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ABSTRACT

Large-scale single-cell and Perturb-seq investigations routinely involve clustering
cells and subsequently annotating each cluster with Gene-Ontology (GO) terms to
elucidate the underlying biological programs. However, both stages, resolution se-
lection and functional annotation, are inherently subjective, relying on heuristics
and expert curation. We present HYPOGENEAGENT, a large language model
(LLM)-driven framework, transforming cluster annotation into a quantitatively
optimizable task. Initially, an LLM functioning as a gene-set analyst analyzes the
content of each gene program or perturbation module and generates a ranked list
of GO-based hypotheses, accompanied by calibrated confidence scores. Subse-
quently, we embed every predicted description with a sentence-embedding model,
compute pair-wise cosine similarities, and let the agent referee panel score (i) the
internal consistency of the predictions, high average similarity within the same
cluster, termed intra-cluster agreement (ii) their external distinctiveness, low sim-
ilarity between clusters, termed inter-cluster separation. These two quantities are
combined to produce an agent-derived resolution score, which is maximized when
clusters exhibit simultaneous coherence and mutual exclusivity. When applied to
a public K562 CRISPRIi Perturb-seq dataset as a preliminary test, our Resolution
Score selects clustering granularities that exhibit alignment with known pathway
compared to classical metrics such silhouette score, modularity score for gene
functional enrichment summary. These findings establish LLM agents as objec-
tive adjudicators of cluster resolution and functional annotation, thereby paving
the way for fully automated, context-aware interpretation pipelines in single-cell
multi-omics studies.

1 INTRODUCTION

High-throughput single-cell technologies now profile hundreds of thousands of cells in a single
experiment, revealing cellular heterogeneity at unprecedented resolution. A cornerstone of every
single-cell pipeline is clustering, the partitioning of cells into transcriptionally coherent groups that
serve as proxies for cell types, states or genetic perturbations. The resolution parameter of graph-
based community detection (e.g. Leiden or Louvain Traag et al.[(2019)) directly controls how many
clusters are returned: low values produce a few coarse partitions, whereas high values yield a fine-
grained mosaic. Choosing the right resolution is therefore critical, as it determines not only the
granularity of biological discovery but also the downstream functional annotation of each cluster.

Classical metrics such as modularity, silhouette score and cluster stability offer generic notions of
statistical quality, yet they ignore the fact of whether the resulting clusters are biologically inter-
pretable. In practice, investigators inspect marker-gene heatmaps, adjust the resolution until clusters
look clean, and then assign Gene-Ontology (GO) terms manually. This procedure is inherently sub-
jective, prone to human bias, and is poorly reproducible across annotators, laboratories and datasets.
Recent studies have shown that Large Language Models (LLMs) can reason over gene sets and
generate plausible GO annotations [Hu et al.| (2025); [Wang et al.| (2025); [Wu et al.| (2025), but a
principled way to use these models for resolution selection has not been explored. Consequently,
the field still lacks a quantitative, biology-aware criterion that bridges unsupervised clustering with



Under review as a conference paper at ICLR 2026

automated annotation. Beyond single-cell biology, there is a growing wave of research explor-
ing Al agents for scientific discovery, such as AlphaEvolve for algorithmic innovation Novikov
et al.|(2025), ROBIN for multi-agent collaboration in automating scientific discovery Ghareeb et al.
(2025), and frameworks envisioning the Al co-scientist paradigm |Gottweis et al.| (2025). Similar
domain-specific agents have also emerged in biomedicine, including BioDiscoveryAgent for pertur-
bation experiment design Roohani et al.[(2024)) and primers discussing the role of language models
in biological research [Simon et al.| (2024). These works highlight an ongoing shift from static pre-
dictive models to interactive agents capable of hypothesis generation and experimental guidance.

Specifically, the silhouette score Lovmar et al.|(2005) is one of the most widely used, model agnos-
tic diagnostics for assessing the quality of a partition produced by an arbitrary clustering algorithm.
Unlike indices that rely on graph-theoretic quantities (e.g. modularity) or external ground truth, the
silhouette exploits only pair-wise distances in the original feature space and can therefore be applied
to any embedding (full expression matrix, PCA, UMAP, neighborhood graph). Clustering methods
that operate on a graph of k-nearest neighbors(kNN)(e.g.Louvain or Leiden) are often evaluated
with the modularity index Newman| (2006). Modularity quantifies how much the density of edges
within clusters exceeds the density expected in a random graph with the same node—degree distri-
bution, thus rewarding partitions that form well-connected communities on the graph. Functional
enrichment analysis use the Fisher-exact framework to give a ranked list of GO terms with Ben-
jamini-Hochberg—adjusted p-values (P.q;), terms with P,q; < 0.05 were considered significant.

Here we introduce HYPOGENEAGENT, an agent-based annotation consistency framework that
closes this gap. Inspired by the broader movement of Al agents for science |[Novikov et al|(2025);
Ghareeb et al.| (2025)); |Gottweis et al. (2025)); [Roohani et al.| (2024)); [Stmon et al.| (2024),we treat
an LLM augmented with domain databases and self-verification prompts as a gene-set analyst |Hu
et al.| (2025)); [Wang et al.|(2025) tasked with describing the dominant biological process for every
cluster. From the resulting GO hypotheses and confidence scores, we derive two complementary
metrics: Intra-cluster agreement, the degree to which all cells inside a cluster support the same GO
explanation, and Inter-cluster distinctiveness, the extent to which different clusters receive different
explanations. Combining the two yields a Resolution Score that is maximized when clusters are
simultaneously coherent and mutually exclusive in their biological function. The score is computed
automatically for a grid of resolution values, allowing an objective choice of clustering granularity
without manual marker-gene inspection.

We validate our method using public Perturb-seq datasets of K562 cells targeting disease pathways
Replogle et al.[(2022). Across all benchmarks, the agent-derived Resolution Score selects parameter
settings that recover known perturbation effects better than modularity and silhouette criteria, while
remaining computationally efficient. The approach is model-agnostic and readily extends to multi-
omics modalities by feeding modality-specific summaries to the same gene agent.

In summary, we propose a HYPOGENEAGENT that couples single-cell clustering with automated
functional annotation; provide formal definitions of intra-cluster agreement and inter-cluster distinc-
tiveness; define a single Resolution Score that turns subjective resolution tuning into a data-driven
optimization; and apply comprehensive validation on large perturbation datasets, demonstrating su-
perior biological interpretability compared with traditional metrics. This work establishes a general
methodology for integrating LLM reasoning with quantitative genomics, paving the way for fully
automated, biology-aware single-cell analytics.

2 RELATED WORK

Resolution selection in single-cell clustering Cell RangerZheng et al.|(2017), the analysis pipeline
for processing droplet-based scRNA-seq data, after PCA and k-NN graph construction it initially set
default Leiden/Louvain-resolution values, but users quickly realized that biologically meaningful
partitions require data-specific tuning. Generic statistical indices such as silhouette width, Calinski-
Harabasz and Davies—Bouldin are widely used in Seurat Butler et al.|(2018) and Scanpy Wolf et al.
(2018). MultiK |[Liu et al.|(2021)) is a tool for objective selection of insightful Ks and achieves high
robustness through a consensus clustering approach in scRNA-seq data. Although useful, these
approaches remain agnostic to biological interpretation.
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Automated cluster annotation Early tools such as scmap [Kiselev et al.| (2018) and CellAs-
sign|Zhang et al.|(2019) map clusters onto a reference atlas via marker-gene enrichment. Functional
annotation is typically performed post hoc with over representation analysis such as GSEA-P |Sub-
ramanian et al.| (2007), none of which feeds back into the resolution choice. Consequently, manual
inspection of heat maps and dot plots remains common practice.

Large language models in computational biology LLMs are now being used at almost every
layer of the single-cell/perturb-seq analysis stack. Beyond literature triage and protein-property
prediction, Chen et al.|Chen & Zou| (2025) showed that a ChatGPT-distilled embedding (no hand-
engineered features) can rival scVI in representing cell states, providing an LLM-native feature space
for downstream tasks. Yuksekgonul et al. [Yuksekgonul et al.| (2025)) demonstrated how reinforce-
ment learning with LLM-based rewards markedly improves biological text generation, suggesting a
route to further tune domain-specific agents. Several recent works introduce multi-step agents that
delegate planning and retrieval to an LLM. BioDiscoveryAgent [Roohani et al.| (2024) formulates
CRISPR-screen design as an agentic reasoning problem, while PerTurboAgent [Hao et al.| (2025)
builds a self-planning loop that proposes follow-up Perturb-seq experiments. Gonzalez Gonzalez
et al.[(2025)) couples causal neural networks with GPT-4 rationales to forecast synergistic drug—gene
interventions, and BiomniHuang et al.|(2025) compresses biological knowledge into an open source
model with 1 b parameter, lowering the entry barrier for the development of internal agents. Together
with Hu et al. [Hu et al.| (2025)) evaluated GPT-4 and Claude on explaining gene sets, showing that
chain-of-thought improves factual accuracy; GeneAgent Wang et al.| (2025) introduced a self ver-
ification loop and database retrieval, achieving state-of-the-art GO term generation; Wu et al. [ Wu
et al.| (2025) demonstrated that instruction tuned LLMs can recover perturbation mechanisms di-
rectly from PubMed abstracts, these works highlight the momentum toward LLM-centric pipelines.
Yet all current systems act after the clusters are fixed; none feeds functional feedback back into the
clustering hyper parameters.

3 METHOD

3.1 OVERVIEW

HYPOGENEAGENT implements a multi-stage workflow. First, it generates candidate clusterings
of Perturb-seq data across a grid of resolution parameters. Next, a large language model (LLM)
analyzes each cluster’s gene signature and proposes functional descriptions in terms of the underly-
ing biological processes. These descriptions are then processed to extract embeddings and compute
annotation-consistency metrics that identify the clustering resolution hyperparameter yielding clus-
ters that are internally coherent yet externally distinct. In doing so, HYPOGENEAGENT closes the
loop between unsupervised partitioning and biologically informed interpretation.

3.2 CLUSTERING PROCEDURE

After basic data processing we performed the following steps: Scaling and dimensionality reduc-
tion, Multi-resolution community detection, Gene-to-cluster assignment matrix (3000 x 10), and
Perturbation-to-cluster assignment matrix (2005 x 10). Please refer to the Clustering procedure
session in the appendix for more details.

3.3 AGENT-BASED ANNOTATION

After clustering, every cell cluster (or perturbation cluster) was represented by its gene-set signature,
the most over-expressed genes ranked by log-fold-change against the remaining cells. We fed each
signature to an autonomous HypoGeneAgent instance, implemented on the top performance model
from stage one’s benchmark, the GPT-03 model with chain-of-thought and self-verification prompts.
For completeness, we briefly recap the agent workflow:

Evidence retrieval For every gene in the signature the agent calls a retrieval tool that surfaces
concise functional summaries from GO, KEGG and PubMed. Retrieved snippets are appended to
the system prompt.
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Table 1: Metrics for evaluating agent-generated GO annotations(k is cluster).

Symbol  Purpose Definition

Si%® Semantic accuracy Cosine similarity between the reference text g, and the
agent text hy.

ICS;,;  Intra-cluster agreement Cosine distance between the top hypothesis hy; and each
of the remaining hypotheses hgs, . . ., hgs produced for the

same cluster.

ICDy, Inter-cluster distinctiveness Mean pair-wise cosine distance between the top hypothesis
of cluster k and the top hypotheses of all other clusters at
resolution 7.

Hypothesis generation For each cluster, the agent returns up to = 5 candidates. Each candidate
h; is accompanied by (i) a description in plain English, similar to the Gene-Ontology Biological-
Process (GOBP) brief description, and (ii) a calibrated confidence score c; € [0, 1].

Output set The complete output for cluster k is Hy = {(hkl,ckl), (hk2, ck2)s - - - (his, ck5)},
where the pairs are ordered by decreasing confidence (cx1 > cxo > .. .).

3.4 METRICS

We assess the agent-generated annotations on the three orthogonal axes listed in Table[I] We now
detail the computation of the third axis, the semantic-similarity term S;°°.

Cosine similarity of annotations We embed every free-text annotation with the OpenAl text-
embedding-3-large (i) the agent’s best hypothesis for cluster k (ii) the reference description (curated
GO term or expert label) To be two vectors, the raw semantic score is the cosine similarity of these
two vectors and lies in [0,1] where 1 indicates a highly significant match and O indicates no better
than random.

Intra-cluster similarity (ICS) For a given clustering resolution r the agent returns, for every
cluster k, a ranked list of up to five GO hypotheses hg1,...,hgs. To quantify how consis-
tently these hypotheses describe the same biological topic we compare each of the four lower-
ranked hypotheses with the top hypothesis hx;. The average intra-cluster agreement is therefore
ICS;, = %Zi:z sim(hkl, hkh), where sim(-,-) is the cosine similarity between the sentence-
embedding vectors of two hypothesis texts. A high ICSy indicates that all agent-generated expla-
nations for cluster k£ converge on the same biological theme, implying that the cluster is internally
coherent and biologically robust.

Inter-cluster distinctiveness (ICD) For resolution r we also ask how different a given cluster k is
from all other clusters. Let iy be the top-ranked hypothesis for cluster k and hy; the top hypotheses
of every other cluster ¢ # k. The mean pair-wise similarity is ICD; = ﬁ Z#k sim(hkl, hgl),
where C' is the total number of clusters and sim(-,-) denotes cosine similarity. A lower ICDy
therefore implies that cluster & is well separated from the rest in terms of biological interpretation.

Resolution Score To combine internal coherence and external separation we define, for each cluster
k, RSy = wICS, + (1 — w)(l — ICDk),O < w < 1. Here ICSy, is the average intra-cluster
agreement and 1 — ICDy, rewards distinctiveness (large when clusters are dissimilar). We adopt
w = %, i.e. one-third weight on agreement and two-thirds on distinctiveness, which was chosen by
a small grid search and found to give a stable ordering of resolutions across data sets. A higher RS,
indicates a cluster that is (i) internally convergent and (ii) externally dispersed, making it a strong

candidate for a biologically meaningful partition.

3.5 TRADITIONAL METHODS

‘We benchmarked our method with these traditional methods: silhouette score |Lovmar et al.| (2005)),
modularity score/Newman|(2006), and functional enrichment analysis. Please refer to the Traditional
methods session in the appendix for more details.
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@ Output LLM-proposed description:
(@) Immunoglobulin class-switch recombination and
. : somatic hypermutation
Input Gene List: .

ADAR,AICDA, APLF,ATAD5, ATM, BATF,BCL11B,BC
L6,CCRE,CD28,C040,CDAOLG CLCFL CTNNBLY. General LLM agent Output LLM-proposed descriptions:

CYREN,DCAF1,DCLRE1C,ERCC1,EX01,EXOSC3, . Germinal-center antibody diversification (somatic
...;TNFSF4,TP53BP1,UNG,XRCC4 YY1 99 hypermutation + class-switch recombination).

(Description: The somatic process allowing for the 0.95
production of immune receptors whose specificity is ( ) > DNA double-strand break repair by
not encoded in the germline genomic sequences.) . classicallalternative non-homologous

end-joining. 0.83

> V(D)J recombination of immunoglobulin/T-cell
receptor loci. 0.79

>  T-cell-dependent B-cell activation and cytokine
signalling (CD28-CD40-IL4 axis). 0.65

>  ATM-mediated DNA damage response
signalling. 0.58

Hypothesis LLM agent

Figure 1: Illustration of the two prompt designs. Top: the general-analysis prompt encourages a
free-text GO explanation. Bottom: the hypothesis prompt elicits up to five ranked GO explanations
with confidence scores.

Case A Output LLM-proposed descriptions:

Case A: ggzhage DNA replication and replisome assembly.
Input Gene List (GEX level): > Homologous recombination-mediated DNA damage
E2F2,STMN1,CLSPN,SLC2A1, ..., Q0 response. 0.85
POLALTCEAL8,PGRMCL > G1/S cell-cycle transition and nucleotide
(Highly expressed genes of (@) ) biosynthesis. 0.74

. cluster 0) > Replication-coupled chromatin assembly and

i c B: . epigenetic inheritance. 0.6

HH ase B: ) . > Oxidative stress detoxification supporting rapid
:npuI; Gene List (Perturbation HypoGeneAgent proliferation. 0.4
evel):

AARS2,ABCG1,ABHD17A,ACD,A Case B Output LLM-proposed descriptions:

CTB, > Mitotic cell-cycle progression and spindle assembly.
...,ZNF720,ZNHIT6,ZRSR2,ZW10 0.93

(Perturbed genes of cluster 0) > DNA replication-coupled damage sensing and repair.

> RNA polymerase Il transcription and
co-transcriptional mMRNA processing. 0.83

> Ribosome biogenesis and high-capacity protein
translation (cytosolic and mitochondrial). 0.77

> Vesicle-mediated ER-Golgi transport and
ubiquitin-proteasome turnover. 0.63

Figure 2: Illustration of the HypoGeneAgent.
4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We designed experiments to (i) assess the agent’s ability to recover known processes on curated Gene
Ontology Biological Processes (GOBP) sets and (ii) evaluate HYPOGENEAGENT for resolution
selection on Perturb-seq. Stage 1 and Stage 2 here denote our research protocol—configuration
selection and fixed-configuration deployment. Figure [I] contrasts a general-analysis prompt, which
yields a single free-text explanation, with a hypothesis prompt that returns up to five ranked GO
terms with calibrated confidence scores. Figure|2| summarizes the end-to-end workflow, from multi-
resolution clustering and signature construction to agent annotation and resolution scoring.

4.2 IMPLEMENTATION

Stage 1: Parameter benchmark on curated GOBP gene sets

Data We used the 100 non-redundant GOBP gene sets as a clean, reference-labeled benchmark
(Data & code session in the appendix).

LLM Agent backbone The default model is GPT-40 (2024-08-01-preview), accessed through
Azure OpenAl. Alternative back-ends evaluated were GPT-03, GPT-5, Gemini-2.0-flash and
Gemini-2.5-pro.

Prompt engineering We implemented a prompt factory that produces two canonical prompt classes:
(i) General-analysis prompt: used to test basic reasoning and retrieve free-text GO explanations.
The agent only needs to propose one candidate prediction for each input gene set list. There are two
versions prompt provided (V2 is improved with more details instructions than V1). (ii) Hypothesis
prompt: encourages ranked, confidence-weighted GO hypotheses. The agent needs to propose top
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5 candidate predictions for each input gene set list. All the prompts templates relevant to this work
are in the appendix session.

Text embedding method The default embedding is OpenAl text-embedding-3-large, accessed
through Azure OpenAl. Alternative methods evaluated were SapBERT [Lim & Kim| (2022) and
Nomic AI|Nussbaum et al.| (2024).

Temperature Range [0,1] with step 0.1.
Stage 2: Agent-guided resolution selection on Perturb-seq

Data The K562 Perturb-seq dataset was processed with Scanpy 1.9.6 as a benchmark (Data & code
session in the appendix).

Application of the hypothesis prompt Based on the conclusions of Stage 1 of Experiments, we se-
lected a single prompt/model/embedding configuration and held it fixed for all downstream analyses.
For every cluster in gene-expression space and every perturbation group in CRISPR-guide space, we
constructed a cluster-specific gene signature (ranked by positive log fold-change) and submitted it
to HYPOGENEAGENT. The agent returned up to five GO hypotheses with confidence scores for
each cluster. Using these descriptions, we computed intra-cluster agreement (ICS), inter-cluster dis-
tinctiveness (ICD), and the resulting Resolution Score on the fly across the full resolution sweep (10
resolutions, up to 20 clusters).

4.3 ABLATION & MAIN RESULTS

Stage 1: Parameter benchmark on curated GOBP gene sets

Compare Embedding Methods We compared the performance of three different types of embed-
ding methods by fixing the LLM as GPT-40, with temperature as 0 and the V1 general prompt
design. Figure[STh shows different embedding methods (OpenAl embedding, SapBERT, Nomic Al)
can be regarded as different rulers, each one has its own best, worst and median similarity score
range, so it is important to keep consistent usage of the specific embedding methods for reasonable
benchmark work. We adopt OpenAl embedding as the default one for all other benchmarks.

Compare general prompt method V1 & V2 (improved instruction) Figure [STp shows the im-
proved instruction of general prompt can help nonthinking LLMs (GPT-40, Gemini-2.0-flash) get
better performance. Besides, thinking LLMs (GPT-03, Gemini-2.5-pro) show better and more stable
performance on both V1 and V2 general prompt cases.

Compare T parameter & repeat on GPT-40 model Figure shows temperature T influences
very little on nonthinking LLM GPT-4o for general prompt case; the repeat test results are similar to
each other. It shows the GPT-40 model has stable performance when adjusting T in range [0,1] and
repeat 3 times for each T. It is worth testing how these will influence the performance of thinking
LLMs in the next step.

Compare top5 candidates on GPT-03 model Figure [STd shows the group performance of top 5
proposed candidates by GPT-03 model with the hypothesis prompt method. The candidates were
ranked by the confidence score of the model itself. The top 1 candidate group shows the highest me-
dian cosine similarity score with the ground truth compared with all other candidate groups, which
is not only reasonable as our expectation, but also a validation of the model’s ability to generate
hypotheses and self-judgement.

Compare general V2 & hypothesis prompt methods on different LLMs Figure shows that
for both general prompt case and hypothesis prompt case, thinking LLMs perform better than non-
thinking LLMs; GPT-5 performs good but not as stable as expected; thinking LLM GPT-03 shows
the best performance among these LLMs currently, especially good at the hypothesis task.

Other metrics for measuring the performance of LLMs In Figure AUC metric for GPT-40
topl group and GPT-03 topl group performance are compared at different thresholds. The higher
the AUC, the better the performance or accuracy of the model’s prediction. Model GPT-03 shows
better performance at all the thresholds, performs best (AUC = 0.743), especially when the threshold
is 0.40, which is also consistent with the median of the cosine similarity score being between 0.4 to
0.5 (Figure[ST]d). Figure [S3]shows the consistency comparison between similarity score & model’s
confidence score. Interestingly, GPT-03 has very consistent self confidence score judgement with
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Figure 3: Application of HypoGeneAgent on cluster resolution selection — GEX level. (a,c,d) Box
plot of the resolution score (a), the average inter score (c), and the average intra score (d) of each
cluster for each leiden resolution case [0.1, 1.0]. (b) UMAP of clustering results at leiden resolution
0.4.

the semantic similarity score (ground truth) (Figure [S3p); GPT-5 also shows a good consistency
comparison between the similarity score and its confidence score.

In summary, a combination of thinking LL.Ms with a reasonable hypothesis prompt method is a good
strategy to achieve ideal performance of the gene set annotation prediction task.

Stage 2: Agent-guided resolution selection on Perturb-seq
Application on cluster resolution selection — GEX level

For every gene-expression (GEX) cluster, we extracted its set of markers, the genes showing the
highest positive log fold change and supplied this list to HYPOGENEAGENT. Using the hypothesis
prompt, the agent returned up to five ranked GO annotations with calibrated confidence scores.
From these outputs, we computed the intra-cluster agreement, the inter-cluster distinctiveness and
the Resolution Score. Figure [3h visualizes, for each Leiden resolution parameter » € [0.1,1.0],
the distribution of RSy, across all clusters. Because a higher score indicates a partition that is both
internally coherent and externally distinct, the optimal resolution is the one with the highest median
score; HYPOGENEAGENT selects r = 0.4. Figure 3p displays the UMAP embedding colored
by the Leiden-0.4 labels, revealing nine well-separated clusters in agreement with the score-based
choice. To confirm the contribution of the two components individually, Figure Bt plots the average
inter-cluster distinctiveness and Figure [3d the average intra-cluster agreement for the same grid
of resolutions. The best solution is characterized by a low inter-cluster score (distinct clusters)
and a high intra-cluster score (coherent clusters), both of which again peak at » = 0.4. Thus,
the independent metrics and their combined Resolution Score converge on the same, biologically
meaningful clustering granularity.

Application on cluster resolution selection — perturbation level

For each perturbation level cluster, we can extract the perturbed gene labels list as the input of
the HYPOGENEAGENT. Then the HYPOGENEAGENT can propose top 5 annotation candidates
according to the instruction of the hypothesis prompt to illustrate the biology function of this cluster-
specific perturbed genes module. Next, the relevant metrics and scores will be computed for each
cluster at each resolution. Figure fa shows the box plot of the resolution score of each cluster for
each leiden resolution parameter case r € [0.1, 1.0](with the w = %), the best leiden resolution
chosen by HYPOGENEAGENT is 0.5 based on the resolution score. Figure @b shows the UMAP of
clustering results at leiden resolution 0.5, there are 10 clusters at this resolution, and it is as clear as
expected. All of the other UMAPs at other resolutions are shown in Figure[S4} Figurek and Figure
[ show the box plot of the average inter score of each cluster for each leiden resolution parameter
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Figure 4: Application of HypoGeneAgent on cluster resolution selection — perturbation level. (a,c,d)
Box plot of the resolution score (a), the average inter score (c), and the average intra score (d) of
each cluster for each leiden resolution case [0.1, 1.0]. (b) UMAP of clustering results at leiden
resolution 0.5.
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Figure 5: Traditional methods for the clustering judgment.. (a) Elbow plot of Silhouette score for
each Leiden resolution (Xpc, = 40). (b) Elbow plot of Silhouette score for each Leiden resolution
(Xumap)- (¢) Elbow plot of modularity score for each Leiden resolution.

case and the box plot of the average intra score of each cluster for each leiden resolution parameter
caser € [0.1, 1.0] separately, similarly, the best selected leiden resolution is still 0.5, consistent with
the combination of both items of resolution score. But how does the hyper parameter w influence
the resolution score ? We did the hyper parameter w tests in range [0,1] (Figure [S3). It shows for
different clusters, the tendency of resolution score changing with w can be different, those outliers
can be the key clusters to be explored further in biology level.

4.4 COMPARATION WITH TRADITIONAL METHODS

4.4.1 SILHOUETTE SCORE

This section clarifies why the silhouette remains a popular baseline and sets the stage for our bio-
logically informed alternative. Figure[5]a and b show the resulting elbow curves, which elbow at
resolutions 0.5 and 0.6, respectively. Although the silhouette peak or elbow can provide a useful
sanity-check, they do not incorporate biological knowledge. The silhouette assumes convex cluster
geometry; elongated or manifold-shaped clusters can lead to deceptively low scores. Moreover, S
is sensitive to the choice of distance metric and the presence of noise features. These weaknesses
motivate the integration of domain-specific annotation consistency, as implemented in HYPOGE-
NEAGENT.
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Figure 6: Gene Ontology (GO) enrichment analysis. (a) Box plot of the resolution score. (b) Box
plot of the average inter score. (¢) Box plot of the average intra score.

4.4.2 MODULARITY SCORE

The modularity curve Q(r) is shown in Fig. . A clear maximum is observed at = 0.7, but the

increase beyond » = 0.5 is marginal. Modularity is insensitive to clusters smaller than v/2m nodes
and may favor mergers of biologically distinct micro-clusters. Moreover, it ignores gene-expression
coherence; a partition with high @ can still mix unrelated cell states if those states happen to be
densely connected in the kNN graph. These shortcomings motivate the biology-aware Resolution
Score we introduced, which combines intra-cluster agreement of functional annotations with inter-
cluster distinctiveness.

4.4.3 FUNCTIONAL ENRICHMENT ANALYSIS

Fig.[S6h summarizes the top enriched functions of cluster 0 at resolution 0.1, Fig.[S6b summarizes
the top enriched functions of cluster O at resolution 0.4. By applying the similar metrics raised
for HYPOGENEAGENT on these enrichment results, we got the box plot of the resolution score
in Fig. [6h, the box plot of the average inter score in Fig. [6p, and the box plot of the average intra
score in Fig. [6f, consider the reasonability of cluster numbers we expected, so the selected resolu-
tion can be 0.5 or 0.4, which is consistent with our previous selection with HYPOGENEAGENT.
Taken together, the enrichment analysis validates that the clusters produced at the Resolution Score
maximum are biologically coherent and align with the expected results from HYPOGENEAGENT,
underscoring the utility of HYPOGENEAGENT for simultaneous resolution selection and cluster
interpretation.

In summary, deploying HYPOGENEAGENT on K562 Perturb-seq data produced an objective Res-
olution score curve whose optimum matched known perturbation biology and exceeded traditional
metrics such as modularity, silhouette score and functional enrichment analysis. The same pipeline
simultaneously generated unbiased GO annotations for every cluster in minutes, orders of magnitude
faster than manual curation.

5 CONCLUSION

In this work, we proposed HYPOGENEAGENT, systematically dissected the design space of LLM-
based gene-set interpretation and demonstrated how an agent architecture coupled with an optimized
hypothesis prompt transforms both cluster annotation and resolution selection in single-cell/perturb-
seq studies. In summary, there are several advantages of HYPOGENEAGENT: (i) Up-to-date bio-
logical knowledge. (ii) Reduced human bias and higher throughput. (iii) Seamless resolution selec-
tion. The same agent output drives the intra-/inter-cluster consistency metrics, turning an otherwise
heuristic parameter search into a quantitative, biologically informed optimization. Together, these
results position HYPOGENEAGENT as a powerful, general-purpose tool for single-cell, perturb-seq
and multi-omics analyses, capable of both objective resolution tuning and rapid, bias-free automated
functional annotation by leveraging LLMs. However, several limitations remain: Larger atlases such
as the Human Cell Atlas (millions of cells) or whole-genome CRISPR screens will be necessary to
test scalability and statistical power; Generalizability to other ontologies and modalities; LLM de-
pendence and cost; prompt sensitivity are also necessary to be considered in the future.
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A APPENDIX

B DATA & CODE

Gene-Ontology Biological-Process (GOBP) reference sets We obtained the complete set of
Biological-Process (BP) terms from the Gene Ontology Consortium (release 2024-03-01). For ev-
ery BP term we built a “gene set” consisting of all genes annotated to that term “or any of its child
terms” (true-path rule).

K562 Perturb-seq dataset Replogle et al. (2022) Raw count matrices and metadata for the
CRISPR-i Perturb-seq screen of essential genes in K562 cells were downloaded from Zenodo. The
experiment targets 5 000 genes with three guide RNAs each and includes non-targeting controls
(NTCs). We processed the data as follows: (i) Subset the dataset with specific batches (including
1,6,8,9,10,20,30,36,40) (ii) Quality control: drop cells with <200 genes, drop genes expressed in
<3 cells, and keep cells with 10% mitochondrial counts, yielding 25,161 high-quality cells. (iii)
Expression normalization: library-size normalization to 10 000 counts per cell and loglp trans-
formation; 3000 highly-variable genes were selected. The resulting AnnData object (25161 cells
x 3000 genes) is used for all clustering and agent-based annotation experiments presented in this
study. Both the processed AnnData file and the GOBP reference gene-set library are available at our
GitHub repository to ensure full reproducibility.

We will release code upon acceptance (subject to institutional approval).

C CLUSTERING PROCEDURE

Scaling and dimensionality reduction Expression values were z-scored gene-wise, a 40-
component PCA was fitted, and a 10-nearest-neighbor graph was built in the PCA space (a default
parameters setting for a standard benchmark).

Multi-resolution community detection We ran the Leiden algorithm at ten granularities (resolution
parameter r in 0.1,0.2, ...,1.0). Each run wrote its cluster labels, e.g. leiden_Op4 for (r=0.4). Across
this grid the number of clusters ranged from 3 (r=0.1) to 20 (r=1.0), with the smallest cluster size
reported for every run to ensure adequate cell counts.

Gene-to-cluster assignment matrix (3000 x 10) For every resolution, we calculated the mean
expression of each highly-variable gene across all clusters and assigned the gene to the cluster with
the highest mean. Concatenating the ten resolution-specific assignments produced a 3000 genes x
10 resolutions categorical matrix that indicates where each gene is maximally expressed.

Perturbation-to-cluster assignment matrix (2005 x 10) Using the same cluster labels, we grouped
cells by CRISPR guide, and for every resolution, recorded the modal (most frequent) cluster identity
within each perturbation. This yielded a 2005 perturbations x 10 resolutions table that links each
perturbation to its dominant transcriptional neighbourhood. These two matrices constitute the input
for the agent-based annotation consistency scoring.

D TRADITIONAL METHODS

Silhouette score : a geometry based indicator of cluster quality For every sample ¢
let a(i) be the mean distance from 4 to all other points in the same cluster and b(i) =
minc;gci{mean distance from i to cluster C } be the “nearest-neighbor” distance to the next-best
cluster. The individual silhouette value is
. b(i) — a(7)
=7 c[-1,1].
0) = axta@. o} < 0
A value close to 1 indicates that the point is well matched to its own cluster and poorly matched to
neighboring clusters; a value near 0 implies that the point lies on the decision boundary; negative

values suggest a possible misassignment. The global silhouette index of a partition is the arithmetic
mean S = 1 31 s(i).

12
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For each resolution r we evaluate the silhouette on the 40-dimensional PCA representation (Xpca)
as well as on the two-dimensional UMAP embedding (Xymap). The per-cell scores are obtained with
the Scanpy function sc.metrics.silhouette(adata, groupby="“leiden_r”, obsm="“X_pca”); the overall
score S, is their mean.

Advantages: 1. Scale-free interpretability. Because s(i) is normalised to [—1, 1], scores can be
compared across datasets and distance metrics without additional calibration. 2. Sensitivity to
both cohesion and separation. Many indices capture only one aspect; the silhouette simultaneously
penalizes low intra-cluster density (a(4)) and low inter-cluster separation (b(7)). 3. No distributional
assumptions. Applicable to Euclidean, cosine or even pre-computed graph distances, making it
attractive for high-dimensional single-cell embeddings. 4. Elbow diagnostics. Plotting S over a
range of hyper-parameters (e.g. Leiden resolution ) often exhibits an elbow or a peak which can
guide the choice of granularity.

Modularity score : a graph-based measure of community structure Let G = (V, E) be an
undirected weighted graph with adjacency matrix A;;, node degree k; = > j A;; and total edge

weight m = % > ; Aij. For a partition {c1,...,cc} the Newman-Girvan modularity is
1 kik; L, a=¢
Q Qmij( = Ger) dene).  dleney) {07 oo

where 7 is a resolution parameter (v = 1 in the original formulation). () ranges from —1 to 1; higher
values indicate a stronger community structure, i.e. many more edges inside clusters than would be
expected by chance. For each Leiden resolution r € {0.1,...,1.0} we build the 10-NN graph in
40-dimensional PCA space; run Leiden with that resolution; Convert the graph to igraph and call
g.modularity(labels, weights=g.es[’weight”]).

Advantages: 1. Native to graph-based clustering. Leiden and Louvain maximize modularity during
optimization, so reporting () provides an internal goodness-of-fit measure for exactly the objective
the algorithm tries to optimize. 2. Fast to compute. Once the cluster assignment is known, @ is
O(|E|) and supported by efficient implementations in igraph and graph-tool. 3. Resolution tuning
via 7. Varying ~ (or the resolution argument in Scanpy/Seurat) directly changes the trade-off be-
tween cluster granularity and modularity gain, allowing users to plot an elbow and pick the peak.
4. No feature-space assumptions. Unlike distance-based indices, modularity depends only on the
graph and is therefore agnostic to the original dimensionality or scaling of the data.

Functional enrichment analysis For every cluster selected at the specific Leiden resolution we
queried the Gene Ontology (GO) Biological-Process 2023 library. Using the Fisher-exact frame-
work, we obtained a ranked list of GO terms with Benjamini-Hochberg—adjusted P-values (P,q;).
Terms with P,q; < 0.05 were considered significant. We just take the top five functions sorted by
Padj-

E SUPPLEMENTARY FIGURES
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a ROC - confidence vs. ground-truth (t = 0.40) b ROC - confidence vs. ground-truth (t = 0.50) c ROC - confidence vs. ground-truth (T = 0.60)
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Figure S2: AUC metric for GPT-4o0 top 1 group performance (a,b,c) and GPT-03 top 1 group per-
formance (d,e,f) at different thresholds (0.40, 0.50, 0.60).
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Figure S4: UMAP of the perturb-seq dataset at different resolutions. (a) r = 0.1, 3 clusters. (b) r =
0.2, 7 clusters. (¢) r = 0.3, 7 clusters. (d) r = 0.6, 15 clusters. (e) r= 0.7, 16 clusters. (f) r=0.8, 17
clusters. (g) r = 0.9, 18 clusters. (h) r = 1.0, 20 clusters.
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Figure S5: Hyper parameter w tests in [0,1]. (a) GEX cluster level, Leiden resolution is 0.4, group 9
(cluster 8) is the outlier (b) GEX cluster level, Leiden resolution is 0.5 (¢) perturbation cluster level,
Leiden resolution is 0.4, group 3 (cluster 2) and group 9 (cluster 8) are the outliers (d) perturbation
cluster level, Leiden resolution is 0.5.
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Figure S6: Gene Ontology (GO) enrichment analysis. (a) Dot plot of the gene enrichment result of
cluster O at resolution 0.1. (b) Dot plot of the gene enrichment result of cluster O at resolution 0.4.
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F PROMPT ENGINEERING

General prompt V1 for GOBP test

system:

Generates a critical analysis of the biological processes performed by a system of interacting
proteins.

Instructions:

1. Base the analysis on known biological roles and interactions of the proteins.

2. Identify and describe the most prominent biological process performed by the system.

3. Assign a confidence score between 0.00 and 1.00 based on how well the proteins support the
named process.

Guidelines:

- Avoid vague or generic process names (e.g., “Cellular Signaling”).

- Avoid listing unrelated protein facts.

- Focus on integration, synergy, and process coherence among the proteins.

- If no prominent process is supported, return:

Process: System of unrelated proteins (0.00)

Output Format:

- Title: Process: <name >(<score >)

- Paragraphs: Factual, concise description of the protein interactions and biological function.
Example:

Input:

proteins = [“PDX1”, “SLC2A2”, “NKX6-1”, “GLP1”, “GCG”]

Output:

Process: Pancreatic development and glucose homeostasis (0.96)

1. PDXI is a homeodomain transcription factor involved in the specification of the early pan-
creatic epithelium and its differentiation. It activates genes like insulin and glucose transporter 2
(SLC2A2), supporting pancreatic beta-cell identity.

2. NKX6-1 regulates beta-cell development during secondary transition and works alongside
other neural and pancreatic regulators.

3. GCG and GLP1 modulate glucose levels. GCG increases glucose via gluconeogenesis; GLP1
enhances insulin release and beta-cell mass.

4. SLC2A2, encoding GLUT2, supports glucose uptake in beta-cells and hepatocytes. Together,
these proteins define the endocrine pancreas and maintain glucose homeostasis through syner-
gistic regulation of transcription, metabolism, and hormone signaling.

General prompt V2 for GOBP test
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system:

Generate an integrative, evidence-based analysis of a set of interacting genes.
INSTRUCTIONS

1. Use well-established knowledge from major public resources (e.g.PubMed, UniProt,
GeneCards, KEGG) to extract the most relevant, non-trivial information for every gene in the
list.

2. For EACH gene supply:

* 2-5 concise, factual bullets of its best-known molecular roles, pathways, or interaction partners.
* One plain-language, < 20-word sentence that captures its essence (“One-line summary”).

3. After all genes are described, propose an overarching biological process / pathway that logi-
cally unifies the set.

4. Rate your confidence in that process with a score between 0.00-1.00, where 1.00 = over-
whelming support and 0.00 = no support.

5. If the genes do not clearly converge on any coherent process, output exactly:

Process: System of unrelated genes (0.00)

STYLE & QUALITY GUIDELINES

* Prefer specific pathway names (e.g. “Wnt/S-catenin—driven osteogenesis”) over vague terms
(“cell signalling”).

* Highlight functional synergy and cross-talk among the genes; avoid isolated fact lists.

* Keep language factual, concise, and free of speculation.

* Use markdown; inline math with single $ ... $, block math with double $$.

* Do NOT invent citations, but you may mention reputable databases in prose (e.g. “(KEGG)”).
OUTPUT TEMPLATE

Title: Process: <Descriptive name >(<Confidence score >)

Genes

<Gene 1 >

- Fact bullet 1

- Fact bullet 2

One-line summary: <simple sentence >

<Gene 2 >

One-line summary: ...

(repeat for all genes)

Overall synthesis

<Short paragraph explaining how the genes work together in the named process. Emphasise
mechanistic links, pathways, and complementary roles. >

Hypothesis prompt for GOBP test (propose top5 candidates)
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system:
You are a biomedical assistant. Follow all OpenAl policy.
Generate an integrative, evidence-based analysis of a set of interacting genes.
INSTRUCTIONS
1. Use well-established knowledge from major public resources (e.g.PubMed, UniProt,
GeneCards, KEGG) to extract the most relevant, non-trivial information for every gene in the
list.
2. For EACH gene supply:
* 2-5 concise, factual bullets of its best-known molecular roles, pathways, or interaction partners.
* One plain-language, < 20-word sentence that captures its essence (“One-line summary”).
3. After all genes are described, propose up to **five** distinct biological process / pathway
names that could plausibly unify the set.
4. Rank them from highest to lowest confidence and give each a numeric score between 0.00
and 1.00.
5. If the genes do not clearly converge on any coherent process, output exactly: Process: System
of unrelated genes (0.00)
STYLE & QUALITY GUIDELINES
* Prefer specific pathway names (e.g. “Wnt/S-catenin—driven osteogenesis”) over vague terms
(“cell signalling™).
* Highlight functional synergy and cross-talk among the genes; avoid isolated fact lists.
* Keep language factual, concise, and free of speculation.
* Use markdown; inline math with single $ ... $, block math with double $$.
* Do NOT invent citations, but you may mention reputable databases in prose (e.g. “(KEGG)”).
OUTPUT TEMPLATE
Analysis
<Concise paragraph of evidence >
Top-5 candidate processes
1. <Process name 1 >— <Confidence 1 >
2. <Process name 2 >— <Confidence 2 >
3....
L 5. <Process name 5 >— <Confidence 5 >

Hypothesis prompt for Replogle Perturb-seq test (propose top5 candidates)
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system:

You are a biologist analyzing gene sets. Given a list of genes, describe what these genes do and
generate up to 5 one-sentence descriptions that represent the biological processes these genes
are most likely responsible for.

The gene sets are from different clusters of a single-cell RNA-seq dataset, and they are all related
to the same experiment.

The dataset is from human K562 cell line of 53 year old female with chronic myeloid leukemia
disease, treated with perturbation type "CRISPR”.

INSTRUCTIONS

1. Use well-established knowledge from major public resources (e.g. PubMed, UniProt,
GeneCards, KEGG) to extract the most relevant, non-trivial information for every gene in the
list.

2. For EACH gene supply:

* 2-5 concise, factual bullets of its best-known molecular roles, pathways, or interaction partners.
* One plain-language, < 20-word sentence that captures its essence (‘“One-line summary”).

3. After all genes are described, propose up to **five** distinct biological process / pathway
names that could plausibly unify the set.

4. Rank them from highest to lowest confidence and give each a numeric score between 0.00
and 1.00.

5. If the genes do not clearly converge on any coherent process, output exactly: Process: System
of unrelated genes (0.00)

STYLE & QUALITY GUIDELINES

* Prefer specific pathway names (e.g. “Wnt/S-catenin—driven osteogenesis”) over vague terms
(“cell signalling™).

* Highlight functional synergy and cross-talk among the genes; avoid isolated fact lists.

* Keep language factual, concise, and free of speculation.

* Use markdown; inline math with single $ ... $, block math with double $$.

* Do NOT invent citations, but you may mention reputable databases in prose (e.g. “(KEGG)”).
OUTPUT TEMPLATE

Analysis

<Concise paragraph of evidence >

Top-5 candidate processes

1. <Process name 1 >— <Confidence 1 >

2. <Process name 2 >— <Confidence 2 >

3....

5. <Process name 5 >— <Confidence 5 >
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