 189
Coding (GPT4o) 9 6518 151 84

Closed QA (Coverage-Train) 58 1497 320 241
Closed QA (Coverage-Test) 126 1578 411 378
Closed QA (GPT4o) 12 1701 135 59

Table 3 illustrates the initial composition of the1013

task-specific subsets, with each initially containing1014

approximately 300 original data points. These sub-1015

sets are subsequently expanded to encompass more1016

data points using the LlamaDuo framework. To1017

perform an in-depth analysis of the behavior of dif-1018

ferent service LLMs, we create synthetic datasets1019

for the summarization task by utilizing GPT4o,1020

Claude 3 Sonnet, and Gemini 1.5 Flash. For all1021

other tasks, we exclusively use GPT-4o, owing to1022

budget constraints.1023

Table 4 presents the statistical information of1024

the token count across each dataset. We only use1025

data from the coverage train set for data synthesis1026

and alignment tasks. We observe a reduction in1027

both the average number of tokens and the standard1028

deviation across the synthetic datasets compared1029

to the original dataset. This is due to that the data1030

synthesis process generates multiple synthetic data1031

samples within a single API request.1032

Table 5: Detailed configurations used in the experi-
ments.

Configuration Value

Common

Data Type bfloat16
Learning Rate Scheduler cosine
Max Number of Tokens 1024
LoRA Type QLoRA
LoRA Dropout 0.05

1K∼16K
LoRA Rank 8
LoRA Alpha 16

32K
LoRA Rank 16
LoRA Alpha 32

64K∼256K
LoRA Rank 32
LoRA Alpha 64

B.2 Training Configurations 1033

We utilize Hugging Face’s “Alignment Handbook” 1034

(Tunstall et al., 2023) and the alignment recipes 1035

tailored for the Gemma models to streamline the 1036

fine-tuning process. 1037

As outlined in Table 5, we employ QLoRA 1038

(Dettmers et al., 2024) to align the Gemma 2B and 1039

7B, Mistral 7B, and LLaMA3 8B models efficiently. 1040

The QLoRA method leverages the advantages of 1041

low-rank adaptation, reducing the computational 1042

resources required for training. Throughout the 1043

alignment procedure, we incrementally adjust the 1044

rank and alpha values of LoRA, aiming to opti- 1045

mize the adaptation layer’s capacity to match the 1046

increasing complexity of the datasets. 1047

We set the maximum token as 1024 for the train- 1048

ing phase, notwithstanding the presence of data 1049

samples exceeding this threshold. This decision 1050

is made based on a comprehensive analysis of the 1051

dataset, which indicates that data samples surpass- 1052

ing the token limit constitute a negligible portion 1053

of the total dataset. By imposing this limitation, 1054

we can concentrate our computational efforts on 1055

the majority of the data, thereby enhancing the effi- 1056

ciency of training without significantly compromis- 1057

ing the models’ ability to generalize to real-world 1058

scenarios. 1059

The 1024-token limit, though seemingly restric- 1060

tive, does not impede the performance of the 1061

aligned fine-tuned small-scale models. All fine- 1062

tuned models exhibit robust performances across 1063

the experiments, as they are trained and evaluated 1064

on data predominantly falling within the 1024- 1065

token boundary. This outcome corroborates our 1066

analysis of the data and demonstrates the efficacy 1067

of QLoRA, even within the constraints of our allo- 1068
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Figure 8: Performance of Gemma 2B fine-tuned on varied volumes of synthetic dataset producted by various
service LLMs including GPT4o, Claude 3 Sonnet, and Gemini 1.5 Flash. The first to third columns represent the
performance of the model evaluated by GPT4o, Claude 3 Sonnet, and Gemini 1.5 Flash as judges, respectively. The
first row show mean scores, while the second and third rows show the coverage percentage with 50 and 70 scores,
respectively.

cated computational budget.1069

C More Experimental Results1070

The performance of Gemma 2B fine-tuned on var-1071

ied volumes of synthetic dataset producted by var-1072

ious service LLMs including GPT4o, Claude 31073

Sonnet, and Gemini 1.5 Flash is shown in Figure 8.1074

D Case Study1075

This section delves into detailed case studies show-1076

casing the enhanced capabilities of the aligned1077

small-scale local LLMs. We use Gemma 2B and1078

7B models as examples to illustrate.1079

The cases (Figure 9-17) illustrate the perfor-1080

mances of the aligned models across summariza-1081

tion, classification, coding, and closed QA tasks.1082

Specifically, these models are tuned on distinct1083

128K datasets generated by GPT4o for each corre-1084

sponding task. Each case provides evaluations by1085

GPT4o, Claude 3 Sonnet, and Gemini 1.5 Flash, of- 1086

fering a comprehensive assessment of the precision 1087

and similarity of the models’ responses. 1088

To expand the scope of our analysis, we include 1089

two additional cases (Figure 11 and 12) to explore 1090

the summarization capabilities of the Gemma 2B 1091

and 7B models tuned with 256K synthetic datasets. 1092

These datasets are generated by GPT4o, Claude 3 1093

Sonnet, and Gemini 1.5 Flash respectively, provid- 1094

ing valuable insights into the models’ adaptability 1095

to different training data sources. 1096

The cases presented above demonstrate the capa- 1097

bility of the aligned Gemma 2B and 7B models to 1098

produce high-quality responses. Additionally, the 1099

cases offer insight into how different service LLMs 1100

evaluate text. Through this comparative lens, we 1101

reveal discernible variances in judgment and as- 1102

sessment criteria, enriching our understanding of 1103

the models’ operational dynamics. 1104
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Prompt

Target response

Summarize this paragraph. Do not mention the Mosquirix vaccine.  

The Matrix-M vaccine was approved in late 2022. It also targets the P. falciparum parasite. However, it contains a chemical substance 
that stimulates the body’s immune response. This makes it more effective than Mosquirix. The initial trial involved 450 children, aged 
5-17 months. The children received three doses, followed by a booster a year later. The study found that the vaccine reduced the 
number of malaria cases by 80 percent.

In late 2022, the Matrix-M vaccine, which includes a chemical that stimulates the body's immune response, was approved. An initial 
study found the vaccine reduced malaria cases by 80% after 450 children between 5-17 months received three doses and a booster 
shot during a trial.

GPT4o Claude 3 
Sonnet

Gemini 
1.5 Flash

Gemma 2B (aligned on GPT4o generated 128k dataset)
The vaccine, Matrix-M, targets P. falciparum and stimulates the immune system, making it more 
effective than Mosquirix. The initial trial with 450 children showed a 80% reduction in malaria 
cases.

Gemma 7B (aligned on GPT4o generated 128k dataset)

The Matrix-M vaccine, approved in late 2022, targets both malaria and the P. falciparum parasite. 
It uses a chemical substance to boost immunity, making it more effective than the Mosquirix 
vaccine. Tested on 450 children aged 5-17 months, the vaccine reduced malaria cases by 80 
percent after three doses and a booster one year later.
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Figure 9: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for summarization task.

Prompt

Target response

Read this article and give me a description of Eagleman.  

Eagleman is thirty-nine now and an assistant professor of neuroscience at Baylor College of Medicine, in Houston. Physically, he seems 
no worse for the fall. He did a belly flop on the bricks, he says, and his nose took most of the impact. “He made a one-point landing,” 
as his father puts it. The cartilage was so badly smashed that an emergency-room surgeon had to remove it all, leaving Eagleman with 
a rubbery proboscis that he could bend in any direction. But it stiffened up eventually, and it’s hard to tell that it was ever injured. 
Eagleman has puckish, neatly carved features, with a lantern jaw and modish sideburns. In Baylor’s lab-coated corridors, he wears 
designer jeans and square-toed ankle boots, and walks with a bounce in his step that’s suspiciously close to a strut, like Pinocchio 
heading off to Pleasure Island. 

If Eagleman’s body bears no marks of his childhood accident, his mind has been deeply imprinted by it. He is a man obsessed by time. 
As the head of a lab at Baylor, Eagleman has spent the past decade tracing the neural and psychological circuitry of the brain’s 
biological clocks. He has had the good fortune to arrive in his field at the same time as fMRI scanners, which allow neuroscientists to 
observe the brain at work, in the act of thinking. But his best results have often come through more inventive means: video games, 
optical illusions, physical challenges. Eagleman has a talent for testing the untestable, for taking seemingly sophomoric notions and 
using them to nail down the slippery stuff of consciousness. “There are an infinite number of boring things to do in science,” he told 
me. “But we live these short life spans. Why not do the thing that’s the coolest thing in the world to do?”

Eagleman is 39 with puckish features including a lantern jaw, styled sideburns, flashy jeans and ankle boots. Physically, he has 
completely recovered from his childhood fall that broke his nose. He is obsessed with time and is an assistant professor of 
neuroscience at Baylor College of Medicine.
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Eagleman is a 39-year-old neuro-sci professor with a rubber nose, who used to be a professional 
scuba diver. He has excellent recall of marine life, which is useful in his research. His goal is to 
understand the biological clocks (the brain's internal clock) and how they were modified during 
evolution. He has also worked on physical challenges and video games to learn more about 
consciousness. His work aims to make the brain accessible to scientists who might not have the 
same training as neuro-sci professionals.

Gemma 7B (aligned on GPT4o generated 128k dataset)

Dr. Eagleman is a thirty-nine-year-old  professor of neuroscience known for his innovative 
research on the brain's biological clocks. Despite a severe nose injury as a child, Eagleman has 
made a remarkable recovery. His sharp features and interest in 'cool' experiments reflect his 
personality.

35.5

29.5

42.5

26.5

53.0

20.0

Similarity scores

Precision scores

82.5

71.7

90.5

82.5

74.0

49.5

Similarity scores

Precision scores

Figure 10: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for summarization task.
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Prompt

Target response

Please summarize this post. Make it easier to read and much shorter. It should only be about a paragraph or two. Use the text following this 
request. After World War II, designating the start and end dates for daylight saving time fell to state governments. Because this created many 
railroad scheduling and safety problems, however, Congress passed the Uniform Time Act in 1966. This law set the nationwide dates of daylight 
saving time from the last Sunday in April until the last Sunday in October. In 2007, Congress amended the act to expand the period in which 
daylight saving time is in effect from the second Sunday in March to the first Sunday in November – dates that remain in effect today. The Uniform 
Time Act allows states and territories to opt out of daylight saving time, however. Arizona and Hawaii are on permanent standard time, along with 
Puerto Rico, the U.S. Virgin Islands, Northern Mariana Islands, Guam and American Samoa. Now, many other states are considering whether to 
stop falling back and springing ahead. Several U.S. states have legislation and resolutions under consideration to support permanent standard time, 
while many others have been or are considering permanent daylight saving time. Legislation and resolutions for permanent standard time have 
increased from 15% in 2021 to 31% in 2023. In March 2022, the U.S. Senate passed the Sunshine Protection Act in a bid to make daylight saving 
time permanent. But the House did not move forward with this legislation. Florida Sen. Marco Rubio reintroduced the bill on March 1, 2023. The 
spike in activity among states seeking to break from these twice-yearly changes reflects how more people are recognizing the downsides of this 
practice. Now, it’s up to legislators to decide whether we end the time shift altogether, and to choose permanent standard or daylight saving time.

After World War II, Congress made daylight saving time a national holiday from the last Sunday in April to the last Sunday in October. In 2007, the 
Uniform Time Act was amended to extend the daylight saving time period from the second Sunday in March to the first Sunday in November. 
Congress can also allow state governments to opt out. Several U.S. states are considering or have considered legislation for permanent standard 
time, driven by opposition to daylight saving time. A similar bill was passed by the Senate in March 2022 but did not advance in the House, 
prompting renewed interest in the issue.
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After WWII, states were given the right to choose the start and end dates for daylight saving time, but this 
caused serious problems for rail schedules. To address this, Congress passed the Uniform Time Act in 1966 
which standardized the changes, but still allowed states and territories to opt out entirely. Arizona, Hawaii, 
Puerto Rico, and some U.S. territories decided to stay on permanent time. Many other states and 
legislators are considering abolishing daylight saving time, but no bill has passed. People are starting to 
recognize the problems caused by changing the time twice a year and want to move to a permanent 

The key points regarding the Uniform Time Act and Daylight Saving Time are: 

1) In 1966, the Uniform Time Act established the dates of daylight saving time nationwide. 

2) States can opt out of daylight saving time under this Act, and there are currently 31 states on 
permanent standard time or permanent daylight saving time. 

3) Multiple states are considering legislation to remove the time shift from our annual cycle of timekeeping 
to permanent standard time or permanent daylight saving time, reflecting increasing public opposition to 
the current system. 

4) The Sunshine Protection Act passed by the U.S. Senate in 2022 proposed continuing daylight saving 
time but sought to make it permanent. 

Congress passed the Uniform Time Act in 1966 to standardize daylight saving time across the country. 
However, the law's focus on railroad safety led to practical issues. The act was amended in 2007 to extend 
the dates of daylight saving time. While states can opt out of the rules, many are moving toward 
permanent standard time.  The Sunshine Protection Act, which would make daylight saving time 
permanent, has been reintroduced in recent years. This shift toward a more standardized time system 
reflects growing awareness of its downsides.7

World War II led to inconsistent dates for daylight saving time until Congress passed the Uniform Time Act 
in 1966, setting the dates from the last Sunday in April to the last Sunday in October. In 2007, the dates 
were expanded to the second Sunday in March and first Sunday in November. The Uniform Time Act also 
allows states to opt out of daylight saving time, with Arizona, Hawaii, Puerto Rico, U.S. Virgin Islands, 
Northern Mariana Islands, Guam, and American Samoa choosing permanent standard time. While many 
states are considering making daylight saving time permanent, the U.S. Senate passed the Sunshine 
Protection Act in 2022 to make daylight saving time permanent. Sen. Marco Rubio reintroduced the bill in 
2023. The upswing in states seeking permanent standard or daylight saving time highlights the growing 
awareness of daylight saving time's drawbacks. Ultimately, it’s up to legislators to decide whether we 
should end the practice of changing time or make daylight saving time permanent.

The Uniform Time Act of 1966 established the dates for daylight saving time nationwide. It currently runs 
from March to November. However, states and territories can opt out and permanently remain on standard 
time. In recent years, many states have considered making the switch to permanent standard or daylight 
saving time to end the twice-yearly shifting. States like Connecticut and New Hampshire have passed 
resolutions supporting permanent standard time. Meanwhile, legislation has been introduced in Florida and 
other states to make daylight saving time permanent. The U.S. Senate passed the Sunshine Protection Act 
in 2022 to make daylight saving time permanent, but the House did not take action. This increasing 
momentum reflects growing opposition to permanent daylight saving time among states, businesses, and 
the public. The issue has become a matter of whether Congress should choose permanent standard or 
daylight saving time, or if states will make the decision themselves.

The United States has a long and complicated history with Daylight Saving Time. Its origins trace back to 
World War I, when Germany implemented it as a way to conserve energy. The United States followed suit 
in 1918, adopting the practice for the first time. After World War II, states began to implement their own 
time changes, leading to inconsistencies. In 1966, Congress passed the Uniform Time Act, standardizing 
the dates for Daylight Saving Time. This act remains in effect today, although the dates have been 
expanded since its passage.  Many states have considered becoming permanent standard time or daylight 
saving time states, with some currently considering bills to make the change official. Despite the 
increasing interest in permanent time changes, the Sunshine Protection Act – which would make Daylight 
Saving Time permanent – has stalled in Congress. Despite this, the movement to permanently shift to 
either Standard Time or Daylight Saving Time continues.
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Figure 11: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o, Claude 3 Sonnet, Gemini 1.5
Flash generated 256K of synthetic datasets for summarization task.
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Prompt

Target response

Summarize the following story in a few sentences. 

The Fox one day thought of a plan to amuse himself at the expense of the Stork, at whose odd appearance he was always laughing. 
"You must come and dine with me today," he said to the Stork, smiling to himself at the trick he was going to play. The Stork gladly 
accepted the invitation and arrived in good time and with a very good appetite. 
For dinner the Fox served soup. But it was set out in a very shallow dish, and all the Stork could do was to wet the very tip of his bill. 
Not a drop of soup could he get. But the Fox lapped it up easily, and, to increase the disappointment of the Stork, made a great show 
of enjoyment. 
The hungry Stork was much displeased at the trick, but he was a calm, even-tempered fellow and saw no good in flying into a rage. 
Instead, not long afterward, he invited the Fox to dine with him in turn. The Fox arrived promptly at the time that had been set, and 
the Stork served a fish dinner that had a very appetizing smell. But it was served in a tall jar with a very narrow neck. The Stork could 
easily get at the food with his long bill, but all the Fox could do was to lick the outside of the jar, and sniff at the delicious odor. And 
when the Fox lost his temper, the Stork said calmly: 
Do not play tricks on your neighbors unless you can stand the same treatment yourself.

The Fox always judged the Stork's appearance and one day decided to pull a prank on him. The Fox invited the Stork over for dinner 
and served him soup in a very shallow dish. The Stork was not able to get a single drop of the soup and, even though he was hungry, 
he stayed calm. Later, the Stork invited the Fox over for dinner and served him a delicious-smelling fish dinner, but it was in a tall jar 
with a very narrow neck. The Fox was only able to lick the outside of the jar, and he lost his temper.
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The Fox tricked the Stork into eating soup in a shallow dish, but used his own cleverness to 
enjoy dinner served in a tall but narrow jar.

A Fox decided to mock the Stork, and offered him a meal at his house. The Stork arrived with a 
good appetite, but could not eat the soup set out in a shallow dish - he could only wet the tip 
of his bill. The Fox enjoyed the meal easily and even made a loud noise, but the hungry Stork 
lost his temper and invited the Fox to dine with him next.Життєпис: The Fox arrived promptly 
at the time set and was served a fish dish, but could not eat it - he could only lick the outside 
of the jar and smell the delicious scent inside. In the end, the Stork warned the Fox not to play 
tricks if he could not stand them himself.

A fox tricks the Stork by serving him soup that's too shallow for him to reach. The Stork gets 
upset but he's a calm man and tries something else. This time the fox is even more 
disappointed, but the Stork keeps his cool and serves him a smelly fish. The fox loses his 
temper, but the Stork is calm and serves him a jar of a food that smells delicious, but the fox 
can't reach it. This leads the fox to lose his temper as well.5

A fox invited a stork to dinner, serving soup in a shallow dish the stork could not reach. The 
stork later invited the fox to dinner, serving fish in a narrow jar the fox could not reach. The 
stork's calm attitude reminded the fox to be careful with tricks.

The Fox tricked the Stork by serving soup in a shallow dish, which the Stork could not reach 
the food. In retaliation, the Stork served fish in a tall jar with a narrow neck, trapping the Fox 
from eating the food. The Stork calmly accepted the situation, while the Fox angrily lost his 
appetite.
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The Fox tricked the Stork by serving him soup in a shallow dish he couldn't reach, but the 
Stork got revenge by serving the Fox a fish dinner in a jar the Fox couldn't access. The lesson 
learned by the Fox is to not play tricks on others unless you are prepared to face the same 
treatment.
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Figure 12: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o, Claude 3 Sonnet, Gemini 1.5
Flash generated 256K of synthetic datasets for summarization task.
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Prompt

Target response

Would you classify this email as an advertisement or an account update? 

Only 4 hours left in 2020 to make your support known for public radio in the Ozarks! As always, your year-end contribution is tax-
deductible. 

Don't wait until the ball drops to make your donation...give now, and enjoy the countdown to midnight knowing you've done your part 
to help the programs you rely on thrive in the year to come. 

This email is an advertisement.
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This email is an advertisement. It is asking supporters to make a donation to public radio before 
midnight. This is intended to persuade supporters to make a donation which is the purpose of an 
advertisement.

Gemma 7B (aligned on GPT4o generated 128k dataset)

This email is an advertisement.
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Figure 13: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for classification task.

Prompt

Target response

which of these songs are titled in english and which are titled in italian? 

No. Title Length 
1. "Zitti e buoni" 3:14 
2. "Lividi sui gomiti" 2:45 
3. "I Wanna Be Your Slave" 2:53 
4. "In nome del padre" 3:39 
5. "For Your Love" 3:50 
6. "La paura del buio" 3:29 
7. "Vent'anni" 4:13

1. Italian 
2. Italian 
3. English 
4. Italian 
5. English 
6. Italian 
7. Italian
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1. "Zitti e buoni" 3 Italian 
2. "Lividi sui gomiti" 2 Italian 
3. "I Wanna Be Your Slave" 2 Italian 
4. "In nome del padre" 3 Italian 
5. "For Your Love" 3 Italian 
6. "La paura del buio" 3 Italian 
7. "Vent'anni" 4 Italian

Gemma 7B (aligned on GPT4o generated 128k dataset)

1. Zitti e buoni - Italian 
2. Lividi sui gomiti - Italian 
3. I Wanna Be Your Slave - English 
4. In nome del padre - Italian 
5. For Your Love - English 
6. La paura del buio - Italian 
7. Vent'anni - Italian
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Figure 14: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for classification task.
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Prompt

Target response

How do I listen for an event in Discord.js?

You can listen for an event in Discord.js by using the Client#on method: 

const { Events, Client } = require("discord.js"); 
const client = new Client(); 
client.on(Events.ClientReady, c => { 
        console.log("Client is ready."); 
});
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To listen for an event in Discord.js, you need to use the 'listen' method. For example, to listen for 
a 'messageCreate' event, you can do the following:  

```javascript 
const Discord = require('discord.js'); 

const bot = new Discord.Client(); 

bot.on('messageCreate', (message) => { 
    if (message.content === 'Hello') { 
        message.reply('Hello there!'); 
    } 
}); 

bot.login('yourTokenHere');

Gemma 7B (aligned on GPT4o generated 128k dataset)

To listen for an event in Discord.js, you use the `client.on` method. Here’s an example of how to 
listen for a message event: 

```javascript 
const Discord = require('discord.js'); 
const client = new Discord.Client(); 

client.on('message', (message) => { 
    if (message.author.id === 'your_id_here') { 
        console.log(`Message from ${message.author.tag}: ${message.content}`); 
    } 
}); 

client.login('your_token_here');
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Figure 15: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for coding task.
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Prompt

Target response

This Java function below is not working as I expected, it's supposed to go through an array of numbers and if it finds a number in the 
array that is divisible by 2 with a remainder of 0, then it adds it to a new array and returns the new array at the end. Can you help 
debug the function and explain how why it's not working as expected? 

public static List checkForEvens(int [] nums) { 
    ArrayList anwer = new ArrayList<Integer>(); 
    for(int i = 0; i < nums.length; i++) { 
    if(nums[i] / 2 == 0) { 
    answer.add(nums[i] 
     }   
   } 
}

Certainly! The function 'checkForEvens' iterates through an array and if a number in the array is divisible by 2, then it gets added to 
'answer' which is later returned. 

The reason the function may not be returning the expected result is because of the if statement, 'if (nums[i] /2 == 0)'. The statement 
is looking for numbers that get divided by 2 in the array and equal 0, which doesn't align with what you expect the function to do.  

Instead, you want to use the modulo operator to check for the remainder of a number that is being divided by 2. If a number is divided 
by 2 and returns a remainder of 0, then we can assume that it's an even number. So, the small change of 'if (nums[i] % 2 == 0)' 
should solve your issue.  

I've rewritten the function below with the correction. 

public static List checkForEvens(int [] nums) { 
    ArrayList anwer = new ArrayList<Integer>(); 
    for(int i = 0; i < nums.length; i++) { 
    if(nums[i] % 2 == 0) { 
    answer.add(nums[i] 
     }   
   } 
}
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Sure, I can help with that. The provided Java function is nearly correct but it does not handle 
cases where the number is negative. Here’s a more robust version that includes handling edge 
cases: 

```Java 
public class CheckForEvens { 
    public static List<Integer> checkForEvens(int[] nums) { 
        List<Integer> answer = new ArrayList<>(); 
        for (int num : nums) { 
            if ((num / 2 - 1) % 2 == 0) { 
                answer.add(num); 
            } 
        } 
        return answer; 
    } 
} 
``` 

This function first creates an answer list, then iterates through each number in the array. It 
checks if the number divided by 2 (with an exclusive or of 1) is even. If it is, it adds the number 
to the answer list. 

Gemma 7B (aligned on GPT4o generated 128k dataset)

The issue with your function is that the modulus operator (%) is missing in the condition to check 
if the number is even. You should use (nums[i] % 2 == 0) instead of (nums[i] / 2 == 0). 

Here's the corrected function: 

public static List checkForEvens(int[] nums) { 
    ArrayList answer = new ArrayList<>(); 
    for (int i = 0; i < nums.length; i++) { 
        if (nums[i] % 2 == 0) { 
            answer.add(nums[i]); 
        } 
    } 
    return answer; 
}
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Figure 16: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic
dataset for coding task.
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Prompt

Target response

Is the following statement true or false? Keeping a plant healthy reduces the risk of pest infestations.  

Use the following passage to answer the question. 

How to Treat Yellowing Leaves on Snake Plant 
Once you narrow down the reason your snake plant has yellow leaves, you'll want to address the issue quickly to keep your plant 
healthy. However, yellow leaves won't turn green again even if the issue is remedied, so it's best to cut them off with sharp, sanitized 
pruners or scissors at the base of the plant. 

Check your plant's soil moisture. If the soil feels soggy and you've been watering frequently, overwatering could be to blame. Let the 
soil dry out completely before watering again. In extreme cases, you may need to repot the plant in fresh soil and inspect the roots for 
signs of rot. 

If your snake plant's leaves look sunburned and the plant is getting direct sunlight, move it further away from the light source or use a 
sheer curtain to filter the light and make it less intense. Address inconsistent temperature by keeping the plant away from drafty areas 
and putting it in a space with a more consistent temperature. 

Inspect your snake plant regularly for signs of pests. Remove insects with blasts of water or a cotton swab dipped in rubbing alcohol, 
then use neem oil or horticultural soap to prevent them from coming back. Keep your plant healthy going forward to lessen the 
likelihood that pests will attack. 

If you haven't fertilized or refreshed your snake plant's soil in a few years and other causes don't apply, repot it with fresh soil. If the 
plant seems potbound, use a pot one size larger or divide the plant and repot it in its original container. If you suspect overfertilizing is 
the issue, flush your plant's soil several times with water to remove excess nutrients. Going forward, only fertilize your snake plant 
twice per year in spring and summer.

The statement is true.
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The answer is false. Keeping a plant healthy does not reduce the risk of pest infestations. 
Vainqueur,
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The statement is true. Keeping a plant healthy reduces the risk of pest infestations.
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Figure 17: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for closed QA task.

Prompt

Target response

Who did Prince William marry? 

The queen’s popularity, and that of the entire royal family, rebounded during the first decade of the 21st century. Though 2002 marked Queen 
Elizabeth’s Golden Jubilee—50 years on the throne—the death of her mother (the beloved Queen Mum) and sister early that year cast a pall on the 
celebrations. 

In 2005, the queen enjoyed public support when she gave her assent to Prince Charles’ once-unthinkable marriage to his longtime love Camilla 
Parker Bowles. 

In her seventh decade on the throne, Queen Elizabeth presided over the pomp and circumstance of another royal wedding at Westminster Abbey, 
that of Prince William to Catherine Middleton in April 2011. The Duke and Duchess of Cambridge, who are in line to become Britain’s next king and 
queen, continued the line of succession with their children, Prince George (born 2013), Princess Charlotte (born 2015) and Prince Louis (born 
2018).

Prince William married Catherine Middleton.
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Prince William married Catherine Middleton.
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Prince William married Catherine Middleton.
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Figure 18: Responses by Gemma 2B and Gemma 7B models fine-tuned on GPT4o generated 128K synthetic dataset
for closed QA task.
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