
Journal of Data-centric Machine Learning Research (2024) Submitted 12/23; Revised 7/24; Published 8/24

Deep Neural Network Benchmarks
for Selective Classification

Andrea Pugnana andrea.pugnana@di.unipi.it
Scuola Normale Superiore, University of Pisa, ISTI-CNR
Pisa, Italy

Lorenzo Perini lorenzo.perini@kuleuven.be
KU Leuven
Leuven, Belgium

Jesse Davis jesse.davis@kuleuven.be
KU Leuven
Leuven, Belgium

Salvatore Ruggieri salvatore.ruggieri@unipi.it
University of Pisa
Pisa, Italy

https://openreview.net/forum?id=xDPzHbtAEs

Editor: Mykola Pechenizkiy

Abstract
With the increasing deployment of machine learning models in many socially-sensitive tasks,
there is a growing demand for reliable and trustworthy predictions. One way to accomplish
these requirements is to allow a model to abstain from making a prediction when there
is a high risk of making an error. This requires adding a selection mechanism to the
model, which selects those examples for which the model will provide a prediction. The
selective classification framework aims to design a mechanism that balances the fraction of
rejected predictions (i.e., the proportion of examples for which the model does not make a
prediction) versus the improvement in predictive performance on the selected predictions.
Multiple selective classification frameworks exist, most of which rely on deep neural network
architectures. However, the empirical evaluation of the existing approaches is still limited
to partial comparisons among methods and settings, providing practitioners with little
insight into their relative merits. We fill this gap by benchmarking 18 baselines on a
diverse set of 44 datasets that includes both image and tabular data. Moreover, there is
a mix of binary and multiclass tasks. We evaluate these approaches using several criteria,
including selective error rate, empirical coverage, distribution of rejected instance’s classes,
and performance on out-of-distribution instances. The results indicate that there is not
a single clear winner among the surveyed baselines, and the best method depends on the
users’ objectives.
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1 Introduction

Artificial Intelligence (AI) systems are increasingly being deployed to support or even au-
tomate decision-making. Ensuring the trustworthiness of AI systems is crucial in many
applications (Kaur et al., 2023), and is one of the main goals of the recent European AI
Act (European Commission, 2021). More precisely, “[h]igh-risk AI systems shall be designed
and developed in such a way that they achieve, in the light of their intended purpose, an
appropriate level of accuracy [and] robustness”.

High-risk AI systems pertain to socially sensitive domains, such as: healthcare, where
predictions might be used to determine treatments (Craig et al., 2023); justice, where
predictions can evaluate the risk of recidivism (Berk et al., 2021); hiring, where predictions
can determine rankings of candidates or explain their turnover intention (Fabris et al.,
2023; Lazzari et al., 2022); and credit scoring, where predictions can be used to estimate
the probability of repaying a debt (Dastile et al., 2020).

In all such high-risk contexts, we aim to reduce the number of mistakes made by AI
systems because their mistakes can have critical consequences. For example, consider a
bank that uses a Machine Learning (ML) model to score the credit risk of loan applications.
In such a setting, a misprediction could either translate into a money loss for the bank or
an unjust denial of credit to the applicant.

One potential way to improve the trustworthiness of a model is to allow it to abstain
from making a prediction when there is a high chance of making an error (Chow, 1970).
Such a strategy is inherent in human reasoning when facing an unknown phenomenon. For
example, human bankers who are unsure about a specific loan application do not (have to)
provide an answer as soon as they are asked. Indeed, they may require additional financial
documents to verify the loan’s feasibility or ask for an external expert consultation. This
approach aims to minimize the risk of an incorrect evaluation.

Likewise, allowing ML models to predict only when confident enough helps mitigate the
risk of incorrect predictions (Pugnana, 2023). On the one hand, including a reject option
results in the ML model having better performance when it does provide a prediction
because it is only offering predictions in those cases where it is highly likely to be correct.
On the other hand, rejected instances can be dealt with in other ways. For example, human
experts can be involved in the loop to oversee difficult instances, e.g., a banker can oversee
difficult-to-evaluate loan applications. Alternatively, the prediction task can be deferred to
more complex ML models, possibly using additional and costly-to-compute features.

Selective Classification (SC) (El-Yaniv and Wiener, 2010) is one well-known framework
that allows a model not always to offer a prediction. Intuitively, this framework imbues
a model with a mechanism that selects whether a prediction is made on a per-example
basis. The goal is to navigate the tradeoff between the proportion of examples for which a
prediction is made (i.e., the model’s coverage) and the performance improvement on the
selected examples (i.e., the ones for which a prediction is made) that arises from focusing
only on those cases where the model has a small chance of making a misprediction. Typically,
this is done by maximizing the performance on the selected examples given a target coverage.
Given the appeal of SC, there are wide range of approaches for this problem setting (Geifman
and El-Yaniv, 2017, 2019; Liu et al., 2019; Huang et al., 2020; Gangrade et al., 2021; Pugnana
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and Ruggieri, 2023a,b; Feng et al., 2023). The primary emphasis is on implementing SC in
the context Deep Neural Networks (DNN) models.

Unfortunately, we lack insights into the relative merits of existing SC approaches for
DNNs because existing empirical evaluations in the literature suffer from several shortcom-
ings. First, they always involve ≤ 10 datasets, and primarily consider only image data.
Second, only a handful of approaches (never more than seven) are compared. Third, most
studies mainly focus on comparing approaches based on single metric: their predictive
accuracy on the selected examples. However, there are other relevant performance char-
acteristics of SC methods such as whether their coverage constraint holds, whether they
disproportionately reject instances from one class, or how they behave on unseen data.

Our goal is to fill this gap by performing the first comprehensive benchmarking of
SC methods for DNN architectures. Specifically, our evaluation goes substantially beyond
existing studies by:

1. Including 18 SC methods;

2. Evaluating the considered methods on 44 datasets that include both image and tabular
data; and

3. Considering five different aspects of SC models’ performance.

Our results suggest that the choice of the baseline depends on the performance criterion
to be prioritized. In fact, most methods perform with no statistically significant difference
across the different tasks. To summarize, the main contributions of this paper are that we:

(i) briefly survey the state-of-the-art methods in SC;

(ii) provide the widest experimental evaluation of SC methods in terms of baselines,
datasets and tasks;

(iii) point out the limitations of compared methods, which highlights potential avenues for
future research directions; and

(iv) release a public repository with all software code and datasets for reproducing the
baseline algorithms and the experiments.1

2 Background
Let X be an d-dimensional input space, Y = {1, . . . ,m} be the target space and P (X, Y )
be the probability distribution over X × Y . Given a hypothesis space H of functions that
map X to Y (called models or classifiers), the goal of a learning algorithm is to find the
hypothesis h ∈ H that minimizes the risk:

R(h) = E[l(h(X), Y )] (1)

where l : Y×Y → R is a user-specified loss function. Because P (X, Y ) is generally unknown,
it is typically assumed that we have access to an i.i.d. sample Tn = {(xi, yi)}ni=1 that can

1. The code is available at github.com/andrepugni/ESC/.
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be used to learn a classifier ĥ(·), such that:

ĥ ∈ argmin
h∈H

R̂(h, Tn) (2)

where R̂(h, Tn) = 1/|Tn|
∑

(x,y)∈Tn l(h(x), y) is the empirical risk over the sample Tn.
Because the learned model is prone to making mistakes, one can extend the canonical

setting to include a selection mechanism that allows the model to refrain from offering a
prediction for those instances likely to be misclassified.

Formally, a selective classifier is a pair (h, g) where h is a standard classifier and g :
X → {0, 1} is a selection function that determines whether h’s prediction is provided or the
model abstains (or rejects):

(h, g)(x) =

{
h(x) if g(x) = 1

abstain otherwise
(3)

In practice, rather than directly learning the selection function in Eq. 3, one approximates it
by (1) learning a confidence function2 kh : X → [0, 1] (sometimes called soft selection (Geif-
man and El-Yaniv, 2017)) that measures how likely it is that the predictor h is correct,
and (2) setting a threshold τ ∈ [0, 1] that defines the minimum confidence for providing a
prediction. A low confidence value indicates that the model is likely to make a mispredic-
tion for the instance and therefore it should abstain, which yields the following selection
function:

g(x) = 1(kh(x) > τ) (4)
To prevent the selective classifier from abstaining on too many (test) instances, SC methods
also consider the coverage metric, which is defined as

ϕ(g) = E[g(X)]. (5)

The coverage computes the expected proportion of instances for which the model would
make a prediction. These non-rejected instances are commonly referred to as either accepted
or selected, and we will use these terms interchangeably. We will refer to the rejection rate
as the complement of the coverage, i.e., 1 − ϕ(g) (Perini and Davis, 2023). Another core
measure of the SC framework is the risk over the accepted region, commonly called the
selective risk which is defined as:

R(h, g) =
E[l(h(X), Y )g(X)]

ϕ(g)
= E[l(h(X), Y )|g(X) = 1] (6)

A widely adopted instance of the selective risk is the selective error rate, which corresponds
to the selective risk for the 0-1 loss l(h(X), Y ) = 1{h(X) ̸= Y }.

Coverage and risk are estimated over a given test set Ttest as follows. The empirical risk
over the set of accepted instances is defined as:

R̂(h, g, Ttest) =
1

|Ttest| · ϕ̂(g, Ttest)

∑
(x,y)∈Ttest

l(h(x), y) · g(x) (7)

2. A good confidence function kh should rank instances based on descending loss, i.e., if kh(xi) ≤ kh(xj)
then l(h(xi), yi) ≥ l(h(xj), yj).
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where ϕ̂(g, Ttest) = 1/|Ttest|
∑

(x,y)∈Ttest g(x) is the empirical coverage over the test set. Ob-
serve that R̂(h, g, Ttest) = R̂(h, T g

test), where T g
test = {(x, y) ∈ Ttest | g(x) = 1}, i.e., the

empirical risk of a selective classifier boils down to the empirical risk of the classifier over
the set of accepted instances. The inherent trade-off between coverage and risk can be
summarized by a risk-coverage curve (El-Yaniv and Wiener, 2010). Moreover, this trade-
off allows framing the SC task according to two different formulations: the bounded im-
provement model and the bounded abstention model (Franc et al., 2023). In the bounded
improvement model, the problem is formulated by fixing an upper bound r - the target risk
- for the selective risk and then looking for a selective classifier that maximizes coverage
(Geifman and El-Yaniv, 2017).

Problem 1 (Bounded-improvement model) Given a target risk r, an optimal selective
classifier (h, g) is a solution to:

max
θ,ψ

ϕ(gψ) s.t. R(hθ, gψ) ≤ r (8)

Conversely, in the bounded-abstention model, we fix a lower bound c for coverage (called
target coverage) and then look for a selective classifier that minimizes the selective risk (Geif-
man and El-Yaniv, 2019).

Problem 2 (Bounded-abstention model) Given a target coverage c, an optimal selec-
tive classifier (h, g) is a solution to:

min
θ,ψ

R(hθ, gψ) s.t. ϕ(gψ) ≥ c (9)

We call coverage-calibration the post-training procedure of estimating the threshold τ in (4)
for the target coverage c specified in Problem 2. This is generally done by estimating the
(1− c) · 100-th percentile of the confidence function kh over a held-out calibration set Tcal.

3 Baselines

There are multiple ways to devise abstaining classifiers. We restrict our attention to DNN
approaches aiming to solve the bounded-abstention problem (Eq. 9). We present and
categorize a few baselines according to their definition of the confidence function, extending
the work of Feng et al. (2023). We distinguish among three categories of methods: Learn-
to-Abstain, Learn-to-Select and Score-based.

3.1 Learn-to-Abstain Methods

Learn-to-Abstain methods tackle the selective classification task by adding a new class
label (m + 1) representing abstention to the classification problem. While there are no
actual instances belonging to this class, these approaches design loss functions to enable the
classifier to assign a positive score sm+1(x) to ambiguous instances. This score serves as a
confidence function, i.e., kh(x) = 1 − sm+1(x) (Feng et al., 2023). In Figure 1, we provide
an example of a canonical Learn-to-Abstain architecture.
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Figure 1: A generic Learn-to-Abstain architecture

The first method to take this approach was DG (Liu et al., 2019). It uses a reward
hyperparameter o for the class m+1 to set how often the classifier should abstain. Formally,
DG trains a neural network minimizing the following loss:

LDG = EP (X,Y )

[
log(sy(x) +

1

o
sm+1(x))

]
, (10)

where sy(x) and sm+1(x) are the neural network softmax values, respectively, over the true
class Y = y and m + 1 (abstention). Intuitively, a higher o encourages the network to be
confident in its prediction, and a low o makes it less confident and more likely to abstain.
However, DG does not have any explicit way to guide abstention towards more difficult
examples during training, as the reward o remains fixed for the whole training procedure.

To overcome this limitation, Self-Adaptive Training (SAT) (Huang et al., 2020) trains
the selective classifier through a convex combination of predictions and true labels. This
combination is dynamically adapted during the training process to identify those instances
that are more difficult to correctly classify and, hence are good candidates for abstention.
More precisely, for the first Es (user-defined) epochs, the training target - t ∈ [0, 1]m -
is equal to the one-hot encoded true label vector y. Afterwards, it becomes the convex
combination of (probabilistic) predictions and true labels, namely t = γt + (1 − γ)s(x),
with s(x) representing the neural network softmax values and γ the weight of the convex
combination. The final selective classifier is then optimized by minimizing the loss function:

LSAT = −EP (X,Y )

[
t′ log(s(x)) + (1− ty) log sm+1(x)

]
, (11)

where ty is the value of vector t corresponding to the index of true value y and sm+1(x)
represents the softmax value for the abstention class.3 Both DG and SAT add an extra soft-
max value to the neural network output to identify difficult-to-predict instances. However,

3. For instance, if y = 1 and m = 2, then t′ = [0, 1] and ty = 1 when epoch is below Es. Intuitively,
the first term is the cross-entropy loss between the classifier and the adaptive training target, which
allows learning a good multi-class classifier. The second term serves as a confidence function, identifying
uncertain samples in the dataset. The balance between these terms is controlled by the value of ty, which
determines whether the classifier learns to abstain or make accurate predictions.
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Figure 2: An example of SELNET, a Learn-to-Select architecture.

Feng et al. (2023) argue that incorporating this extra class in the training loss could result
in overfitting on examples that are easier to classify. To mitigate this, SAT+EM (Feng
et al., 2023) adds an average entropy term E(s(x)) to SAT’s loss :

LSAT+EM = LSAT + βE(s(x)) (12)

where s(x) represents the neural network of m softmax values, and β is a hyperparame-
ter that measures the impact of the entropy term. All the learn-to-abstain methods are
calibrated for the target coverage c using a calibration set (as discussed in Section 2).

3.2 Learn-to-Select Methods

Like Learn-to-Abstain methods, Learn-to-Select methods simultaneously learn the classifier
and its specific confidence function. However, in this setting, the confidence function does
not rely on an additional abstention class but aims at achieving a specific target coverage
c. This procedure ensures that the classifier’s parameters are optimized to correctly predict
instances less likely to be rejected.

The main architecture belonging to this class is SelectiveNet (SELNET) (Geifman and
El-Yaniv, 2019). Given a target coverage c, SELNET jointly trains the final classifier and
the confidence function to maximize the performance over the 100 · c% most confident in-
stances. SELNET’s architecture has four main components, each with a different purpose,
as depicted in Figure 2: the main body, the predictive head s, the selective head k, and
the auxiliary head v. The main body consists of deep layers shared by all three heads:
any deep-learning architecture can be used in this part (e.g., convolutional layers, linear
layers, recurrent layers, etc.). The predictive head s(x), consisting of a final linear layer
with softmax, is used to make the classifier prediction. The selective head k(x) outputs a
confidence function using a linear layer with a final sigmoid activation. The auxiliary head
v(x) replicates the structure of the predictive head and mitigates the risk of overfitting on
the accepted instances. Given the target coverage c, SELNET is trained using the following
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Figure 3: An example of CONFIDNET, a score-based architecture.

loss function:

LSELNET = α

(EP (X,Y ) [l(s(x), y)k(x)]

ϕ(k)
+ λ(max(0, c− ϕ(k)))2

)
+(1−α)EP (X,Y ) [l(v(x), y)]

(13)
where l(s(x), y) is the cross-entropy loss for the predictive head s(x); ϕ(k) is the coverage
obtained by selective head k; l(v(x), y) is the cross entropy loss for auxiliary head prediction
v(x); α is a hyperparameter to control the relative importance between the losses for the
predictive and the auxiliary head; and λ is a penalization term for coverage violations.

For the sake of completeness, following the same reasoning as for SAT+EM (Feng et al.,
2023), we include SELNET+EM in the comparison. This approach adapts the SELNET
objective function to contain an additional entropy term.

3.3 Score-based Methods
Score-based methods compute and set a threshold on a confidence function - as formalized
in Eq. 4 - that is based on the classifier’s output. Conceptually, this means that predictions
are only made for the test examples for which the model is most confident. Because this
can be viewed as a post-hoc approach, this confers the advantage of being applicable to
already trained models.

The most popular technique is the Softmax Response SR (Geifman and El-Yaniv, 2017),
which defines the confidence function as the maximum value of a final softmax layer, i.e.,
kSR(x) = maxy∈Y sy(x). Given a coverage c, SR sets the selection threshold τ using the
calibration procedure explained in Section 2.

Since the SR principle is very general, it can be applied to any method that provides
scores for the classes (Franc et al., 2023). For example, Feng et al. (2023) propose to
improve learn-to-abstain and learn-to-select methods by replacing their confidence function
with the SR confidence. In particular, three novel methods are presented, i.e., SAT+SR,
SAT+EM+SR, SELNET+SR, which are trained using LSAT, LSAT+EM and LSELNET
respectively. For the sake of completeness, we include also SELNET+EM+SR in the
comparison, i.e., a network trained with the SELNET+EM’s loss and using the SR selec-
tion strategy.
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Another score-based popular option is using ensembles of neural networks. For example,
Lakshminarayanan et al. (2017) train multiple networks with different initialization and
build a selective classifier by computing the entropy of the (multiple) network outputs
(ENS). The intuition is that more disagreement among the outputs indicates that the
ensemble is uncertain about its prediction, and hence rejection is appropriate. However,
despite the advantages of using ensembles in terms of performance, relating a dispersion
measure to the correctness of predictions is not straightforward. Hence, the authors also
propose using the average softmax response (i.e., kENS(x) = 1/J

∑J
j=1 kSR,j(x), where J is

the number of networks in the ensemble) as a confidence measure. We will refer to this
baseline as ENS+SR. A theoretical analysis of the advantages of using ENS+SR can be
found in Ding et al. (2023).

The main concern with using kSR(x) as a confidence measure is that may provide high
values both for mistakes and correct predictions, making them indistinguishable. On the
other hand, when the model misclassifies an example, the score sy(x) associated with the
true class probability P (Y = y|X = x) should be low, making it a viable option to perform
selective classification. However, one cannot access true labels at test time, making it
impossible to use sy(x) directly. Corbière et al. (2019) address this concern by estimating
sy(x) with a two-step procedure called CONFIDNET (as depicted in Figure 3). First,
they estimate sy(x) by training a neural network classifier. Next, they build a second
(uncertainty) network on top of the classifier: the main body is kept unchanged, while the
final part of the original classifier is replaced with a series of dense layers. This uncertainty
network is then trained considering the following loss function:

LCONFIDNET = EP (X,Y )[(c(x)− sy(x))
2] (14)

with c(x) referring to the final output of the uncertainty network. Intuitively, c(x) should
mimic sy(x) and can be used as a confidence function: the higher c(x), the higher the
chance the classifier is right.

Franc et al. (2023) also use a classifier and an uncertainty estimator. They propose two
different approaches, named REG and SELE. Both of them learn the classifier on half of
the training data and use the other half to directly estimate where the classifier is more
likely to make mistakes. In particular, these two methods focus on learning an uncertainty
score f , which mirrors the confidence function k: the higher f is, the higher the likelihood
of making mistakes (thus, abstention is preferable in the latter). Neither SELE nor REG
are tied to specific neural network architectures, i.e., they are model-agnostic and can be
adapted to other learning models. REG poses the problem of learning the uncertainty score
as a regression problem, where given a set of hypotheses F , the uncertainty score f ∈ F
minimizes the following:

LREG = EP (X,Y )[(l(h(x, y)− f(x))2] (15)

Intuitively, the higher the value of f , the higher the loss. Hence, abstention should be
preferred. On the other hand, given a hypothesis space F , SELE considers a surrogate
loss of the risk coverage curve, i.e.,

LSELE = E(x1,y1),(x2,y2)∼P (X,Y )[l(h(x1, y1)) log(1 + exp(f(x2)− f(x1)))] (16)
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and then learns the uncertainty score f ∈ F by minimizing LSELE.
The approaches presented so far require a held-out calibration dataset. Unfortunately,

for problems where only little data is available, reducing the amount of training data may
deteriorate the classifier’s performance. Moreover, splitting the data into a dataset for
training and a dataset for calibration may introduce randomness effects on both the classifier
and the selection function. SCROSS (Pugnana and Ruggieri, 2023a) is a model-agnostic
approach that overcomes the need for a calibration set by employing a cross-validation
strategy that follows three steps. First, it splits the available data into K folds. Second, it
trains a classifier over K−1 folds and predicts the SR confidence values over the remaining
K-th fold. Finally, it stacks the predicted confidence values altogether. This approach
approximates the confidence over the full dataset. Then, SCROSS uses SR’s approach to
threshold such confidence values.

Moreover, in high-risk scenarios where SC is sought, such as healthcare and finance, we
often deal with imbalanced (binary) classes (He and Garcia, 2009). A common metric to
evaluate the performance of classifiers in such contexts is the Area Under the ROC Curve
(AUC) (Yang and Ying, 2023), which measures the classifier’s ability to rank instances
from minority and majority classes correctly. Pugnana and Ruggieri (2023b) provide a
theoretical condition - two bounds over the minority class score - that guarantees not to
worsen AUC once we allow for abstention. The selection function is implemented by (1)
estimating these lower and upper bounds for the minority class score, and (2) rejecting
instances with minority class scores between the two (estimated) bounds. To implement
such a strategy, the authors devise two algorithms, i.e., PLUGINAUC and AUCROSS.
The difference between the two methods lies in how their selection strategy is calibrated:
PLUGINAUC adopts a held-out approach to calibrate the bounds, while AUCROSS uses
a cross-fitting approach similar to SCROSS.

4 Research Questions
This paper intends to evaluate the relative strength of the baselines introduced in Section 3
with respect to the following research questions:

Q1: Are there significant differences across baselines and scenarios regarding selective error
rate?

Q2: Are there significant differences across baselines and scenarios regarding violations of
the target coverage?

Q3: How are the methods’ rejection rates distributed among the classes?

Q4: How do the methods behave when flipping the learning task to maximise the coverage
under constraints on the error rate?

Q5: How do the methods react to out-of-distribution test examples?

We differentiate from previous works in several respects:

• Regarding Q1, our study goes beyond existing ones in two important ways. First,
prior evaluations involving SC methods were performed using less than seven baselines
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and less than ten datasets whereas we consider 18 methods and 44 datasets. Second,
prior benchmarks largely focused on image data whereas our benchmark also include
tabular data.

• Concerning Q2, only a few works investigate coverage violations, i.e., Geifman and
El-Yaniv (2019); Pugnana and Ruggieri (2023a,b). As in Q1, this was done on a
much smaller scale: for example, Geifman and El-Yaniv (2019) considered only a
single image dataset, while Pugnana and Ruggieri (2023a) and Pugnana and Ruggieri
(2023b) considered eight and nine binary datasets respectively;

• Only the work by Pugnana and Ruggieri (2023b) addresses Q3 and highlights that
the rejection rate is biased against the minority class. However, they considered nine
binary datasets and only six baselines;

• We are the first to empirically evaluate Q4 and assess performances when switching
from minimizing selective risk to maximizing coverage on a large and diverse set of
data and settings;

• We are the first to evaluate Q5 and evaluate how SC methods perform when dealing
with shifts in the feature space.

5 Experimental Evaluation
5.1 Experimental Setting
Datasets and Baselines. We run experiments on 44 benchmark datasets from real-life
scenarios, such as finance and healthcare (Yang et al., 2023). Among these, 20 are image
data and 24 are tabular data. Moreover, 13 of these datasets were previously used in testing
(at least one) the baselines in their original paper. Details are provided in Tables A1-A2 of
the Appendix A.1. We compare a total of 18 baseline methods (presented in Section 3) rep-
resenting the state-of-the-art SC methods: DG, SAT, SAT+EM (learn-to-abstain); SEL-
NET, SELNET+EM (learn-to-select); SR, SAT+SR, SAT+EM+SR, SELNET+SR,
SELNET+EM+SR, ENS, ENS+SR, CONFIDNET, REG, SELE, SCROSS, PLUG-
INAUC, AUCROSS (score-based).

Hyperparameters. The baselines share the same neural-network architecture. For im-
age data, we use either a Resnet34 architecture (He et al., 2016) or the one specified in
the original paper. For tabular data, since neural networks are not state-of-the-art meth-
ods, we use the architectures proposed by Gorishniy et al. (2021); Grinsztajn et al. (2022),
which revised DNN models for tabular data. Overall, we consider two sets of hyperpa-
rameters: network-specific (e.g., hidden layers, learning rate), and loss-specific (e.g., β for
SAT+EM). All networks are trained for 300 epochs. We optimize the hyperparameters us-
ing optuna (Akiba et al., 2019), a framework for multi-objective Bayesian optimization,
with the following inputs: coverage violation and cross-entropy loss as target metrics,
BoTorch as sampler (Balandat et al., 2020), 10 initial independent trials out of 20 total
trials. Among the 20 trials, we select the configuration that (1) has the highest accuracy
on the validation set and (2) reaches the target coverage (±0.05). Moreover, some base-
lines require the target coverage c to be known at training time (e.g., SELNET). For the
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sake of reducing the computational cost4, we optimize their hyperparameters using only
three values c ∈ {.99, .85, .70} and fix the best-performing architecture for all target cover-
ages. Moreover, SCROSS, AUCROSS, ENS, ENS+SR and PLUGINAUC use the same
optimal hyperparameters found for SR as they share the same training loss. Similarly, SEL-
NET+SR, SELNET+EM+SR, SAT+SR and SAT+EM+SR employ the same optimal
configuration as, respectively, SELNET, SELNET+EM, SAT and SAT+EM. We detail
the parameter choices in Appendix A.2.

Experimental setup. For each combination of datasets and baselines, we run the fol-
lowing experiment: (i) we randomly split the available data into training, calibration, val-
idation, and test sets using the proportion 60/10/10/20%, (ii) we consider the following 7
target coverages c ∈ {.7, .75, .8, .85, .9, .95, .99}, (iii) we tune the baseline’s hyperparameters
using training, calibration, and validation sets as described in the previous paragraph, (iv)
we use such optimal hyperparameters to train the baseline on the training set and calibrate
the confidence function on the calibration set, (v) we draw 100 bootstraps datasets from
the test set (see (Rajkomar et al., 2018)) with the same size at the test set, and, finally,
(vi) we compute the empirical selective error rate5 Êrr(h, g, Ttest), the empirical coverage
ϕ̂(g, Ttest), and, for binary datasets, the class distribution over the accepted instances for
each of the 100 bootstrapped datasets Ttest. For each evaluation metric, we compute its
mean and standard deviation over the 100 bootstrap runs. In reporting results, we distin-
guish between binary and multi-class (i.e., > 2 classes) problems because PLUGINAUC
and AUCROSS are specific for binary classification.

Regarding computational resources, we split the workload over three machines: (1) a 25
nodes cluster equipped with 2×16-core @ 2.7 GHz (3.3 GHz Turbo) POWER9 Processor
and 4 NVIDIA Tesla V100 each, OS RedHatEnterprise Linux release 8.4; (2) a 96 cores
machine with Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz and two NVIDIA RTX A6000,
OS Ubuntu 20.04.4; (3) a 128 cores machine with AMD EPYC 7502 32-Core Processor and
four NVIDIA RTX A5000, OS Ubuntu 20.04.6.

5.2 Experimental Results
We report here the main experimental results w.r.t. the research questions Q1–Q5. Addi-
tional results are reported in the Appendix B.

Q1. Comparing the error rates. We introduce a normalized version of the empirical
selective error rate, called relative error rate:

RelErr(h, g, Ttest) =
Êrr(h, g, Ttest)

Êrr(hmaj , g, Ttest)
, (17)

where Êrr(hmaj , g, Ttest) is the empirical selective error rate obtained by always predicting
the majority class in the training set. This normalization accounts for variability in task

4. Tuning the networks is computationally expensive, requiring more than 15 days on some large datasets,
such as food101.

5. The empirical selective error rate is the empirical risk (7) w.r.t. the 0-1 loss. Almost all of the baselines
are optimized for such a metric, except PLUGINAUC and AUCROSS that are designed for increasing
AUC.

12



Deep Neural Network Benchmarks for Selective Classification

prediction difficulty. Intuitively, the closer the relative error rate to 0 the better. Values
close to 1 denote selective error rates similar to the ones of a majority classifier.

Figure 4 reports the mean relative error rates for the top two and the worst two6

baselines. We limit the number of reported baselines for clarity. Tables with detailed
results at the dataset level are reported in the Appendix B.3.

For binary data, the best-performing methods are ENS+SR and SR. ENS+SR’s rela-
tive error rate is ≈ .485 at c = .99, decreasing to ≈ .365 at c = .70. SR ranges from ≈ .488
at c = .99 to ≈ .363 at c = .70. The worst baselines are DG and REG, with relative error
rates of ≈ .615 and .544 at c = .99 respectively, up to ≈ .564 and ≈ .529 at c = .70.

Also for multiclass data, ENS+SR and SR achieve the best results. The relative error
rate ENS+SR ranges from ≈ .182 at c = .99 to ≈ .117 at c = .70, while SR starts from
≈ ..197 at c = .99, and decreases down to ≈ .127 for c = .70. SELE and REG are the
worst methods. The former passes from ≈ .252 at c = .99 to ≈ .217 at c = .70. The latter
achieves ≈ .256 at c = .99 and c = .70, with no improvement for small target coverages.

Next, we check the statistical significance of these results. For each target coverage and
bootstrapped dataset, we rank the compared methods from 1 (the best) to 18 (the worst)
w.r.t. the relative error rate. These rankings are then used in the Friedman’s omnibus test of
equality of means and in its post-hoc Nemenyi test, following the steps described in Demsar
(2006). Figure 5 shows Critical Difference (CD) plots, which provide a graphical repre-
sentation of the output of the Nemenyi test. In each plot, the horizontal axis reports the
average rank of each method – where being closer to one (farther to the right) implies better
performances. A bold line connects methods whose differences are not statistically signif-
icant at 0.05 significance level. The plots show that there is no clear winner regardless of
the coverage and of the binary/multiclass classification task. The group of not-statistically-
different top methods contains between 8 and 14 baselines. However, ENS+SR is always
the top ranked baseline, which makes it a good choice in general.

Q2. Comparing the empirical coverages. The constraint on the target coverage c
in (9) is essential in many scenarios. Nevertheless, most papers do not sufficiently inves-
tigate the actual coverage achieved by the baselines. We assess how much the empirical
coverage deviates from the target coverage c on the bootstrap dataset Ttest. To account for
small coverage violations, we introduce a user-defined tolerance ε, and define the ε-coverage
violation:

CovViolε(g, Ttest) = min(0, ϕ̂(g, Ttest)− c+ ε),

where ϕ̂(g, Ttest) is the empirical coverage on Ttest. Intuitively, CovViolε is zero when the
empirical coverage is greater or equal than the target coverage minus the tolerance; and
it is greater than zero when the empirical coverage is smaller than c − ε. By looking at
different tolerances ε, one can evaluate how the baselines perform w.r.t. small, medium or
large coverage violations. We define the satisfaction of the constraint as:

ConSat(ε) = 1(CovViolε = 0)

and report in Figure 6 the mean and standard deviation of ConSat for ε in {0, .01, .02, .05, .10}.
As for Figure 4, we limit the number of baselines to the two best and worst ones w.r.t. ConSat .

6. We rank baselines based on the mean value of relative error rate over all the target coverages.
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(a) Binary datasets.

(b) Multiclass datasets.

Figure 4: Q1: RelErr as a function of target coverage c for two best and worst approaches
on (a) binary and (b) multiclass problems. On each subplot, only the two best and worst
approaches are shown for readability.

As one would expect, the overall performances gradually improve for all baselines when
increasing ε, and the gap among the baselines decreases. For binary data, the best methods
are ENS and PLUGINAUC, and the worst methods are AUCROSS and SCROSS. When
considering that no violation is allowed, i.e., ε = 0, the baselines satisfy the constraint
between ≈ 39.9% (CONFIDNET) and ≈ 56.5% (SCROSS) of the times. For ε = .01
ENS has the highest value of ConSat (≈ .887); for ε = .02 SAT is the best method
(≈ 0.976); for ε = .05 both PLUGINAUC and SAT satisfy the constraint all the times.

For multiclass data, the top performers are SCROSS and SAT+EM, while the worst
methods are REG and DG. At ε = 0, SCROSS has no coverage violations ≈ 75% of
the times, which is 25 percentage points more than the worst performing methods (SELE
and REG). Interestingly, already at ε = .02, four methods (i.e., SCROSS, SAT+EM,
SR, SAT+SR) always reach zero violations. For ε = .05, only CONFIDNET and SEL-
NET+SR do not reach zero violations. In summary, coverage violations are generally
limited, and noticeable differences among the baselines only occur at very small tolerances.
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(a) CD plot at c = .70 (b) CD plot at c = .80

(c) CD plot at c = .90 (d) CD plot at c = .99

Figure 5: Q1: CD plots of relative error rate RelErr for different target coverages. Top
plots for binary datasets. Bottom plots for multiclass datasets.

Q3. Rejection rate over classes. Pugnana and Ruggieri (2023b) observed that, in
imbalanced classification tasks, selective classification methods reject proportionally more
instances from the minority class. In this paragraph, we analyze this behavior on 7 binary
class datasets of our collection with a minority class prior estimate p ≤ 0.25 (Perini et al.,
2020). Detailed results for the other binary datasets are reported in the Appendix B.3.
First, let us introduce the minority coefficient:

MinCoeff =
pa
p
, (18)

defined as the ratio of the minority class proportion pa in the accepted instances over the
minority class prior p. Ideally, the minority coefficient should be ≈ 1. Lower values indicate
that the selective function introduces a bias against the minority class.
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(a) Binary datasets.

(b) Multiclass datasets.

Figure 6: Q2: ConSat as a function of tolerance ε for two best and worst approaches on
(a) binary and (b) multiclass problems. On each subplot, only the two best and worst
approaches are shown for readability.

Figure 7 shows the mean minority coefficient for the best two and worst two baselines
at the variation of the target coverage c. The best methods are AUCROSS and PLUGIN-
AUC. Their minority coefficient is ≈ 1.00 and ≈ 1.01 respectively at c = .99, and it remains
steady for lower coverages. At c = .70, PLUGINAUC reaches a mean MinCoeff ≈ 1.05,
and AUCROSS achieves MinCoeff ≈ 0.997. For all the other baselines, there is a clear
trend: the smaller the target coverage, the smaller the minority coefficient. For 11 out of
18 baselines, MinCoeff drops below .50 at c = .70. The worst methods are SELNET and
DG. For the former, the mean MinCoeff ranges from ≈ .946 at c = .99 to ≈ .375 at c = .70.
For the latter, the mean MinCoeff ranges from ≈ .966 at c = .99 to ≈ .413 for c = .70.

These results support the findings by Pugnana and Ruggieri (2023b), highlighting that
the current approaches to SC, with the exception of AUCROSS and PLUGINAUC, do
not take into account the issue of class balancing in the selected instances.
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Figure 7: Q3: MinCoeff as a function of target coverage c for two best and worst approaches.
Only the two best and worst approaches are shown for readability.

Q4. Flipping the learning task to maximize the model coverage under error con-
straints. The vast majority of methods focus on the bounded-abstention model of Prob-
lem 2. To the best of our knowledge, the only method explicitly addressing the bounded-
improvement model of Problem 1 is due to Gangrade et al. (2021), whose code has not
been fully released. However, tackling the bounded-improvement model is useful in some
application scenarios. Consider the bank example again. SC here can be used in two ways:
on the one hand, the bank can set a target coverage c and calibrate a selective classifier
so that c% of the cases are directly handled by the ML model, while the remaining - most
difficult - ones are deferred to human experts. Here c is chosen on the basis of the personnel
capacity of the bank. On the other hand, the bank can also be interested in maximizing
the model coverage without incurring too many (costly) mistakes. Measuring such maximal
coverage allows for planning the amount of human effort needed for the difficult cases.

In this subsection, we evaluate the performances of the bounded-abstention baselines
when flipping the task to the bounded-abstention problem through the Selection with Guar-
anteed Risk (SGR) algorithm proposed by Geifman and El-Yaniv (2017). SGR is a [clas-
sifier h, confidence kh]-agnostic approach that optimizes the selection threshold τ (see (4)
such that the selective error rate at test time is guaranteed to be bounded (≤ r) with
probability > 1− δ and the coverage is maximized. We apply SGR on all the baselines but
AUCROSS and PLUGINAUC, as their hard selection function is not compatible with
SGR. Moreover, since SELNET needs specific coverage for training, we use all c’s one
at a time, and compute the average results after applying SGR. We run experiments for
four target error rates r ∈ {e/10, e/5, e/2, e}, where e is the dataset-specific error of the
majority-class classifier hmaj on the whole test set, and set δ = 0.001.

Figure 8 reports the results for the best two and the worst two baselines. The top plot
shows the mean empirical coverage over the test sets of all baseline datasets (the higher,
the better). The bottom plot shows the mean error ratio (the smaller, the better):

ErrCoeff = r̂/r,
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(a) W.r.t. the empirical coverage ϕ̂.

(b) W.r.t. the error ratio ErrCoeff .

Figure 8: Q4: SGR performance as a function of target error rate r for the two best and
worst approaches in terms of (a) coverage ϕ̂, and (b) ErrCoeff . Only the two best and
worst approaches are shown for readability.

between the empirical selective error rate r̂ and the target error rate r. When looking at
the empirical coverage, the best performing baseline is SCROSS, with coverage ranging
from .999 for r = e to .558 for r = e/10. This is 40 percentage points higher than the
worst method, namely REG. The second-best method is ENS+SR, with a mean coverage
of ≈ .970 at r = e and ≈ .481 at r = e/10.

Concerning ErrCoeff , we observe that for less strict target errors (i.e., e and e/2), all the
baselines have error ratios close to 0. For more restrictive target errors, there is a gradual
increase in the mean value of ErrCoeff . The methods with the smallest error ratios are
ENS+SR and SAT+EM+SR, reaching ErrCoeff ≈ .316 and ErrCoeff ≈ .317 respectively
at r = e/10. The worst methods are REG and SELNET+EM+SR, with a mean error
ratio of ≈ 2.97 and ≈ 1.84 at r = e/10.
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Figure 9: Q5: Empirical coverage ϕ̂ for out-of-distribution test sets (two selected image
datasets and average results over the 20 image datasets) when varying coverages c.

Q5. Testing the methods on out-of-distribution examples. Although SC methods
are not necessarily designed for working in out-of-distribution (o.o.d.) settings7, robustness
of selective classifiers w.r.t. data shifts is highly sought. We investigate this property here by
generating o.o.d. instances at test time for image datasets. We take an extreme approach by
creating a test set with images made of uniformly random pixel values.8 An ideal selection
function should reject the whole test set, since the images have close to zero probability of
being drawn from the same distribution generating the training set.

For each of the 16 baselines that tackle multi-class classification, Figure 9 shows the
empirical coverage obtained over the o.o.d. test set over the two selected image datasets
and the average results over the 20 image datasets. Detailed results for all 20 datasets are
provided in Appendix B.2.

First, we observe that there is no single method that manages to reject all the test
instances across all datasets. For example, most of the baselines obtain empirical cover-
age close to 0 (best) for the 5 lowest coverage values on SVHN. On the other hand, on
tissuemnist, the majority of baselines have always nearly maximum empirical coverage,
with the sole exception of REG and ENS that manage to reject all the o.o.d. images.

Ensemble methods are generally better than other methods: ENS reaches the lowest
mean empirical coverage on all datasets of ≈ .221, ranging from ≈ .462 at c = .99 to ≈ .148
at c = .70, and ENS+SR is the second best method with a mean coverage ≈ .353, ranging
from ≈ .701 at c = .99 to ≈ .217 at c = .70.

5.3 Discussion

We conclude the experimental section by briefly summarizing the main findings.

7. See the novelty rejection approaches in the related work Section 6.
8. We provide additional results with less extreme shifts in the Appendix.
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Regarding Q1, our results do not contradict the folk wisdom that an ensemble strategy
(paired with the softmax response) overcome other baseline methods: ENS+SR always
ranks first in terms of relative error rate. However, we stress that, depending on the target
coverage, there are always at least nine baselines whose performance can’t be distinguished
from ENS+SR’s one in a statistically significant sense. Conversely, some methods, i.e.,
REG, SELE, DG, SELNETSELNET+EM,SELNET+EM+SR, CONFIDNET, ENS,
and PLUGINAUC, perform worse at least once (in a statistically significant sense) than
top-performing baselines. Hence, our findings suggest that the claimed “superiority” of the
considered state-of-the-art methods should be treated with caution: when we increase the
number of experimental datasets, most methods perform equally well.

Our results on Q2 show that coverage violations are generally small with a few exceptions
of coverage violations above 10%. This confirms that the employed calibration strategies
are well suited to achieving an empirical coverage that is fairly close to the target one.

For Q3, a significant difference arises among the methods. Only PLUGINAUC and
AUCROSS reject equally across classes, while all the other methods abstain more relatively
more frequently on the minority class. This behavior can have unforeseen consequences such
as inducing cognitive bias in the human decision-maker that must make the decision on the
rejected instances (Rastogi et al., 2022). For example, by abstaining more often on bad loan
applicants, humans could be prone to associate the model’s rejections with bad applicants,
even if this might not be necessarily true (Bondi et al., 2022).

The experiments for Q4 show that SGR can effectively switch from the bounded absten-
tion to the bounded improvement model assuming that target error rate is not too strict.
In highly sensitive scenarios, where stronger guarantees are required, SGR often fails, thus
suggesting a potential direction for future research towards methods specifically designed
for the bounded improvement model.

For Q5, the results indicate that the current state-of-the-art baselines fail to reject
consistently under distribution shifts. Consequently, practitioners should be cautious about
applying SC techniques in the wild without considering potential issues deriving from data
shifts. From a research perspective, this opens an intriguing future direction for shift-aware
selective classification methods.

We point out that the methods which require training several neural networks might
not be a feasible option for very large datasets, due to the huge computational power
required. Such methods include the baselines ENS, ENS+SR, SCROSS, AUCROSS,
CONFIDNET as well as the learn-to-select methods that require training a separate model
for every target coverage.

6 Related Work

We present here a few related approaches and discuss in which respect they differ from SC.

Ambiguity Rejection. Ambiguity rejection focuses on abstaining on instances close to
the decision boundary of the classifier (Hendrickx et al., 2024). SC is one of the main ways to
perform ambiguity rejection. In particular, SC methods rely on confidence functions, which
identify those instances where the classifier is more prone to make mistakes. Confidence
values allow one to trade off coverage for selective risk.
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The other main framework to perform ambiguity rejection is generally referred to as
Learning to Reject (LtR) and is based on the seminal work by Chow (1970). Similarly to
SC, LtR aims at learning a pair (classifier, rejector) such that the rejector determines when
the classifier makes a prediction, limiting the predictions to the region where the classifier
is likely correct (Cortes et al., 2023). However, LtR deviates from SC in two major aspects.
First, the LtR methods learn the trade-off between abstention and prediction not by using
confidence functions, but through a parameter a, representing the cost of rejection (Herbei
and Wegkamp, 2006; Cortes et al., 2016; Tortorella, 2005; Condessa et al., 2013). However,
setting the value of this hyperparameter is not straightforward, and it is context-dependant
(Denis and Hebiri, 2020). Second, LtR methods are not meant to tackle the problem
of minimizing a risk given a target coverage c. A more in-depth theoretical analysis for
both LtR and SC can be found in (Franc et al., 2023), where the authors show that both
frameworks share similar optimal strategies.

Novelty Rejection. A strategy orthogonal to ambiguity rejection consists of abstaining
on instances that are unlikely to be seen according to the distribution of the training set.
This approach is commonly referred to as novelty rejection (Dubuisson and Masson, 1993;
Cordella et al., 1995), and is highly sought whenever there is a shift between the training
and the test set distributions (Hendrickx et al., 2024; Van der Plas et al., 2023). Several
techniques have been proposed for building novelty rejectors. As a first approach, one can
estimate the marginal density and reject an instance if its probability is below a certain
threshold (Nalisnick et al., 2019; Wang and Yiu, 2020). Another option is to employ a one-
class classification model that predicts as novel the instances falling out of the region learnt
from the training set (Coenen et al., 2020). Further approaches assign a score representing
the novelty of an instance and abstain when such a score is above a certain level (Liang et al.,
2018; Kühne et al., 2021; Perini and Davis, 2023; Van der Plas et al., 2023). To conclude,
we highlight that the goal of novelty rejection differs from the SC goal, i.e. trading off risk
and coverage, and linking the two problems is not straightforward (Hendrickx et al., 2024).

Conformal Prediction. Conformal prediction (Shafer and Vovk, 2008) augments the
prediction of a M model by providing a set of target labels that comprise the true value
with a specified (desired) level of confidence (Papadopoulos et al., 2002; Vovk, 2012; Kim
et al., 2020; Abad et al., 2022; Angelopoulos et al., 2021). Differently from SC, conformal
prediction focuses on quantifying the uncertainty associated with predictions rather than
minimizing a specific type of error (Gangrade et al., 2021). Some works try to merge these
two frameworks: for instance, in (Angelopoulos and Bates, 2021), conformal prediction is
used to give guarantees over the selective error rate in an SC scenario by: (1) training a
conformal predictor (e.g., SVC (Romano et al., 2020)), (2) calibrating its confidence levels,
(3) setting a selection threshold over the confidence or p-values generated by the conformal
predictor.

Learning to Defer. Learning to defer (Madras et al., 2018) is a generalization of LtR,
where rather than incurring a rejection cost, the AI system can defer instances to human
expert(s). One of the main differences in comparison to LtR and SC, is that the expert’s
predictions might be wrong under the learning to defer framework. This is generally mod-
elled using a cost function (Mozannar and Sontag, 2020). Thus, common methods include
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the expert in the loop and aim to find an optimal assignment strategy for the whole human-
AI system. Roughly speaking, such a strategy decides whether or not to make the model
predict, which results in a cost equal to the model loss, or defer the prediction to the user,
which incurs the user cost (Okati et al., 2021; De et al., 2020; Mozannar et al., 2023; Verma
et al., 2023; Straitouri et al., 2022).

Real-world Applications. In recent years, abstaining AI systems have been deployed
to foster human decision-making in increasingly many domains. For example, Van der
Plas et al. (2023) describe a novelty rejector for sleep stage scoring. Cianci et al. (2023)
exploit the SC strategy by Pugnana and Ruggieri (2023b) to augment a credit scoring
ML model with an uncertainty self-assessment. Coenen et al. (2020) use unlabeled data
on unaccepted loan applications to build a credit scoring model that can abstain from
predicting. Hendrickx et al. (2021) propose a novelty rejector to find unexpected vehicle
usage from sensor data and refrain from providing a prediction for such cases. Van Roy
and Davis (2023) flag annotation errors in soccer data considering a specific confidence
function for tree-based methods (Devos et al., 2023). Bondi et al. (2022) study a selective
classifier deferring to humans to evaluate the presence of animals in photo traps. For other
applications of abstaining classifiers, we refer to Hendrickx et al. (2024), while we refer to
Punzi et al. (2024) for applications of hybrid-decision-making systems.

7 Conclusions

Limitations. For the sake of a fair comparison, our study focuses on neural network
classifiers, as some of the methods assume a deep learning architecture for the classifier.

Due to the large computational costs of the experiments, for each dataset, we con-
sider only a single deep-learning architecture chosen among the ones at the state-of-the-art.
E.g., for cifar10, we implemented all the baselines using a VGG16 architecture. This
might reduce the generalizability of our results to other deep-learning architectures.

We also acknowledge that a few studies, e.g., Gorishniy et al. (2021); Grinsztajn et al.
(2022), point out that for tabular datasets, the usage of tree-based models is the current
state of the art. In this sense, model-agnostic methods could benefit from using other base
classifiers, as shown in Pugnana and Ruggieri (2023a,b).

Another limitation of our benchmark is that we consider only images and tabular data,
since they are the main data type over which SC methods have been tested so far. This
choice is in line with the goal of this paper, which aims to compare existing approaches
fairly. However, our results do not necessarily extend to other kinds of data such as text,
audio or time series.

A possible concern could also regard the size of the datasets in our benchmark, which
never exceeds ≈ 300k instances. This aspect could impact the external validity of our
discussion. However, there are reasons for this choice. First, the considered datasets are
used either in popular benchmarks (Yang et al., 2023; Gorishniy et al., 2021; Grinsztajn
et al., 2022), or by selective classification works, e.g., (Geifman and El-Yaniv, 2019; Franc
et al., 2023; Pugnana and Ruggieri, 2023b). Second, since we trained and fine-tuned all the
models from scratch, with considerable computational costs, we decided to prioritize the
variety of data over the size of a single dataset.
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Moreover, our bootstrap procedure quantifies variability only in the test set. According
to several works, such as Kohavi (1995), the best resampling method is stratified k-fold
cross-validation with K = 10. Unfortunately, these strategies are not computationally
feasible when employing large neural networks as in our study. Hence, we had to opt for
a single train-test-split and bootstrap only the test set, as done for instance by Rajkomar
et al. (2018).

Finally, our study does not report on the running times of the baselines, since, due
to load balancing issues, we had to distribute the experiments over several machines with
different hardware settings. This made it impossible to compare the running times of runs
over different machines. However, we point out that the running times are proportional
to the number of training tasks required by each method. E.g., ENS requires to train ten
neural networks (see Appendix A.2), leading to a running time of about ten times the one
of PLUGINAUC, which requires to train a single neural network.

Conclusions. We extensively evaluated 18 SC baselines over 44 datasets, taking into ac-
count both images and tabular data as well as both binary and multiclass classification
tasks. Regarding previously investigated tasks, our extended analysis shows that: (i) there
are no statistically significant differences among most of the methods in terms of selective
error rate, even though ENS+SR always ranks first across all the baselines; (ii) large cov-
erage violations are rare for all the methods with no significant difference among baselines
for our data; (iii) on binary classification tasks, we observed different patterns between
imbalanced and balanced domains regarding rejection rates across classes: in the former
case, only AUCROSS and PLUGINAUC succeeded in not primarily rejecting the minority
class. Moreover, we also emphasize novel findings: (iv) we tested empirically the effective-
ness of SGR to switch from the bounded-abstention setting to the bounded-improvement
one, noticing room for improvement when a very small target error rate is required; (v) we
show how current methods fail in correctly rejecting instances when extreme feature shifts
occur, pointing to a highly relevant open problem in the area.

Broader Impact Statement
Because Machine Learning models can make errors in their predictions, adding a reject
option is a means for improving their trustworthiness. The selective classification framework
is one of the most popular ways to achieve such a goal by coupling a classifier with a selective
function that decides whether to accept or reject making a prediction. However, existing
selective classification methods have never been evaluated on a large scale. Our work is the
first to fill this gap, providing the first extensive benchmark for testing selective classification
methods. The experimental evaluation sheds light on the strengths and weaknesses of
selective classification methods for what concerns their error rate, acceptance rate (called
coverage), distribution of rejection over classes, and robustness to data shifts.
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Appendix A. Experimental Details
We provide all the additional information on datasets, settings, and code for replicating the
experiments of the paper.

A.1 Datasets
Table A1 reports the datasets used in our benchmarking and a link to retrieve the original
data. We also include whether the dataset was considered in a previous SC evaluation.

Table A2 reports some experimental details, including training size; batch size used for
training; feature space in terms of features for tabular data and image size for image data;
target space number of classes m; the percentage of the minority class in each dataset. We
also report the Deep Neural Network (DNN) architectures we employed for each dataset.
Such a choice was made according to the following criteria:

(i) a former paper in the literature used this dataset and employed a specific architecture;

(ii) if point (i) does not apply, we did the following:

– for image data, we employed a ResNet34 architecture;
– for tabular data, if a dataset was tested in Gorishniy et al. (2021), we applied the

best-performing architecture on that specific dataset. Otherwise, we employed
the FTTransformer architecture following the suggestion by Grinsztajn et al.
(2022).

All the data were re-shuffled, normalized and split into training, test, calibration and vali-
dation sets, according to a 60%, 20%, 10%, and 10% proportion (respectively). In the code
repository, we provide the Python scripts to recreate the data employed in this analysis.

A.2 Hyperparameter Settings
We optimize the hyperparameters using Optuna (Akiba et al., 2019), a framework for
multi-objective Bayesian optimization, with the following inputs: coverage violation and
cross-entropy loss as target metrics, BoTorch as sampler (Balandat et al., 2020), 10 ini-
tial independent trials out of 20 total trials. We report in Table A3 the parameter space
we used during the tuning procedure. Some hyperparameters are loss-specific, as they re-
fer to a specific baseline loss, while others are network-specific, as they refer to a specific
deep neural network architecture. We report the search space in the last column, where
the notation [a; b]X stands for all values within [a; b] that are linearly spaced with a gap
equal to X. For example, [0, 60]15 indicates the set of values {0, 15, 30, 45, 60}. For small
sets of values, we directly indicate all the possibilities using the notation {a1, a2, . . . }. We
discretize the search space of most hyperparameters because Bayesian Optimization suf-
fers from high-dimensional spaces. We specify that if time decay is set to True, we halve
the learning rate every 25 epochs as done in Geifman and El-Yaniv (2019). Moreover,
for image data, which we found to be more unstable during the training, we start the
Optuna optimization procedure using default values if these were suggested in some SC
paper. Due to the huge computational cost of the tuning procedure, SELNET+SR, SEL-
NET+EM+SR, SAT+SR and SAT+EM+SR use the same optimal hyperparameters as,
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Table A1: Dataset sources.

Dataset Data Type Link Previous SC paper
adult Tabular uci/adult Pugnana and Ruggieri (2023a,b)
aloi Tabular openml/id=1592 −
bank Tabular uci/bank+marketing Franc et al. (2023)

bloodmnist Image zenodo/6496656/files/bloodmnist −
breastmnist Image zenodo/6496656/files/breastmnist −

catsdogs Image kaggle/dogs-vs-cats Geifman and El-Yaniv (2019); Liu
et al. (2019); Huang et al. (2020);
Pugnana and Ruggieri (2023a,b)

chestmnist Image zenodo/6496656/files/chestmnist −
cifar10 Image pytorch/vision/CIFAR10 Geifman and El-Yaniv (2019);

Corbière et al. (2019); Huang et al.
(2020); Feng et al. (2023); Pugnana

and Ruggieri (2023b)
compass Tabular openml/id=44162 −
covtype Tabular openml/id=1596 Franc et al. (2023)

dermamnist Image zenodo/6496656/files/dermamnist −
electricity Tabular openml/id=44120 −

eye Tabular openml/id=44157 −
food101 Image pytorch/vision/Food101 Feng et al. (2023)
giveme Tabular kaggle/GiveMeSomeCredit Pugnana and Ruggieri (2023a,b)
helena Tabular openml/id=41169 −
heloc Tabular openml/id=45023 −
higgs Tabular openml/id=23512 −
house Tabular openml/id=43957 −
indian Tabular openml/id=41972 −
jannis Tabular openml/id=44079 −

kddipums97 Tabular openml/id=44124 −
letter Tabular openml/id=6 Franc et al. (2023)
magic Tabular openml/id=44125 −

miniboone Tabular openml/id=44119 −
MNIST Image pytorch/vision/MNIST Lakshminarayanan et al. (2017);

Liu et al. (2019); Corbière et al.
(2019)

octmnist Image zenodo/6496656/files/octmnist −
online Tabular openml/id=45060 −

organamnist Image zenodo/6496656/files/organamnist −
organcmnist Image zenodo/6496656/files/organcmnist −
organsmnist Image zenodo/6496656/files/organsmnist −
oxfordpets Image pytorch/vision/oxfordpets −
pathmnist Image zenodo/6496656/files/pathmnist −
phoneme Tabular openml/id=44127 −

pneumoniamnist Image zenodo/6496656/files/pneumoniamnist −
pol Tabular openml/id=43991 −

retinamnist Image zenodo/6496656/files/retinamnist −
rl Tabular openml/id=44160 −

stanfordcars Image pytorch/vision/StanfordCars Feng et al. (2023)
SVHN Image pytorch/vision/SVHN Geifman and El-Yaniv (2017,

2019); Liu et al. (2019); Corbière
et al. (2019)

tissuemnist Image zenodo/6496656/files/tissuemnist −
ucicredit Tabular openml/id=42477 Pugnana and Ruggieri (2023a,b)
upselling Tabular openml/id=44158 −
waterbirds Image stanford.edu/dro/waterbird Jones et al. (2021)
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Table A2: Dataset details.

Dataset Training Size Batch Size # Features # Classes Minority Ratio DNN Architecture
adult 29, 303 256 13 2 23.9% FTTransformer
aloi 64, 800 512 128 1000 0.1% TabResnet
bank 27, 126 128 16 2 11.7% TabResnet

bloodmnist 10, 253 128 28× 28 8 7.1% Resnet18
breastmnist 468 64 28× 28 2 26.9% Resnet18

catsdogs 15, 000 128 64× 64 2 50.0% VGG
chestmnist 67, 272 512 28× 28 2 10.3% Resnet18

cifar10 36, 000 128 32× 32 1 100.0% VGG
compass 9, 985 128 17 2 50.0% FTTransformer
covtype 348, 605 1024 54 7 0.5% FTTransformer

dermamnist 6, 008 128 28× 28 7 1.1% Resnet18
electricity 23, 083 128 7 2 50.0% FTTransformer

eye 4, 564 128 23 2 50.0% FTTransformer
food101 60, 600 256 224× 224 101 1.0% Resnet34
giveme 90, 000 512 8 2 6.7% TabResnet
helena 39, 116 512 27 100 0.2% TabResnet
heloc 6, 000 128 22 2 50.0% FTTransformer
higgs 58, 829 512 28 2 47.1% FTTransformer
house 8, 092 128 16 2 50.0% FTTransformer
indian 5, 485 128 220 8 0.2% TabResnet
jannis 34, 548 512 54 2 50.0% FTTransformer

kddipums97 3, 112 128 20 2 50.0% FTTransformer
letter 12, 000 128 16 26 3.7% FTTransformer
magic 8, 024 128 10 2 50.0% FTTransformer

miniboone 43, 798 256 50 2 50.0% TabResnet
MNIST 42, 000 128 28× 28 10 9.0% Resnet34

octmnist 65, 585 512 28× 28 4 8.1% Resnet18
online 7, 398 128 17 2 15.5% FTTransformer

organamnist 35, 310 256 28× 28 11 4.0% Resnet18
organcmnist 14, 196 128 28× 28 11 4.8% Resnet18
organsmnist 15, 132 128 28× 28 11 4.6% Resnet18
oxfordpets 4, 409 128 224× 224 2 32.3% Resnet34
pathmnist 64, 308 512 28× 28 9 8.9% Resnet18
phoneme 1, 901 128 5 2 50.0% FTTransformer

pneumoniamnist 3, 512 128 28× 28 2 27.1% Resnet18
pol 9, 000 128 26 11 1.7% FTTransformer

retinamnist 960 128 28× 28 5 5.8% Resnet18
rl 2, 982 128 12 2 50.0% FTTransformer

stanfordcars 9, 710 128 224× 224 196 0.3% Resnet34
SVHN 59, 573 128 32× 32 10 6.3% VGG

tissuemnist 141, 830 1024 28× 28 8 3.5% Resnet18
ucicredit 18, 000 128 23 2 22.1% TabResnet
upselling 3, 017 128 45 2 50.0% FTTransformer
waterbirds 7, 072 128 224× 224 2 22.6% Resnet50

respectively, SELNET, SELNET+EM, SAT and SAT+EM. Similarly, SCROSS, ENS,
ENS+SR, AUCROSS, and PLUGINAUC employ the best configuration found for SR as
they share the same training loss, i.e., cross-entropy. For both SCROSS and AUCROSS
we set K = 5, following the suggestions in Pugnana and Ruggieri (2023a,b). For both ENS
and ENS+SR we used the default value of K = 10, following the suggestions in Laksh-
minarayanan et al. (2017). For the uncertainty network of CONFIDNET, we employed
the same choice architecture detailed in the original paper (Corbière et al., 2019), i.e., the
same main body as the network classifier followed by 4 dense layers in a single node with
sigmoid activation. We used such a structure also for building SELE and REG uncertainty
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Table A3: Hyperparameter spaces.

Parameter Loss-Specific Network-Specific Search Space
o DG No [1;m].02
γ SAT, SAT+EM No [0.9; 0.99].01
Es SAT, SAT+EM No [0; 60]15
β SAT+EM, SELNET+EM No {1e−4, 1e−3, , 1e−2, 1e−1}
α SELNET, SELNET+EM No {.25; .75}.05
λ SELNET, SELNET+EM No {8, 16, 32, 64}

optimizer No No {SGD, Adam, AdamW}
learning rate No No {1e− 5, 1e− 4, 1e− 3, 1e− 2}
optimizer unc. CONFIDNET, SELE, REG Yes {SGD, Adam, AdamW}

learning rate unc. CONFIDNET, SELE, REG Yes {1e− 8, 1e− 7, 1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2}
time decay No No {True, False}
nesterov No No {True, False}

nesterov unc. CONFIDNET, SELE, REG Yes {True, False}
weight decay No No {1e−6, 1e−5, 1e−4, 1e−3}

d_token No FTTransformer, TabResNet [64, 512]64
n_blocks No FTTransformer, TabResNet {1, 2, 3, 4}

d_hidden_factor No FTTransformer, TabResNet [2/3; 8/3]1/3
attention_dropout No FTTransformer {0; .5}.05
residual_dropout No FTTransformer {0; .2}.05

ffn_dropout No FTTransformer {0; .5}.05
d_main No TabResNet [64, 512]64

d_dropout_first No TabResNet {0; .5}.05
d_dropout_second No TabResNet {0; .5}.05

batch_norm No VGG {True, False}
zero_init_residual No ResNet34, ResNet50 {True, False}

networks. Following the empirical evaluation in (Franc et al., 2023), we split the training
data in half to train SELE and REG networks: on the one half we train the classifier, on
the other half, the uncertainty network. We provide the best configurations we employed
in the final analysis in Tables A4-A12.
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Appendix B. Additional Experimental Results

B.1 Q1: Results by Dataset Type

Figure B1 plots the best two and the worst two baselines mean RelErr by data type.
For binary tabular datasets (Figure B1a), SAT+EM+SR and SR are the best two

performing methods. The former’s relative error rate ranges from ≈ .508 at c = .99 to
≈ .405 at c = .70, while the latter achieves ≈ .511 at c = .99 and ≈ .393 at c = .70. The
worst two methods are DG, with RelErr of ≈ .632 at c = .99 and ≈ .559 at .70, and REG
with RelErr of ≈ .547 at .99 and ≈ .527 at .70.

For multiclass tabular datasets (Figure B1c), the best two methods are ENS+SR and
SAT+SR, with a mean relative error rate of ≈ .164 and ≈ .158 at c = .99 respectively,
up to ≈ .094 and ≈ .096 at c = .70. The worst methods are REG, which reaches a mean
relative error rate of ≈ .211 at c = .99 and of ≈ .203 at c = .70, and SELNET+EM+SR,
with a relative error rate ranging from ≈ .195 at c = .99 to ≈ .218 at c = .70.

For image datasets, methods based on ensembles, i.e., ENS and ENS+SR, achieve
the lowest relative error rate. For binary image datasets (Figure B1b), ENS+SR reaches
≈ .378 at c = .99 and ≈ .228 at c = .70, while ENS ranges from ≈ .386 at c = .99 to ≈ .234
at c = .70. In this setting, the worst baselines are SELE and DG, with a mean relative
error rate of ≈ .529 and ≈ .565 at c = .99 respectively, up to ≈ .564 and ≈ .582 at c = .70
respectively.

For multiclass image datasets (Figure B1d), ENS+SR passes from a mean relative error
rate of ≈ .189 at c = .99 to ≈ .126 at c = .70, while ENS achieves ≈ .191 at c = .99 up
to ≈ .151 at c = .70. The worst methods here are REG and SELE. The former’s relative
error rate ranges from ≈ .276 at c = .99 to ≈ .279 at c = .70, while the latter achieves
≈ .272 at c = .99 and ≈ .238 at c = .70.

Then, we perform the Nemenyi post hoc test to check for statistically significant dif-
ferences. Figures B2 and B3 provide CD plots when considering tabular and image data
respectively at c = .99, c = .90, c = .80 and c = .70. As for aggregated results, all the best
performing methods are not distinguishable in a statistically significant sense.

B.2 Q5: Additional Results

Figure B4 provides the detailed results for the out-of-distribution test sets.
Moreover, we provide additional results w.r.t. distribution shifts. We perform the same

experiment as for Q5, but now considering datasets in the OpenOOD benchmark (Yang et al.,
2022), which is specific for out-of-distribution detection, rather than randomly generated
pictures. For cifar10 we use as test set a random sample from cifar100, for MNIST a
random sample from FashionMNIST and for SVHN a random sample from cifar10. Figure B5
reports the results and the overall mean over the 3 datasets for the 16 baselines considered.

Similarly to the experiments in Section 5.2, we observe that under this milder data
shift, no baseline drops all the instances at c = .99. We can also see that for lower target
coverages, we have higher rejection rates, as expected. Moreover, there is a clear worst-
performing method, namely REG.
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(a) Binary Tabular Data.

(b) Binary Image Data.

(c) Multiclass Tabular Data.

(d) Multiclass Image Data.

Figure B1: Q1: RelErr as a function of target coverage c for the two best and worst
approaches on (a) binary tabular data, (b) binary image data, (c) multiclass tabular data
and (d) multiclass image data. For readability, only the two best and two worst approaches
are shown in each subplot.

44



Deep Neural Network Benchmarks for Selective Classification

(a) CD plot at c = .70 (b) CD plot at c = .80

(c) CD plot at c = .90 (d) CD plot at c = .99

Figure B2: Q1: CD plots of relative error rate RelErr for different target coverages on
tabular datasets. Top plots for binary datasets. Bottom plots for multiclass datasets.
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(a) CD plot at c = .70 (b) CD plot at c = .80

(c) CD plot at c = .90 (d) CD plot at c = .99

Figure B3: Q1: CD plots of relative error rate RelErr for different target coverages on
image datasets. Top plots for binary datasets. Bottom plots for multiclass datasets.

46



Deep Neural Network Benchmarks for Selective Classification

Figure B4: Q5: Empirical coverage ϕ̂ for out-of-distribution test sets on 20 image datasets
for different target coverages c.

For cifar10, the method dropping more instances is ENS+SR, reaching an actual
coverage of ≈ 5.7% at c = .70. The runner-up is ENS, accepting only ≈ 6% of instances.
All the remaining baselines have an empirical coverage above 8% at c = .70.

For MNIST and SVHN we observe similar patterns: eleven out of sixteen baselines reach a
coverage below 1% at c = .70. We also highlight that SELNET reaches zero coverage for
c = .75 and .70 on the SVHN dataset.

47



Pugnana, Perini, Davis and Ruggieri

Figure B5: Q5: Empirical coverage ϕ̂ for out-of-distribution test sets on 3 image datasets
for different target coverages c.

To conclude, the experiments show the difficulty for current SC methods to properly
perform rejection under distribution shifts. For test data close to the (learned) decision
boundary, the baselines correctly reject the instances, since all the methods are built to
perform ambiguity rejection. For test data far from the decision boundary, the selection
function become confident that the shifted instances are very likely to belong to a certain
training class, ending up not rejecting the instances. We think that a potential way to mit-
igate these problems consists of mixing ambiguity rejection with novelty rejection methods,
highlighting the need for further research in this direction.

B.3 Dataset-level Results

We provide detailed results for all the datasets in Tables B1-B44. Each table reports
mean ± std over the 100 bootstrap samples of Êrr and empirical coverage ϕ̂, for every
baseline and every target coverage. For binary datasets, we also include the MinCoeff
metric introduced in the main text. For error rate, we highlight the baseline column with
the lowest average (and standard error in case of ties) in bold case. For Coverage and
MinCoeff , we highlight in bold the values closest to target coverage c and 1, respectively.

Table B1: Results for adult: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .153± .003 .136± .004 .125± .004 .123± .003 .160± .003 .123± .003 .132± .004 .132± .004 .132± .004 .158± .003 .130± .003 .125± .003 .138± .004 .133± .004 .133± .003 .130± .004 .131± .004 .131± .004

.95 .154± .003 .126± .004 .115± .004 .108± .003 .137± .004 .101± .003 .118± .004 .116± .004 .114± .004 .135± .004 .130± .003 .103± .003 .131± .004 .128± .004 .123± .003 .116± .003 .125± .004 .133± .004

.90 .142± .003 .113± .004 .102± .004 .098± .003 .117± .003 .080± .003 .097± .003 .101± .003 .096± .003 .120± .003 .130± .003 .080± .003 .121± .004 .119± .004 .119± .003 .101± .003 .114± .003 .134± .004

.85 .119± .003 .097± .003 .088± .003 .080± .003 .106± .003 .061± .003 .080± .003 .083± .003 .078± .003 .106± .003 .128± .003 .061± .003 .106± .004 .104± .004 .113± .003 .086± .003 .103± .003 .134± .004

.80 .097± .003 .079± .003 .071± .003 .067± .003 .082± .003 .046± .002 .067± .003 .071± .003 .067± .003 .082± .003 .126± .003 .048± .003 .091± .003 .092± .004 .107± .004 .075± .003 .089± .003 .134± .004

.75 .077± .003 .062± .003 .058± .003 .056± .003 .076± .003 .030± .002 .056± .003 .057± .003 .055± .003 .064± .003 .123± .003 .035± .002 .074± .003 .082± .004 .101± .004 .064± .003 .073± .003 .131± .004

.70 .063± .003 .055± .003 .046± .003 .045± .003 .066± .003 .020± .002 .044± .003 .044± .003 .045± .003 .065± .003 .118± .003 .024± .002 .056± .003 .076± .003 .099± .004 .055± .003 .057± .003 .128± .004

ϕ̂

.99 .983± .001 .994± .001 .967± .002 .924± .003 .998± .000 .980± .001 .985± .001 .991± .001 .991± .001 .994± .001 .995± .001 .986± .001 .980± .001 .984± .001 .983± .001 .992± .001 .991± .001 .990± .001

.95 .927± .003 .958± .002 .925± .002 .913± .003 .951± .002 .912± .003 .943± .002 .945± .002 .939± .002 .942± .002 .982± .001 .917± .002 .936± .003 .955± .002 .923± .003 .955± .002 .948± .002 .949± .002

.90 .855± .004 .914± .003 .875± .003 .886± .003 .915± .003 .842± .003 .883± .003 .891± .003 .883± .003 .924± .002 .969± .002 .840± .003 .888± .003 .906± .003 .878± .004 .907± .003 .896± .003 .896± .003

.85 .793± .004 .855± .003 .825± .004 .818± .003 .854± .003 .771± .004 .824± .004 .836± .003 .820± .003 .855± .003 .960± .002 .767± .004 .839± .004 .813± .004 .825± .004 .859± .003 .844± .003 .836± .004

.80 .742± .004 .798± .004 .772± .004 .775± .004 .796± .004 .689± .004 .771± .004 .789± .004 .772± .004 .795± .004 .948± .002 .701± .004 .790± .004 .741± .004 .768± .004 .815± .004 .790± .004 .780± .004

.75 .686± .004 .732± .004 .722± .004 .725± .004 .731± .004 .616± .005 .723± .004 .734± .004 .722± .004 .675± .004 .931± .002 .632± .005 .740± .004 .699± .005 .723± .004 .768± .004 .738± .005 .713± .005

.70 .632± .005 .679± .004 .671± .004 .672± .004 .683± .004 .563± .005 .669± .004 .679± .004 .674± .004 .677± .004 .909± .002 .579± .005 .687± .005 .670± .005 .686± .005 .728± .004 .687± .005 .659± .004

M
in
C
oe
ff

.99 .948± .018 .994± .019 .949± .020 .835± .017 .999± .019 .980± .019 .983± .019 .993± .018 .992± .019 .995± .019 .999± .019 .988± .019 .999± .019 .997± .019 .994± .019 .988± .019 .995± .019 1.007± .019

.95 .788± .018 .946± .019 .872± .019 .897± .019 .941± .020 .907± .019 .935± .019 .942± .019 .934± .018 .920± .019 .977± .019 .921± .018 .988± .020 .981± .019 .960± .020 .936± .019 .988± .019 1.035± .020

.90 .612± .017 .878± .019 .770± .019 .872± .019 .902± .019 .810± .019 .870± .019 .886± .019 .871± .019 .919± .020 .964± .019 .827± .019 .969± .020 .948± .019 .944± .020 .871± .019 .973± .019 1.068± .021

.85 .490± .016 .778± .017 .690± .016 .789± .018 .812± .018 .712± .018 .794± .018 .817± .018 .799± .018 .813± .018 .955± .019 .726± .018 .926± .019 .836± .019 .904± .020 .798± .019 .953± .020 1.104± .022

.80 .393± .014 .675± .016 .604± .015 .729± .018 .801± .020 .606± .016 .730± .018 .762± .018 .739± .018 .800± .019 .943± .019 .637± .017 .872± .019 .720± .018 .854± .020 .731± .018 .933± .020 1.143± .022

.75 .320± .013 .569± .015 .533± .015 .650± .017 .552± .016 .533± .017 .659± .018 .695± .018 .666± .018 .531± .016 .927± .020 .550± .017 .799± .019 .633± .018 .799± .020 .655± .017 .907± .021 1.184± .024

.70 .261± .013 .460± .015 .479± .016 .550± .016 .537± .015 .511± .018 .582± .017 .608± .016 .577± .017 .541± .015 .903± .019 .504± .017 .674± .018 .557± .017 .771± .020 .597± .017 .872± .021 1.222± .025

48



Deep Neural Network Benchmarks for Selective Classification

Table B2: Results for aloi: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .035± .001 .034± .001 .029± .001 .039± .001 .031± .001 .036± .001 .033± .001 .027± .001 .037± .001 .030± .001 .034± .001 .032± .001 .035± .001 .063± .002 .063± .002 .031± .001

.95 .026± .001 .022± .001 .017± .001 .032± .001 .047± .001 .018± .001 .017± .001 .013± .001 .029± .001 .035± .001 .022± .001 .016± .001 .032± .001 .056± .002 .063± .002 .016± .001

.90 .022± .001 .013± .001 .009± .001 .026± .001 .044± .002 .007± .001 .007± .001 .006± .001 .018± .001 .024± .001 .014± .001 .005± .001 .030± .001 .049± .002 .062± .002 .006± .001

.85 .019± .001 .008± .001 .005± .000 .023± .001 .018± .001 .002± .000 .002± .000 .004± .000 .008± .001 .012± .001 .008± .001 .002± .000 .030± .001 .042± .002 .060± .002 .002± .000

.80 .016± .001 .006± .001 .003± .000 .022± .001 .035± .001 .001± .000 .001± .000 .002± .000 .009± .001 .011± .001 .006± .001 .001± .000 .030± .001 .036± .001 .059± .002 .001± .000

.75 .014± .001 .004± .000 .002± .000 .019± .001 .032± .001 .001± .000 .001± .000 .001± .000 .006± .001 .011± .001 .002± .000 .000± .000 .029± .001 .031± .001 .056± .002 .001± .000

.70 .012± .001 .003± .000 .002± .000 .019± .001 .022± .001 .000± .000 .000± .000 .001± .000 .005± .001 .012± .001 .001± .000 .000± .000 .028± .001 .027± .001 .054± .002 .000± .000

ϕ̂

.99 .991± .001 .989± .001 .991± .001 .991± .001 .989± .001 .991± .001 .991± .001 .990± .001 .991± .001 .992± .001 .991± .001 .990± .001 .991± .001 .991± .001 .991± .001 .994± .001

.95 .951± .001 .950± .001 .954± .001 .949± .001 .951± .001 .951± .001 .953± .001 .956± .001 .954± .001 .949± .001 .950± .002 .952± .002 .950± .001 .952± .002 .948± .001 .959± .001

.90 .904± .002 .900± .002 .902± .002 .901± .002 .901± .002 .902± .002 .903± .002 .905± .002 .899± .002 .897± .002 .899± .002 .901± .002 .901± .002 .897± .002 .900± .002 .916± .002

.85 .854± .003 .852± .003 .850± .002 .848± .003 .848± .002 .849± .003 .847± .002 .852± .003 .850± .002 .855± .002 .848± .002 .851± .002 .857± .002 .848± .003 .849± .002 .871± .002

.80 .803± .003 .806± .003 .798± .003 .800± .003 .801± .003 .800± .003 .801± .003 .799± .003 .803± .003 .800± .003 .800± .003 .800± .003 .806± .003 .800± .003 .800± .003 .828± .002

.75 .755± .003 .754± .003 .746± .003 .750± .003 .751± .003 .755± .003 .751± .003 .745± .003 .752± .003 .752± .003 .752± .003 .753± .003 .753± .003 .751± .003 .744± .003 .781± .003

.70 .706± .003 .702± .003 .697± .003 .701± .004 .704± .003 .704± .003 .703± .003 .694± .003 .702± .003 .702± .003 .699± .003 .702± .003 .701± .003 .700± .004 .695± .003 .738± .003

Table B3: Results for bank: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .112± .003 .089± .002 .087± .002 .092± .002 .092± .002 .092± .002 .087± .002 .087± .002 .090± .002 .092± .002 .092± .003 .090± .002 .084± .002 .091± .002 .103± .003 .090± .002 .092± .002 .095± .003

.95 .090± .003 .073± .002 .073± .002 .076± .002 .075± .002 .072± .002 .068± .002 .072± .002 .072± .002 .073± .002 .082± .003 .072± .002 .071± .002 .081± .002 .103± .003 .073± .002 .089± .003 .093± .003

.90 .063± .002 .054± .002 .055± .002 .056± .002 .056± .002 .054± .002 .051± .002 .053± .002 .052± .002 .055± .002 .067± .002 .054± .002 .055± .002 .063± .002 .103± .003 .055± .002 .084± .003 .091± .003

.85 .041± .002 .038± .002 .039± .002 .042± .002 .041± .002 .039± .002 .036± .002 .037± .002 .039± .002 .042± .002 .053± .002 .037± .002 .041± .002 .050± .002 .103± .003 .036± .002 .078± .003 .087± .003

.80 .028± .002 .028± .002 .026± .002 .027± .002 .028± .002 .027± .002 .026± .002 .025± .001 .027± .002 .028± .002 .043± .002 .027± .002 .026± .002 .034± .002 .101± .003 .025± .002 .069± .003 .081± .003

.75 .019± .001 .016± .001 .018± .001 .019± .001 .018± .001 .019± .001 .017± .001 .017± .001 .019± .001 .022± .001 .033± .002 .018± .001 .019± .002 .021± .002 .099± .003 .017± .001 .052± .003 .071± .003

.70 .013± .001 .013± .001 .011± .001 .013± .001 .014± .001 .012± .001 .012± .001 .011± .001 .013± .001 .015± .001 .023± .002 .012± .001 .012± .001 .015± .001 .099± .003 .012± .001 .037± .002 .056± .003

ϕ̂

.99 .990± .001 .990± .001 .988± .001 .992± .001 .988± .001 .991± .001 .987± .001 .986± .001 .988± .001 .991± .001 .989± .001 .989± .001 .986± .001 .990± .001 .990± .001 .991± .001 .988± .001 .991± .001

.95 .952± .002 .947± .002 .950± .002 .949± .002 .947± .002 .942± .002 .941± .003 .946± .002 .946± .003 .948± .002 .951± .002 .946± .002 .949± .002 .949± .002 .950± .002 .951± .002 .948± .002 .946± .002

.90 .898± .003 .895± .003 .897± .003 .899± .003 .897± .003 .896± .003 .892± .003 .892± .003 .890± .003 .892± .003 .904± .003 .896± .003 .901± .003 .898± .003 .900± .003 .899± .003 .897± .003 .897± .004

.85 .845± .004 .846± .004 .850± .004 .851± .004 .849± .004 .848± .004 .846± .004 .847± .004 .848± .004 .848± .004 .849± .004 .848± .004 .856± .003 .854± .004 .856± .004 .842± .004 .848± .004 .855± .004

.80 .798± .004 .803± .004 .799± .004 .801± .004 .802± .004 .801± .004 .800± .004 .800± .004 .798± .004 .800± .004 .799± .004 .799± .004 .802± .004 .799± .004 .810± .004 .790± .004 .793± .005 .807± .004

.75 .751± .004 .753± .004 .755± .004 .753± .004 .755± .004 .754± .004 .756± .004 .755± .004 .750± .004 .754± .004 .749± .004 .755± .004 .755± .004 .751± .004 .755± .005 .743± .004 .746± .005 .754± .005

.70 .700± .005 .706± .004 .704± .005 .702± .004 .704± .004 .701± .004 .706± .004 .706± .005 .702± .005 .704± .004 .701± .004 .709± .004 .702± .005 .702± .004 .710± .005 .695± .004 .690± .005 .699± .005

M
in
C
oe
ff

.99 .957± .027 .962± .028 .959± .029 .969± .028 .953± .028 .986± .029 .959± .028 .964± .028 .958± .027 .977± .028 .974± .028 .974± .030 .948± .028 .964± .028 .995± .029 .980± .029 .997± .029 1.001± .029

.95 .772± .025 .797± .027 .815± .028 .798± .026 .797± .026 .829± .028 .789± .026 .821± .026 .824± .025 .820± .026 .902± .028 .855± .028 .812± .027 .783± .026 .998± .030 .868± .026 .976± .030 .993± .030

.90 .539± .019 .573± .024 .605± .024 .594± .022 .603± .022 .690± .025 .591± .024 .629± .024 .585± .022 .621± .023 .814± .029 .684± .024 .612± .023 .572± .022 1.000± .030 .690± .024 .950± .032 .985± .032

.85 .354± .017 .377± .017 .412± .019 .355± .015 .349± .015 .491± .021 .420± .019 .452± .021 .405± .018 .381± .016 .704± .029 .511± .023 .465± .021 .420± .018 .988± .032 .474± .022 .913± .032 .963± .032

.80 .236± .014 .240± .014 .229± .013 .231± .014 .237± .014 .315± .017 .269± .015 .269± .016 .276± .016 .277± .017 .579± .027 .313± .019 .223± .014 .280± .018 .986± .033 .284± .017 .848± .032 .925± .031

.75 .161± .012 .138± .011 .157± .010 .161± .011 .156± .011 .170± .014 .148± .011 .162± .010 .161± .011 .238± .015 .433± .023 .165± .014 .162± .013 .177± .014 .961± .034 .150± .012 .759± .031 .856± .032

.70 .108± .011 .108± .011 .092± .010 .109± .011 .116± .011 .106± .010 .102± .011 .096± .010 .112± .011 .131± .012 .328± .020 .104± .011 .104± .011 .124± .012 .964± .036 .103± .011 .626± .028 .770± .033

Table B4: Results for bloodmnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .066± .004 .033± .003 .039± .003 .036± .003 .045± .003 .043± .003 .036± .003 .039± .003 .038± .003 .043± .003 .037± .003 .036± .003 .047± .004 .064± .004 .064± .004 .041± .003

.95 .056± .004 .023± .003 .026± .003 .025± .003 .034± .003 .024± .003 .022± .003 .026± .003 .021± .002 .030± .003 .022± .002 .019± .002 .035± .003 .063± .004 .065± .004 .026± .003

.90 .043± .003 .016± .002 .014± .002 .015± .002 .021± .003 .015± .002 .014± .002 .013± .002 .013± .002 .018± .002 .013± .002 .012± .002 .027± .004 .062± .004 .065± .004 .015± .002

.85 .037± .003 .010± .002 .008± .002 .012± .002 .009± .002 .010± .002 .008± .002 .007± .002 .008± .002 .008± .002 .008± .002 .008± .002 .020± .004 .063± .004 .063± .004 .009± .002

.80 .029± .003 .005± .001 .005± .002 .007± .002 .011± .002 .005± .001 .005± .001 .005± .001 .005± .001 .007± .002 .005± .001 .005± .001 .016± .004 .064± .004 .063± .004 .005± .002

.75 .025± .003 .005± .001 .004± .001 .006± .002 .006± .002 .004± .001 .005± .001 .004± .001 .004± .001 .005± .001 .004± .001 .002± .001 .011± .004 .065± .004 .066± .004 .003± .001

.70 .018± .003 .004± .001 .002± .001 .003± .001 .005± .001 .004± .001 .003± .001 .002± .001 .002± .001 .004± .001 .002± .001 .001± .001 .009± .003 .066± .004 .067± .005 .002± .001

ϕ̂

.99 .990± .002 .984± .002 .991± .002 .990± .002 .989± .002 .992± .002 .991± .002 .991± .002 .992± .002 .988± .002 .984± .002 .989± .002 .989± .004 .991± .002 .993± .002 .991± .001

.95 .959± .003 .946± .004 .946± .004 .948± .004 .947± .004 .948± .004 .946± .004 .955± .003 .948± .004 .949± .004 .941± .004 .942± .004 .947± .004 .950± .004 .955± .004 .951± .004

.90 .909± .005 .896± .005 .894± .005 .900± .005 .908± .004 .901± .006 .891± .005 .893± .005 .901± .005 .904± .005 .894± .005 .896± .005 .901± .006 .893± .006 .901± .005 .897± .005

.85 .861± .006 .843± .006 .846± .005 .841± .006 .842± .006 .844± .007 .836± .006 .846± .005 .847± .006 .840± .006 .843± .006 .845± .007 .850± .007 .844± .007 .843± .006 .844± .006

.80 .814± .007 .795± .007 .801± .006 .798± .007 .811± .006 .795± .007 .787± .007 .799± .006 .800± .007 .800± .007 .802± .007 .799± .007 .805± .007 .788± .008 .795± .008 .802± .007

.75 .767± .007 .751± .008 .747± .006 .747± .007 .754± .007 .754± .007 .746± .008 .753± .006 .747± .007 .754± .007 .749± .007 .751± .007 .757± .007 .737± .008 .742± .008 .759± .007

.70 .705± .008 .703± .008 .698± .007 .699± .007 .709± .008 .705± .008 .712± .008 .698± .007 .689± .007 .703± .007 .707± .008 .702± .008 .702± .009 .680± .009 .682± .009 .712± .008

Table B5: Results for breastmnist: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .137± .029 .161± .031 .159± .030 .143± .031 .177± .033 .176± .034 .158± .031 .145± .030 .141± .031 .163± .033 .163± .032 .151± .032 .189± .035 .189± .033 .205± .035 .149± .031 .147± .031 .188± .034

.95 .145± .031 .160± .031 .158± .031 .155± .033 .192± .034 .164± .033 .154± .032 .123± .027 .119± .029 .170± .034 .145± .031 .122± .031 .173± .037 .186± .034 .206± .036 .138± .030 .146± .032 .188± .034

.90 .150± .031 .145± .031 .135± .031 .157± .035 .155± .033 .161± .034 .116± .027 .126± .028 .108± .030 .141± .033 .123± .029 .091± .028 .177± .038 .182± .035 .192± .033 .137± .031 .132± .030 .165± .033

.85 .139± .030 .135± .031 .129± .029 .122± .032 .139± .033 .109± .032 .107± .030 .104± .028 .082± .028 .140± .033 .112± .028 .092± .028 .173± .039 .155± .036 .205± .035 .131± .032 .133± .031 .143± .034

.80 .133± .032 .140± .032 .119± .030 .146± .033 .078± .025 .094± .031 .107± .030 .100± .029 .095± .031 .110± .031 .115± .029 .069± .024 .159± .039 .162± .037 .195± .034 .104± .029 .117± .030 .107± .032

.75 .135± .032 .141± .032 .108± .029 .109± .033 .113± .030 .099± .032 .101± .030 .089± .027 .088± .034 .131± .035 .052± .022 .051± .022 .165± .040 .167± .038 .192± .035 .078± .026 .084± .026 .098± .032

.70 .144± .034 .115± .030 .111± .030 .076± .029 .092± .029 .105± .034 .103± .030 .081± .026 .064± .027 .082± .031 .035± .020 .045± .022 .169± .041 .142± .037 .200± .036 .072± .025 .072± .025 .103± .034

ϕ̂

.99 1.000± .000 .994± .006 .962± .017 .987± .009 .973± .015 .961± .017 .971± .012 .961± .015 .969± .013 .982± .011 .993± .006 .988± .008 .974± .014 .981± .011 .972± .015 .975± .013 .988± .008 1.000± .000

.95 .949± .018 .957± .017 .931± .021 .938± .019 .976± .012 .947± .020 .959± .014 .930± .020 .926± .021 .918± .023 .972± .012 .906± .023 .857± .028 .961± .013 .903± .025 .947± .018 .958± .015 1.000± .000

.90 .917± .024 .925± .019 .848± .031 .840± .028 .789± .035 .923± .024 .889± .023 .903± .024 .850± .033 .854± .032 .879± .024 .835± .028 .795± .035 .879± .025 .840± .031 .918± .020 .905± .026 .942± .021

.85 .890± .029 .906± .020 .842± .031 .806± .034 .872± .022 .824± .034 .787± .029 .854± .028 .766± .036 .879± .023 .816± .032 .828± .029 .747± .038 .818± .030 .788± .036 .861± .029 .898± .026 .856± .031

.80 .786± .034 .876± .024 .805± .033 .765± .035 .745± .034 .749± .042 .787± .029 .821± .031 .739± .038 .815± .032 .792± .033 .755± .036 .698± .039 .780± .033 .714± .039 .828± .031 .839± .031 .780± .040

.75 .779± .035 .826± .030 .788± .035 .652± .041 .748± .032 .711± .044 .767± .031 .791± .032 .613± .040 .746± .036 .633± .038 .654± .042 .672± .040 .760± .034 .696± .039 .764± .035 .769± .036 .717± .043

.70 .727± .038 .727± .034 .761± .037 .620± .043 .706± .039 .673± .046 .748± .033 .784± .032 .618± .046 .641± .043 .598± .040 .610± .043 .659± .040 .716± .037 .669± .039 .746± .036 .739± .036 .686± .044

M
in
C
oe
ff

.99 1.003± .047 1.000± .047 .997± .048 1.006± .047 1.001± .046 .995± .048 1.010± .048 .997± .049 1.000± .048 1.013± .046 1.010± .046 .998± .048 1.009± .047 1.022± .048 .992± .049 1.001± .047 1.008± .046 1.003± .047

.95 .983± .048 .986± .049 1.013± .048 1.030± .048 1.002± .047 .990± .048 1.005± .048 .985± .051 .991± .050 .986± .049 1.002± .047 1.005± .048 1.058± .050 1.034± .048 1.001± .051 1.011± .046 1.004± .045 1.003± .047

.90 .969± .049 1.010± .049 1.009± .049 1.075± .046 1.015± .057 .980± .049 .995± .051 .973± .052 1.008± .048 1.002± .051 1.027± .047 1.017± .049 1.045± .052 1.073± .048 1.024± .050 1.017± .046 1.012± .045 .988± .048

.85 .967± .051 1.002± .050 1.016± .048 1.086± .048 1.029± .046 .976± .049 1.023± .053 .970± .052 .996± .054 1.025± .048 1.032± .050 1.014± .049 1.066± .052 1.117± .052 1.001± .052 1.053± .047 1.019± .046 .980± .049

.80 .947± .053 .990± .050 1.000± .050 1.044± .050 1.032± .055 .960± .050 1.023± .053 .975± .053 1.041± .051 .984± .053 1.043± .049 1.045± .050 1.088± .051 1.126± .054 1.030± .051 1.051± .047 1.060± .047 .954± .049

.75 .943± .053 .977± .051 1.011± .049 1.020± .053 1.008± .056 .949± .051 1.014± .054 .982± .055 1.012± .057 .994± .051 1.097± .052 1.037± .056 1.078± .053 1.131± .052 1.032± .053 1.063± .048 1.065± .048 .942± .051

.70 .926± .056 .999± .056 .999± .050 1.058± .052 1.010± .057 .975± .051 1.005± .054 .991± .055 1.002± .056 .963± .060 1.110± .053 1.084± .053 1.071± .054 1.149± .053 1.019± .054 1.066± .047 1.076± .047 .957± .051
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Table B6: Results for catsdogs: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .040± .003 .040± .003 .042± .003 .066± .003 .060± .003 .068± .003 .040± .003 .042± .003 .067± .003 .060± .003 .042± .003 .045± .003 .052± .003 .060± .003 .063± .004 .082± .004 .079± .004 .070± .004

.95 .026± .002 .027± .002 .030± .003 .051± .003 .047± .003 .052± .003 .027± .002 .030± .002 .050± .003 .046± .003 .032± .003 .030± .002 .044± .003 .059± .003 .062± .004 .071± .004 .056± .003 .059± .003

.90 .014± .002 .017± .002 .019± .002 .023± .002 .079± .004 .039± .003 .018± .002 .021± .002 .023± .002 .083± .004 .023± .002 .019± .002 .034± .003 .060± .003 .062± .004 .057± .004 .050± .003 .049± .003

.85 .008± .002 .010± .001 .013± .002 .023± .003 .049± .004 .027± .003 .010± .002 .014± .002 .024± .003 .047± .004 .015± .002 .011± .002 .026± .002 .060± .003 .061± .004 .049± .003 .042± .003 .035± .003

.80 .004± .001 .008± .001 .009± .002 .029± .003 .019± .002 .017± .002 .007± .001 .008± .001 .029± .003 .019± .002 .009± .001 .008± .001 .018± .002 .058± .003 .062± .004 .044± .003 .037± .003 .014± .002

.75 .002± .001 .005± .001 .007± .001 .088± .005 .017± .002 .010± .002 .005± .001 .007± .001 .092± .005 .016± .002 .006± .001 .005± .001 .014± .002 .058± .003 .062± .004 .039± .003 .033± .003 .009± .001

.70 .002± .001 .005± .001 .007± .001 .008± .001 .011± .002 .005± .001 .005± .001 .006± .001 .008± .001 .011± .002 .004± .001 .004± .001 .011± .002 .058± .004 .061± .004 .035± .003 .032± .003 .007± .001

ϕ̂

.99 .991± .001 .986± .001 .988± .001 .989± .001 .994± .001 .992± .001 .985± .002 .988± .001 .989± .001 .993± .001 .988± .002 .992± .001 .992± .001 .990± .001 .991± .001 .995± .001 .995± .001 .989± .001

.95 .956± .003 .946± .003 .952± .003 .947± .003 .955± .003 .952± .003 .946± .003 .951± .003 .945± .003 .957± .003 .944± .003 .951± .003 .954± .003 .950± .003 .955± .003 .969± .003 .966± .003 .942± .003

.90 .899± .005 .897± .004 .904± .004 .891± .005 .901± .004 .912± .004 .899± .004 .908± .004 .890± .005 .901± .004 .899± .004 .898± .004 .907± .004 .904± .004 .901± .005 .936± .003 .943± .004 .893± .005

.85 .848± .006 .850± .004 .852± .005 .847± .004 .853± .004 .861± .005 .851± .005 .854± .005 .850± .005 .851± .004 .856± .005 .852± .005 .850± .005 .854± .005 .844± .005 .910± .005 .917± .004 .849± .005

.80 .800± .006 .797± .005 .802± .005 .788± .005 .796± .006 .804± .006 .791± .005 .806± .005 .791± .005 .796± .006 .811± .006 .813± .006 .785± .006 .801± .006 .788± .006 .880± .006 .893± .005 .800± .005

.75 .744± .006 .742± .006 .752± .005 .736± .006 .735± .005 .750± .006 .735± .006 .752± .005 .739± .006 .732± .005 .763± .006 .761± .006 .741± .006 .748± .007 .733± .007 .855± .006 .867± .006 .757± .006

.70 .693± .006 .685± .006 .709± .006 .712± .007 .684± .006 .691± .007 .688± .006 .702± .006 .708± .007 .682± .006 .712± .007 .711± .007 .690± .006 .699± .007 .690± .007 .820± .006 .848± .006 .713± .007

M
in
C
oe
ff

.99 1.004± .017 .999± .017 1.006± .017 .998± .017 1.002± .017 .997± .017 .999± .017 1.007± .017 .999± .017 1.001± .017 .994± .017 .997± .017 1.005± .017 1.007± .017 1.002± .017 .999± .017 .999± .017 1.010± .017

.95 1.001± .017 .989± .017 1.012± .017 .982± .017 .997± .017 .971± .017 .989± .017 1.012± .017 .980± .017 1.006± .017 .972± .017 .968± .017 1.016± .017 1.021± .017 1.000± .017 .977± .017 .978± .017 1.031± .018

.90 .989± .017 .964± .017 1.020± .017 1.002± .017 .929± .017 .945± .017 .963± .017 1.022± .017 1.004± .017 .925± .017 .941± .017 .932± .018 1.029± .017 1.027± .017 .998± .017 .949± .017 .959± .017 1.061± .017

.85 .977± .017 .943± .017 1.019± .017 .960± .018 .890± .018 .913± .017 .943± .017 1.026± .018 .963± .017 .888± .018 .914± .018 .901± .018 1.059± .017 1.031± .018 .998± .018 .926± .017 .940± .017 1.082± .018

.80 .964± .017 .917± .018 1.020± .018 .932± .017 .913± .018 .879± .017 .906± .018 1.034± .018 .929± .017 .914± .018 .886± .018 .878± .018 1.103± .018 1.029± .018 1.004± .019 .895± .017 .920± .017 1.098± .018

.75 .944± .017 .910± .018 1.013± .018 .906± .018 .903± .019 .864± .018 .891± .018 1.035± .018 .902± .018 .915± .019 .865± .018 .851± .018 1.134± .018 1.034± .018 1.009± .019 .873± .017 .895± .017 1.109± .018

.70 .929± .018 .933± .019 1.008± .018 .919± .019 .907± .019 .875± .019 .902± .018 1.038± .019 .922± .019 .905± .019 .836± .018 .816± .018 1.165± .019 1.039± .019 1.014± .019 .832± .017 .875± .017 1.123± .018

Table B7: Results for chestmnist: mean±std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .101± .002 .100± .002 .100± .002 .099± .002 .099± .002 .099± .002 .100± .002 .099± .002 .100± .002 .100± .002 .102± .002 .099± .002 .101± .002 .101± .002 .103± .002 .100± .002 .104± .002 .103± .002

.95 .093± .002 .090± .002 .089± .002 .091± .002 .090± .002 .091± .002 .090± .002 .089± .002 .090± .002 .091± .002 .099± .002 .090± .002 .091± .002 .092± .002 .102± .002 .090± .002 .104± .002 .103± .002

.90 .086± .002 .080± .002 .081± .002 .080± .002 .082± .002 .081± .002 .080± .002 .081± .002 .081± .002 .084± .002 .096± .002 .081± .002 .082± .002 .084± .002 .100± .002 .081± .002 .103± .002 .104± .002

.85 .081± .002 .074± .002 .073± .002 .074± .002 .073± .002 .073± .002 .074± .002 .073± .002 .074± .002 .097± .002 .090± .002 .073± .002 .075± .002 .078± .002 .099± .002 .073± .002 .103± .002 .103± .002

.80 .076± .002 .066± .002 .066± .002 .066± .002 .067± .002 .067± .002 .066± .002 .066± .002 .066± .002 .129± .002 .086± .002 .066± .002 .069± .002 .071± .002 .097± .002 .066± .002 .101± .002 .103± .002

.75 .072± .002 .059± .002 .060± .002 .061± .002 .061± .002 .059± .002 .059± .002 .060± .002 .061± .002 .137± .003 .083± .002 .059± .002 .064± .002 .065± .002 .096± .002 .061± .002 .100± .002 .103± .002

.70 .068± .002 .055± .002 .054± .002 .055± .002 .057± .002 .055± .002 .055± .002 .055± .002 .055± .002 .204± .003 .079± .002 .054± .002 .058± .002 .059± .002 .095± .002 .055± .002 .100± .003 .100± .003

ϕ̂

.99 .991± .001 .989± .001 .989± .001 .989± .001 .989± .001 .989± .001 .989± .001 .988± .001 .990± .001 .990± .001 .987± .001 .989± .001 .990± .001 .990± .001 .992± .001 .991± .001 .990± .001 .990± .001

.95 .953± .001 .952± .001 .949± .001 .952± .001 .949± .001 .950± .001 .952± .001 .949± .001 .952± .001 .950± .002 .945± .002 .950± .001 .950± .001 .950± .002 .953± .001 .954± .001 .950± .001 .949± .002

.90 .899± .002 .899± .002 .903± .002 .901± .002 .899± .002 .898± .002 .899± .002 .902± .002 .901± .002 .899± .002 .900± .002 .902± .002 .899± .002 .901± .002 .900± .002 .906± .002 .900± .002 .897± .002

.85 .846± .002 .850± .002 .850± .002 .854± .002 .849± .002 .852± .002 .850± .002 .850± .002 .853± .002 .857± .002 .847± .003 .851± .002 .850± .002 .852± .002 .853± .002 .855± .002 .853± .003 .846± .003

.80 .799± .003 .798± .003 .802± .002 .799± .002 .804± .003 .804± .003 .798± .003 .802± .002 .799± .002 .807± .002 .798± .003 .800± .003 .801± .002 .805± .002 .800± .002 .805± .002 .803± .003 .798± .003

.75 .748± .003 .748± .003 .754± .002 .748± .003 .751± .003 .750± .003 .748± .003 .754± .003 .748± .003 .757± .003 .748± .003 .751± .003 .752± .003 .752± .003 .748± .003 .756± .003 .751± .003 .750± .003

.70 .701± .003 .701± .003 .698± .003 .700± .003 .702± .002 .702± .003 .701± .003 .699± .003 .699± .003 .708± .003 .701± .003 .698± .003 .702± .003 .698± .003 .696± .003 .707± .003 .700± .003 .699± .003

M
in
C
oe
ff

.99 .978± .020 .971± .021 .969± .020 .967± .020 .965± .020 .962± .021 .973± .021 .969± .020 .970± .021 .974± .020 .993± .021 .962± .021 .979± .020 .981± .021 .999± .021 .972± .021 1.003± .021 1.001± .021

.95 .908± .019 .875± .019 .864± .018 .878± .020 .876± .019 .879± .019 .876± .019 .864± .018 .879± .019 .880± .019 .963± .022 .871± .020 .887± .020 .892± .020 .984± .021 .879± .020 1.003± .022 1.001± .022

.90 .837± .018 .782± .018 .785± .018 .782± .018 .801± .019 .783± .019 .782± .018 .785± .018 .785± .018 .811± .019 .928± .023 .791± .018 .795± .019 .819± .019 .961± .021 .788± .018 .997± .023 1.002± .022

.85 .783± .018 .716± .018 .706± .017 .720± .018 .710± .017 .711± .018 .716± .018 .707± .017 .719± .018 .803± .019 .876± .023 .705± .017 .731± .018 .753± .018 .956± .021 .711± .017 .993± .023 .997± .022

.80 .741± .019 .645± .018 .642± .016 .643± .016 .655± .017 .651± .017 .647± .018 .642± .016 .644± .016 .822± .021 .839± .022 .642± .016 .666± .018 .687± .018 .936± .022 .645± .018 .980± .024 .999± .023

.75 .698± .019 .578± .017 .587± .017 .589± .018 .593± .018 .577± .017 .580± .016 .586± .017 .589± .018 .822± .021 .801± .023 .577± .018 .618± .018 .632± .018 .923± .022 .597± .017 .967± .023 .994± .023

.70 .665± .019 .533± .016 .527± .018 .538± .017 .550± .016 .533± .017 .534± .016 .531± .018 .537± .017 .905± .023 .770± .023 .521± .017 .567± .017 .572± .018 .911± .021 .535± .017 .967± .024 .969± .024

Table B8: Results for cifar10: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .093± .002 .088± .003 .099± .003 .078± .002 .064± .002 .090± .003 .088± .003 .098± .003 .079± .003 .064± .002 .059± .002 .058± .002 .091± .003 .119± .003 .119± .003 .088± .002

.95 .074± .003 .069± .002 .078± .002 .073± .002 .049± .002 .071± .003 .067± .002 .075± .002 .074± .002 .046± .002 .045± .002 .039± .002 .074± .003 .115± .003 .119± .003 .069± .002

.90 .055± .002 .047± .002 .056± .002 .045± .002 .031± .002 .051± .002 .047± .002 .053± .002 .045± .002 .030± .002 .031± .002 .025± .002 .053± .002 .112± .003 .119± .003 .049± .002

.85 .040± .002 .033± .002 .039± .002 .037± .002 .019± .001 .037± .002 .032± .002 .037± .002 .037± .002 .019± .001 .021± .001 .014± .001 .039± .002 .108± .003 .120± .003 .032± .002

.80 .029± .002 .020± .001 .026± .002 .028± .002 .011± .001 .024± .002 .022± .001 .026± .002 .026± .002 .013± .001 .013± .001 .009± .001 .025± .002 .105± .003 .120± .003 .021± .001

.75 .020± .002 .015± .001 .019± .001 .019± .001 .007± .001 .015± .002 .014± .001 .017± .001 .018± .001 .008± .001 .008± .001 .006± .001 .018± .001 .101± .003 .121± .003 .015± .001

.70 .012± .001 .009± .001 .014± .001 .011± .001 .006± .001 .011± .001 .010± .001 .011± .001 .011± .001 .008± .001 .005± .001 .003± .001 .013± .001 .098± .003 .121± .003 .010± .001

ϕ̂

.99 .992± .001 .989± .001 .989± .001 .990± .001 .990± .001 .992± .001 .990± .001 .990± .001 .991± .001 .990± .001 .987± .001 .989± .001 .992± .001 .995± .001 .990± .001 .988± .001

.95 .951± .002 .950± .002 .947± .002 .945± .002 .951± .002 .952± .002 .946± .002 .942± .002 .949± .002 .947± .002 .946± .002 .948± .002 .956± .002 .954± .002 .942± .002 .948± .002

.90 .895± .002 .901± .003 .893± .003 .894± .003 .900± .003 .902± .002 .901± .003 .892± .003 .896± .003 .900± .003 .896± .003 .899± .003 .902± .002 .908± .003 .894± .003 .897± .003

.85 .848± .003 .854± .003 .842± .003 .852± .003 .847± .003 .854± .003 .855± .003 .845± .003 .855± .003 .846± .003 .841± .004 .844± .003 .858± .003 .857± .003 .848± .003 .844± .003

.80 .799± .003 .800± .003 .790± .003 .799± .004 .801± .003 .799± .003 .805± .003 .799± .003 .796± .004 .800± .004 .791± .004 .796± .004 .803± .003 .809± .003 .804± .004 .791± .004

.75 .751± .003 .751± .003 .745± .003 .756± .004 .756± .004 .752± .003 .752± .003 .746± .003 .754± .004 .756± .004 .750± .004 .751± .004 .756± .004 .758± .004 .750± .004 .742± .004

.70 .694± .003 .695± .004 .701± .004 .695± .004 .710± .004 .703± .004 .697± .004 .696± .004 .696± .004 .708± .004 .701± .004 .702± .004 .704± .004 .711± .004 .698± .004 .689± .004

Table B9: Results for compass: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .310± .008 .298± .008 .301± .008 .293± .007 .287± .008 .292± .007 .297± .008 .302± .008 .293± .007 .288± .008 .289± .007 .285± .007 .297± .007 .296± .008 .307± .008 .300± .008 .300± .008 .292± .007

.95 .303± .009 .293± .008 .296± .009 .290± .008 .290± .007 .284± .007 .293± .008 .295± .008 .284± .007 .287± .007 .289± .007 .275± .008 .282± .008 .292± .008 .302± .008 .291± .008 .285± .008 .284± .008

.90 .294± .009 .287± .008 .288± .009 .276± .008 .280± .008 .272± .007 .282± .008 .286± .008 .272± .007 .282± .008 .282± .008 .264± .008 .276± .008 .283± .008 .300± .008 .273± .008 .269± .008 .272± .007

.85 .290± .009 .275± .009 .279± .009 .273± .008 .267± .008 .260± .007 .271± .008 .276± .008 .262± .008 .266± .008 .282± .008 .257± .008 .266± .008 .276± .009 .298± .008 .260± .008 .255± .008 .265± .007

.80 .282± .009 .266± .008 .274± .009 .262± .008 .257± .009 .252± .008 .262± .008 .271± .008 .255± .008 .257± .009 .279± .008 .245± .008 .256± .008 .274± .009 .295± .009 .247± .008 .245± .009 .255± .008

.75 .280± .009 .255± .009 .262± .009 .250± .009 .246± .008 .244± .008 .250± .009 .262± .009 .243± .008 .247± .009 .273± .008 .234± .008 .248± .008 .269± .009 .290± .009 .237± .009 .236± .009 .248± .008

.70 .274± .009 .243± .009 .253± .009 .233± .009 .237± .009 .231± .008 .234± .009 .252± .009 .229± .009 .234± .009 .271± .009 .221± .008 .235± .009 .257± .010 .283± .009 .231± .009 .229± .009 .243± .008

ϕ̂

.99 .990± .002 .988± .002 .987± .002 .986± .002 .988± .002 .995± .001 .991± .002 .990± .002 .987± .002 .990± .002 .989± .002 .989± .002 .991± .002 .985± .002 .993± .001 .990± .002 .986± .002 .989± .002

.95 .954± .004 .962± .003 .945± .004 .953± .004 .955± .004 .953± .004 .953± .003 .951± .004 .941± .004 .948± .004 .947± .004 .951± .004 .932± .005 .946± .004 .957± .004 .949± .004 .924± .005 .937± .004

.90 .902± .005 .911± .005 .902± .005 .891± .005 .894± .005 .907± .005 .890± .005 .896± .006 .893± .006 .902± .006 .901± .005 .893± .005 .888± .006 .897± .005 .911± .005 .875± .005 .841± .007 .883± .006

.85 .857± .005 .846± .007 .855± .006 .841± .007 .840± .006 .845± .006 .836± .006 .851± .007 .834± .006 .839± .007 .855± .006 .847± .006 .835± .007 .854± .006 .854± .007 .815± .007 .778± .008 .837± .006

.80 .804± .006 .788± .007 .814± .007 .798± .007 .805± .008 .802± .007 .794± .007 .815± .007 .794± .007 .801± .007 .809± .008 .800± .007 .784± .008 .802± .007 .801± .008 .743± .007 .725± .008 .786± .006

.75 .750± .007 .742± .007 .760± .008 .748± .007 .738± .007 .746± .007 .741± .007 .772± .007 .741± .008 .736± .007 .760± .008 .743± .008 .730± .008 .759± .006 .758± .008 .689± .008 .664± .008 .739± .006

.70 .699± .008 .695± .008 .719± .008 .699± .008 .692± .008 .695± .007 .689± .008 .718± .008 .709± .008 .681± .008 .715± .008 .697± .008 .674± .008 .715± .007 .698± .008 .629± .009 .602± .007 .690± .007

M
in
C
oe
ff

.99 1.004± .019 1.000± .019 .998± .019 1.000± .018 1.000± .019 1.003± .018 1.000± .019 1.002± .019 1.002± .019 1.002± .019 1.000± .019 1.003± .019 1.002± .018 .999± .018 1.002± .019 1.001± .019 1.004± .019 1.005± .018

.95 1.003± .019 1.004± .019 .985± .020 1.004± .019 .999± .019 1.004± .018 1.004± .019 .993± .019 .992± .018 .996± .019 .999± .019 1.008± .019 .997± .019 .991± .019 .997± .019 .999± .020 1.002± .019 1.012± .019

.90 1.000± .019 1.006± .019 .981± .020 1.009± .018 .992± .019 1.000± .019 1.007± .020 .982± .020 .989± .019 .998± .020 .998± .019 .998± .019 .994± .019 .987± .020 .985± .019 .986± .021 1.011± .020 1.015± .020

.85 .997± .020 1.001± .020 .971± .021 1.017± .020 1.005± .020 .998± .019 1.015± .020 .973± .020 .982± .020 1.003± .020 .999± .020 .994± .020 1.000± .019 .980± .020 .969± .020 .984± .021 1.021± .021 1.028± .020

.80 .991± .020 1.010± .020 .968± .020 1.019± .020 .990± .021 1.002± .020 1.010± .021 .974± .021 .988± .020 .990± .020 .995± .020 .993± .021 1.012± .020 .978± .020 .951± .020 .969± .021 1.034± .022 1.036± .020

.75 .999± .020 1.011± .020 .961± .020 1.010± .020 .996± .022 .996± .021 1.006± .021 .965± .021 .988± .020 1.000± .021 .994± .021 .998± .021 1.003± .021 .971± .021 .947± .021 .966± .022 1.048± .022 1.055± .020

.70 1.005± .021 1.015± .022 .959± .021 1.010± .021 .990± .022 1.003± .022 1.012± .022 .956± .021 .996± .021 .984± .021 .983± .022 1.000± .022 .994± .023 .963± .022 .931± .021 .960± .023 1.063± .023 1.071± .020

Table B10: Results for covtype: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .036± .001 .028± .000 .029± .000 .027± .000 .031± .000 .041± .001 .027± .000 .028± .000 .025± .000 .029± .000 .029± .000 .027± .000 .035± .000 .070± .001 .056± .001 .037± .000

.95 .029± .001 .016± .000 .017± .000 .015± .000 .020± .000 .027± .000 .013± .000 .014± .000 .012± .000 .017± .000 .020± .000 .015± .000 .025± .000 .069± .001 .057± .001 .024± .000

.90 .023± .000 .007± .000 .009± .000 .009± .000 .011± .000 .016± .000 .006± .000 .006± .000 .005± .000 .008± .000 .011± .000 .007± .000 .018± .000 .067± .001 .058± .001 .015± .000

.85 .018± .000 .004± .000 .005± .000 .005± .000 .007± .000 .010± .000 .003± .000 .003± .000 .002± .000 .005± .000 .006± .000 .004± .000 .014± .000 .065± .001 .059± .001 .009± .000

.80 .014± .000 .002± .000 .003± .000 .002± .000 .004± .000 .007± .000 .002± .000 .002± .000 .001± .000 .003± .000 .003± .000 .002± .000 .011± .000 .064± .001 .059± .001 .006± .000

.75 .011± .000 .002± .000 .002± .000 .001± .000 .002± .000 .005± .000 .001± .000 .001± .000 .001± .000 .007± .000 .002± .000 .001± .000 .009± .000 .062± .001 .059± .001 .004± .000

.70 .009± .000 .001± .000 .001± .000 .001± .000 .001± .000 .003± .000 .001± .000 .001± .000 .001± .000 .030± .001 .001± .000 .001± .000 .007± .000 .060± .001 .059± .001 .002± .000

ϕ̂

.99 .989± .000 .989± .000 .990± .000 .990± .000 .990± .000 .989± .000 .991± .000 .990± .000 .990± .000 .990± .000 .991± .000 .990± .000 .990± .000 .989± .000 .989± .000 .992± .000

.95 .950± .001 .948± .001 .950± .001 .950± .001 .950± .001 .949± .001 .948± .001 .951± .001 .950± .001 .951± .001 .950± .001 .950± .001 .948± .001 .948± .001 .949± .001 .955± .001

.90 .901± .001 .898± .001 .899± .001 .900± .001 .898± .001 .899± .001 .899± .001 .899± .001 .899± .001 .898± .001 .900± .001 .901± .001 .898± .001 .899± .001 .900± .001 .911± .001

.85 .850± .001 .849± .001 .849± .001 .851± .001 .849± .001 .849± .001 .849± .001 .849± .001 .850± .001 .849± .001 .851± .001 .850± .001 .847± .001 .848± .001 .849± .001 .866± .001

.80 .797± .001 .799± .001 .799± .001 .799± .001 .798± .001 .801± .001 .799± .001 .798± .001 .800± .001 .797± .001 .801± .001 .801± .001 .798± .001 .796± .001 .800± .001 .820± .001

.75 .748± .001 .749± .001 .749± .001 .749± .001 .748± .001 .750± .001 .749± .001 .750± .001 .750± .001 .748± .001 .751± .001 .750± .001 .750± .001 .746± .001 .752± .002 .775± .001

.70 .698± .001 .699± .001 .700± .001 .700± .002 .697± .001 .699± .001 .700± .001 .701± .001 .699± .001 .700± .001 .701± .001 .700± .001 .700± .001 .698± .001 .699± .002 .728± .001

50
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Table B11: Results for dermamnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .269± .010 .229± .009 .239± .009 .243± .010 .241± .010 .228± .009 .232± .009 .236± .009 .239± .011 .240± .010 .226± .009 .223± .009 .245± .010 .270± .009 .273± .009 .231± .009

.95 .250± .010 .217± .009 .230± .009 .227± .010 .227± .010 .207± .009 .214± .009 .222± .009 .224± .011 .221± .009 .213± .008 .206± .009 .238± .010 .263± .010 .267± .010 .214± .008

.90 .213± .010 .202± .009 .212± .010 .207± .010 .210± .010 .191± .009 .194± .009 .196± .009 .195± .011 .206± .010 .194± .009 .182± .009 .218± .010 .259± .010 .263± .011 .193± .008

.85 .194± .010 .180± .009 .201± .009 .198± .010 .198± .010 .177± .009 .173± .009 .174± .009 .182± .010 .180± .010 .175± .009 .161± .009 .200± .010 .252± .010 .263± .011 .166± .009

.80 .180± .010 .159± .009 .179± .009 .192± .010 .183± .011 .152± .009 .151± .009 .162± .009 .202± .010 .199± .010 .159± .010 .147± .008 .179± .010 .242± .011 .261± .011 .146± .008

.75 .163± .010 .144± .009 .162± .010 .164± .011 .165± .010 .129± .009 .129± .009 .140± .009 .182± .010 .185± .010 .146± .010 .123± .008 .161± .011 .224± .011 .258± .012 .126± .008

.70 .143± .011 .120± .009 .143± .009 .146± .010 .148± .010 .114± .008 .110± .009 .119± .009 .172± .010 .165± .010 .130± .010 .108± .008 .147± .010 .203± .010 .254± .011 .109± .009

ϕ̂

.99 .994± .002 .983± .003 .993± .002 .993± .002 .992± .002 .991± .002 .989± .002 .989± .002 .990± .002 .992± .002 .994± .002 .994± .002 .991± .002 .989± .002 .993± .002 .989± .002

.95 .962± .004 .946± .004 .965± .004 .955± .005 .964± .004 .947± .005 .949± .005 .950± .005 .954± .004 .959± .004 .956± .005 .960± .004 .967± .004 .933± .007 .957± .005 .952± .004

.90 .898± .008 .900± .006 .906± .007 .912± .006 .920± .006 .905± .006 .896± .007 .892± .008 .898± .007 .907± .007 .896± .006 .910± .006 .913± .007 .892± .008 .905± .006 .905± .006

.85 .862± .008 .849± .008 .868± .007 .866± .008 .882± .007 .865± .007 .851± .008 .845± .008 .852± .008 .857± .007 .837± .008 .852± .008 .871± .008 .850± .008 .870± .008 .849± .007

.80 .820± .009 .785± .009 .818± .008 .820± .009 .823± .009 .797± .009 .796± .009 .816± .009 .800± .010 .807± .010 .789± .008 .809± .008 .818± .009 .803± .008 .818± .009 .800± .008

.75 .760± .009 .746± .010 .757± .008 .757± .010 .764± .009 .739± .010 .749± .009 .760± .011 .760± .011 .763± .010 .730± .009 .750± .009 .766± .010 .748± .009 .777± .009 .749± .009

.70 .709± .010 .687± .010 .705± .010 .711± .011 .705± .010 .702± .010 .692± .010 .698± .011 .720± .010 .703± .010 .684± .009 .702± .010 .711± .010 .694± .010 .736± .010 .681± .010

Table B12: Results for electricity: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .248± .004 .176± .005 .163± .005 .179± .004 .187± .005 .174± .004 .176± .005 .162± .005 .179± .004 .185± .005 .162± .005 .161± .005 .167± .004 .206± .005 .200± .004 .169± .005 .170± .005 .174± .004

.95 .245± .004 .164± .004 .152± .004 .172± .005 .174± .004 .162± .004 .162± .004 .149± .005 .166± .004 .170± .004 .159± .005 .150± .004 .155± .004 .198± .005 .196± .004 .158± .004 .161± .005 .166± .004

.90 .238± .005 .151± .004 .138± .004 .161± .004 .162± .005 .147± .004 .145± .004 .135± .004 .155± .005 .160± .004 .155± .005 .134± .004 .139± .004 .190± .005 .193± .004 .144± .004 .148± .005 .158± .005

.85 .227± .005 .135± .004 .125± .004 .149± .005 .143± .005 .135± .004 .133± .004 .120± .004 .139± .005 .139± .004 .148± .005 .120± .004 .129± .004 .182± .005 .190± .005 .130± .004 .136± .004 .143± .004

.80 .217± .005 .121± .004 .112± .004 .136± .004 .138± .005 .119± .004 .117± .004 .107± .004 .125± .004 .138± .005 .140± .005 .107± .004 .117± .004 .176± .005 .187± .005 .117± .004 .121± .004 .130± .005

.75 .203± .005 .110± .004 .102± .004 .125± .005 .125± .005 .107± .004 .101± .004 .096± .004 .113± .004 .125± .005 .131± .004 .093± .004 .109± .004 .169± .005 .184± .005 .104± .004 .106± .004 .118± .004

.70 .186± .005 .096± .004 .088± .004 .124± .004 .116± .005 .097± .004 .089± .004 .084± .004 .112± .005 .117± .005 .127± .005 .085± .004 .098± .004 .160± .005 .178± .005 .095± .004 .092± .004 .105± .004

ϕ̂

.99 .990± .001 .991± .001 .993± .001 .992± .001 .995± .001 .990± .001 .989± .001 .990± .001 .990± .001 .992± .001 .990± .001 .992± .001 .988± .001 .990± .001 .989± .001 .992± .001 .990± .001 .989± .001

.95 .949± .003 .949± .003 .951± .002 .961± .002 .958± .002 .950± .003 .949± .003 .954± .002 .951± .002 .953± .003 .955± .002 .951± .003 .950± .003 .953± .002 .948± .003 .954± .002 .949± .002 .951± .002

.90 .898± .004 .901± .004 .902± .004 .911± .003 .907± .004 .899± .003 .896± .004 .905± .004 .908± .003 .902± .004 .909± .003 .900± .004 .901± .004 .908± .004 .900± .003 .909± .004 .900± .003 .903± .004

.85 .849± .004 .850± .004 .859± .004 .859± .004 .852± .004 .856± .004 .851± .004 .852± .004 .854± .004 .846± .004 .860± .004 .852± .004 .853± .004 .853± .005 .844± .004 .863± .004 .856± .004 .856± .005

.80 .801± .004 .803± .005 .817± .005 .817± .004 .807± .005 .807± .005 .798± .005 .805± .005 .806± .004 .801± .005 .807± .004 .803± .005 .802± .005 .796± .005 .795± .005 .813± .005 .808± .005 .802± .005

.75 .752± .005 .763± .005 .769± .005 .765± .005 .754± .005 .760± .005 .751± .005 .761± .005 .749± .005 .750± .005 .756± .004 .752± .005 .757± .005 .749± .005 .750± .005 .767± .005 .761± .006 .758± .004

.70 .703± .005 .716± .005 .719± .006 .710± .005 .721± .005 .717± .005 .706± .005 .722± .006 .712± .005 .711± .005 .712± .005 .712± .006 .715± .005 .700± .005 .692± .005 .719± .006 .709± .006 .712± .005

M
in
C
oe
ff

.99 1.003± .011 1.000± .011 1.001± .011 1.000± .011 1.000± .011 .998± .011 1.002± .011 1.002± .011 .998± .011 1.001± .011 1.003± .011 1.001± .011 .998± .011 1.000± .011 1.004± .011 .999± .011 1.002± .011 1.002± .011

.95 1.021± .011 1.003± .011 1.004± .011 .992± .011 1.002± .011 1.000± .011 1.010± .011 1.005± .011 .997± .011 1.004± .011 1.008± .011 1.002± .011 .999± .011 1.001± .011 1.006± .011 .997± .011 1.013± .011 1.012± .011

.90 1.037± .011 1.006± .012 1.007± .012 .991± .011 1.009± .012 1.006± .011 1.009± .012 1.014± .011 .993± .011 1.009± .012 1.017± .011 1.005± .012 1.003± .012 1.000± .011 1.007± .012 1.000± .011 1.024± .011 1.031± .012

.85 1.049± .012 1.011± .012 1.013± .012 .999± .012 1.009± .012 1.008± .012 1.018± .012 1.019± .012 1.005± .012 1.009± .013 1.027± .011 1.003± .012 1.006± .012 1.012± .012 1.004± .012 1.004± .011 1.031± .011 1.042± .012

.80 1.060± .012 1.013± .013 1.017± .012 .997± .012 1.026± .012 1.012± .012 1.021± .012 1.024± .012 1.006± .011 1.030± .012 1.035± .011 1.008± .013 1.007± .013 1.025± .013 1.007± .013 1.006± .012 1.045± .012 1.057± .012

.75 1.066± .013 1.025± .013 1.024± .012 1.002± .012 1.036± .012 1.016± .012 1.029± .013 1.030± .012 1.013± .012 1.035± .013 1.036± .012 1.011± .013 1.010± .013 1.039± .014 1.005± .013 1.003± .013 1.062± .012 1.074± .012

.70 1.067± .014 1.033± .014 1.028± .013 1.002± .014 1.050± .013 1.020± .013 1.034± .013 1.033± .012 1.008± .013 1.052± .013 1.042± .013 1.014± .013 1.013± .013 1.057± .014 .988± .014 1.002± .013 1.073± .013 1.097± .012

Table B13: Results for eye: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .433± .013 .441± .014 .415± .012 .419± .012 .413± .013 .425± .013 .444± .014 .414± .012 .415± .012 .414± .013 .427± .013 .421± .013 .414± .012 .411± .013 .412± .013 .426± .013 .425± .013 .427± .013

.95 .435± .013 .436± .015 .417± .012 .414± .012 .418± .012 .420± .014 .436± .015 .412± .012 .415± .012 .411± .013 .439± .014 .419± .013 .414± .012 .405± .013 .413± .013 .421± .013 .421± .013 .421± .014

.90 .435± .014 .433± .016 .415± .012 .422± .012 .413± .013 .413± .014 .430± .015 .411± .013 .412± .012 .406± .013 .451± .014 .412± .013 .408± .012 .398± .013 .412± .013 .417± .013 .418± .014 .412± .013

.85 .435± .014 .429± .016 .410± .013 .413± .013 .416± .014 .407± .014 .431± .015 .397± .013 .393± .012 .406± .013 .457± .015 .407± .013 .405± .012 .400± .013 .415± .013 .410± .014 .411± .015 .409± .014

.80 .437± .014 .429± .017 .412± .013 .406± .013 .424± .013 .401± .014 .424± .016 .394± .013 .398± .013 .390± .013 .452± .015 .403± .014 .400± .013 .399± .014 .412± .014 .402± .014 .407± .015 .402± .014

.75 .437± .014 .431± .017 .401± .014 .403± .013 .419± .013 .394± .014 .421± .016 .385± .013 .391± .013 .387± .014 .443± .016 .396± .014 .391± .014 .395± .015 .410± .015 .394± .014 .400± .015 .399± .014

.70 .433± .014 .424± .018 .399± .014 .399± .014 .416± .014 .389± .015 .412± .017 .377± .014 .384± .014 .389± .014 .443± .017 .393± .014 .382± .014 .386± .016 .407± .015 .392± .014 .397± .015 .387± .014

ϕ̂

.99 .994± .002 .983± .004 .993± .002 .985± .003 .989± .002 .993± .002 .992± .002 .987± .003 .990± .003 .985± .003 .981± .004 .992± .002 .989± .003 .995± .002 .989± .002 .988± .003 .991± .002 .985± .003

.95 .947± .006 .943± .006 .947± .005 .950± .006 .947± .005 .968± .005 .959± .005 .938± .006 .954± .006 .949± .006 .928± .007 .951± .006 .953± .005 .941± .007 .945± .006 .954± .006 .950± .005 .941± .006

.90 .889± .008 .889± .008 .886± .008 .904± .008 .902± .007 .898± .008 .915± .007 .895± .009 .896± .008 .897± .007 .872± .008 .893± .008 .895± .007 .883± .009 .908± .007 .907± .008 .911± .007 .894± .008

.85 .847± .009 .846± .010 .833± .008 .855± .009 .862± .009 .860± .009 .845± .009 .833± .010 .855± .009 .856± .009 .837± .009 .855± .009 .861± .009 .825± .010 .851± .008 .862± .009 .855± .008 .858± .009

.80 .811± .010 .787± .011 .796± .009 .796± .010 .815± .010 .809± .010 .799± .011 .784± .010 .795± .009 .792± .011 .779± .010 .806± .010 .790± .010 .775± .011 .787± .010 .816± .010 .808± .010 .814± .010

.75 .758± .012 .731± .012 .746± .010 .753± .011 .760± .012 .762± .011 .757± .010 .747± .011 .737± .010 .748± .011 .727± .011 .759± .010 .741± .011 .738± .011 .725± .011 .772± .011 .751± .011 .762± .011

.70 .716± .013 .687± .012 .707± .011 .715± .011 .712± .012 .694± .011 .706± .010 .697± .012 .692± .012 .696± .013 .679± .011 .717± .011 .682± .013 .686± .013 .680± .012 .717± .011 .715± .011 .702± .011

M
in
C
oe
ff

.99 .999± .029 1.007± .030 .999± .029 .997± .029 1.001± .029 1.005± .029 1.003± .029 1.001± .030 .996± .030 1.003± .030 1.012± .030 1.007± .029 1.006± .029 1.003± .030 1.001± .029 1.004± .030 1.001± .030 1.000± .030

.95 .989± .030 .996± .029 .996± .029 .993± .031 .985± .030 1.004± .030 .991± .030 .996± .030 .999± .030 .997± .030 1.045± .031 1.009± .029 1.007± .030 .997± .030 .995± .029 1.009± .030 .999± .030 1.006± .030

.90 .981± .031 .999± .031 .979± .031 .977± .032 .981± .029 .998± .031 .995± .030 1.001± .031 .991± .032 1.009± .030 1.080± .031 1.011± .030 .996± .031 .993± .031 .995± .030 1.010± .030 .999± .031 1.015± .030

.85 .972± .031 1.001± .031 .980± .031 .979± .031 .970± .029 1.009± .031 .993± .033 .999± .032 1.001± .030 1.007± .031 1.096± .031 1.019± .031 .986± .031 1.008± .033 1.005± .031 1.006± .030 .995± .032 1.008± .030

.80 .962± .031 1.004± .031 .968± .031 .971± .034 .946± .030 1.011± .031 .989± .034 .987± .033 .979± .032 1.003± .030 1.101± .034 1.008± .032 .967± .034 1.018± .034 1.017± .032 1.002± .031 .998± .032 1.009± .031

.75 .949± .031 1.020± .032 .969± .033 .972± .035 .938± .032 1.007± .031 .981± .035 .989± .033 .972± .033 .999± .032 1.098± .035 1.005± .033 .970± .036 1.008± .034 1.022± .033 1.001± .032 1.011± .033 1.006± .033

.70 .947± .033 1.026± .034 .962± .034 .945± .037 .929± .033 1.001± .034 .976± .037 .977± .033 .950± .034 1.005± .032 1.100± .037 .996± .033 .969± .038 1.024± .035 1.031± .032 .997± .034 1.021± .035 1.004± .034

Table B14: Results for food101: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .464± .004 .269± .003 .306± .004 .322± .003 .341± .004 .256± .003 .268± .003 .304± .004 .318± .003 .339± .004 .215± .003 .211± .003 .271± .003 .388± .003 .384± .004 .242± .003

.95 .442± .004 .250± .003 .286± .004 .287± .004 .328± .003 .233± .003 .244± .003 .280± .004 .266± .004 .317± .003 .196± .003 .190± .003 .256± .003 .380± .004 .383± .004 .220± .003

.90 .416± .004 .226± .003 .260± .004 .264± .003 .315± .004 .205± .003 .219± .003 .250± .004 .232± .003 .292± .003 .172± .003 .165± .003 .237± .003 .370± .004 .382± .004 .198± .003

.85 .392± .004 .203± .003 .237± .003 .283± .003 .299± .004 .174± .003 .191± .003 .225± .004 .243± .003 .264± .003 .150± .003 .134± .002 .219± .003 .361± .003 .383± .004 .174± .003

.80 .366± .004 .179± .003 .212± .003 .224± .004 .278± .004 .149± .003 .162± .003 .199± .004 .175± .003 .237± .003 .128± .003 .108± .002 .200± .003 .353± .003 .382± .004 .151± .003

.75 .341± .004 .156± .003 .190± .003 .210± .003 .266± .003 .126± .003 .141± .003 .172± .004 .148± .003 .218± .003 .106± .002 .086± .002 .185± .003 .344± .004 .383± .004 .128± .003

.70 .318± .004 .137± .003 .169± .003 .219± .004 .246± .003 .106± .003 .117± .003 .145± .003 .157± .003 .189± .003 .088± .002 .069± .002 .170± .003 .334± .004 .386± .004 .107± .002

ϕ̂

.99 .989± .001 .988± .001 .993± .001 .991± .001 .990± .001 .990± .001 .987± .001 .991± .001 .990± .001 .988± .001 .990± .001 .987± .001 .991± .001 .991± .001 .992± .001 .991± .001

.95 .948± .001 .946± .001 .951± .002 .952± .002 .951± .001 .951± .002 .946± .002 .948± .002 .951± .002 .948± .002 .951± .001 .951± .002 .951± .002 .952± .001 .955± .001 .955± .001

.90 .899± .002 .897± .002 .896± .002 .897± .002 .903± .002 .899± .002 .900± .002 .891± .002 .903± .002 .902± .002 .898± .002 .904± .002 .901± .002 .902± .002 .909± .002 .915± .002

.85 .851± .002 .848± .003 .846± .003 .850± .003 .852± .003 .846± .003 .848± .003 .844± .003 .850± .002 .849± .003 .847± .002 .847± .003 .849± .003 .856± .003 .860± .003 .872± .003

.80 .801± .003 .796± .003 .793± .003 .792± .003 .801± .003 .795± .003 .792± .003 .797± .003 .795± .003 .799± .003 .794± .003 .795± .003 .798± .003 .809± .003 .810± .003 .826± .003

.75 .752± .003 .744± .004 .745± .003 .750± .003 .751± .003 .746± .003 .747± .003 .745± .003 .753± .003 .752± .003 .744± .004 .745± .004 .750± .003 .760± .003 .758± .003 .777± .003

.70 .700± .003 .696± .004 .695± .004 .705± .003 .700± .003 .700± .003 .696± .003 .695± .004 .706± .004 .701± .004 .698± .004 .697± .004 .700± .004 .709± .003 .704± .003 .730± .003
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Table B15: Results for giveme: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .061± .001 .060± .001 .060± .001 .060± .001 .060± .001 .061± .001 .061± .001 .059± .001 .059± .001 .062± .001 .061± .001 .060± .001 .059± .001 .060± .001 .065± .001 .060± .001 .064± .001 .065± .001

.95 .047± .001 .046± .001 .046± .001 .046± .001 .046± .001 .046± .001 .046± .001 .046± .001 .046± .001 .046± .001 .050± .001 .047± .001 .046± .001 .047± .001 .065± .001 .047± .001 .064± .001 .066± .001

.90 .036± .001 .035± .001 .035± .001 .035± .001 .035± .001 .035± .001 .035± .001 .035± .001 .035± .001 .037± .001 .046± .001 .035± .001 .035± .001 .036± .001 .065± .001 .036± .001 .065± .001 .068± .001

.85 .031± .001 .029± .001 .029± .001 .029± .001 .029± .001 .030± .001 .029± .001 .029± .001 .029± .001 .040± .001 .045± .001 .029± .001 .029± .001 .029± .001 .059± .001 .030± .001 .065± .002 .069± .001

.80 .028± .001 .026± .001 .025± .001 .025± .001 .025± .001 .026± .001 .025± .001 .025± .001 .025± .001 .034± .001 .043± .001 .026± .001 .025± .001 .026± .001 .057± .001 .026± .001 .065± .002 .070± .002

.75 .025± .001 .023± .001 .023± .001 .023± .001 .023± .001 .023± .001 .023± .001 .023± .001 .023± .001 .028± .001 .041± .001 .023± .001 .023± .001 .023± .001 .053± .001 .024± .001 .065± .002 .071± .002

.70 .023± .001 .022± .001 .021± .001 .021± .001 .022± .001 .022± .001 .022± .001 .022± .001 .021± .001 .026± .001 .038± .001 .021± .001 .021± .001 .021± .001 .051± .001 .023± .001 .063± .002 .072± .002

ϕ̂

.99 .990± .001 .989± .001 .989± .001 .989± .001 .989± .001 .991± .001 .991± .001 .988± .001 .988± .001 .990± .001 .990± .001 .990± .001 .989± .001 .990± .001 .991± .000 .991± .000 .994± .000 .989± .001

.95 .948± .001 .947± .001 .949± .001 .950± .001 .949± .001 .949± .001 .949± .001 .949± .001 .950± .001 .949± .001 .948± .001 .950± .001 .950± .001 .949± .001 .967± .001 .952± .001 .964± .001 .947± .001

.90 .896± .002 .897± .002 .896± .002 .898± .002 .899± .002 .898± .002 .898± .002 .897± .002 .899± .002 .894± .002 .896± .002 .898± .002 .898± .002 .897± .002 .967± .001 .904± .002 .927± .002 .895± .002

.85 .848± .002 .847± .002 .847± .002 .846± .002 .846± .002 .849± .002 .847± .002 .847± .002 .847± .002 .843± .002 .845± .002 .847± .002 .847± .002 .847± .002 .854± .002 .854± .002 .891± .002 .850± .002

.80 .799± .002 .799± .002 .794± .003 .797± .002 .796± .002 .796± .002 .799± .002 .795± .003 .798± .002 .794± .002 .798± .002 .797± .002 .797± .002 .798± .002 .807± .002 .803± .002 .846± .002 .803± .002

.75 .748± .002 .750± .003 .747± .003 .750± .003 .748± .003 .747± .003 .749± .003 .748± .003 .747± .003 .748± .003 .748± .002 .748± .003 .748± .003 .749± .003 .759± .003 .767± .003 .806± .002 .754± .003

.70 .696± .002 .701± .003 .697± .003 .697± .003 .699± .003 .698± .003 .701± .003 .698± .003 .698± .003 .696± .003 .696± .003 .697± .003 .701± .003 .696± .003 .707± .003 .730± .003 .756± .003 .706± .003

M
in
C
oe
ff

.99 .936± .020 .936± .021 .925± .021 .901± .020 .905± .020 .942± .021 .939± .020 .918± .020 .908± .021 .926± .020 .945± .020 .933± .020 .932± .021 .933± .020 .994± .022 .941± .020 1.000± .021 1.001± .021

.95 .718± .019 .684± .017 .691± .017 .691± .017 .685± .017 .705± .018 .722± .018 .697± .017 .689± .017 .685± .017 .781± .019 .706± .018 .690± .017 .715± .017 .990± .022 .702± .018 1.003± .022 1.018± .022

.90 .545± .017 .520± .015 .519± .016 .524± .015 .523± .016 .526± .016 .528± .016 .523± .016 .525± .015 .548± .016 .716± .019 .530± .016 .524± .015 .536± .016 .990± .022 .537± .016 1.009± .022 1.044± .023

.85 .463± .016 .437± .015 .433± .015 .440± .015 .437± .016 .443± .015 .440± .015 .437± .015 .437± .016 .600± .019 .694± .019 .439± .015 .436± .016 .437± .015 .890± .020 .449± .015 1.012± .024 1.061± .024

.80 .419± .016 .384± .015 .380± .015 .381± .015 .378± .015 .387± .015 .382± .015 .381± .015 .379± .015 .511± .019 .672± .020 .387± .015 .380± .015 .390± .015 .859± .020 .396± .014 1.014± .025 1.074± .025

.75 .375± .016 .347± .015 .345± .015 .347± .015 .348± .016 .344± .015 .344± .015 .346± .015 .342± .015 .414± .017 .636± .020 .349± .015 .343± .015 .345± .015 .804± .019 .365± .016 1.017± .026 1.094± .026

.70 .344± .016 .323± .015 .319± .016 .319± .016 .330± .016 .325± .016 .324± .015 .322± .016 .316± .017 .400± .017 .592± .020 .320± .015 .318± .017 .317± .016 .768± .021 .339± .016 .995± .028 1.110± .029

Table B16: Results for helena: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .618± .004 .614± .004 .619± .004 .613± .004 .613± .004 .615± .004 .612± .004 .618± .004 .611± .004 .614± .004 .612± .004 .610± .004 .615± .004 .633± .004 .632± .004 .611± .004

.95 .608± .004 .605± .004 .609± .004 .600± .004 .601± .004 .603± .004 .599± .004 .605± .004 .599± .005 .599± .004 .605± .004 .598± .004 .607± .004 .623± .004 .631± .004 .597± .004

.90 .594± .004 .592± .005 .597± .004 .583± .004 .585± .005 .585± .004 .585± .004 .590± .004 .582± .004 .584± .005 .594± .004 .582± .004 .595± .004 .609± .004 .631± .004 .581± .004

.85 .581± .004 .581± .005 .584± .005 .570± .005 .570± .005 .569± .004 .566± .005 .572± .004 .564± .005 .566± .005 .582± .004 .563± .004 .586± .004 .597± .005 .628± .004 .563± .005

.80 .567± .005 .567± .005 .570± .005 .552± .005 .557± .005 .547± .005 .548± .005 .553± .005 .547± .005 .552± .005 .568± .005 .545± .005 .577± .004 .583± .005 .628± .004 .547± .005

.75 .555± .005 .551± .005 .557± .005 .540± .005 .541± .005 .529± .005 .528± .005 .536± .005 .529± .005 .534± .005 .555± .005 .526± .005 .566± .005 .570± .005 .624± .004 .529± .005

.70 .541± .005 .535± .006 .540± .006 .530± .005 .525± .005 .510± .005 .510± .005 .517± .005 .515± .005 .520± .005 .540± .005 .509± .005 .556± .005 .555± .005 .621± .004 .509± .005

ϕ̂

.99 .989± .001 .991± .001 .990± .001 .989± .001 .989± .001 .987± .001 .989± .001 .990± .001 .984± .001 .990± .001 .988± .001 .988± .001 .991± .001 .988± .001 .987± .001 .988± .001

.95 .947± .002 .953± .002 .944± .002 .945± .002 .946± .002 .946± .002 .949± .002 .948± .002 .948± .002 .948± .002 .953± .002 .950± .002 .949± .002 .939± .002 .944± .002 .946± .002

.90 .898± .003 .900± .003 .892± .003 .890± .003 .892± .002 .895± .003 .900± .003 .901± .003 .899± .003 .898± .003 .898± .002 .900± .003 .894± .002 .889± .003 .894± .003 .897± .003

.85 .846± .003 .852± .003 .845± .004 .838± .003 .840± .003 .849± .003 .846± .003 .848± .003 .842± .003 .846± .003 .846± .003 .843± .003 .844± .003 .838± .003 .842± .003 .846± .003

.80 .792± .003 .801± .003 .796± .004 .788± .003 .790± .004 .789± .003 .792± .003 .797± .003 .798± .003 .793± .003 .799± .003 .794± .004 .798± .003 .788± .004 .788± .003 .795± .004

.75 .742± .004 .752± .004 .751± .005 .745± .004 .744± .004 .739± .004 .743± .004 .748± .004 .747± .004 .747± .003 .752± .004 .743± .004 .745± .004 .743± .004 .740± .003 .746± .004

.70 .695± .004 .701± .004 .699± .004 .700± .004 .688± .004 .693± .004 .697± .004 .697± .004 .697± .004 .698± .004 .702± .004 .699± .004 .697± .004 .690± .004 .691± .003 .699± .004

Table B17: Results for heloc: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .309± .010 .279± .009 .277± .010 .279± .011 .277± .010 .285± .009 .277± .009 .280± .010 .277± .011 .277± .010 .275± .010 .273± .010 .283± .010 .283± .010 .289± .010 .274± .010 .276± .010 .285± .009

.95 .307± .011 .272± .010 .273± .010 .281± .011 .279± .010 .281± .010 .276± .009 .280± .010 .275± .011 .271± .010 .273± .010 .263± .010 .283± .010 .283± .010 .292± .009 .268± .010 .260± .010 .277± .010

.90 .301± .011 .259± .010 .263± .010 .265± .010 .260± .011 .261± .010 .259± .010 .262± .010 .261± .011 .260± .010 .273± .010 .258± .011 .275± .010 .275± .010 .290± .010 .259± .010 .245± .010 .270± .010

.85 .296± .011 .253± .010 .248± .011 .253± .010 .247± .011 .246± .011 .245± .010 .249± .011 .253± .011 .248± .010 .266± .011 .242± .010 .281± .010 .274± .011 .291± .010 .252± .010 .237± .010 .242± .011

.80 .290± .011 .253± .010 .243± .011 .242± .011 .256± .011 .232± .010 .231± .010 .233± .011 .240± .010 .238± .011 .258± .011 .225± .011 .288± .010 .276± .011 .287± .010 .236± .011 .224± .011 .239± .012

.75 .283± .012 .218± .011 .226± .011 .228± .011 .321± .013 .216± .011 .218± .011 .223± .011 .225± .011 .226± .011 .255± .011 .213± .011 .291± .011 .278± .012 .285± .010 .228± .011 .207± .011 .238± .012

.70 .283± .012 .202± .011 .213± .011 .209± .011 .210± .011 .202± .011 .201± .011 .208± .011 .207± .011 .212± .011 .242± .012 .202± .011 .294± .011 .285± .012 .284± .011 .210± .011 .193± .011 .231± .012

ϕ̂

.99 .994± .001 .994± .002 .987± .003 .993± .002 .993± .002 .997± .001 .986± .003 .993± .002 .990± .002 .989± .003 .996± .001 .985± .003 .990± .002 .999± .001 .990± .002 .990± .002 .986± .003 .989± .002

.95 .974± .003 .947± .005 .968± .004 1.000± .000 .999± .001 .986± .002 .984± .003 .990± .002 .974± .004 .963± .004 .946± .005 .947± .005 .988± .002 .999± .001 .951± .005 .974± .003 .907± .006 .950± .004

.90 .951± .005 .893± .006 .905± .006 .916± .006 .908± .006 .916± .006 .913± .006 .913± .006 .907± .006 .913± .006 .904± .006 .933± .006 .911± .006 .905± .007 .901± .008 .927± .007 .861± .007 .908± .006

.85 .911± .006 .864± .008 .846± .009 .867± .008 .847± .009 .860± .007 .866± .007 .858± .008 .866± .008 .853± .008 .852± .007 .860± .007 .878± .008 .846± .008 .862± .009 .894± .008 .830± .007 .814± .008

.80 .854± .007 .864± .008 .801± .008 .823± .009 .818± .008 .821± .007 .820± .008 .798± .009 .816± .009 .811± .009 .800± .008 .806± .009 .821± .009 .795± .009 .806± .009 .807± .009 .781± .009 .783± .009

.75 .777± .009 .762± .010 .754± .009 .761± .009 .747± .011 .764± .009 .768± .009 .758± .009 .759± .009 .763± .010 .750± .009 .759± .010 .769± .009 .735± .010 .761± .011 .754± .009 .731± .010 .766± .009

.70 .777± .009 .711± .011 .714± .010 .716± .010 .715± .010 .716± .010 .720± .010 .704± .010 .711± .011 .704± .010 .688± .009 .702± .010 .713± .009 .692± .010 .724± .011 .690± .010 .690± .010 .722± .010

M
in
C
oe
ff

.99 .997± .023 1.001± .023 1.003± .024 1.001± .023 .999± .023 .999± .023 1.002± .023 1.001± .023 1.004± .023 1.002± .023 1.001± .023 1.002± .024 1.009± .023 1.002± .023 .994± .024 1.001± .023 1.008± .023 1.003± .023

.95 .991± .024 1.005± .023 1.004± .024 1.000± .023 1.000± .023 .999± .023 1.001± .023 1.001± .023 1.007± .023 1.001± .024 .979± .024 1.011± .023 1.010± .023 1.002± .023 .989± .024 1.000± .024 1.014± .024 1.005± .024

.90 .990± .024 1.016± .024 1.017± .025 1.006± .025 1.000± .025 1.007± .023 1.005± .024 1.009± .024 1.016± .024 1.008± .025 .958± .025 1.006± .023 1.033± .025 1.000± .025 .986± .024 .995± .025 1.011± .024 1.011± .025

.85 .980± .026 1.009± .024 1.020± .024 1.004± .026 1.010± .024 1.013± .024 1.013± .024 1.010± .025 1.015± .025 1.012± .025 .952± .026 1.014± .024 1.063± .026 .977± .025 .983± .025 .988± .025 1.016± .025 1.026± .026

.80 .975± .026 1.009± .024 1.019± .025 1.026± .025 .965± .026 1.022± .024 1.012± .025 1.018± .025 1.019± .026 1.015± .025 .934± .026 1.013± .025 1.114± .026 .963± .024 .983± .027 .984± .027 1.024± .025 1.041± .026

.75 .977± .027 1.001± .026 1.025± .025 1.018± .026 .767± .023 1.025± .026 1.014± .026 1.024± .025 1.023± .027 1.020± .025 .922± .028 1.012± .026 1.157± .026 .958± .025 .995± .029 .975± .027 1.030± .026 1.053± .027

.70 .977± .027 1.006± .027 1.026± .026 1.011± .028 1.028± .027 1.031± .027 1.012± .027 1.022± .026 1.024± .027 1.015± .026 .894± .028 1.005± .028 1.207± .027 .941± .027 1.002± .029 .950± .028 1.043± .027 1.079± .027

Table B18: Results for higgs: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .385± .005 .274± .003 .286± .004 .271± .003 .279± .003 .273± .003 .273± .003 .286± .004 .271± .003 .279± .003 .269± .003 .268± .003 .280± .003 .287± .003 .296± .003 .278± .004 .279± .003 .275± .004

.95 .388± .010 .269± .004 .279± .004 .264± .003 .269± .003 .264± .004 .265± .003 .277± .004 .263± .003 .270± .003 .264± .003 .260± .003 .273± .003 .282± .003 .296± .003 .268± .004 .273± .003 .268± .004

.90 .388± .016 .261± .003 .268± .004 .255± .003 .263± .003 .253± .004 .255± .003 .268± .004 .249± .003 .262± .003 .258± .003 .248± .004 .266± .003 .275± .003 .296± .003 .255± .004 .264± .004 .258± .004

.85 .387± .021 .253± .004 .256± .004 .247± .003 .251± .003 .242± .004 .243± .004 .258± .004 .245± .003 .249± .003 .252± .003 .236± .004 .257± .003 .269± .003 .296± .003 .242± .004 .256± .004 .246± .004

.80 .382± .022 .247± .004 .246± .004 .230± .003 .306± .004 .231± .004 .231± .004 .245± .004 .229± .003 .237± .003 .246± .004 .225± .004 .248± .004 .263± .003 .294± .004 .231± .004 .244± .004 .237± .004

.75 .377± .023 .239± .004 .233± .004 .217± .004 .301± .004 .219± .004 .220± .004 .233± .004 .215± .003 .228± .004 .240± .004 .213± .004 .240± .004 .259± .003 .295± .004 .221± .004 .231± .004 .225± .004

.70 .370± .025 .230± .004 .219± .004 .207± .004 .306± .004 .207± .004 .209± .004 .221± .004 .209± .004 .217± .004 .234± .004 .201± .004 .231± .004 .253± .003 .294± .004 .208± .004 .219± .004 .213± .004

ϕ̂

.99 .990± .001 .991± .001 .992± .001 .989± .001 .990± .001 .988± .001 .990± .001 .991± .001 .989± .001 .990± .001 .990± .001 .990± .001 .990± .001 .990± .001 .991± .001 .989± .001 .990± .001 .991± .001

.95 .949± .002 .948± .002 .953± .001 .951± .002 .951± .001 .947± .002 .952± .002 .951± .001 .953± .002 .948± .002 .945± .002 .952± .001 .950± .001 .949± .002 .948± .002 .948± .002 .951± .002 .951± .002

.90 .897± .004 .899± .002 .903± .002 .903± .002 .900± .002 .903± .002 .902± .002 .901± .002 .898± .002 .900± .002 .896± .002 .898± .002 .902± .002 .897± .002 .899± .002 .893± .002 .896± .002 .902± .002

.85 .847± .005 .843± .002 .849± .003 .855± .002 .851± .002 .852± .003 .852± .003 .853± .002 .853± .002 .848± .002 .848± .003 .850± .002 .849± .003 .844± .003 .847± .002 .842± .003 .849± .003 .849± .002

.80 .796± .004 .792± .003 .803± .003 .798± .002 .798± .003 .804± .003 .800± .003 .800± .003 .800± .003 .803± .003 .799± .003 .802± .003 .796± .003 .792± .003 .797± .003 .794± .003 .796± .003 .800± .003

.75 .749± .005 .743± .003 .752± .003 .750± .003 .741± .003 .755± .003 .748± .003 .751± .003 .747± .003 .754± .003 .753± .003 .753± .003 .749± .003 .750± .003 .749± .003 .742± .003 .745± .003 .752± .003

.70 .696± .007 .689± .003 .698± .003 .703± .003 .698± .003 .702± .004 .701± .003 .699± .003 .703± .003 .705± .003 .705± .003 .707± .003 .699± .003 .702± .003 .696± .003 .692± .003 .697± .003 .703± .003

M
in
C
oe
ff

.99 1.005± .008 1.000± .007 1.002± .006 1.001± .006 1.000± .006 1.001± .006 1.000± .006 1.001± .006 1.001± .006 1.002± .006 1.000± .006 1.001± .006 1.002± .006 1.000± .007 1.000± .006 1.002± .006 1.003± .006 1.002± .007

.95 1.022± .018 1.002± .007 1.006± .006 1.006± .006 1.002± .007 1.003± .006 1.001± .006 1.009± .006 1.003± .006 1.003± .007 1.004± .007 1.004± .007 1.006± .007 1.002± .007 1.000± .007 1.007± .007 1.011± .007 1.010± .007

.90 1.038± .031 1.006± .007 1.015± .007 1.009± .006 .998± .007 1.007± .007 1.007± .007 1.019± .007 1.007± .007 1.009± .007 1.007± .007 1.009± .007 1.010± .007 1.005± .007 .996± .007 1.013± .007 1.024± .007 1.018± .007

.85 1.052± .041 1.010± .007 1.029± .007 1.013± .007 1.026± .007 1.012± .007 1.011± .007 1.031± .007 1.011± .007 1.012± .007 1.008± .007 1.012± .007 1.018± .007 1.010± .007 .996± .007 1.022± .007 1.038± .007 1.030± .007

.80 1.061± .045 1.014± .007 1.038± .007 1.012± .007 1.166± .007 1.018± .007 1.016± .007 1.043± .007 1.008± .008 1.018± .007 1.010± .007 1.019± .008 1.024± .008 1.016± .008 .997± .007 1.031± .007 1.055± .008 1.042± .008

.75 1.069± .051 1.020± .008 1.053± .008 1.018± .007 1.200± .007 1.025± .007 1.020± .007 1.060± .007 1.024± .007 1.027± .008 1.011± .008 1.024± .008 1.033± .008 1.017± .008 .997± .008 1.041± .008 1.075± .008 1.058± .008

.70 1.079± .058 1.026± .008 1.070± .008 1.029± .008 1.247± .007 1.031± .008 1.024± .007 1.075± .008 1.022± .008 1.032± .008 1.013± .008 1.028± .008 1.045± .008 1.023± .008 .997± .008 1.055± .008 1.093± .009 1.072± .008
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Table B19: Results for house: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .217± .007 .126± .007 .130± .007 .131± .006 .133± .006 .128± .006 .124± .007 .129± .007 .128± .006 .132± .006 .124± .006 .123± .006 .128± .007 .140± .006 .143± .006 .120± .006 .124± .006 .127± .006

.95 .208± .007 .114± .006 .120± .006 .122± .006 .123± .006 .117± .006 .113± .006 .116± .006 .114± .006 .117± .006 .116± .006 .106± .006 .116± .006 .131± .006 .146± .006 .105± .006 .117± .006 .120± .006

.90 .190± .007 .098± .006 .106± .006 .111± .006 .112± .006 .101± .006 .099± .006 .103± .005 .097± .006 .100± .006 .109± .006 .092± .006 .099± .006 .123± .006 .147± .007 .091± .006 .110± .006 .112± .007

.85 .175± .007 .081± .005 .089± .005 .093± .006 .096± .006 .083± .006 .078± .005 .085± .005 .090± .006 .088± .005 .099± .006 .078± .005 .085± .006 .113± .006 .147± .007 .079± .006 .097± .006 .101± .006

.80 .158± .008 .068± .005 .078± .006 .077± .006 .080± .006 .064± .005 .066± .005 .077± .006 .073± .006 .077± .006 .093± .006 .064± .005 .068± .005 .102± .006 .149± .008 .065± .006 .088± .005 .088± .006

.75 .144± .008 .057± .005 .069± .006 .062± .006 .066± .006 .057± .005 .057± .005 .071± .006 .062± .006 .064± .005 .086± .006 .055± .005 .060± .005 .095± .006 .148± .008 .056± .006 .075± .006 .078± .006

.70 .141± .008 .050± .005 .060± .006 .055± .006 .052± .005 .049± .005 .050± .005 .061± .006 .052± .005 .054± .005 .072± .006 .049± .005 .052± .005 .085± .006 .149± .008 .053± .005 .063± .006 .067± .006

ϕ̂

.99 .984± .002 .988± .002 .994± .001 .990± .002 .992± .002 .983± .003 .987± .002 .989± .002 .989± .002 .984± .003 .993± .002 .994± .001 .990± .002 .990± .002 .992± .001 .987± .002 .990± .002 .982± .002

.95 .947± .004 .946± .004 .957± .004 .952± .004 .950± .005 .947± .004 .951± .004 .953± .004 .944± .004 .948± .004 .960± .004 .949± .004 .950± .004 .945± .004 .956± .004 .945± .004 .948± .005 .940± .005

.90 .892± .006 .900± .005 .904± .006 .913± .005 .909± .006 .904± .005 .898± .005 .901± .006 .906± .005 .901± .005 .904± .005 .891± .005 .903± .006 .893± .006 .905± .005 .893± .006 .898± .007 .909± .006

.85 .841± .007 .843± .006 .841± .007 .849± .007 .853± .007 .844± .007 .842± .006 .837± .008 .849± .006 .844± .006 .850± .007 .848± .007 .847± .007 .832± .006 .857± .007 .844± .007 .844± .008 .866± .007

.80 .779± .008 .800± .006 .788± .007 .794± .008 .795± .008 .772± .008 .796± .007 .785± .008 .800± .007 .791± .008 .807± .007 .794± .008 .786± .007 .774± .007 .794± .008 .789± .008 .799± .008 .802± .008

.75 .725± .008 .740± .008 .739± .009 .742± .008 .727± .009 .728± .008 .742± .009 .742± .008 .742± .008 .728± .008 .760± .007 .738± .009 .737± .008 .731± .007 .758± .009 .733± .008 .752± .008 .760± .008

.70 .678± .008 .686± .009 .688± .009 .693± .008 .677± .009 .686± .009 .685± .010 .688± .009 .683± .008 .683± .009 .706± .008 .680± .009 .697± .008 .685± .007 .709± .010 .687± .009 .693± .009 .708± .009

M
in
C
oe
ff

.99 .996± .018 .999± .018 .999± .018 1.001± .019 1.001± .018 .991± .018 1.002± .018 .998± .018 1.002± .018 1.001± .019 1.001± .018 1.000± .019 1.001± .018 1.001± .019 1.003± .018 1.000± .018 1.004± .019 1.002± .019

.95 .994± .019 1.000± .019 .999± .019 1.005± .018 1.003± .019 .985± .020 1.008± .019 1.005± .018 1.004± .019 .998± .020 .998± .018 1.001± .019 .999± .019 .999± .020 1.026± .018 .997± .019 1.025± .019 1.023± .019

.90 .997± .020 .998± .020 1.001± .019 1.011± .019 1.006± .020 .980± .021 1.000± .020 1.007± .019 1.005± .020 .992± .021 .991± .019 .997± .020 .998± .019 .999± .020 1.029± .019 .997± .021 1.055± .019 1.032± .019

.85 .988± .020 .987± .020 1.001± .020 1.018± .021 1.014± .021 .972± .022 .989± .020 1.000± .020 1.000± .020 .991± .021 .980± .020 .991± .021 .998± .020 .992± .022 1.007± .020 .994± .022 1.084± .020 1.050± .020

.80 .973± .021 .986± .021 .997± .021 1.021± .022 1.004± .022 .964± .023 .988± .021 1.005± .021 1.008± .022 .980± .022 .974± .020 .988± .022 1.002± .020 .984± .023 .987± .021 1.002± .022 1.099± .021 1.075± .020

.75 .951± .021 .971± .021 .994± .022 1.020± .022 .993± .023 .949± .024 .980± .020 .998± .022 1.010± .023 .967± .023 .967± .022 .987± .023 .990± .021 .972± .023 .975± .021 1.005± .023 1.115± .021 1.094± .021

.70 .939± .023 .958± .022 .983± .022 1.009± .023 .992± .022 .949± .025 .961± .022 .994± .022 .996± .023 .979± .023 .954± .023 .997± .023 .991± .021 .961± .024 .961± .021 1.013± .024 1.143± .023 1.114± .022

Table B20: Results for indian: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .050± .005 .038± .004 .041± .005 .046± .005 .131± .008 .036± .004 .038± .004 .039± .005 .041± .005 .146± .008 .040± .005 .040± .005 .055± .005 .065± .006 .084± .006 .037± .005

.95 .038± .005 .029± .004 .023± .004 .031± .005 .107± .008 .023± .004 .027± .004 .023± .004 .029± .004 .123± .008 .024± .004 .017± .003 .042± .005 .062± .006 .079± .006 .027± .004

.90 .032± .005 .020± .004 .012± .003 .022± .004 .099± .008 .011± .003 .017± .003 .012± .003 .016± .003 .115± .008 .012± .003 .010± .003 .034± .005 .059± .006 .079± .006 .019± .004

.85 .028± .005 .012± .003 .007± .002 .014± .003 .113± .008 .007± .002 .012± .003 .008± .002 .013± .003 .093± .007 .006± .002 .006± .002 .029± .005 .056± .006 .074± .006 .013± .003

.80 .024± .004 .012± .003 .005± .002 .012± .003 .094± .007 .007± .002 .012± .003 .005± .002 .031± .004 .139± .009 .003± .001 .005± .002 .022± .004 .051± .006 .072± .007 .007± .002

.75 .020± .004 .011± .003 .004± .001 .007± .002 .087± .008 .003± .001 .010± .003 .004± .001 .006± .002 .252± .011 .003± .001 .003± .001 .018± .004 .044± .006 .066± .006 .006± .002

.70 .016± .004 .011± .003 .002± .001 .005± .002 .068± .007 .003± .002 .010± .003 .003± .001 .005± .002 .237± .011 .003± .001 .002± .001 .016± .004 .043± .006 .061± .006 .004± .002

ϕ̂

.99 .992± .002 .990± .002 .992± .002 .994± .002 .980± .003 .982± .003 .988± .003 .991± .002 .986± .003 .992± .002 .985± .003 .992± .002 .979± .003 .994± .002 .991± .002 .992± .002

.95 .939± .006 .962± .004 .944± .005 .953± .005 .952± .004 .941± .005 .950± .006 .941± .005 .952± .006 .944± .006 .935± .006 .931± .006 .933± .006 .950± .005 .949± .005 .957± .005

.90 .877± .008 .907± .007 .884± .008 .896± .007 .899± .006 .885± .008 .900± .007 .891± .008 .890± .008 .888± .008 .889± .008 .882± .008 .892± .007 .908± .007 .901± .007 .919± .006

.85 .828± .010 .842± .008 .848± .008 .832± .008 .858± .008 .831± .010 .836± .009 .838± .009 .838± .009 .849± .008 .826± .010 .833± .010 .843± .009 .852± .009 .825± .009 .869± .008

.80 .782± .010 .796± .010 .792± .010 .805± .009 .802± .009 .784± .011 .784± .010 .785± .010 .809± .010 .791± .010 .777± .010 .787± .010 .785± .010 .789± .010 .759± .011 .823± .010

.75 .735± .011 .739± .011 .741± .010 .741± .010 .751± .010 .730± .011 .744± .011 .743± .011 .739± .010 .747± .012 .728± .010 .735± .011 .719± .011 .736± .011 .705± .012 .795± .011

.70 .674± .012 .705± .011 .683± .012 .692± .011 .683± .011 .689± .012 .688± .011 .687± .012 .700± .011 .693± .012 .688± .011 .671± .011 .673± .011 .689± .011 .669± .013 .759± .012

Table B21: Results for jannis: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .291± .004 .207± .004 .204± .004 .205± .004 .203± .003 .208± .004 .207± .004 .204± .004 .205± .004 .202± .004 .203± .004 .200± .003 .210± .004 .221± .004 .225± .003 .202± .003 .203± .003 .210± .004

.95 .284± .004 .198± .004 .196± .004 .191± .004 .195± .003 .197± .003 .195± .004 .191± .004 .188± .004 .194± .003 .196± .004 .189± .004 .200± .004 .218± .004 .223± .004 .189± .003 .192± .003 .199± .004

.90 .277± .004 .186± .004 .181± .004 .180± .003 .185± .004 .184± .004 .180± .004 .178± .004 .178± .003 .182± .004 .191± .004 .177± .004 .189± .004 .214± .004 .222± .004 .176± .003 .176± .003 .186± .003

.85 .267± .004 .172± .004 .169± .004 .166± .004 .168± .004 .167± .004 .167± .004 .165± .004 .166± .004 .172± .004 .181± .004 .165± .004 .177± .003 .210± .004 .221± .004 .163± .003 .164± .003 .168± .004

.80 .261± .004 .159± .004 .157± .004 .151± .003 .159± .004 .153± .004 .155± .004 .152± .004 .150± .004 .159± .003 .174± .004 .150± .004 .166± .003 .210± .004 .221± .004 .151± .003 .153± .003 .155± .004

.75 .253± .004 .145± .004 .141± .004 .142± .003 .151± .004 .142± .004 .141± .004 .139± .004 .139± .003 .150± .004 .164± .004 .136± .004 .154± .004 .207± .004 .220± .004 .138± .004 .142± .004 .144± .004

.70 .244± .004 .134± .004 .128± .003 .128± .004 .144± .004 .130± .004 .133± .004 .127± .004 .127± .004 .143± .004 .156± .004 .124± .004 .143± .004 .203± .004 .218± .004 .128± .004 .134± .004 .136± .004

ϕ̂

.99 .986± .001 .993± .001 .991± .001 .989± .001 .988± .001 .988± .001 .990± .001 .993± .001 .988± .001 .988± .001 .991± .001 .986± .001 .992± .001 .989± .001 .989± .001 .990± .001 .990± .001 .992± .001

.95 .943± .002 .953± .002 .954± .002 .948± .002 .946± .002 .952± .002 .952± .002 .952± .002 .948± .002 .948± .002 .947± .002 .947± .002 .950± .002 .947± .002 .945± .002 .948± .002 .950± .002 .955± .002

.90 .893± .003 .908± .003 .903± .003 .903± .003 .907± .003 .907± .003 .900± .003 .908± .003 .905± .003 .903± .003 .896± .003 .901± .003 .900± .003 .899± .003 .893± .003 .899± .003 .900± .003 .907± .003

.85 .845± .003 .857± .003 .855± .004 .857± .003 .850± .003 .851± .004 .851± .003 .860± .004 .853± .003 .853± .004 .839± .003 .856± .003 .851± .003 .848± .004 .846± .003 .851± .004 .854± .003 .854± .003

.80 .792± .004 .802± .004 .807± .004 .807± .003 .808± .004 .800± .004 .803± .004 .805± .004 .805± .003 .803± .004 .795± .004 .803± .004 .807± .003 .800± .004 .797± .004 .799± .004 .803± .004 .797± .004

.75 .744± .005 .752± .005 .754± .004 .755± .004 .747± .004 .753± .004 .751± .004 .751± .004 .751± .004 .748± .005 .738± .004 .748± .004 .755± .004 .751± .004 .748± .004 .748± .004 .750± .004 .748± .004

.70 .691± .005 .701± .005 .701± .004 .702± .004 .702± .005 .702± .004 .703± .005 .700± .004 .701± .004 .701± .005 .700± .004 .698± .004 .703± .004 .703± .004 .696± .004 .695± .004 .701± .004 .703± .004

M
in
C
oe
ff

.99 .997± .010 .999± .010 .997± .010 1.000± .010 1.001± .010 1.001± .010 .999± .010 .998± .010 .999± .010 .999± .010 .999± .010 .998± .010 .997± .010 .999± .010 1.002± .010 1.001± .010 1.001± .010 1.000± .010

.95 .991± .010 .996± .010 .996± .010 1.001± .011 1.002± .010 1.004± .010 .996± .010 .996± .010 .999± .010 1.002± .010 1.002± .010 1.000± .010 .998± .010 .994± .010 1.005± .010 1.001± .010 1.003± .010 1.005± .010

.90 .981± .010 .996± .011 .995± .011 1.002± .011 .991± .011 1.007± .011 .995± .011 .992± .010 1.002± .011 .998± .011 1.006± .010 1.003± .010 .994± .010 .986± .010 1.018± .011 .999± .010 1.011± .010 1.009± .011

.85 .973± .011 .991± .011 .991± .011 .997± .011 1.009± .010 1.010± .011 .993± .011 .988± .011 1.002± .011 1.024± .010 1.007± .011 1.005± .011 .994± .010 .975± .011 1.028± .011 .994± .011 1.016± .011 1.016± .011

.80 .955± .011 .987± .012 .985± .011 .979± .011 .998± .010 1.010± .011 .987± .011 .980± .011 .986± .011 .992± .010 1.008± .011 1.002± .011 .987± .011 .957± .011 1.040± .011 .984± .011 1.025± .011 1.029± .011

.75 .937± .011 .984± .011 .972± .011 .999± .011 .972± .011 1.012± .011 .982± .011 .968± .011 1.002± .011 .987± .011 1.007± .012 .997± .011 .984± .011 .948± .011 1.057± .011 .973± .011 1.034± .011 1.040± .011

.70 .914± .011 .977± .012 .959± .011 .979± .011 1.011± .012 1.005± .011 .974± .012 .953± .011 .988± .011 1.010± .012 1.007± .012 .987± .011 .975± .012 .937± .011 1.073± .012 .963± .011 1.044± .011 1.054± .012

Table B22: Results for kddipums97: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .123± .010 .154± .011 .130± .011 .136± .011 .148± .011 .137± .010 .150± .011 .130± .011 .130± .010 .145± .011 .137± .010 .138± .010 .119± .010 .151± .011 .143± .011 .137± .011 .145± .011 .136± .010

.95 .121± .010 .138± .011 .120± .011 .121± .010 .137± .010 .119± .010 .129± .010 .111± .010 .115± .010 .136± .011 .129± .010 .130± .010 .109± .010 .146± .011 .147± .012 .115± .011 .118± .011 .124± .010

.90 .110± .009 .113± .011 .101± .010 .093± .010 .114± .011 .104± .009 .111± .010 .096± .010 .091± .010 .117± .011 .120± .010 .117± .010 .103± .010 .136± .010 .147± .012 .090± .010 .089± .010 .106± .010

.85 .085± .009 .096± .010 .086± .010 .080± .010 .102± .011 .087± .010 .097± .010 .090± .010 .075± .009 .092± .010 .107± .010 .098± .010 .083± .009 .131± .010 .148± .012 .063± .009 .061± .009 .093± .009

.80 .058± .008 .081± .009 .058± .008 .067± .010 .090± .009 .078± .009 .085± .010 .060± .008 .068± .010 .095± .010 .105± .010 .082± .010 .061± .008 .118± .011 .149± .012 .054± .009 .040± .007 .075± .009

.75 .048± .007 .073± .009 .051± .008 .077± .009 .077± .009 .061± .009 .078± .010 .052± .008 .065± .009 .077± .009 .098± .010 .068± .010 .050± .008 .111± .011 .144± .012 .045± .008 .040± .007 .067± .009

.70 .041± .007 .056± .008 .043± .007 .059± .009 .071± .010 .045± .008 .064± .009 .043± .007 .046± .008 .074± .010 .088± .010 .052± .009 .041± .008 .108± .011 .140± .012 .031± .007 .038± .007 .057± .008

ϕ̂

.99 .992± .003 .993± .002 .997± .002 .992± .003 .994± .002 .992± .003 .991± .003 .989± .003 .983± .004 .988± .003 .994± .003 .991± .003 .984± .004 .980± .004 .986± .003 .967± .005 .978± .004 .989± .003

.95 .961± .006 .946± .007 .955± .006 .958± .007 .947± .006 .938± .007 .949± .006 .934± .008 .942± .007 .952± .007 .955± .007 .959± .006 .944± .007 .958± .006 .948± .007 .894± .010 .895± .010 .961± .006

.90 .926± .008 .881± .010 .901± .010 .881± .011 .895± .009 .893± .008 .885± .010 .895± .009 .895± .010 .912± .008 .902± .010 .912± .008 .914± .009 .907± .010 .894± .009 .817± .012 .816± .012 .898± .008

.85 .852± .011 .833± .012 .850± .011 .830± .011 .849± .011 .849± .010 .847± .011 .863± .011 .822± .012 .849± .011 .867± .012 .858± .009 .847± .012 .855± .012 .834± .012 .750± .012 .748± .012 .858± .009

.80 .788± .013 .798± .013 .782± .013 .778± .013 .793± .012 .812± .012 .800± .012 .786± .013 .776± .012 .807± .012 .832± .013 .805± .011 .801± .013 .812± .014 .793± .013 .708± .013 .694± .013 .813± .011

.75 .740± .013 .766± .013 .737± .013 .773± .013 .750± .012 .757± .013 .773± .013 .740± .013 .754± .014 .743± .012 .777± .014 .769± .012 .746± .014 .762± .014 .748± .015 .667± .014 .675± .013 .767± .013

.70 .691± .014 .717± .013 .701± .013 .700± .013 .692± .014 .701± .013 .731± .013 .699± .013 .706± .013 .715± .014 .731± .014 .725± .013 .693± .014 .713± .015 .707± .016 .631± .014 .657± .014 .705± .014

M
in
C
oe
ff

.99 1.012± .030 1.010± .030 1.007± .030 1.004± .030 1.010± .030 1.006± .030 1.010± .029 1.007± .030 1.004± .030 1.002± .030 1.006± .030 1.007± .030 1.015± .029 1.000± .030 .992± .030 .997± .031 1.007± .031 1.005± .030

.95 1.030± .030 1.007± .030 .992± .030 1.002± .029 1.003± .030 .997± .031 1.015± .030 1.017± .030 1.001± .030 1.001± .030 .993± .031 1.018± .030 1.028± .030 .997± .030 .957± .031 .983± .032 .975± .031 1.004± .030

.90 1.032± .031 1.006± .032 1.011± .031 1.010± .031 1.003± .032 .998± .031 .996± .031 1.019± .031 1.007± .031 1.011± .031 .965± .032 1.016± .031 1.045± .031 .980± .031 .912± .031 .947± .032 .953± .032 1.005± .030

.85 1.029± .031 .990± .033 1.015± .032 1.019± .032 .978± .033 1.001± .032 .988± .033 1.026± .031 1.022± .031 .991± .033 .962± .033 1.006± .031 1.028± .031 .943± .033 .868± .032 .923± .034 .945± .034 1.007± .031

.80 1.019± .032 .983± .034 1.013± .032 .991± .034 .952± .034 .987± .032 .970± .033 1.013± .032 .970± .034 .953± .034 .933± .035 .978± .033 1.028± .031 .927± .034 .839± .034 .895± .036 .938± .035 1.011± .032

.75 .982± .033 .963± .034 .974± .034 .964± .034 .937± .035 .966± .034 .957± .035 .975± .034 .966± .034 .928± .036 .900± .036 .961± .034 .987± .034 .884± .034 .800± .034 .865± .036 .911± .036 1.009± .033

.70 .932± .035 .938± .035 .942± .033 .908± .036 .873± .038 .932± .035 .933± .035 .939± .034 .943± .034 .899± .035 .869± .037 .944± .035 .936± .035 .828± .035 .772± .033 .845± .037 .887± .037 1.065± .033
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Table B23: Results for letter: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .122± .005 .016± .002 .014± .002 .017± .002 .017± .002 .026± .002 .015± .002 .012± .002 .014± .002 .014± .002 .012± .002 .012± .002 .033± .003 .061± .004 .048± .003 .020± .002

.95 .105± .005 .006± .001 .005± .001 .013± .002 .012± .002 .014± .002 .006± .001 .005± .001 .006± .001 .006± .001 .005± .001 .005± .001 .028± .003 .058± .004 .047± .003 .009± .002

.90 .084± .005 .002± .001 .002± .001 .007± .001 .009± .002 .006± .001 .002± .001 .002± .001 .002± .001 .002± .001 .002± .001 .002± .001 .022± .003 .048± .004 .047± .004 .005± .001

.85 .070± .005 .001± .000 .002± .001 .007± .001 .007± .001 .003± .001 .000± .000 .001± .001 .000± .000 .001± .001 .001± .001 .001± .001 .019± .002 .041± .003 .046± .004 .002± .001

.80 .053± .004 .000± .000 .002± .001 .004± .001 .006± .001 .002± .001 .000± .000 .001± .001 .001± .001 .001± .001 .001± .001 .000± .000 .015± .002 .039± .003 .044± .004 .001± .001

.75 .042± .004 .000± .000 .001± .001 .003± .001 .003± .001 .001± .001 .000± .000 .001± .001 .000± .000 .001± .001 .000± .000 .000± .000 .014± .002 .039± .003 .044± .004 .001± .000

.70 .037± .004 .000± .000 .001± .001 .003± .001 .003± .001 .001± .001 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .012± .002 .038± .003 .042± .004 .001± .000

ϕ̂

.99 .991± .001 .994± .001 .995± .001 .990± .002 .993± .001 .994± .001 .992± .002 .993± .001 .986± .002 .990± .002 .993± .001 .993± .001 .993± .001 .990± .002 .992± .002 .991± .001

.95 .955± .003 .957± .003 .953± .004 .956± .003 .950± .003 .957± .003 .954± .003 .954± .003 .949± .004 .949± .003 .951± .003 .953± .003 .949± .004 .954± .003 .939± .004 .959± .003

.90 .904± .004 .903± .005 .903± .005 .911± .004 .908± .004 .907± .005 .903± .005 .905± .005 .901± .005 .902± .005 .902± .005 .903± .005 .901± .005 .907± .005 .890± .005 .923± .005

.85 .860± .006 .857± .006 .848± .006 .861± .005 .853± .006 .855± .006 .860± .006 .854± .006 .851± .007 .855± .006 .854± .006 .854± .006 .863± .005 .849± .005 .842± .005 .882± .005

.80 .807± .006 .811± .006 .801± .006 .806± .006 .810± .006 .799± .007 .810± .006 .805± .006 .798± .007 .797± .007 .811± .006 .808± .006 .803± .006 .807± .006 .789± .006 .838± .006

.75 .756± .007 .757± .007 .751± .007 .745± .007 .751± .007 .755± .007 .764± .007 .749± .007 .759± .007 .753± .007 .763± .007 .759± .007 .751± .007 .766± .007 .736± .006 .793± .006

.70 .707± .008 .698± .007 .703± .008 .701± .007 .711± .008 .698± .008 .702± .007 .697± .007 .708± .008 .712± .008 .716± .008 .715± .007 .701± .007 .710± .007 .690± .006 .747± .007

Table B24: Results for magic: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .225± .008 .142± .007 .155± .007 .143± .007 .148± .007 .155± .008 .143± .007 .153± .007 .141± .007 .147± .008 .153± .008 .149± .007 .147± .008 .152± .008 .157± .007 .158± .008 .159± .008 .155± .008

.95 .217± .008 .127± .007 .141± .007 .129± .007 .144± .007 .136± .007 .128± .007 .142± .007 .127± .007 .142± .007 .147± .007 .134± .007 .132± .007 .147± .008 .153± .007 .141± .007 .153± .008 .153± .008

.90 .203± .008 .109± .007 .123± .007 .112± .007 .125± .007 .118± .007 .110± .007 .123± .007 .106± .007 .125± .007 .140± .007 .118± .007 .120± .007 .142± .008 .144± .007 .125± .007 .147± .008 .146± .008

.85 .186± .008 .099± .007 .108± .006 .099± .007 .121± .007 .112± .007 .097± .007 .106± .006 .098± .007 .121± .007 .134± .007 .105± .007 .107± .006 .134± .008 .139± .007 .114± .007 .137± .008 .142± .008

.80 .170± .008 .087± .006 .092± .006 .085± .006 .100± .006 .098± .006 .086± .006 .094± .006 .086± .006 .099± .006 .129± .007 .095± .006 .099± .006 .120± .008 .130± .007 .101± .007 .124± .008 .133± .008

.75 .156± .007 .076± .006 .084± .006 .071± .006 .090± .006 .088± .006 .075± .006 .083± .006 .075± .006 .090± .006 .119± .007 .086± .006 .086± .006 .112± .007 .124± .007 .089± .006 .108± .008 .116± .008

.70 .144± .008 .072± .006 .072± .006 .069± .006 .086± .005 .075± .006 .069± .006 .070± .006 .073± .006 .087± .006 .105± .007 .072± .005 .072± .006 .105± .008 .119± .007 .078± .006 .093± .007 .103± .008

ϕ̂

.99 .986± .003 .981± .002 .995± .001 .990± .002 .988± .002 .997± .001 .987± .002 .992± .002 .989± .002 .990± .002 .992± .002 .984± .002 .985± .002 .990± .002 .986± .002 .992± .002 .994± .002 .991± .002

.95 .954± .004 .936± .005 .955± .005 .945± .004 .959± .004 .945± .004 .942± .005 .959± .004 .951± .005 .952± .004 .953± .005 .941± .005 .936± .005 .957± .004 .956± .004 .951± .004 .958± .004 .949± .005

.90 .904± .006 .880± .006 .891± .007 .896± .006 .897± .006 .883± .006 .890± .006 .892± .006 .887± .007 .898± .006 .915± .006 .885± .006 .889± .006 .909± .006 .887± .005 .904± .006 .907± .006 .911± .006

.85 .849± .006 .843± .007 .841± .008 .845± .007 .855± .007 .839± .007 .839± .007 .836± .007 .846± .007 .851± .007 .870± .007 .837± .007 .841± .007 .857± .007 .845± .007 .860± .007 .864± .007 .870± .007

.80 .798± .007 .783± .008 .791± .008 .788± .008 .808± .007 .793± .008 .778± .008 .797± .008 .790± .009 .809± .008 .819± .009 .793± .008 .799± .007 .800± .007 .805± .007 .805± .007 .817± .008 .822± .007

.75 .749± .008 .724± .009 .744± .008 .731± .008 .762± .009 .736± .009 .734± .009 .744± .008 .734± .009 .760± .009 .758± .009 .745± .009 .747± .008 .752± .008 .760± .008 .762± .008 .764± .009 .768± .008

.70 .698± .008 .687± .010 .698± .009 .688± .009 .700± .009 .693± .010 .686± .009 .697± .009 .708± .008 .705± .009 .700± .009 .694± .009 .704± .009 .701± .009 .719± .009 .718± .009 .714± .010 .719± .009

M
in
C
oe
ff

.99 1.001± .019 .996± .019 .997± .019 1.001± .019 .996± .019 .997± .019 .999± .019 .999± .019 .999± .019 .998± .019 .999± .019 .994± .019 1.001± .019 .999± .019 .995± .019 .998± .019 1.002± .019 1.003± .019

.95 1.007± .020 .989± .019 1.000± .019 1.002± .019 .996± .019 .999± .019 .996± .019 .998± .019 .999± .020 .997± .019 .990± .020 .998± .019 .995± .019 1.013± .020 1.000± .019 .991± .020 1.014± .020 1.029± .020

.90 1.017± .020 .994± .020 .998± .019 .999± .019 .998± .020 1.009± .020 .990± .020 .998± .019 .994± .020 1.001± .019 .984± .020 1.003± .020 .994± .020 1.034± .021 1.017± .020 .989± .020 1.042± .021 1.046± .021

.85 1.023± .021 .997± .022 .995± .021 1.010± .021 1.003± .021 1.027± .021 .999± .021 .995± .021 1.009± .020 1.005± .021 .982± .021 1.013± .021 1.007± .022 1.055± .021 1.024± .020 .985± .021 1.060± .022 1.073± .021

.80 1.034± .022 1.010± .023 .999± .022 1.017± .022 1.017± .021 1.034± .022 1.009± .023 1.005± .022 1.009± .021 1.016± .021 .972± .022 1.031± .022 1.024± .022 1.066± .021 1.033± .021 1.002± .022 1.080± .022 1.101± .022

.75 1.044± .022 1.023± .024 1.014± .024 1.034± .024 1.027± .023 1.057± .023 1.018± .023 1.024± .023 1.035± .023 1.024± .023 .966± .023 1.040± .023 1.049± .023 1.077± .021 1.040± .021 1.002± .023 1.104± .022 1.126± .023

.70 1.046± .022 1.044± .024 1.038± .025 1.037± .024 1.047± .024 1.065± .023 1.048± .024 1.040± .024 1.026± .023 1.040± .024 .959± .023 1.047± .024 1.060± .024 1.080± .022 1.036± .022 1.007± .024 1.132± .023 1.161± .023

Table B25: Results for miniboone: mean±std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .065± .002 .061± .002 .057± .002 .059± .002 .066± .002 .061± .002 .060± .002 .058± .002 .060± .002 .067± .002 .062± .002 .060± .002 .067± .002 .075± .002 .073± .002 .064± .002 .068± .002 .062± .002

.95 .055± .002 .049± .002 .047± .002 .047± .002 .052± .002 .046± .002 .044± .002 .044± .002 .046± .002 .050± .002 .051± .002 .046± .002 .051± .002 .071± .002 .074± .002 .050± .002 .066± .002 .048± .002

.90 .047± .002 .036± .002 .033± .002 .033± .002 .038± .002 .033± .002 .032± .002 .032± .002 .033± .002 .035± .002 .040± .002 .034± .002 .038± .002 .067± .002 .073± .002 .036± .002 .064± .002 .036± .002

.85 .041± .002 .024± .001 .023± .001 .024± .001 .027± .001 .022± .001 .023± .001 .021± .001 .024± .001 .029± .001 .031± .002 .023± .001 .027± .001 .065± .002 .071± .002 .025± .001 .058± .002 .029± .002

.80 .036± .002 .017± .001 .017± .001 .018± .001 .020± .001 .018± .001 .016± .001 .016± .001 .018± .001 .020± .001 .023± .001 .017± .001 .021± .001 .062± .002 .070± .002 .019± .001 .049± .002 .022± .001

.75 .030± .002 .013± .001 .012± .001 .014± .001 .017± .001 .012± .001 .012± .001 .012± .001 .013± .001 .016± .001 .018± .001 .013± .001 .015± .001 .060± .002 .069± .002 .013± .001 .037± .002 .017± .001

.70 .027± .001 .010± .001 .009± .001 .010± .001 .012± .001 .010± .001 .009± .001 .009± .001 .010± .001 .013± .001 .014± .001 .010± .001 .012± .001 .059± .002 .069± .003 .010± .001 .029± .002 .015± .001

ϕ̂

.99 .989± .001 .987± .001 .988± .001 .988± .001 .988± .001 .991± .001 .989± .001 .990± .001 .991± .001 .992± .001 .990± .001 .990± .001 .986± .001 .986± .001 .991± .001 .989± .001 .994± .001 .990± .001

.95 .946± .002 .947± .002 .952± .002 .950± .002 .946± .002 .947± .002 .947± .002 .950± .002 .951± .002 .947± .002 .946± .002 .950± .002 .947± .002 .945± .002 .949± .002 .946± .002 .971± .001 .946± .002

.90 .895± .003 .897± .003 .895± .003 .894± .003 .895± .003 .896± .003 .897± .003 .896± .003 .897± .003 .894± .003 .897± .003 .900± .003 .899± .003 .898± .003 .899± .003 .892± .003 .939± .002 .894± .003

.85 .847± .003 .843± .003 .845± .003 .843± .003 .839± .003 .840± .003 .845± .003 .846± .003 .845± .003 .840± .003 .845± .003 .850± .003 .845± .003 .850± .003 .849± .003 .837± .003 .904± .002 .843± .003

.80 .798± .003 .790± .003 .798± .003 .790± .003 .790± .003 .792± .004 .790± .004 .795± .003 .791± .003 .791± .003 .793± .003 .800± .003 .794± .004 .800± .003 .798± .003 .786± .003 .864± .003 .790± .004

.75 .740± .004 .741± .004 .743± .004 .735± .004 .740± .004 .741± .004 .738± .004 .746± .004 .734± .004 .738± .004 .742± .004 .750± .004 .740± .004 .748± .004 .750± .004 .729± .004 .820± .003 .734± .004

.70 .692± .004 .692± .004 .693± .004 .686± .004 .689± .004 .692± .004 .689± .004 .691± .004 .683± .004 .686± .004 .693± .004 .700± .004 .691± .004 .697± .004 .704± .003 .670± .004 .771± .004 .685± .004

M
in
C
oe
ff

.99 1.000± .008 1.000± .008 .999± .008 1.000± .008 .999± .008 .999± .008 .999± .008 .999± .008 .999± .008 1.000± .008 1.001± .008 .999± .008 1.000± .008 .996± .008 .995± .008 .999± .008 1.005± .008 1.004± .008

.95 .990± .008 .993± .008 .990± .008 .994± .008 .996± .008 .990± .009 .993± .008 .991± .008 .996± .008 .994± .008 1.005± .008 .996± .009 .997± .008 .992± .009 .964± .008 .988± .009 1.022± .009 1.016± .008

.90 .978± .009 .982± .009 .972± .008 .983± .008 .984± .009 .981± .009 .982± .009 .980± .009 .986± .008 .984± .009 1.006± .009 .985± .009 .991± .009 .997± .009 .956± .009 .972± .009 1.048± .009 1.032± .008

.85 .954± .009 .968± .009 .955± .009 .973± .009 .976± .008 .966± .009 .968± .009 .961± .009 .978± .009 .987± .009 1.002± .009 .973± .009 .980± .009 .998± .009 .967± .009 .946± .009 1.072± .009 1.044± .008

.80 .923± .009 .948± .009 .936± .009 .952± .009 .943± .009 .948± .009 .944± .009 .938± .009 .952± .009 .954± .009 .995± .009 .957± .009 .961± .009 .991± .010 .983± .009 .916± .009 1.097± .009 1.060± .009

.75 .879± .009 .925± .009 .904± .010 .917± .009 .916± .009 .922± .009 .912± .009 .907± .010 .918± .009 .924± .009 .988± .010 .931± .009 .935± .009 .993± .010 1.000± .009 .877± .010 1.118± .009 1.077± .009

.70 .830± .009 .892± .009 .869± .010 .879± .010 .891± .010 .890± .009 .883± .009 .873± .010 .874± .010 .894± .010 .989± .010 .905± .010 .904± .010 .985± .011 1.014± .009 .824± .010 1.133± .009 1.089± .010

Table B26: Results for MNIST: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .005± .001 .009± .001 .010± .001 .002± .000 .016± .001 .003± .000 .007± .001 .008± .001 .003± .000 .012± .001 .003± .000 .002± .000 .007± .001 .010± .001 .013± .001 .004± .000

.95 .001± .000 .004± .001 .003± .000 .001± .000 .002± .000 .001± .000 .002± .000 .002± .000 .001± .000 .002± .000 .001± .000 .001± .000 .002± .000 .010± .001 .013± .001 .001± .000

.90 .000± .000 .003± .000 .001± .000 .001± .000 .001± .000 .000± .000 .001± .000 .001± .000 .001± .000 .001± .000 .000± .000 .000± .000 .001± .000 .010± .001 .013± .001 .000± .000

.85 .000± .000 .002± .000 .001± .000 .000± .000 .003± .001 .000± .000 .000± .000 .000± .000 .000± .000 .001± .000 .000± .000 .000± .000 .001± .000 .009± .001 .013± .001 .000± .000

.80 .000± .000 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .001± .000 .009± .001 .013± .001 .000± .000

.75 .000± .000 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .001± .000 .008± .001 .013± .001 .000± .000

.70 .000± .000 .001± .000 .000± .000 .000± .000 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .001± .000 .000± .000 .000± .000 .001± .000 .008± .001 .012± .001 .000± .000

ϕ̂

.99 .989± .001 .991± .001 .988± .001 .976± .001 .988± .001 .991± .001 .991± .001 .989± .001 .991± .001 .989± .001 .989± .001 .988± .001 .992± .001 .991± .001 .990± .001 .990± .001

.95 .949± .002 .952± .002 .948± .002 .933± .002 .948± .002 .948± .002 .949± .002 .950± .002 .948± .002 .950± .002 .950± .002 .949± .002 .948± .002 .949± .002 .949± .002 .954± .002

.90 .900± .003 .898± .003 .898± .003 .882± .003 .897± .003 .901± .003 .893± .003 .899± .003 .903± .003 .900± .003 .894± .002 .895± .002 .895± .002 .903± .002 .894± .003 .906± .002

.85 .848± .003 .842± .003 .845± .003 .842± .003 .853± .003 .847± .003 .839± .003 .848± .003 .848± .003 .852± .003 .846± .003 .844± .003 .840± .003 .849± .003 .845± .003 .862± .003

.80 .792± .003 .788± .004 .802± .003 .792± .004 .802± .003 .799± .003 .792± .004 .797± .003 .798± .004 .811± .003 .795± .003 .794± .003 .791± .003 .800± .003 .789± .004 .818± .003

.75 .745± .004 .741± .004 .754± .003 .738± .004 .747± .004 .754± .004 .743± .004 .753± .004 .745± .004 .793± .003 .745± .003 .750± .004 .740± .004 .747± .004 .744± .004 .772± .004

.70 .695± .004 .694± .004 .701± .004 .699± .004 .700± .004 .708± .004 .693± .004 .709± .004 .699± .004 .694± .004 .694± .004 .706± .004 .690± .004 .697± .004 .690± .004 .721± .004

Table B27: Results for octmnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .099± .002 .083± .002 .079± .002 .077± .002 .088± .002 .082± .002 .083± .002 .079± .002 .077± .002 .088± .002 .075± .002 .072± .002 .089± .002 .111± .002 .108± .002 .079± .002

.95 .088± .002 .067± .002 .063± .002 .063± .002 .076± .002 .067± .002 .066± .002 .063± .002 .061± .002 .073± .002 .065± .002 .056± .002 .073± .002 .103± .002 .108± .002 .065± .002

.90 .076± .002 .052± .002 .046± .001 .051± .002 .059± .002 .049± .002 .050± .001 .045± .001 .047± .002 .058± .002 .052± .002 .042± .001 .055± .002 .093± .002 .108± .002 .049± .001

.85 .066± .002 .039± .001 .035± .001 .039± .002 .046± .002 .040± .001 .039± .001 .034± .001 .037± .001 .044± .001 .042± .002 .031± .001 .043± .002 .083± .002 .108± .002 .037± .001

.80 .059± .002 .030± .001 .028± .001 .030± .001 .054± .002 .030± .001 .030± .001 .028± .001 .029± .001 .053± .002 .033± .001 .023± .001 .032± .001 .073± .002 .108± .002 .029± .001

.75 .053± .002 .024± .001 .022± .001 .024± .001 .037± .001 .024± .001 .024± .001 .022± .001 .023± .001 .038± .002 .026± .001 .018± .001 .026± .001 .066± .002 .108± .002 .024± .001

.70 .048± .001 .019± .001 .018± .001 .018± .001 .024± .001 .019± .001 .018± .001 .018± .001 .018± .001 .023± .001 .021± .001 .014± .001 .021± .001 .057± .002 .108± .003 .019± .001

ϕ̂

.99 .990± .001 .990± .001 .991± .001 .990± .001 .992± .001 .989± .001 .990± .001 .991± .001 .990± .001 .992± .001 .990± .001 .989± .001 .990± .001 .989± .001 .989± .001 .991± .001

.95 .952± .002 .949± .001 .950± .002 .947± .002 .952± .001 .952± .002 .947± .001 .952± .002 .946± .002 .951± .002 .950± .001 .946± .001 .950± .001 .951± .002 .948± .002 .954± .002

.90 .902± .002 .899± .002 .899± .002 .897± .002 .900± .002 .899± .002 .899± .002 .898± .002 .897± .002 .899± .002 .896± .002 .898± .002 .897± .002 .898± .002 .900± .002 .906± .002

.85 .849± .002 .848± .002 .849± .002 .848± .002 .850± .002 .852± .002 .851± .002 .849± .002 .851± .002 .847± .002 .843± .002 .846± .002 .850± .003 .844± .002 .849± .003 .857± .002

.80 .804± .003 .798± .003 .800± .003 .798± .002 .796± .003 .799± .003 .799± .003 .800± .003 .798± .002 .794± .002 .796± .002 .795± .003 .793± .003 .794± .003 .795± .003 .809± .003

.75 .754± .003 .751± .003 .750± .003 .747± .003 .754± .003 .747± .003 .749± .003 .751± .003 .748± .003 .749± .003 .748± .003 .746± .003 .747± .003 .748± .003 .745± .003 .762± .003

.70 .705± .003 .695± .003 .699± .003 .697± .003 .697± .003 .696± .003 .697± .003 .699± .003 .699± .003 .698± .003 .703± .003 .697± .003 .692± .003 .699± .003 .692± .003 .718± .003
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Table B28: Results for online: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .091± .006 .095± .006 .093± .006 .100± .006 .099± .006 .094± .006 .094± .006 .092± .006 .102± .006 .101± .006 .093± .006 .093± .006 .092± .006 .094± .006 .103± .006 .092± .006 .096± .006 .099± .006

.95 .079± .006 .087± .006 .078± .006 .083± .006 .089± .006 .081± .006 .081± .006 .082± .006 .084± .006 .088± .006 .091± .006 .078± .006 .081± .006 .093± .006 .106± .007 .085± .006 .095± .006 .099± .006

.90 .066± .005 .073± .005 .067± .005 .071± .005 .068± .006 .064± .005 .067± .005 .065± .005 .068± .005 .069± .006 .084± .006 .063± .005 .069± .005 .087± .006 .108± .007 .070± .005 .095± .006 .098± .006

.85 .056± .005 .061± .005 .054± .005 .059± .006 .062± .006 .051± .005 .053± .004 .055± .005 .060± .006 .062± .006 .075± .006 .049± .005 .051± .005 .082± .006 .111± .008 .047± .005 .088± .006 .095± .007

.80 .048± .005 .047± .005 .040± .004 .046± .005 .051± .005 .040± .005 .042± .004 .042± .004 .047± .005 .049± .005 .068± .005 .038± .004 .043± .005 .079± .006 .113± .008 .039± .004 .081± .006 .090± .007

.75 .039± .005 .038± .004 .031± .004 .041± .005 .041± .005 .032± .004 .035± .004 .031± .004 .041± .005 .042± .004 .060± .005 .033± .004 .036± .004 .071± .006 .115± .008 .032± .004 .067± .006 .084± .007

.70 .032± .004 .031± .004 .026± .004 .030± .004 .039± .005 .028± .004 .027± .004 .028± .004 .033± .004 .035± .004 .052± .005 .028± .004 .033± .005 .057± .005 .120± .008 .028± .004 .065± .006 .071± .007

ϕ̂

.99 .988± .002 .988± .002 .991± .002 .991± .002 .988± .002 .985± .002 .990± .002 .987± .002 .992± .002 .990± .002 .990± .002 .994± .002 .987± .002 .986± .002 .989± .002 .993± .002 .993± .002 .988± .002

.95 .948± .005 .957± .004 .955± .004 .952± .004 .954± .004 .958± .004 .955± .004 .958± .004 .960± .004 .960± .003 .954± .004 .957± .004 .954± .004 .951± .004 .944± .005 .971± .003 .962± .004 .953± .004

.90 .902± .006 .907± .006 .925± .006 .908± .006 .920± .006 .914± .006 .915± .005 .920± .006 .901± .007 .923± .006 .896± .006 .913± .006 .916± .006 .895± .006 .887± .007 .934± .005 .916± .006 .902± .005

.85 .869± .008 .868± .007 .869± .008 .869± .007 .868± .007 .862± .008 .868± .007 .868± .007 .870± .007 .871± .007 .851± .007 .864± .008 .857± .008 .834± .007 .829± .008 .854± .008 .858± .007 .844± .007

.80 .829± .008 .821± .009 .820± .009 .820± .008 .822± .009 .819± .009 .819± .008 .822± .009 .826± .008 .824± .009 .816± .008 .820± .009 .821± .008 .790± .008 .795± .009 .806± .008 .799± .008 .790± .008

.75 .779± .009 .777± .009 .767± .009 .775± .010 .776± .009 .770± .009 .776± .009 .769± .009 .780± .009 .779± .009 .768± .009 .777± .009 .778± .008 .733± .009 .742± .009 .766± .010 .740± .009 .731± .008

.70 .708± .009 .732± .009 .712± .009 .721± .011 .729± .010 .732± .009 .716± .010 .719± .009 .718± .010 .718± .010 .707± .011 .729± .009 .710± .009 .680± .009 .690± .009 .720± .010 .698± .010 .675± .009

M
in
C
oe
ff

.99 .983± .046 .991± .047 .990± .049 .978± .047 .976± .048 .972± .047 .982± .048 .968± .048 .972± .047 .983± .047 .994± .047 .994± .048 .981± .048 .991± .048 1.015± .048 .993± .048 1.006± .048 1.008± .047

.95 .913± .047 .893± .045 .887± .048 .866± .046 .890± .048 .911± .050 .907± .047 .901± .047 .911± .046 .900± .046 .933± .046 .901± .047 .900± .048 .986± .050 1.060± .049 .938± .047 1.010± .046 1.018± .047

.90 .811± .046 .759± .042 .822± .047 .751± .047 .782± .046 .819± .048 .818± .046 .809± .046 .734± .044 .803± .045 .821± .048 .780± .046 .793± .044 .972± .051 1.045± .051 .867± .046 1.031± .048 1.034± .049

.85 .735± .045 .638± .039 .675± .045 .727± .042 .699± .043 .630± .042 .686± .042 .667± .044 .721± .041 .700± .043 .750± .045 .625± .042 .657± .042 .945± .052 1.046± .052 .630± .044 1.012± .052 1.046± .052

.80 .684± .045 .502± .038 .585± .045 .472± .038 .459± .038 .554± .043 .567± .041 .590± .044 .536± .038 .489± .039 .685± .043 .533± .040 .548± .041 .900± .053 1.063± .051 .539± .041 .997± .055 1.042± .056

.75 .614± .047 .374± .033 .484± .040 .264± .031 .267± .030 .467± .040 .492± .039 .479± .040 .304± .031 .270± .028 .605± .043 .462± .039 .411± .039 .806± .050 1.068± .055 .475± .039 .965± .058 1.040± .057

.70 .580± .046 .205± .027 .416± .039 .193± .028 .250± .030 .418± .040 .430± .038 .426± .038 .213± .028 .229± .029 .489± .043 .372± .039 .363± .040 .730± .053 1.094± .055 .433± .037 .964± .060 .994± .058

Table B29: Results for organamnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .005± .001 .002± .001 .003± .000 .003± .000 .001± .000 .002± .000 .002± .000 .002± .000 .001± .000 .001± .000 .001± .000 .001± .000 .007± .001 .009± .001 .009± .001 .002± .000

.95 .002± .000 .000± .000 .001± .000 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .002± .001 .008± .001 .009± .001 .000± .000

.90 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .001± .000 .008± .001 .009± .001 .000± .000

.85 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .045± .002 .000± .000 .000± .000 .001± .000 .008± .001 .009± .001 .000± .000

.80 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .048± .002 .000± .000 .000± .000 .000± .000 .008± .001 .009± .001 .000± .000

.75 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .002± .000 .000± .000 .000± .000 .000± .000 .007± .001 .010± .001 .000± .000

.70 .001± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .006± .001 .000± .000 .000± .000 .000± .000 .007± .001 .010± .001 .000± .000

ϕ̂

.99 .987± .001 .990± .001 .989± .001 .987± .001 .989± .001 .991± .001 .990± .001 .987± .001 .992± .001 .990± .001 .990± .001 .990± .001 .988± .001 .991± .001 .991± .001 .990± .001

.95 .952± .002 .954± .002 .950± .002 .951± .002 .955± .002 .954± .002 .950± .002 .949± .002 .954± .002 .954± .002 .956± .002 .955± .002 .952± .002 .952± .002 .952± .002 .956± .002

.90 .905± .002 .904± .003 .900± .003 .906± .003 .904± .003 .909± .002 .901± .003 .900± .003 .902± .003 .910± .003 .904± .003 .903± .003 .905± .003 .900± .003 .906± .002 .910± .003

.85 .848± .003 .853± .003 .849± .003 .852± .003 .853± .003 .859± .003 .852± .003 .846± .003 .858± .003 .922± .002 .853± .003 .855± .003 .858± .003 .851± .003 .855± .003 .869± .003

.80 .800± .004 .805± .003 .802± .003 .807± .004 .806± .004 .806± .004 .808± .003 .802± .004 .808± .004 .953± .002 .805± .003 .805± .003 .807± .003 .803± .004 .805± .004 .829± .003

.75 .750± .003 .755± .004 .755± .004 .768± .004 .760± .004 .758± .004 .757± .004 .758± .004 .758± .004 .961± .002 .753± .004 .756± .004 .762± .003 .753± .004 .753± .004 .787± .003

.70 .705± .004 .698± .004 .700± .004 .710± .004 .709± .004 .706± .004 .720± .004 .703± .004 .715± .004 .951± .002 .712± .004 .710± .004 .709± .004 .705± .004 .700± .004 .745± .003

Table B30: Results for organcmnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .034± .003 .023± .002 .023± .002 .021± .002 .025± .002 .020± .002 .023± .002 .021± .002 .020± .002 .024± .002 .019± .002 .018± .002 .033± .002 .043± .003 .046± .003 .017± .002

.95 .023± .002 .012± .002 .014± .002 .013± .002 .016± .002 .010± .001 .010± .001 .012± .002 .009± .001 .012± .002 .008± .001 .005± .001 .027± .002 .039± .003 .045± .003 .007± .001

.90 .015± .002 .004± .001 .007± .001 .007± .001 .005± .001 .005± .001 .003± .001 .007± .001 .003± .001 .004± .001 .004± .001 .001± .001 .020± .002 .036± .003 .046± .003 .003± .001

.85 .011± .002 .002± .001 .004± .001 .006± .001 .003± .001 .002± .001 .001± .000 .004± .001 .003± .001 .002± .001 .003± .001 .001± .000 .016± .002 .032± .003 .046± .003 .001± .001

.80 .008± .001 .001± .000 .002± .001 .004± .001 .010± .001 .001± .001 .001± .000 .002± .001 .001± .001 .001± .001 .001± .000 .001± .000 .012± .002 .030± .003 .044± .003 .001± .000

.75 .006± .001 .001± .000 .001± .001 .001± .001 .002± .001 .000± .000 .001± .000 .001± .000 .001± .000 .040± .003 .000± .000 .000± .000 .008± .002 .028± .003 .040± .003 .000± .000

.70 .005± .001 .001± .000 .001± .001 .002± .001 .001± .001 .000± .000 .001± .000 .001± .000 .000± .000 .111± .006 .000± .000 .000± .000 .007± .002 .026± .003 .041± .004 .000± .000

ϕ̂

.99 .992± .001 .991± .001 .992± .001 .990± .001 .991± .001 .990± .001 .991± .001 .989± .001 .991± .001 .990± .001 .994± .001 .993± .001 .990± .001 .990± .001 .990± .001 .990± .001

.95 .958± .003 .952± .003 .953± .003 .958± .003 .950± .003 .958± .003 .954± .003 .955± .003 .960± .003 .950± .003 .950± .003 .953± .003 .950± .003 .956± .003 .949± .003 .961± .003

.90 .911± .004 .897± .005 .902± .004 .891± .005 .897± .005 .903± .005 .900± .005 .902± .005 .903± .004 .897± .004 .905± .005 .904± .005 .897± .005 .910± .004 .900± .005 .919± .004

.85 .862± .005 .850± .005 .842± .006 .853± .005 .855± .005 .848± .006 .850± .005 .851± .005 .856± .005 .854± .005 .850± .005 .853± .005 .854± .006 .858± .005 .859± .005 .869± .005

.80 .809± .006 .796± .006 .794± .006 .809± .006 .792± .005 .801± .006 .800± .006 .796± .006 .801± .006 .804± .005 .799± .006 .798± .006 .801± .006 .811± .005 .801± .005 .825± .006

.75 .754± .006 .742± .006 .752± .007 .761± .006 .753± .006 .745± .006 .750± .007 .750± .007 .766± .006 .757± .006 .757± .007 .754± .007 .754± .006 .767± .006 .748± .006 .783± .006

.70 .710± .006 .698± .007 .705± .007 .704± .007 .694± .007 .703± .007 .701± .007 .706± .007 .708± .007 .715± .007 .701± .007 .703± .007 .706± .006 .718± .006 .702± .006 .725± .007

Table B31: Results for organsmnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .162± .005 .072± .004 .066± .004 .077± .004 .079± .004 .066± .003 .071± .004 .066± .004 .077± .004 .076± .004 .055± .003 .053± .003 .065± .004 .114± .005 .116± .005 .064± .004

.95 .146± .004 .057± .004 .052± .003 .063± .004 .063± .003 .051± .003 .054± .003 .050± .003 .055± .004 .066± .004 .043± .003 .036± .003 .051± .003 .107± .005 .116± .005 .049± .003

.90 .134± .004 .039± .003 .032± .002 .041± .003 .038± .003 .031± .003 .035± .003 .029± .002 .038± .003 .044± .003 .037± .003 .016± .002 .036± .003 .098± .005 .117± .005 .032± .002

.85 .121± .004 .022± .002 .017± .002 .026± .002 .033± .003 .017± .002 .018± .002 .015± .002 .018± .002 .041± .003 .033± .002 .008± .001 .031± .003 .089± .005 .116± .005 .017± .002

.80 .106± .004 .013± .002 .010± .002 .017± .002 .015± .002 .008± .001 .010± .002 .006± .001 .011± .002 .037± .003 .026± .003 .004± .001 .028± .003 .082± .005 .114± .005 .008± .001

.75 .098± .004 .006± .002 .006± .001 .010± .002 .007± .001 .004± .001 .004± .001 .002± .001 .006± .001 .042± .004 .017± .002 .002± .001 .025± .003 .077± .005 .110± .005 .005± .001

.70 .093± .004 .004± .001 .004± .001 .007± .002 .003± .001 .003± .001 .003± .001 .001± .001 .003± .001 .028± .003 .008± .002 .001± .000 .022± .003 .072± .005 .105± .005 .002± .001

ϕ̂

.99 .989± .002 .993± .001 .989± .002 .990± .001 .990± .001 .989± .002 .988± .002 .988± .002 .994± .001 .986± .002 .994± .001 .990± .002 .990± .001 .988± .002 .991± .001 .987± .002

.95 .941± .003 .955± .003 .952± .003 .955± .003 .956± .003 .955± .003 .950± .003 .952± .003 .946± .003 .948± .003 .942± .003 .950± .003 .950± .003 .941± .003 .953± .003 .957± .002

.90 .890± .004 .903± .004 .902± .004 .903± .004 .897± .004 .902± .004 .902± .004 .906± .004 .899± .004 .894± .004 .892± .004 .899± .004 .907± .004 .901± .004 .902± .004 .914± .004

.85 .845± .005 .852± .005 .852± .005 .856± .005 .845± .005 .852± .005 .849± .005 .858± .005 .855± .005 .834± .006 .855± .005 .849± .005 .860± .005 .847± .005 .857± .005 .866± .005

.80 .798± .006 .805± .006 .810± .005 .803± .006 .803± .006 .800± .006 .799± .006 .809± .005 .798± .006 .793± .006 .809± .006 .808± .006 .812± .006 .792± .006 .809± .006 .817± .006

.75 .754± .006 .743± .006 .774± .006 .761± .006 .753± .007 .738± .006 .744± .007 .762± .006 .750± .006 .757± .007 .753± .007 .759± .007 .756± .007 .747± .007 .756± .006 .769± .006

.70 .708± .007 .702± .007 .719± .006 .709± .006 .701± .007 .695± .007 .699± .007 .720± .006 .705± .007 .699± .007 .703± .007 .705± .007 .710± .007 .701± .007 .704± .006 .724± .007

Table B32: Results for oxfordpets: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .317± .012 .053± .006 .087± .007 .039± .005 .166± .009 .059± .006 .050± .006 .090± .007 .042± .006 .166± .010 .039± .005 .041± .005 .050± .006 .169± .009 .170± .009 .041± .005 .040± .005 .057± .006

.95 .315± .012 .035± .006 .072± .007 .055± .006 .120± .008 .039± .006 .036± .006 .075± .006 .047± .005 .123± .009 .029± .005 .029± .005 .050± .006 .165± .009 .172± .009 .029± .004 .030± .005 .038± .005

.90 .315± .013 .022± .004 .058± .006 .024± .005 .131± .009 .025± .005 .025± .004 .057± .006 .021± .004 .125± .008 .018± .004 .014± .003 .046± .005 .163± .009 .166± .009 .017± .004 .020± .004 .027± .005

.85 .314± .013 .016± .003 .044± .005 .006± .002 .180± .010 .020± .004 .016± .003 .042± .005 .007± .002 .178± .010 .008± .003 .008± .003 .036± .005 .161± .009 .168± .010 .013± .003 .013± .003 .016± .004

.80 .315± .013 .013± .003 .032± .005 .018± .004 .107± .007 .012± .003 .012± .003 .033± .005 .020± .004 .090± .007 .004± .002 .004± .002 .030± .005 .156± .009 .165± .010 .007± .002 .006± .002 .013± .003

.75 .316± .014 .005± .002 .029± .005 .004± .002 .038± .006 .007± .002 .006± .002 .024± .004 .005± .002 .035± .005 .003± .002 .003± .002 .021± .005 .155± .010 .167± .011 .005± .002 .005± .002 .010± .003

.70 .313± .014 .003± .001 .016± .004 .006± .002 .150± .010 .006± .002 .003± .001 .020± .004 .005± .002 .159± .011 .001± .001 .001± .001 .015± .004 .155± .010 .172± .011 .001± .001 .002± .002 .007± .003

ϕ̂

.99 .992± .002 .992± .002 .980± .003 .985± .003 .989± .003 .992± .002 .989± .003 .982± .004 .990± .003 .982± .004 .989± .003 .989± .003 .985± .003 .987± .003 .985± .003 .991± .002 .992± .002 .990± .003

.95 .950± .006 .949± .006 .936± .006 .951± .006 .929± .007 .943± .006 .953± .005 .947± .006 .958± .005 .949± .006 .952± .005 .951± .006 .943± .006 .935± .006 .945± .006 .953± .006 .957± .005 .943± .006

.90 .912± .008 .904± .007 .890± .007 .901± .008 .898± .008 .896± .008 .911± .007 .888± .008 .892± .008 .901± .007 .907± .007 .903± .007 .903± .008 .888± .008 .883± .008 .902± .008 .908± .008 .898± .008

.85 .860± .010 .849± .009 .835± .009 .827± .009 .819± .010 .855± .010 .848± .009 .835± .009 .834± .010 .864± .008 .827± .009 .828± .009 .843± .009 .854± .009 .831± .009 .858± .010 .864± .010 .844± .010

.80 .819± .011 .803± .010 .770± .010 .798± .009 .831± .008 .800± .012 .802± .010 .776± .010 .780± .010 .794± .011 .771± .010 .771± .010 .788± .010 .811± .009 .768± .011 .807± .010 .809± .010 .800± .011

.75 .758± .012 .751± .010 .734± .010 .741± .012 .737± .012 .750± .012 .753± .010 .725± .011 .751± .011 .730± .012 .729± .012 .725± .012 .739± .010 .768± .010 .707± .013 .755± .011 .755± .011 .755± .013

.70 .717± .013 .693± .011 .676± .011 .676± .012 .695± .013 .691± .013 .696± .011 .677± .011 .676± .012 .703± .013 .674± .011 .681± .011 .698± .010 .708± .011 .669± .013 .703± .011 .714± .011 .697± .013

M
in
C
oe
ff

.99 1.008± .018 1.005± .018 1.011± .018 1.013± .018 1.005± .018 1.007± .018 1.008± .018 1.005± .018 1.008± .018 1.005± .018 1.006± .018 1.007± .018 .996± .019 1.004± .018 1.001± .018 1.007± .018 1.005± .018 1.005± .018

.95 1.012± .018 1.014± .019 1.023± .019 1.019± .019 1.004± .019 1.021± .018 1.012± .019 1.016± .019 1.036± .018 1.012± .019 1.022± .018 1.025± .018 .977± .019 1.008± .020 .997± .019 1.014± .018 1.016± .018 1.024± .018

.90 1.011± .019 1.021± .019 1.036± .019 1.034± .019 1.015± .019 1.044± .018 1.021± .018 1.033± .020 1.041± .019 1.020± .020 1.041± .018 1.043± .018 .965± .019 1.021± .020 .994± .019 1.032± .019 1.036± .019 1.044± .018

.85 1.013± .019 1.026± .019 1.061± .020 1.063± .019 1.035± .019 1.054± .019 1.030± .019 1.055± .020 1.069± .019 1.028± .019 1.066± .018 1.067± .019 .951± .019 1.025± .020 .992± .020 1.044± .019 1.053± .019 1.078± .018

.80 1.011± .019 1.028± .020 1.093± .021 1.043± .019 1.046± .019 1.077± .019 1.028± .020 1.086± .020 1.015± .019 1.033± .020 1.082± .020 1.085± .020 .936± .021 1.030± .020 .997± .022 1.052± .020 1.067± .020 1.100± .019

.75 1.010± .020 1.042± .019 1.119± .021 1.035± .020 1.070± .021 1.100± .020 1.043± .020 1.115± .021 1.011± .019 1.035± .022 1.100± .020 1.102± .020 .921± .022 1.031± .021 .987± .022 1.072± .020 1.097± .019 1.133± .020

.70 1.014± .021 1.047± .021 1.159± .020 1.173± .018 1.086± .020 1.109± .021 1.048± .021 1.147± .020 1.134± .019 1.026± .022 1.120± .019 1.118± .020 .899± .022 1.033± .022 .980± .024 1.089± .021 1.116± .020 1.167± .020
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Table B33: Results for pathmnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .027± .001 .011± .001 .020± .001 .014± .001 .022± .001 .010± .001 .011± .001 .019± .001 .012± .001 .019± .001 .007± .001 .006± .001 .020± .001 .028± .001 .033± .001 .008± .001

.95 .019± .001 .004± .000 .010± .001 .007± .001 .016± .001 .003± .000 .003± .000 .008± .001 .005± .001 .013± .001 .002± .000 .001± .000 .006± .001 .028± .001 .034± .001 .003± .000

.90 .013± .001 .002± .000 .004± .001 .003± .000 .023± .001 .001± .000 .002± .000 .004± .000 .002± .000 .022± .001 .001± .000 .000± .000 .002± .000 .027± .001 .035± .001 .001± .000

.85 .010± .001 .001± .000 .002± .000 .001± .000 .004± .000 .001± .000 .001± .000 .002± .000 .001± .000 .004± .000 .000± .000 .000± .000 .001± .000 .025± .001 .036± .001 .001± .000

.80 .007± .001 .000± .000 .001± .000 .001± .000 .002± .000 .001± .000 .000± .000 .001± .000 .001± .000 .001± .000 .000± .000 .000± .000 .001± .000 .024± .001 .037± .001 .001± .000

.75 .006± .001 .000± .000 .001± .000 .000± .000 .012± .001 .001± .000 .000± .000 .001± .000 .000± .000 .010± .001 .000± .000 .000± .000 .001± .000 .023± .001 .038± .001 .000± .000

.70 .005± .001 .000± .000 .001± .000 .001± .000 .002± .000 .001± .000 .000± .000 .001± .000 .000± .000 .002± .000 .000± .000 .000± .000 .001± .000 .022± .001 .038± .001 .000± .000

ϕ̂

.99 .989± .001 .989± .001 .989± .001 .990± .001 .989± .001 .991± .001 .990± .001 .989± .001 .990± .001 .988± .001 .989± .001 .989± .001 .989± .001 .992± .001 .990± .001 .992± .001

.95 .948± .002 .951± .002 .949± .001 .951± .002 .951± .002 .950± .001 .950± .001 .951± .001 .948± .002 .951± .002 .951± .001 .950± .001 .947± .001 .955± .002 .944± .002 .958± .001

.90 .898± .002 .901± .002 .899± .002 .899± .002 .899± .002 .900± .002 .902± .002 .901± .002 .901± .002 .900± .002 .903± .002 .902± .002 .895± .002 .902± .002 .895± .002 .914± .002

.85 .849± .002 .848± .002 .852± .003 .852± .002 .853± .002 .850± .002 .848± .002 .852± .002 .854± .002 .856± .002 .851± .002 .852± .002 .845± .002 .851± .002 .849± .002 .863± .002

.80 .797± .003 .798± .002 .801± .003 .807± .002 .805± .003 .800± .003 .798± .003 .804± .003 .803± .002 .803± .003 .799± .002 .796± .002 .793± .003 .799± .003 .800± .002 .807± .003

.75 .749± .003 .751± .003 .754± .003 .754± .003 .745± .003 .744± .003 .752± .003 .752± .003 .750± .003 .752± .003 .751± .003 .744± .003 .742± .003 .749± .003 .755± .003 .748± .003

.70 .697± .003 .703± .003 .702± .003 .706± .003 .700± .003 .693± .003 .704± .003 .706± .003 .701± .003 .705± .003 .706± .003 .695± .003 .690± .003 .701± .003 .701± .003 .695± .003

Table B34: Results for phoneme: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .255± .017 .133± .013 .141± .015 .134± .014 .161± .015 .137± .015 .136± .014 .142± .015 .127± .013 .159± .015 .145± .014 .140± .015 .141± .015 .165± .014 .166± .014 .180± .015 .189± .015 .136± .014

.95 .228± .017 .124± .014 .138± .015 .125± .015 .142± .015 .117± .014 .125± .014 .116± .014 .124± .015 .141± .015 .151± .015 .134± .015 .129± .014 .165± .015 .168± .014 .171± .016 .184± .015 .128± .014

.90 .220± .017 .118± .014 .124± .014 .114± .013 .123± .015 .103± .014 .121± .014 .108± .014 .104± .013 .115± .014 .156± .016 .112± .014 .110± .013 .163± .015 .171± .014 .157± .016 .176± .015 .124± .015

.85 .217± .017 .101± .013 .121± .014 .081± .014 .119± .014 .092± .014 .109± .014 .095± .013 .085± .013 .107± .014 .165± .017 .084± .013 .108± .013 .161± .015 .170± .015 .148± .015 .164± .016 .107± .015

.80 .214± .018 .093± .013 .111± .014 .094± .014 .109± .014 .089± .014 .094± .013 .084± .013 .087± .013 .094± .013 .169± .018 .083± .013 .098± .013 .161± .015 .168± .015 .139± .015 .158± .016 .096± .014

.75 .224± .018 .079± .013 .099± .014 .080± .012 .101± .014 .078± .013 .085± .014 .079± .012 .084± .013 .080± .012 .174± .019 .067± .013 .082± .012 .158± .015 .161± .015 .136± .015 .151± .016 .095± .014

.70 .218± .018 .073± .012 .097± .015 .081± .014 .094± .013 .070± .012 .070± .012 .072± .012 .076± .014 .070± .012 .178± .019 .063± .012 .063± .011 .158± .016 .156± .016 .133± .016 .147± .016 .093± .015

ϕ̂

.99 .978± .005 .984± .005 .992± .004 .989± .004 1.000± .000 .997± .002 .984± .005 .990± .003 .970± .007 .990± .004 .988± .004 .994± .003 .989± .004 .995± .003 .988± .004 .980± .005 .994± .003 .992± .003

.95 .921± .011 .948± .010 .961± .008 .931± .009 .960± .008 .938± .009 .945± .009 .929± .010 .949± .009 .936± .010 .947± .009 .975± .007 .954± .008 .946± .009 .966± .007 .950± .008 .961± .008 .939± .009

.90 .882± .012 .907± .012 .927± .009 .894± .012 .903± .011 .895± .011 .909± .012 .893± .012 .892± .012 .858± .012 .898± .012 .916± .011 .899± .011 .922± .010 .902± .010 .914± .011 .912± .011 .907± .012

.85 .837± .014 .857± .013 .874± .012 .832± .016 .866± .014 .840± .014 .865± .014 .827± .014 .870± .014 .832± .014 .851± .016 .851± .014 .861± .012 .890± .012 .847± .012 .882± .013 .867± .014 .839± .015

.80 .791± .015 .819± .014 .813± .016 .786± .015 .799± .017 .812± .016 .820± .015 .785± .016 .787± .015 .797± .016 .787± .017 .804± .016 .828± .014 .841± .015 .791± .013 .844± .014 .828± .015 .811± .016

.75 .726± .016 .760± .017 .752± .016 .767± .017 .730± .018 .764± .018 .762± .017 .734± .016 .767± .016 .740± .018 .764± .018 .754± .017 .769± .015 .804± .014 .755± .014 .805± .017 .812± .016 .755± .018

.70 .693± .018 .704± .018 .691± .019 .735± .019 .706± .018 .729± .019 .685± .018 .699± .018 .733± .018 .678± .019 .739± .019 .704± .019 .705± .016 .705± .017 .707± .015 .765± .018 .778± .018 .712± .019

M
in
C
oe
ff

.99 1.011± .038 1.006± .037 1.008± .037 .993± .037 1.000± .037 1.000± .037 1.008± .037 1.007± .037 1.006± .038 .993± .037 1.001± .037 1.003± .038 1.002± .037 1.005± .037 .988± .037 1.008± .037 1.003± .037 1.001± .037

.95 1.037± .039 1.008± .038 1.009± .038 .984± .039 .988± .037 1.017± .038 1.003± .037 1.019± .038 .992± .039 .990± .038 1.029± .038 1.004± .037 1.005± .037 1.050± .040 .974± .037 1.020± .038 1.015± .039 1.026± .037

.90 1.032± .039 .998± .039 1.018± .038 1.012± .038 .993± .037 1.023± .039 .998± .038 1.011± .038 1.029± .038 .975± .039 1.086± .038 1.000± .038 1.016± .037 1.063± .040 .975± .037 1.029± .039 1.052± .039 1.045± .037

.85 1.010± .040 .987± .040 1.017± .039 .995± .038 .974± .039 1.013± .039 .998± .039 1.016± .039 1.019± .038 .970± .038 1.084± .040 1.020± .038 .999± .039 1.090± .042 .967± .036 1.049± .040 1.085± .040 1.075± .039

.80 1.002± .041 .992± .041 1.019± .041 .989± .040 .987± .039 1.007± .040 .964± .041 1.022± .042 .988± .040 .971± .039 1.110± .042 1.006± .040 .998± .041 1.128± .045 .950± .037 1.065± .041 1.113± .042 1.104± .039

.75 .961± .042 .995± .042 .987± .042 .995± .038 .996± .040 1.005± .042 .967± .042 1.012± .042 .990± .038 .967± .039 1.124± .042 1.008± .040 .988± .042 1.155± .044 .939± .039 1.073± .041 1.119± .042 1.147± .042

.70 .938± .043 .995± .044 .965± .045 1.006± .042 1.004± .040 1.007± .042 .958± .043 .993± .041 1.035± .042 .951± .041 1.118± .044 1.019± .043 .984± .044 1.259± .047 .910± .041 1.069± .043 1.143± .042 1.165± .043

Table B35: Results for pneumoniamnist: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .038± .006 .033± .005 .041± .006 .036± .006 .042± .006 .033± .005 .032± .005 .041± .006 .037± .006 .045± .006 .031± .005 .030± .005 .028± .005 .040± .006 .047± .006 .045± .006 .048± .006 .033± .005

.95 .035± .006 .020± .005 .026± .006 .025± .005 .015± .004 .017± .004 .021± .005 .024± .005 .022± .004 .015± .004 .022± .005 .012± .003 .019± .004 .040± .006 .047± .006 .032± .006 .031± .005 .019± .004

.90 .025± .005 .013± .004 .018± .005 .007± .002 .007± .002 .010± .003 .013± .004 .015± .004 .008± .003 .011± .003 .013± .003 .010± .003 .014± .004 .040± .006 .045± .007 .019± .005 .018± .004 .009± .003

.85 .019± .005 .008± .003 .011± .004 .006± .003 .009± .003 .006± .002 .008± .003 .012± .004 .006± .003 .010± .003 .005± .002 .004± .002 .010± .004 .037± .007 .045± .007 .013± .004 .009± .003 .005± .002

.80 .015± .004 .005± .002 .009± .004 .006± .002 .007± .003 .005± .002 .005± .002 .009± .004 .004± .002 .062± .008 .004± .002 .003± .002 .010± .004 .037± .007 .045± .007 .007± .003 .008± .003 .004± .002

.75 .009± .003 .002± .001 .006± .003 .002± .001 .008± .003 .004± .002 .003± .002 .006± .003 .002± .001 .054± .008 .001± .001 .002± .002 .010± .004 .035± .007 .046± .008 .001± .001 .006± .003 .002± .001

.70 .008± .003 .002± .002 .004± .002 .002± .002 .005± .002 .002± .002 .001± .001 .004± .002 .003± .002 .083± .009 .000± .000 .000± .000 .008± .004 .033± .007 .047± .008 .000± .000 .004± .002 .002± .001

ϕ̂

.99 .985± .003 .986± .003 .993± .002 .994± .002 .989± .003 .984± .003 .985± .003 .994± .002 .996± .002 .993± .003 .991± .003 .989± .003 .985± .003 .987± .003 .992± .002 .986± .003 .985± .004 .989± .003

.95 .947± .006 .949± .007 .934± .007 .964± .005 .957± .006 .945± .006 .952± .007 .943± .006 .963± .005 .954± .006 .961± .006 .945± .007 .940± .007 .939± .008 .952± .006 .946± .007 .927± .007 .954± .006

.90 .902± .009 .906± .008 .892± .008 .895± .008 .902± .008 .906± .008 .904± .009 .889± .009 .900± .008 .917± .007 .912± .008 .924± .008 .875± .010 .895± .009 .904± .008 .869± .009 .845± .009 .904± .009

.85 .863± .010 .859± .010 .848± .009 .867± .009 .840± .010 .857± .009 .862± .011 .843± .010 .864± .009 .848± .010 .847± .010 .860± .009 .822± .011 .852± .011 .837± .009 .784± .011 .778± .012 .864± .010

.80 .806± .011 .805± .011 .793± .011 .807± .011 .790± .011 .805± .011 .806± .011 .789± .011 .795± .011 .801± .012 .810± .010 .800± .011 .779± .011 .795± .013 .784± .013 .706± .012 .702± .013 .809± .011

.75 .745± .013 .741± .011 .761± .013 .758± .012 .731± .013 .746± .012 .744± .011 .751± .012 .749± .013 .721± .013 .742± .012 .739± .013 .732± .012 .728± .015 .727± .014 .633± .012 .638± .013 .749± .012

.70 .711± .013 .700± .013 .716± .014 .696± .013 .673± .015 .686± .013 .687± .012 .694± .013 .701± .013 .686± .015 .688± .013 .682± .013 .672± .013 .682± .015 .694± .015 .557± .014 .571± .014 .722± .012

M
in
C
oe
ff

.99 .995± .017 1.000± .017 1.000± .017 1.004± .016 .999± .016 1.006± .017 1.001± .016 1.002± .017 1.002± .016 1.000± .016 .999± .017 1.002± .017 .998± .017 1.006± .017 1.001± .017 1.002± .017 1.012± .017 1.007± .017

.95 .990± .017 1.005± .017 1.023± .017 1.005± .017 1.021± .017 1.027± .018 1.008± .017 1.016± .017 1.005± .017 1.023± .017 1.016± .017 1.015± .018 .992± .018 1.014± .016 .998± .017 1.007± .017 1.048± .017 1.019± .017

.90 .991± .018 1.020± .018 1.038± .018 1.017± .018 1.052± .018 1.051± .018 1.016± .018 1.037± .018 1.015± .017 1.055± .017 1.017± .018 1.019± .018 .978± .019 1.017± .016 .994± .017 1.012± .019 1.108± .017 1.033± .018

.85 .988± .019 1.026± .018 1.061± .019 1.030± .017 .999± .019 1.081± .017 1.020± .018 1.063± .018 1.032± .018 .991± .020 1.039± .018 1.039± .017 .963± .020 1.029± .017 .983± .018 1.029± .020 1.153± .017 1.048± .018

.80 .986± .019 1.032± .019 1.091± .018 1.048± .019 1.058± .019 1.116± .017 1.029± .019 1.081± .018 1.046± .019 .998± .019 1.056± .019 1.052± .019 .948± .021 1.033± .017 .973± .019 1.058± .021 1.200± .015 1.068± .017

.75 .993± .020 1.053± .019 1.107± .017 1.054± .020 1.224± .014 1.159± .016 1.042± .019 1.108± .018 1.024± .021 1.137± .017 1.071± .019 1.078± .019 .929± .022 1.026± .019 .982± .020 1.076± .023 1.250± .012 1.103± .018

.70 .994± .020 1.055± .020 1.126± .017 1.090± .017 1.146± .017 1.205± .017 1.058± .019 1.145± .017 1.049± .018 1.106± .017 1.088± .019 1.100± .019 .900± .022 1.032± .020 .986± .020 1.085± .023 1.314± .010 1.127± .018

Table B36: Results for pol: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .047± .004 .049± .004 .060± .004 .052± .004 .061± .005 .070± .005 .046± .004 .061± .005 .051± .004 .061± .005 .061± .005 .062± .005 .075± .005 .063± .005 .081± .005 .105± .006

.95 .040± .004 .038± .004 .050± .004 .043± .004 .058± .004 .045± .004 .026± .004 .047± .004 .038± .004 .064± .005 .049± .004 .039± .004 .063± .005 .062± .005 .075± .006 .084± .005

.90 .028± .003 .024± .003 .035± .004 .034± .003 .042± .004 .030± .004 .017± .003 .029± .004 .025± .003 .063± .005 .037± .004 .023± .003 .045± .004 .063± .005 .070± .006 .059± .005

.85 .014± .002 .010± .002 .017± .003 .017± .003 .035± .003 .014± .003 .006± .002 .017± .003 .018± .003 .049± .005 .023± .003 .012± .002 .029± .003 .063± .005 .067± .005 .032± .004

.80 .005± .002 .002± .001 .003± .001 .003± .001 .003± .001 .007± .002 .002± .001 .004± .002 .004± .001 .047± .004 .007± .002 .003± .001 .006± .001 .064± .006 .065± .005 .008± .002

.75 .000± .000 .000± .000 .001± .001 .000± .000 .000± .000 .000± .000 .000± .000 .001± .001 .000± .000 .027± .003 .000± .000 .000± .000 .000± .000 .066± .006 .064± .006 .001± .001

.70 .000± .000 .000± .000 .000± .001 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .063± .005 .000± .000 .000± .000 .000± .000 .063± .006 .061± .005 .000± .000

ϕ̂

.99 .994± .002 .987± .002 .987± .002 .988± .002 .985± .002 .992± .002 .981± .002 .989± .002 .986± .002 .986± .002 .987± .002 .991± .002 .990± .002 .981± .003 .987± .002 .988± .002

.95 .949± .004 .950± .004 .958± .003 .953± .003 .948± .004 .938± .004 .940± .004 .957± .004 .943± .004 .948± .004 .948± .004 .941± .004 .957± .004 .934± .004 .938± .004 .945± .004

.90 .898± .006 .903± .006 .907± .005 .899± .006 .893± .006 .898± .006 .898± .006 .908± .006 .891± .006 .899± .005 .908± .005 .898± .006 .912± .006 .892± .005 .893± .006 .900± .006

.85 .846± .007 .857± .007 .856± .007 .850± .007 .850± .007 .850± .007 .848± .008 .862± .007 .852± .007 .857± .007 .858± .007 .850± .008 .864± .007 .847± .005 .845± .007 .844± .007

.80 .802± .008 .804± .008 .808± .008 .802± .008 .805± .008 .814± .008 .802± .008 .809± .008 .804± .008 .798± .008 .809± .008 .803± .008 .802± .008 .798± .006 .795± .008 .796± .008

.75 .767± .008 .757± .008 .752± .008 .757± .009 .760± .008 .756± .008 .756± .008 .754± .008 .761± .009 .756± .008 .755± .009 .753± .009 .753± .009 .762± .007 .749± .008 .747± .009

.70 .713± .009 .708± .009 .707± .009 .710± .009 .708± .009 .712± .009 .706± .009 .705± .009 .717± .009 .830± .006 .708± .009 .712± .009 .701± .009 .714± .007 .700± .009 .682± .009

Table B37: Results for retinamnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .502± .029 .463± .028 .492± .030 .498± .026 .453± .030 .451± .027 .467± .028 .488± .030 .507± .027 .459± .031 .449± .028 .448± .027 .485± .026 .490± .027 .487± .027 .471± .027

.95 .494± .028 .445± .029 .483± .030 .498± .026 .527± .029 .444± .027 .468± .028 .475± .031 .498± .025 .532± .029 .443± .027 .440± .028 .476± .027 .478± .028 .492± .027 .459± .027

.90 .474± .028 .435± .031 .461± .031 .479± .026 .503± .029 .431± .028 .443± .030 .456± .031 .447± .028 .500± .029 .431± .028 .419± .029 .459± .028 .469± .028 .495± .028 .455± .027

.85 .463± .029 .424± .032 .458± .031 .457± .028 .489± .032 .427± .029 .427± .030 .438± .030 .436± .028 .491± .030 .445± .029 .414± .029 .440± .031 .459± .029 .495± .030 .435± .028

.80 .442± .031 .425± .032 .444± .032 .456± .029 .456± .029 .415± .031 .415± .030 .430± .031 .444± .033 .429± .032 .452± .029 .394± .030 .408± .031 .459± .029 .494± .030 .419± .028

.75 .416± .032 .404± .032 .427± .033 .467± .032 .466± .033 .379± .033 .404± .030 .415± .031 .412± .031 .503± .031 .448± .030 .385± .031 .405± .031 .445± .030 .494± .032 .412± .029

.70 .388± .034 .380± .034 .406± .035 .449± .031 .416± .032 .358± .034 .385± .031 .385± .035 .414± .035 .415± .029 .449± .031 .361± .032 .401± .033 .431± .034 .490± .035 .393± .031

ϕ̂

.99 .981± .008 .974± .009 .992± .005 .959± .012 .959± .011 .988± .006 .993± .005 .994± .004 .984± .008 .975± .009 .978± .009 .987± .007 .994± .005 .986± .007 .975± .010 1.000± .000

.95 .921± .015 .921± .014 .953± .011 .950± .013 .966± .010 .953± .013 .983± .007 .951± .011 .955± .013 .977± .009 .944± .014 .972± .009 .958± .012 .951± .012 .921± .015 .972± .010

.90 .862± .020 .877± .019 .898± .018 .934± .014 .931± .017 .919± .018 .910± .015 .912± .015 .849± .018 .889± .016 .913± .016 .937± .013 .903± .018 .936± .014 .860± .019 .940± .015

.85 .835± .022 .821± .022 .888± .019 .871± .020 .818± .022 .863± .019 .857± .020 .832± .022 .859± .019 .844± .022 .833± .022 .904± .016 .819± .023 .860± .019 .825± .020 .907± .018

.80 .780± .023 .800± .022 .856± .021 .833± .021 .779± .024 .836± .021 .822± .020 .794± .021 .773± .023 .753± .027 .787± .025 .817± .021 .745± .026 .840± .020 .804± .020 .866± .021

.75 .724± .027 .773± .023 .815± .022 .775± .024 .732± .024 .762± .024 .767± .022 .749± .023 .682± .025 .755± .025 .758± .027 .780± .024 .726± .026 .803± .023 .736± .023 .812± .023

.70 .685± .028 .706± .027 .717± .022 .718± .024 .730± .026 .702± .026 .742± .022 .669± .025 .669± .025 .683± .023 .717± .027 .751± .025 .696± .027 .720± .024 .690± .024 .731± .029

56
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Table B38: Results for rl: mean ± std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .499± .016 .289± .015 .271± .014 .260± .014 .295± .015 .261± .015 .292± .015 .273± .014 .256± .014 .294± .015 .244± .016 .236± .015 .266± .014 .331± .016 .334± .015 .276± .016 .274± .016 .263± .015

.95 .497± .016 .287± .015 .264± .015 .236± .015 .283± .015 .254± .015 .285± .016 .266± .015 .245± .016 .285± .016 .241± .016 .225± .016 .261± .014 .329± .015 .335± .015 .263± .016 .266± .016 .256± .015

.90 .499± .018 .274± .015 .259± .015 .264± .016 .276± .016 .246± .016 .276± .017 .260± .015 .257± .017 .272± .017 .229± .016 .216± .016 .259± .015 .325± .015 .330± .015 .245± .016 .252± .017 .244± .016

.85 .499± .019 .270± .016 .248± .016 .269± .015 .280± .018 .229± .016 .267± .017 .248± .015 .250± .015 .265± .016 .234± .016 .209± .016 .246± .015 .325± .016 .324± .016 .236± .016 .229± .017 .233± .016

.80 .506± .020 .266± .016 .237± .017 .231± .016 .253± .017 .217± .016 .258± .017 .235± .016 .229± .017 .249± .017 .238± .017 .204± .017 .233± .015 .323± .016 .321± .016 .215± .016 .221± .018 .230± .017

.75 .513± .020 .262± .016 .213± .016 .245± .016 .252± .018 .198± .016 .249± .018 .217± .016 .224± .016 .252± .017 .236± .017 .192± .016 .222± .016 .319± .016 .302± .016 .200± .017 .211± .018 .223± .017

.70 .510± .021 .256± .017 .207± .017 .224± .018 .241± .018 .195± .017 .231± .019 .202± .017 .219± .017 .233± .017 .227± .017 .175± .016 .215± .015 .319± .017 .293± .016 .188± .018 .193± .017 .205± .017

ϕ̂

.99 .992± .003 .991± .003 .986± .003 .992± .003 .982± .004 .984± .003 .998± .002 .992± .003 .994± .003 .981± .004 .990± .003 .971± .005 .980± .005 .986± .004 .989± .004 .979± .005 .987± .003 .994± .002

.95 .974± .005 .942± .007 .939± .008 .942± .008 .950± .007 .943± .007 .967± .006 .950± .007 .973± .005 .943± .007 .967± .005 .927± .008 .941± .008 .955± .007 .968± .005 .905± .008 .919± .009 .943± .008

.90 .909± .009 .901± .009 .896± .010 .898± .010 .902± .010 .902± .008 .897± .010 .897± .010 .879± .010 .881± .010 .914± .009 .885± .009 .878± .010 .926± .009 .928± .007 .826± .012 .841± .012 .878± .011

.85 .871± .010 .843± .011 .842± .012 .858± .014 .845± .011 .846± .011 .853± .012 .839± .011 .831± .013 .847± .010 .854± .012 .848± .011 .840± .012 .880± .011 .869± .010 .765± .013 .764± .013 .821± .012

.80 .822± .012 .812± .012 .787± .014 .814± .011 .802± .014 .794± .013 .803± .012 .777± .014 .815± .012 .801± .013 .804± .014 .786± .013 .788± .014 .834± .011 .830± .011 .703± .014 .704± .014 .800± .013

.75 .785± .013 .779± .014 .716± .015 .781± .012 .753± .014 .739± .014 .752± .013 .730± .015 .744± .015 .739± .014 .770± .013 .739± .014 .746± .013 .753± .013 .757± .013 .647± .015 .667± .016 .759± .013

.70 .728± .015 .723± .015 .670± .016 .678± .016 .718± .015 .701± .014 .704± .014 .687± .016 .700± .015 .705± .015 .724± .014 .691± .015 .696± .015 .727± .013 .713± .014 .590± .017 .608± .017 .713± .015

M
in
C
oe
ff

.99 .999± .032 1.004± .032 .999± .033 .997± .033 .999± .033 1.002± .033 1.003± .032 1.001± .033 1.001± .032 .998± .032 1.009± .033 1.005± .034 1.007± .033 .999± .033 1.004± .032 .999± .032 1.004± .033 1.005± .033

.95 .994± .033 .998± .033 .996± .033 1.008± .034 .992± .034 1.003± .032 1.003± .033 1.007± .034 1.013± .033 1.002± .033 1.018± .034 1.008± .034 .999± .034 .997± .034 .995± .032 .980± .035 1.022± .034 1.017± .034

.90 .998± .036 .991± .033 .992± .033 1.014± .033 .992± .035 1.000± .033 1.008± .035 1.000± .035 1.019± .034 1.021± .034 1.030± .036 1.020± .034 .995± .036 .998± .035 .999± .033 .982± .037 1.040± .036 1.031± .035

.85 .998± .038 .993± .033 .990± .034 1.020± .036 .987± .036 1.009± .036 .992± .036 .994± .036 1.021± .035 1.044± .034 1.031± .035 1.019± .035 .993± .037 1.006± .035 .994± .035 1.004± .038 1.048± .039 1.040± .035

.80 1.012± .039 .999± .033 .984± .038 1.014± .036 .990± .038 1.016± .037 .982± .037 1.002± .038 .993± .035 .989± .035 1.053± .036 1.040± .035 .975± .038 1.021± .035 .983± .037 1.001± .040 1.023± .040 1.038± .035

.75 1.026± .040 1.003± .034 .952± .038 1.005± .035 .998± .038 1.028± .039 1.000± .038 .983± .038 1.002± .036 1.016± .037 1.062± .037 1.045± .035 .981± .038 1.012± .037 .974± .038 .997± .040 1.036± .040 1.040± .036

.70 1.019± .042 1.008± .036 .979± .039 1.033± .039 .990± .039 1.027± .039 .986± .038 .985± .037 .985± .038 .971± .036 1.073± .038 1.045± .037 .992± .040 1.007± .037 .971± .040 .985± .042 1.062± .040 1.062± .038

Table B39: Results for stanfordcars: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .236± .008 .178± .007 .170± .006 .318± .009 .469± .008 .167± .006 .173± .007 .165± .006 .317± .008 .469± .008 .107± .005 .109± .006 .230± .008 .429± .009 .431± .009 .162± .007

.95 .223± .008 .165± .007 .150± .006 .285± .007 .442± .009 .145± .006 .160± .007 .143± .006 .263± .008 .430± .009 .091± .005 .086± .005 .224± .008 .416± .009 .433± .009 .141± .007

.90 .204± .008 .146± .007 .123± .006 .281± .008 .433± .008 .116± .005 .131± .006 .115± .006 .245± .007 .411± .008 .075± .005 .064± .004 .211± .008 .405± .009 .437± .010 .123± .006

.85 .190± .008 .127± .006 .109± .006 .276± .009 .378± .010 .096± .005 .114± .006 .097± .005 .224± .008 .349± .010 .067± .004 .048± .004 .199± .008 .395± .010 .433± .010 .100± .006

.80 .176± .008 .111± .006 .098± .006 .274± .008 .393± .010 .075± .005 .099± .006 .078± .005 .208± .008 .372± .010 .060± .005 .039± .004 .182± .008 .382± .010 .437± .010 .085± .006

.75 .157± .008 .099± .006 .089± .006 .268± .009 .377± .008 .058± .004 .081± .006 .061± .004 .174± .008 .340± .009 .056± .005 .028± .004 .173± .008 .373± .010 .435± .010 .067± .005

.70 .148± .008 .081± .006 .072± .005 .256± .009 .316± .009 .047± .004 .068± .005 .046± .004 .166± .008 .277± .010 .050± .004 .022± .003 .164± .008 .362± .011 .438± .011 .056± .005

ϕ̂

.99 .988± .002 .994± .001 .994± .001 .984± .002 .989± .002 .989± .002 .987± .002 .988± .002 .993± .001 .991± .002 .990± .002 .991± .002 .986± .002 .992± .002 .987± .002 .993± .001

.95 .958± .003 .966± .003 .955± .004 .958± .004 .948± .003 .954± .003 .966± .003 .952± .003 .954± .003 .949± .003 .958± .004 .954± .004 .956± .004 .954± .003 .952± .004 .960± .003

.90 .910± .005 .925± .004 .907± .005 .886± .006 .900± .005 .896± .005 .917± .004 .904± .004 .911± .004 .899± .005 .903± .005 .901± .005 .919± .005 .911± .005 .906± .005 .922± .004

.85 .868± .006 .875± .005 .861± .006 .840± .007 .853± .006 .844± .005 .866± .006 .857± .005 .855± .006 .843± .006 .855± .006 .852± .006 .866± .005 .862± .006 .867± .006 .875± .005

.80 .815± .006 .833± .006 .814± .006 .804± .007 .802± .007 .792± .006 .817± .007 .804± .006 .815± .006 .805± .007 .804± .006 .806± .007 .813± .006 .818± .006 .810± .007 .833± .006

.75 .761± .007 .789± .007 .775± .007 .761± .008 .757± .007 .748± .007 .776± .008 .755± .007 .764± .008 .761± .008 .756± .007 .751± .007 .768± .007 .766± .006 .756± .008 .790± .007

.70 .715± .007 .733± .008 .716± .007 .712± .007 .713± .007 .708± .007 .730± .008 .707± .007 .716± .008 .715± .008 .706± .007 .706± .007 .727± .007 .719± .007 .715± .008 .748± .007

Table B40: Results for SVHN: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .038± .002 .030± .001 .037± .001 .030± .001 .043± .002 .039± .001 .030± .001 .036± .001 .031± .001 .043± .002 .036± .001 .034± .001 .036± .001 .050± .002 .050± .002 .038± .002

.95 .022± .001 .017± .001 .020± .001 .016± .001 .026± .001 .021± .001 .017± .001 .020± .001 .016± .001 .024± .001 .021± .001 .018± .001 .019± .001 .049± .002 .050± .002 .021± .001

.90 .013± .001 .008± .001 .011± .001 .009± .001 .014± .001 .011± .001 .008± .001 .010± .001 .009± .001 .013± .001 .011± .001 .010± .001 .009± .001 .048± .002 .050± .002 .011± .001

.85 .012± .001 .006± .001 .007± .001 .006± .001 .009± .001 .007± .001 .006± .001 .008± .001 .006± .001 .009± .001 .007± .001 .007± .001 .007± .001 .045± .002 .050± .002 .008± .001

.80 .011± .001 .005± .001 .006± .001 .005± .001 .008± .001 .006± .001 .005± .001 .006± .001 .005± .001 .007± .001 .006± .001 .005± .001 .006± .001 .042± .002 .050± .002 .006± .001

.75 .011± .001 .004± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .005± .001 .006± .001 .037± .002 .051± .002 .005± .001

.70 .010± .001 .004± .001 .005± .001 .005± .001 .004± .001 .004± .001 .004± .001 .005± .001 .005± .001 .004± .001 .004± .001 .004± .001 .005± .001 .035± .002 .051± .002 .004± .001

ϕ̂

.99 .991± .001 .990± .001 .991± .001 .990± .001 .992± .001 .991± .001 .991± .001 .992± .001 .991± .001 .992± .001 .990± .001 .991± .001 .993± .001 .990± .001 .991± .001 .991± .001

.95 .953± .002 .959± .001 .952± .002 .954± .002 .955± .001 .952± .002 .960± .001 .953± .002 .954± .001 .952± .001 .953± .002 .953± .002 .955± .001 .947± .002 .951± .002 .952± .001

.90 .903± .002 .905± .002 .906± .002 .904± .002 .905± .002 .905± .002 .906± .002 .905± .002 .906± .002 .906± .002 .904± .002 .904± .002 .904± .002 .900± .002 .897± .002 .909± .002

.85 .855± .003 .855± .003 .855± .002 .858± .003 .858± .002 .855± .003 .858± .003 .853± .002 .855± .003 .857± .002 .856± .002 .856± .003 .856± .002 .847± .003 .852± .003 .865± .003

.80 .799± .003 .807± .003 .805± .003 .832± .003 .808± .003 .807± .003 .809± .003 .802± .003 .808± .003 .814± .003 .808± .003 .807± .003 .802± .003 .800± .003 .804± .003 .821± .003

.75 .753± .003 .758± .003 .755± .003 .807± .003 .753± .003 .758± .003 .755± .003 .756± .003 .759± .003 .755± .003 .760± .003 .761± .003 .753± .003 .746± .003 .754± .003 .776± .003

.70 .703± .003 .705± .003 .709± .003 .712± .003 .713± .003 .709± .003 .707± .003 .711± .003 .712± .003 .710± .003 .707± .003 .708± .003 .706± .003 .695± .003 .702± .003 .738± .003

Table B41: Results for tissuemnist: mean ± std for Êrr and empirical coverage ϕ̂.
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross

Ê
rr

.99 .331± .002 .308± .002 .310± .002 .310± .002 .357± .002 .319± .002 .309± .002 .309± .002 .309± .002 .356± .002 .297± .002 .295± .002 .303± .002 .370± .002 .386± .002 .314± .002

.95 .319± .002 .295± .002 .296± .002 .296± .002 .347± .002 .302± .002 .293± .002 .294± .002 .295± .002 .344± .002 .286± .002 .278± .002 .296± .002 .359± .002 .386± .002 .298± .002

.90 .305± .002 .278± .002 .278± .002 .278± .002 .334± .002 .283± .002 .273± .002 .274± .002 .273± .002 .340± .002 .274± .002 .258± .002 .287± .002 .347± .002 .387± .002 .280± .002

.85 .292± .002 .262± .002 .261± .002 .261± .002 .321± .002 .265± .002 .256± .002 .257± .002 .255± .002 .343± .002 .260± .002 .239± .002 .277± .002 .333± .002 .388± .002 .262± .002

.80 .279± .003 .245± .002 .243± .002 .239± .002 .302± .002 .249± .002 .238± .002 .239± .002 .235± .002 .335± .003 .247± .002 .221± .002 .265± .002 .320± .002 .388± .002 .246± .002

.75 .268± .003 .228± .002 .226± .002 .222± .002 .288± .002 .230± .002 .222± .002 .223± .002 .217± .002 .327± .003 .232± .002 .204± .002 .256± .002 .306± .002 .391± .002 .227± .002

.70 .256± .003 .211± .002 .208± .002 .210± .002 .270± .003 .212± .002 .203± .002 .204± .002 .202± .002 .317± .003 .218± .002 .187± .002 .244± .002 .291± .002 .391± .002 .208± .002

ϕ̂

.99 .991± .000 .988± .000 .991± .000 .990± .000 .990± .000 .989± .000 .990± .000 .991± .000 .991± .000 .989± .000 .990± .000 .988± .000 .990± .000 .990± .000 .990± .000 .990± .000

.95 .952± .001 .950± .001 .951± .001 .950± .001 .950± .001 .946± .001 .950± .001 .951± .001 .951± .001 .949± .001 .948± .001 .945± .001 .950± .001 .948± .001 .952± .001 .949± .001

.90 .899± .001 .899± .001 .899± .001 .903± .001 .901± .001 .895± .002 .899± .001 .898± .001 .898± .002 .901± .001 .894± .002 .893± .001 .899± .001 .896± .001 .901± .002 .899± .001

.85 .848± .002 .849± .002 .850± .002 .853± .002 .848± .002 .846± .002 .848± .002 .850± .002 .850± .002 .847± .002 .843± .002 .842± .002 .851± .002 .845± .002 .855± .002 .850± .002

.80 .795± .002 .797± .002 .800± .002 .798± .002 .796± .002 .797± .002 .801± .002 .802± .002 .798± .002 .800± .002 .796± .002 .793± .002 .802± .002 .797± .002 .805± .002 .801± .002

.75 .747± .002 .748± .002 .750± .002 .751± .002 .749± .002 .745± .002 .753± .002 .753± .002 .754± .002 .750± .002 .746± .002 .747± .002 .752± .002 .748± .002 .753± .002 .753± .002

.70 .698± .002 .698± .002 .700± .002 .702± .002 .698± .002 .699± .002 .700± .002 .705± .002 .704± .002 .697± .002 .698± .002 .700± .002 .702± .002 .695± .002 .703± .002 .702± .002

Table B42: Results for ucicredit: mean±std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .181± .004 .182± .005 .178± .004 .177± .004 .179± .004 .179± .005 .181± .004 .177± .004 .176± .004 .179± .004 .181± .004 .178± .005 .180± .004 .181± .005 .188± .004 .180± .005 .184± .005 .184± .005

.95 .170± .004 .172± .005 .166± .004 .166± .004 .170± .004 .168± .005 .168± .004 .168± .005 .167± .004 .169± .004 .177± .004 .166± .005 .171± .004 .171± .005 .186± .005 .170± .004 .184± .005 .185± .005

.90 .160± .004 .159± .004 .154± .004 .153± .004 .156± .004 .153± .004 .156± .004 .155± .004 .153± .004 .158± .004 .174± .005 .154± .005 .155± .005 .161± .004 .184± .005 .155± .004 .186± .005 .186± .005

.85 .151± .004 .148± .005 .146± .004 .144± .004 .143± .004 .144± .004 .146± .004 .144± .004 .145± .004 .151± .004 .171± .005 .146± .004 .146± .004 .151± .005 .180± .005 .146± .004 .187± .005 .189± .005

.80 .144± .004 .140± .005 .139± .004 .137± .004 .139± .004 .137± .004 .139± .004 .140± .004 .143± .005 .143± .005 .167± .005 .138± .004 .134± .004 .143± .005 .177± .005 .138± .004 .186± .005 .190± .005

.75 .139± .005 .128± .005 .132± .005 .131± .004 .130± .005 .131± .004 .134± .004 .132± .005 .139± .005 .133± .004 .163± .005 .130± .005 .129± .005 .135± .005 .175± .006 .130± .004 .188± .005 .190± .005

.70 .136± .005 .123± .004 .126± .005 .126± .005 .125± .005 .126± .005 .122± .004 .126± .005 .130± .005 .146± .005 .159± .005 .125± .005 .125± .005 .128± .005 .171± .005 .124± .005 .190± .006 .191± .006

ϕ̂

.99 .989± .001 .991± .001 .990± .001 .989± .001 .987± .001 .988± .001 .991± .001 .988± .001 .987± .001 .989± .001 .990± .001 .986± .002 .989± .001 .986± .002 .989± .001 .992± .001 .990± .001 .989± .001

.95 .951± .003 .957± .002 .947± .003 .951± .003 .946± .003 .952± .003 .952± .003 .945± .003 .950± .003 .952± .003 .942± .003 .950± .003 .953± .003 .948± .003 .944± .003 .958± .003 .953± .003 .948± .003

.90 .902± .004 .898± .004 .899± .004 .896± .004 .896± .004 .897± .004 .899± .004 .900± .004 .898± .004 .904± .004 .901± .004 .901± .004 .903± .004 .892± .004 .897± .004 .908± .004 .902± .004 .897± .004

.85 .851± .005 .843± .005 .848± .005 .846± .005 .845± .004 .849± .005 .860± .005 .849± .005 .858± .005 .857± .005 .849± .004 .857± .005 .849± .005 .840± .005 .844± .005 .863± .005 .852± .004 .849± .005

.80 .803± .005 .798± .005 .794± .006 .800± .005 .799± .005 .804± .005 .805± .005 .801± .005 .811± .005 .801± .005 .803± .005 .806± .005 .795± .006 .796± .005 .790± .005 .813± .005 .806± .005 .794± .006

.75 .743± .006 .741± .006 .745± .006 .756± .006 .752± .006 .755± .006 .756± .006 .758± .006 .766± .006 .750± .006 .760± .005 .751± .006 .751± .006 .752± .006 .746± .006 .762± .006 .750± .006 .744± .006

.70 .701± .006 .691± .007 .699± .007 .710± .006 .698± .006 .703± .007 .705± .006 .709± .007 .714± .006 .701± .006 .715± .006 .706± .007 .710± .007 .705± .006 .692± .006 .701± .006 .696± .007 .693± .007

M
in
C
oe
ff

.99 .991± .021 .987± .021 .994± .021 .986± .021 .979± .021 .990± .021 .988± .021 .993± .021 .983± .022 .987± .021 1.000± .021 .993± .021 .987± .021 .979± .021 .989± .021 .993± .021 1.006± .021 1.006± .021

.95 .943± .022 .948± .022 .941± .021 .940± .022 .922± .021 .953± .022 .951± .022 .937± .022 .942± .021 .942± .021 .988± .022 .953± .023 .947± .021 .916± .020 .980± .022 .958± .022 1.015± .021 1.021± .022

.90 .893± .022 .881± .022 .871± .022 .871± .023 .843± .022 .891± .021 .899± .022 .893± .021 .872± .022 .891± .022 .980± .022 .897± .022 .898± .022 .816± .020 .966± .023 .908± .021 1.030± .022 1.034± .022

.85 .813± .022 .805± .024 .773± .022 .763± .020 .754± .021 .839± .022 .856± .023 .834± .022 .819± .022 .847± .023 .950± .023 .859± .022 .811± .022 .748± .021 .946± .023 .859± .022 1.046± .023 1.058± .022

.80 .748± .020 .743± .023 .693± .022 .620± .019 .624± .019 .771± .021 .786± .024 .774± .022 .842± .024 .802± .024 .924± .023 .781± .021 .706± .021 .702± .021 .926± .025 .796± .023 1.057± .024 1.079± .024

.75 .701± .021 .667± .023 .631± .021 .592± .020 .589± .021 .696± .022 .736± .023 .709± .023 .824± .026 .661± .022 .909± .023 .688± .022 .618± .021 .644± .021 .924± .026 .719± .022 1.081± .025 1.090± .025

.70 .682± .022 .617± .022 .588± .021 .568± .021 .564± .021 .629± .022 .664± .024 .637± .021 .787± .025 .843± .027 .873± .024 .636± .021 .581± .022 .600± .021 .904± .027 .645± .021 1.109± .026 1.113± .025
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Table B43: Results for upselling: mean±std for Êrr , empirical coverage ϕ̂, and MinCoeff .
Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .277± .014 .168± .013 .171± .014 .164± .013 .178± .014 .186± .015 .169± .014 .171± .014 .161± .013 .179± .013 .189± .013 .186± .013 .177± .012 .185± .014 .185± .013 .177± .012 .185± .012 .191± .015

.95 .278± .014 .160± .013 .163± .013 .162± .013 .171± .014 .174± .015 .163± .013 .159± .013 .152± .013 .171± .013 .195± .014 .168± .013 .166± .012 .179± .014 .178± .013 .177± .012 .185± .012 .183± .015

.90 .276± .015 .150± .014 .150± .013 .145± .012 .155± .013 .163± .014 .142± .013 .142± .013 .142± .013 .156± .013 .208± .014 .156± .013 .148± .012 .164± .014 .172± .014 .177± .012 .185± .012 .164± .015

.85 .275± .015 .136± .013 .134± .013 .122± .012 .139± .013 .145± .014 .126± .013 .129± .012 .128± .013 .137± .013 .221± .015 .142± .013 .138± .012 .162± .014 .168± .014 .177± .012 .185± .012 .157± .015

.80 .291± .016 .104± .012 .121± .013 .115± .012 .121± .012 .130± .013 .107± .012 .116± .012 .110± .013 .124± .012 .230± .016 .118± .011 .114± .012 .144± .014 .168± .015 .176± .012 .185± .012 .147± .014

.75 .297± .016 .094± .011 .110± .012 .104± .012 .102± .011 .106± .012 .092± .012 .103± .012 .101± .012 .105± .012 .244± .016 .095± .011 .098± .012 .128± .014 .164± .014 .171± .012 .185± .012 .123± .013

.70 .304± .017 .078± .011 .081± .010 .075± .010 .080± .010 .080± .011 .080± .011 .086± .011 .077± .011 .077± .010 .257± .017 .076± .010 .074± .010 .120± .013 .158± .014 .171± .012 .185± .012 .108± .013

ϕ̂

.99 .994± .002 .988± .004 .985± .004 .993± .003 .984± .004 .989± .004 .988± .004 .995± .002 .984± .004 .994± .002 .992± .003 .990± .003 .993± .003 .990± .003 .991± .003 .978± .005 .998± .001 .996± .002

.95 .948± .007 .950± .007 .951± .007 .964± .006 .950± .008 .951± .008 .965± .006 .953± .007 .940± .009 .944± .007 .961± .006 .941± .007 .953± .006 .962± .006 .939± .007 .978± .005 .998± .001 .955± .006

.90 .888± .010 .906± .010 .883± .011 .915± .010 .918± .009 .923± .010 .884± .012 .887± .011 .902± .011 .912± .010 .900± .010 .895± .010 .913± .010 .907± .008 .881± .009 .978± .005 .998± .001 .890± .010

.85 .833± .012 .860± .012 .842± .012 .841± .013 .863± .012 .879± .011 .841± .013 .849± .013 .851± .013 .848± .012 .847± .011 .858± .012 .867± .012 .881± .009 .852± .010 .978± .005 .998± .001 .872± .011

.80 .759± .014 .808± .014 .800± .013 .805± .013 .801± .014 .833± .012 .803± .014 .807± .014 .795± .015 .816± .013 .810± .012 .809± .013 .822± .014 .823± .011 .798± .012 .977± .005 .998± .001 .825± .012

.75 .718± .015 .764± .014 .758± .014 .772± .014 .758± .014 .786± .014 .758± .015 .768± .014 .769± .015 .760± .014 .760± .012 .768± .015 .772± .015 .762± .014 .754± .013 .964± .006 .998± .001 .772± .013

.70 .677± .015 .724± .015 .702± .015 .722± .015 .706± .016 .725± .015 .721± .016 .739± .015 .722± .016 .724± .015 .722± .014 .709± .015 .723± .015 .730± .014 .717± .012 .964± .006 .998± .001 .721± .014

M
in
C
oe
ff

.99 1.000± .031 1.003± .031 1.004± .031 1.002± .031 1.001± .031 1.001± .030 1.005± .030 1.002± .030 1.000± .031 .999± .030 1.009± .031 1.001± .031 1.003± .030 1.001± .031 .999± .031 1.003± .031 1.001± .031 1.001± .031

.95 .977± .032 1.000± .031 1.004± .033 1.001± .031 1.001± .031 .995± .031 1.005± .031 1.016± .030 1.004± .031 1.000± .031 .985± .032 1.011± .031 .997± .031 1.005± .031 1.011± .032 1.003± .031 1.001± .031 1.013± .031

.90 .950± .033 .998± .031 1.017± .034 .994± .032 1.004± .031 .997± .032 .993± .032 1.020± .031 1.001± .032 1.007± .031 .937± .034 1.012± .031 .996± .031 1.027± .032 1.007± .032 1.003± .031 1.001± .031 1.021± .032

.85 .921± .034 .998± .031 1.018± .035 .991± .033 1.005± .033 1.004± .033 .996± .032 1.024± .031 .992± .032 1.018± .032 .885± .035 1.006± .031 1.005± .030 1.035± .032 .998± .033 1.003± .031 1.001± .031 1.022± .032

.80 .840± .034 1.008± .032 1.022± .034 1.007± .032 1.011± .032 1.007± .033 .997± .032 1.026± .032 1.009± .033 1.004± .033 .839± .035 1.012± .032 .997± .032 1.048± .034 .984± .033 1.002± .031 1.001± .031 1.041± .033

.75 .799± .034 1.018± .034 1.021± .036 1.019± .033 1.013± .033 1.019± .034 1.013± .033 1.015± .033 1.016± .034 1.016± .033 .781± .035 1.012± .033 1.015± .033 1.077± .034 .976± .034 1.000± .032 1.001± .031 1.050± .035

.70 .746± .036 1.031± .035 1.039± .037 1.026± .034 1.042± .035 1.029± .035 1.020± .035 1.025± .034 1.017± .035 1.022± .033 .781± .036 1.023± .036 1.024± .034 1.095± .036 .965± .035 1.000± .032 1.001± .031 1.066± .037

Table B44: Results for waterbirds: mean ± std for Êrr , empirical coverage ϕ̂, and
MinCoeff .

Metric c DG SAT SAT+EM SelNet SelNet+EM SR SAT+SR SAT+EM+SR SelNet+SR SelNet+EM+SR ENS ENS+SR ConfidNet SELE REG SCross AUCross PlugInAUC

Ê
rr

.99 .143± .008 .093± .006 .109± .007 .114± .007 .120± .007 .094± .006 .094± .006 .110± .007 .115± .007 .117± .007 .083± .006 .083± .006 .101± .006 .139± .007 .144± .007 .102± .006 .108± .006 .099± .007

.95 .142± .008 .078± .006 .094± .007 .109± .006 .113± .007 .078± .006 .080± .006 .090± .007 .102± .007 .119± .007 .075± .006 .064± .006 .093± .006 .137± .007 .141± .007 .084± .005 .110± .006 .097± .007

.90 .134± .008 .064± .005 .085± .007 .101± .007 .087± .007 .068± .006 .062± .005 .073± .006 .095± .007 .091± .007 .063± .005 .049± .005 .081± .006 .133± .007 .141± .007 .065± .005 .115± .006 .098± .007

.85 .112± .008 .051± .005 .073± .006 .086± .006 .083± .006 .056± .005 .049± .005 .064± .006 .090± .006 .076± .006 .052± .005 .039± .005 .064± .005 .127± .007 .139± .007 .048± .005 .119± .007 .096± .007

.80 .089± .007 .043± .005 .056± .005 .098± .007 .095± .007 .047± .006 .040± .005 .053± .006 .069± .006 .063± .006 .041± .005 .031± .004 .055± .005 .126± .008 .139± .008 .035± .004 .127± .007 .094± .007

.75 .072± .007 .033± .004 .044± .005 .082± .006 .080± .007 .040± .005 .033± .004 .041± .005 .065± .005 .055± .006 .034± .005 .023± .004 .049± .005 .124± .008 .141± .008 .029± .004 .130± .008 .088± .007

.70 .058± .006 .027± .004 .042± .005 .079± .007 .063± .006 .034± .005 .027± .004 .040± .005 .075± .006 .049± .005 .028± .004 .018± .003 .038± .004 .119± .008 .141± .008 .017± .004 .135± .008 .083± .006

ϕ̂

.99 .989± .002 .991± .002 .986± .003 .981± .003 .990± .002 .991± .002 .994± .001 .987± .003 .989± .002 .985± .002 .992± .002 .990± .002 .990± .002 .973± .004 .995± .001 .988± .002 .987± .002 .994± .002

.95 .951± .005 .946± .005 .936± .006 .938± .005 .943± .005 .943± .005 .959± .005 .936± .006 .927± .006 .943± .005 .949± .005 .950± .004 .945± .005 .937± .005 .956± .005 .932± .005 .939± .005 .940± .006

.90 .904± .006 .897± .007 .884± .008 .899± .007 .913± .006 .906± .006 .904± .007 .879± .007 .889± .006 .912± .007 .901± .006 .900± .007 .895± .007 .878± .007 .896± .006 .857± .007 .886± .007 .894± .007

.85 .849± .007 .841± .009 .845± .009 .842± .009 .835± .009 .855± .008 .844± .008 .826± .008 .842± .009 .831± .009 .856± .007 .849± .009 .845± .008 .812± .008 .854± .007 .775± .008 .821± .007 .847± .008

.80 .801± .009 .785± .010 .776± .009 .799± .009 .803± .009 .804± .009 .775± .010 .779± .009 .790± .009 .801± .009 .796± .009 .800± .009 .808± .008 .761± .009 .807± .008 .695± .009 .752± .009 .807± .008

.75 .749± .010 .716± .010 .723± .009 .756± .010 .757± .009 .754± .010 .717± .010 .729± .010 .745± .010 .733± .010 .746± .009 .750± .010 .756± .010 .710± .010 .759± .009 .640± .009 .685± .009 .760± .009

.70 .705± .010 .677± .011 .684± .010 .693± .011 .710± .010 .699± .011 .671± .011 .689± .010 .697± .009 .717± .010 .698± .009 .699± .011 .690± .010 .664± .010 .707± .009 .573± .009 .626± .010 .701± .010

M
in
C
oe
ff

.99 .968± .037 .987± .039 .987± .039 .988± .037 .980± .037 .991± .038 .993± .038 .982± .037 .997± .038 .980± .037 .995± .037 .988± .038 1.003± .038 .978± .038 1.009± .038 1.004± .038 1.017± .038 1.012± .038

.95 .840± .037 .919± .039 .932± .039 .918± .037 .913± .037 .925± .039 .938± .039 .913± .039 .901± .038 .886± .036 .926± .037 .925± .039 .952± .039 .944± .038 1.001± .039 .994± .038 1.055± .040 1.034± .040

.90 .683± .036 .835± .036 .874± .040 .900± .038 .871± .035 .878± .039 .854± .040 .832± .038 .873± .037 .871± .037 .846± .038 .853± .037 .876± .038 .870± .037 1.006± .040 1.009± .041 1.108± .041 1.068± .042

.85 .496± .034 .763± .036 .829± .039 .664± .039 .694± .033 .820± .038 .763± .037 .779± .039 .648± .037 .683± .036 .785± .039 .755± .036 .771± .037 .799± .039 .992± .041 1.035± .042 1.174± .043 1.098± .043

.80 .386± .032 .694± .037 .722± .037 .435± .031 .418± .031 .760± .037 .691± .039 .717± .038 .634± .037 .785± .038 .704± .039 .704± .039 .697± .038 .757± .039 1.007± .041 1.032± .047 1.268± .046 1.120± .044

.75 .318± .030 .614± .037 .638± .038 .365± .029 .354± .030 .723± .038 .621± .039 .645± .037 .556± .034 .691± .040 .656± .038 .627± .035 .619± .038 .748± .040 1.015± .042 1.040± .048 1.349± .049 1.138± .044

.70 .252± .026 .578± .037 .585± .036 .351± .030 .279± .028 .690± .038 .574± .038 .608± .036 .687± .042 .652± .038 .600± .038 .581± .033 .500± .034 .722± .042 1.003± .044 1.069± .051 1.448± .053 1.180± .046
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