
Published in Transactions on Machine Learning Research (June/2024)

AGALE: A Graph-Aware Continual Learning Evaluation
Framework

Tianqi Zhao T.Zhao-1@tudelft.nl

Delft University of Technology

Delft, Netherlands

Alan Hanjalic A.Hanjalic@tudelft.nl

Delft University of Technology

Delft, Netherlands

Megha Khosla M.Khosla@tudelft.nl

Delft University of Technology

Delft, Netherlands

Reviewed on OpenReview: https://openreview.net/forum?id=xDTKRLyaNN

Abstract

In recent years, continual learning (CL) techniques have made significant progress in learning from
streaming data while preserving knowledge across sequential tasks, particularly in the realm of
euclidean data. To foster fair evaluation and recognize challenges in CL settings, several evaluation
frameworks have been proposed, focusing mainly on the single- and multi-label classification
task on euclidean data. However, these evaluation frameworks are not trivially applicable when
the input data is graph-structured, as they do not consider the topological structure inherent in
graphs. Existing continual graph learning (CGL) evaluation frameworks have predominantly fo-
cused on single-label scenarios in the node classification (NC) task. This focus has overlooked the
complexities of multi-label scenarios, where nodes may exhibit affiliations with multiple labels,
simultaneously participating in multiple tasks. We develop a graph-aware evaluation (AGALE)
framework that accommodates both single-labeled and multi-labeled nodes, addressing the limi-
tations of previous evaluation frameworks. In particular, we define new incremental settings and
devise data partitioning algorithms tailored to CGL datasets. We perform extensive experiments
comparing methods from the domains of continual learning, continual graph learning, and dy-
namic graph learning (DGL). We theoretically analyze AGALE and provide new insights about
the role of homophily in the performance of compared methods. We release our framework at
https://github.com/Tianqi-py/AGALE.

1 Introduction

Continual Learning (CL) describes the process by which a model accumulates knowledge from a sequence of tasks
while facing the formidable challenge of preserving acquired knowledge amidst data loss from prior tasks. It finds
application in several fields, such as the domain of medical image analysis, where a model has to detect timely emerging
new diseases in images while maintaining the accuracy of diagnosing the diseases that have been encountered in the
past. Significant achievements have been made on CL for euclidean data domains such as images and text (Aljundi
et al., 2018; Parisi et al., 2018; Tang & Matteson, 2021; Hadsell et al., 2020; Van de Ven & Tolias, 2019). Recent works
have also delved into the broader scenario of multi-label continual learning (MLCL) (Wang et al., 2020b; 2021; Liu
et al., 2022; Wei et al., 2021), where one instance can be simultaneously associated with multiple labels.

To foster fair evaluation and identify new challenges in CL settings, several evaluation frameworks (Farquhar & Gal,
2019; Lange et al., 2023) have been proposed, focusing on the single- and multi-label classification task on the euclidean
data. However, these frameworks are not trivially applicable to graph-structured data due to the complexities arising

1

https://openreview.net/forum?id=xDTKRLyaNN
https://github.com/Tianqi-py/AGALE

Published in Transactions on Machine Learning Research (June/2024)

from interconnections and multi-label nodes within graphs. Besides, existing evaluation frameworks in continual
graph learning (CGL) (Ko et al., 2022; Zhang et al., 2022) evaluate the node classification task in the setting of associating
nodes with a single label (which we refer to as the single-label scenario), thereby overlooking the possibility for nodes
from previous tasks to adopt different labels in new tasks or acquire additional labels with time. For instance, in the
context of a dynamically evolving social network, not only can new users with diverse interests (labels) be introduced
over time, but existing users may also lose old labels or accumulate new labels continuously.

Figure 1: An example multi-
label graph with colors indi-
cating to the different node
labels.

To illustrate the limitations of current CL evaluation frameworks when considering
the multi-label scenario in graphs, we start with an example of a multi-label graph
as in Figure 1. We use color coding to indicate the classes the nodes belong to. Please
note that in what follows, we employ the term "class" to refer to the classes that
correspond to a task. To refer to a class assigned to a particular node we use the term
"label".

1.1 Limitations of current continual learning evaluation frameworks

Lack of graph-aware data partitioning strategies. Current experimental setups
typically simulate continual learning settings by employing certain data partitioning
methods over static data. However, existing CGL frameworks do not consider the
multi-label scenario in the data partitioning algorithms.

The multi-label continual learning evaluation framework for Euclidean data (Kim
et al., 2020a) suggest the use of hierarchical clustering techniques, which involves grouping classes into a
single task based on their co-occurrence frequency and subsequently eliminating instances with label sets
that do not align with any class groups. Applying such a technique to graph-structured data not only
risks excluding nodes with a higher number of labels but also disrupts the associated topological structures.

Figure 2: Subgraphs gener-
ated by grouping frequently
co-occurring classes as a task.

In Figure 2, we illustrate an application of the existing MLCL framework to the multi-
label graph depicted in Figure 1. The classes blue, green, and red are collectively treated
as one task due to their frequent co-occurrence. Node 3, having the maximum number
of labels, is removed from the graph since no task encompasses all its labels. It is
noteworthy that employing hierarchical clustering techniques increases the likelihood
of eliminating nodes with more labels, effectively reducing both the number of multi-
labeled nodes and the associated topological structure. In the current example, proper
training and testing of the model on the red class is hindered, as only one node remains
in the subgraph with the label red. Besides, node 5 becomes isolated in the second
subgraph.

Generation of train/val/test sets. Furthermore, the data partitioning algorithm
is also responsible for the division of each subgraph into training, validation, and test
subsets. In Figure 3 we show an example of train/val/test subsets generated using the
strategy adopted by previous CGL evaluation frameworks for the task of distinguishing between blue and green
classes. In particular, nodes belonging to a single class are divided independently at random into train/validation/test
sets, assuming no overlap between classes. However, when each node can belong to multiple classes, an independent
and random division within each class is not always feasible. For instance, the same node may serve as training data
for one class and testing data for another in the same task, as is the case for node 1 in Figure 3. In this particular case,
the model may observe the test data during the training process, resulting in data leakage. Conversely, considering
the entire dataset as a whole for division would result in the dominance of the larger class, causing all nodes from the
smaller class to be aggregated into the same split and thereby under-representing the smaller class in the other split.
For instance, in multi-label datasets such as Yelp, two classes can exhibit complete overlap, where all nodes from the
smaller class also belong to the larger class. In this scenario, if the nodes belonging to the larger class are split first,
there might be no nodes left to make the required splits for the smaller class.

Use of predefined class orders. Existing CGL evaluation frameworks rely on a single predefined class order in
the dataset and group sets of K classes as individual tasks. As the predefined order might not always reflect the true
generation process of the data, it is important to evaluate CL models over several random class orders. Specifically for

2

Published in Transactions on Machine Learning Research (June/2024)

multi-label scenarios, the employed class order may not only influence the nodes and their neighborhood structures
presented at each time step but also affect the number of labels assigned to a particular node in a given task. We
demonstrate in Figure 4, using nodes from the multi-label graph in Figure 1, how distinct class orders generate
subgraphs with the same set of nodes but with different topologies and node label assignments.

Figure 3: The split of the
nodes within one subgraph
generated by the previous
CGL framework.

Limitations on the number of tasks. Last but not least, previous CGL benchmarks
typically predetermined the size of model’s output units, assuming an approximate
count of classes in each graph during model initialization. However, this assumption
is unrealistic because the eventual class size is often unknown, leading to potential
inefficiencies in storage or capacity overflow.

1.2 Our Contributions

To tackle the above-mentioned gaps, we develop a generalized evaluation framework
for continual graph learning, which is applicable both for multi-class and multi-label
node classification tasks and can be easily adapted for multi-label graph and edge
classification tasks. Our key contributions are as follows.

• We define two generalized incremental settings for the node classification task in the CGL evaluation framework
which are applicable for both multi-class and multi-label datasets.

• We develop new data split algorithms for curating CGL datasets utilizing existing static benchmark graph datasets.
We theoretically analyze the label homophily of the resulting subgraphs which is an important factor influencing
the performance of learning models over graphs.

• We perform extensive experiments to assess and compare the performance of well-established methods within
the categories of Continual Learning (CL), Dynamic Graph Learning (DGL), and Continual Graph Learning (CGL).
Through our analysis, we evaluate these methods in the context of their intended objectives, identifying their
constraints and highlighting potential avenues for designing more effective models to tackle standard tasks in CGL.

• We re-implement the compared models in our framework while adapting them for the unknown number of new
tasks that may emerge in the future.

Figure 4: An example of subgraphs obtained by applying different class orders for the static multi-label graph in
Figure 1.

2 Problem Formulation

We start by providing a general formulation of the continual learning problem for graph-structured data and elaborate
on the additional complexities when the nodes in the graph may have multiple labels as compared to the single-label
scenario.

3

Published in Transactions on Machine Learning Research (June/2024)

Problem Setting and Notations. Given a time sequence T = {1, 2, . . . , T}, at each time step t ∈ T , the input

is one graph snapshot Gt = (Vt, Et, Xt, Yt), with node set Vt and edge set Et. Additionally, Xt ∈ R|Vt|×D
and

Yt ∈ {0, 1}|Vt|×|Ct|
denote the feature matrix and the label matrix for the nodes in graph Gt, where D is the dimension

of the feature vector, and Ct is the set of classes seen/available at time t. We assume that the node set Vt is partially

labeled, i.e., Vt = {V l
t , Vu

t }, where V l
t and Vu

t represent the labeled nodes and the unlabeled nodes in Gt. We use At to

denote the adjacency matrix of Gt. We use Yv
to denote the complete label set of node v and Yv

t to denote the label set of

node v observed at time t.

Objective. The key objective in CGL setting, as described above, is to predict the corresponding label matrix of Vu
t

denoted by Yu
t (when the complete label set is restricted to Ct) while maintaining the performance over the classification

on nodes in all graphs in the past time steps in {1, 2, . . . , t − 1}.

2.1 Differences to single-label scenario

Having explained the problem setting and the objective we now describe the key differences of the multi-label
scenario as compared to the single-label case in continual graph learning, which were so far ignored by previous
works resulting in various limitations as illustrated in Section 1.1.

• Node overlaps in different tasks. In the single-label scenario each node is affiliated with one single class,
exclusively contributing to one task. The following statement, which states that no node appears in more than one
task, always holds:

∀i, j ∈ T , and i ̸= j, Vi ∩ Vj = ∅ (1)
However, in the multi-label scenario, one node can have multiple labels and can therefore participate in multiple
tasks as time evolves. Contrary to the single-label scenario, when the nodes have multiple labels, there will exist at
least a pair of tasks with at least one node in common as stated below.

∃i, j ∈ T , and i ̸= j, Vi ∩ Vj ̸= ∅ (2)

• Growing label sets. In the single-label scenario, the label set of a node v, Yv , stays the same across different time
steps, i.e.,

∀i, j ∈ T , Yv
i = Yv

j (3)

However, in the multi-label scenario, the label set of a node may grow over time, i.e., a node may not only appear
in several tasks as above but also have different associated label sets, i.e., the following holds.

∃i, j ∈ T , Yv
i ̸= Yv

j (4)

• Changing node neighborhoods. Note that while simulating a continual learning scenario, subgraphs are curated
corresponding to sets of classes/labels required to be distinguished in a particular task. In other words, the subgraph
presented for a particular task only contains edges connecting nodes with the label set seen in that task. Therefore,
the neighborhood of a node v, denoted as N v can also be different across different time steps in the multi-label
scenario, i.e.,

∃i, j ∈ T , N v
i ̸= N v

j (5)

In the multi-label graphs, both multi-label and single-label nodes exist, providing therefore a suitable context to
develop a generalized CGL evaluation framework as elaborated in the next section.

3 AGALE: our evaluation framework

We present a holistic continual learning evaluation framework for graph-structured input data, which we refer to as
AGALE (a graph-aware continual learning evaluation). We begin by developing two generalized incremental settings
(in Section 3.1) that accommodate the requirements of the multi-label scenario (as discussed in Section 2.1) with
respect to node overlaps in different tasks and growing label sets. In Section 3.2, we develop new data partitioning
algorithms designed to derive subgraphs and training partitions from a static graph dataset, tailored specifically for
the developed incremental settings. To underscore the significance of our approach, we provide theoretical analysis
of AGALE in Section 3.3 and compare it with the previously established CGL and MLCL frameworks in Section 3.4.

4

Published in Transactions on Machine Learning Research (June/2024)

Figure 5: Visualization of our proposed generalized evaluation CGL framework AGALE.

3.1 Two Generalized Incremental Settings for Continual Graph Learning

We first define and develop two generalized incremental settings in CGL, i.e., Task-IL setting and Class-IL setting.
In the Task-IL setting, the goal is to distinguish between classes specific to each task. Different from single-label
settings, the multi-labeled nodes can be present with non-overlapping subsets of their labels in different subgraphs,
as shown in Figure 5. Formally, for any node v in the multi-label graph, in the Task-IL setting we have

∀i, j ∈ T , Yv
i ∩ Yv

j = ∅.

In the Class-IL setting, the goal is to distinguish among all the classes that have been seen so far. Specifically,
in addition to the same node appearing in multiple tasks as in the previous setting, a node with multiple labels can
attain new labels as new tasks arrive, as shown in Figure 5. Formally, for any node v in the multi-label graph,

∀i, j ∈ T , if i < j, then Yv
i ⊆ Yv

j

Note that the above settings allow for node overlaps and growing/changing label sets of the same node at different
time points.

3.2 Data Partitioning Algorithms

We now describe our data partitioning algorithms to simulate sequential data from static graphs. The design strategy
of our algorithms takes into account of the node overlaps in tasks, the growing/changing label set of nodes over time,
and the changing node neighborhoods while minimizing the loss of node labels and the graph’s topological structure
during partitioning. Our developed data partition strategy can be employed in both incremental settings and consists
of the following two main parts.

• Task sequence and subgraph sequence generation. We employ Algorithm 1 to segment the provided graph
from the dataset into coherent subgraph sequences. We first remove the classes with size smaller than a threshold δ.
Instead of using a predefined class order (as discussed in Section 1.1) we generate n random orders of the remaining
classes to simulate the random emergence of new classes in the real world. Specifically, given a dataset with C
classes, we group K random classes as one task for one time step. At any time point t, let Ct denote the set of
classes grouped for the task at time t. We construct a subgraph Gt = (Vt, Et) such that Vt is the set of nodes with
one or more labels in Ct. The edge set Et consists of the induced edges on Vt. Note that the number of classes
chosen to create one task is adaptable. In order to maximize the length of the task sequence for each given graph
dataset and subsequently catastrophic forgetting, we choose K = 2 in this work. If the dataset has an uneven
number of classes in total, the remaining last class will be grouped with the second last class group.

• Construction of train/val/test sets. To overcome the current limitations of generating train/val/test sets as
discussed in Section 1.1, we employ Algorithm 2 to partition nodes of a given graph snapshot Gt. For the given

5

Published in Transactions on Machine Learning Research (June/2024)

subgraph Gt, our objective is to maintain the pre-established ratios for training, validation, and test data for both the
task as a whole and individual classes within the task. To achieve this, our procedure starts with the determination
of the size of each class. Note that the cumulative sizes of these classes may exceed the overall number of nodes
in the subgraph due to multi-labeled nodes being accounted for multiple times based on their respective labels.
Subsequently, the classes are arranged in ascending order of size, starting with the smallest class. The smallest class
is partitioned in accordance with the predefined proportions. Subsequent classes in the order undergo partitioning
with the following steps:

– We identify nodes that have already been allocated to prior classes.
– We then compute the remaining node counts for the training, validation, and test sets in accordance with the

predefined proportions for the current class.
– Finally, we split randomly the remaining nodes within the current class into train/val/test sets such that their

predefined proportions are respected.

Note that for a given class order, the structural composition of each subgraph remains constant across both the
incremental settings. What distinguishes these incremental settings is the label vector assigned to the nodes.
Specifically, nodes with a single label manifest uniquely in one subgraph corresponding to a task. Conversely, nodes
with multiple labels appear in the Task-IL setting with distinct non-overlapping subsets of their original label set
across various subgraphs while appearing with the expansion of their label vectors in the Class-IL setting.

Algorithm 1 Task Sequence and Subgraph Sequence Generation
Require: Static graph G = (V, E) with classes C = {c1, c2, . . . , cC}, threshold of small classes δ, group size K
Ensure: n task sequences S = {S1, S2, . . . , Sn} and for each task sequence Si a corresponding subgraph sequence

Gi = {G1, G2, . . . , GT }
1: for cj ∈ C do

2: Vcj = {vi|cj ∈ yi}
3: C′ = {C − cj ||Vcj

| < δ}
4: Generate n random orders of C′: O = {O1, O2, . . . , On}
5: for Oj ∈ O do

6: for t = 1 to ⌊ C
k ⌋ = T do

7: Group the first k classes as a task: St = {c1, . . . , ck}
8: Oj = Oj − St

9: Vt = {vi|yi ∩ St ̸= ∅}
10: Et = {e(u, v)|e ∈ E ∧ u, v ∈ Vt}}
11: Gt = (Vt, Et)

In the Appendix A.1, we present an analysis of the subgraphs derived by AGALE from the given static graph in PCG
as an example of showcasing the efficacy of our approach.

3.3 Theoretical Analysis Of AGALE

As studied in previous works (Ma et al., 2021; Zhao et al., 2023), the similarity of labels between neighboring nodes
(usually termed label homophily) influences the performance of various graph machine learning algorithms for the
task of node classification in the static case. We here provide a theoretical analysis of AGALE with respect to the label
homophily of generated subgraphs under different conditions. We would later use our theoretical insights and the
dataset properties to analyze the performance of various methods. We use the following definition of label homophily
for multi-label graphs proposed in Zhao et al. (2023).
Definition 1. Given a multi-label graph G, the label homophily h of G is defined as the average of the Jaccard similarity

of the label set of all connected nodes in the graph:

h = 1
|E|

∑
(i,j)∈E

|Yi ∩ Yj |
|Yi ∪ Yj |

6

Published in Transactions on Machine Learning Research (June/2024)

Algorithm 2 Train and Test Partition Algorithm Within One Subgraph
Require: subgraph Gt in subgraph sequence {G1, G2, . . . , GT }, proportion set P for train, validation, and test

P = {Ptrain, Pval, Ptest}
Ensure: the split within subgraph Gt = {Vtrain

t , Vval
t , Vtest

t } for task St

1: Get the classes for the current task St = {c1, . . . , ck}
2: O′ = Sortascend(|Vcj

|) for cj ∈ St

3: initialize empty node set Vtrain
t , Vval

t , and Vtest
t

4: initialize empty encountered nodes set Vt

5: for c ∈ O′
do

6: Vc = {vi|c ∈ yi}
7: if c is the smallest class in Si then

8: Randomly split Vc into Vtrain
c , Vval

c , Vtest
c according to P

9: else

10: Calculate the size of train/val/test set |Vtrain
c |, |Vval

c |, |Vtest
c | according to P

11: Vdup
t = Vc ∩ Vt

12: Vc = Vc − Vdup
t

13: for vi ∈ Vdup do

14: for split ∈ [Vtrain
c , Vval

c , Vtest
c] do

15: if vi in split then
16: |split| = |split| − 1
17: for split ∈ [Vtrain

c , Vval
c , Vtest

c] do
18: Randomly choose |split| nodes from Vc to add to split

19: add Vtrain
c , Vval

c , Vtest
c to Vtrain

t , Vval
t , Vtest

t

20: add Vc to Vt

Let for any two connected nodes i, j ∈ V , he(i,j)
G denotes the label homophily over the edge e(i, j) ∈ E in graph G.

We then have the following result about the label homophily of e(i, j) in the subgraph Gt generated by AGALE at
time t.
Theorem 1. For any edge e(i, j) ∈ E and any subgraph at time t, Gt such that e(i, j) ∈ Et, h

e(i,j)
Gt

≥ h
e(i,j)
G when

at least one of the nodes in {i, j} is single-labeled. For the case when both nodes i, j are multi-labeled, we obtain

h
e(i,j)
Gt

≥ h
e(i,j)
G with probability at least (1− (1−h

e(i,j)
G)K) for Task-IL setting and (1− (1−h

e(i,j)
G)Kt) for Class-IL

setting.

Proof. In the multi-label graphs, one pair of connected nodes belongs to the following three scenarios: 1) two single-
labeled nodes are connected, 2) a single-label node is connected to a multi-labeled node, and 3) two multi-labeled
nodes are connected.

Scenario 1: Note that at any time step t two nodes i and j are connected if and only if at least one label for each
node appears in Ct. As in the first scenario, both the nodes are single-labeled, and the label homophily score for edge
e(i, j) stays the same in the subgraph as in the original graph:

h
e(i,j)
Gt

= h
e(i,j)
G =

{
0, if Yi ̸= Yj

1, if Yi = Yj
(6)

Scenario 2: In the second scenario, where one single-labeled node i is connected to a multi-labeled node j, at any
time step t, when e(i, j) appears in the subgraph Gt,

h
e(i,j)
Gt

≥ h
e(i,j)
G

h

e(i,j)
Gt

= h
e(i,j)
G = 0, if Yi /∈ Yj

h
e(i,j)
Gt

=
{

1
2 , if Yi ⊂ Ct ∩ Yj

1, if Ct ∩ Yj = Yi
≥ h

e(i,j)
G , if Yi ∈ Yj

(7)

7

Published in Transactions on Machine Learning Research (June/2024)

Combining equation 6 and equation 7 we note that when at least one node in an edge is single-labeled, the label
homophily of the corresponding edge will be equal to more than that in the static graph, thereby completing the first
part of the proof.

Scenario 3: In the third scenario, where two multi-labeled nodes i and j are connected, at any time step t, when
e(i, j) appears in the subgraph Gt, it holds Ct ∩ Yi ̸= ∅ and Ct ∩ Yj ̸= ∅. In this scenario, the label homophily of an
edge depends on the relationship between Yi ∩ Yj and Ct:

0 = h
e(i,j)
Gt

< h
e(i,j)
G if Yi ∩ Yj ∩ Ct = ∅{

h
e(i,j)
Gt

= 1
2 Task-IL setting

h
e(i,j)
Gt

≥ 1
2t Class-IL setting

if Yi ∩ Yj ̸= ∅, Yi ∩ Yj ∩ Ct ⊂ Yi ∩ Yj , Yi ∩ Yj ∩ Ct ⊂ Ct

h
e(i,j)
Gt

≥ h
e(i,j)
G if Yi ∩ Yj ⊂ Ct

h
e(i,j)
Gt

= 1 ≥ h
e(i,j)
G if Ct ⊆ Yi ∩ Yj

(8)

Note that all the statements hold in both incremental settings except for the second condition, where Yi
t ∩ Yj

t ∩ Ct

is the strict subset of Yi
t ∩ Yj

t and Ct. With a relatively smaller size of |Ct| = K = 2 in our setting, we have in the
Task-IL setting, |Yi

t ∩ Yj
t | = 1 and |Yi

t ∪ Yj
t | = 2:

h
e(i,j)
Gt

= |Yi
t ∩ Yj

t |
|Yi

t ∪ Yj
t |

= 1
2 (9)

while in the Class-IL setting, because |Yi
t ∩ Yj

t | ≥ 1, |Yi
t ∪ Yj

t | ≤ Kt, we obtain

h
e(i,j)
Gt

= |Yi
t ∩ Yj

t |
|Yi

t ∪ Yj
t |

≥ 1
2t

(10)

We can now upper bound the probability of the worst case event, i.e., when an edge e(i, j) exists at time t but
Ct ∩ Yi ∩ Yj = ∅. This can only happen if the classes in set Ct are chosen from the set Yi ∪ Yj \ Yi ∩ Yj . For Task-IL
setting, the probability of choosing at least one element of Ct from the common labels of node i and j is equal to
h

e(i,j)
G . Then the probability that none of the classes in Ct appear in the common set is at most (1 − h

e(i,j)
G)|Ct|. The

proof is completed by noting the fact that |Ct| = K for Task-IL setting and |Ct| = Kt for Class-IL setting at time
step t.

3.4 Comparison With Previous Evaluation Frameworks

In response to overlooked challenges in established CGL and MLCL evaluation frameworks, as detailed in Section 1,
our framework tackles these issues by the following.

• Incorporation of the multi-label scenario. Contrary to previous evaluation frameworks AGALE accommodates
single-label and multi-label node nodes in the following ways.

– For single-label nodes, our framework expands upon previous methods during the task sequence’s creation
phase. It introduces dynamics in label correlations by allowing random class ordering to generate the task
sequence. This results in diverse subgraph sequences, mimicking the random emergence of new trends in the
real world.

– Regarding the multi-label scenario, as shown in Figure 5, our framework allows for update/change of label
assignments for a given node in the Task-IL setting and expansion of the node’s label set in the Class-IL
setting.

• Information preservation and prevention of data leakage

– As described in Section 3.2, the data partitioning strategies of AGALE ensure that no nodes from the original
multi-label static graph are removed while creating the tasks. Single-labeled nodes appear once in the task

8

Published in Transactions on Machine Learning Research (June/2024)

sequence in both settings, while multi-labeled nodes surface with different labels in Task-IL setting and
Class-IL setting. Specifically, they appear with non-overlapping subsets of their label set in Task-IL setting,
and as the class set expands, their entire label set is guaranteed to be seen by the model before the final time
step in Class-IL setting.

– Previous CGL evaluation frameworks split the nodes into train and evaluation sets within each class, not
considering the situation where one node can belong to multiple classes in the task. Such a strategy may lead
to data leakage as one node can be assigned to training and testing sets for the same task. During task training
on a subgraph comprising various classes, our framework ensures no overlap among the training, validation,
and test sets. Single-labeled nodes exclusively belong to one class, preventing their re-splitting after the initial
allocation. For multi-label nodes that have been allocated to a particular class (see lines 11 and 12 in Algorithm
2), we exclude them from the remaining nodes of other classes they belong to, eliminating any potential data
leakage during training and evaluation within one subgraph.

– In addition, we approach the continual learning setting by not allowing the inter-task edges. This deliberate
choice means that, upon the arrival of a new task, the model no longer retains access to the data from the
previous time steps.

• Ensuring fair split across different classes and the whole graph. Due to the differences in the class size, a split
from the whole graph will result in the bigger class dominating the splits, leaving the small class underrepresented
in the splits. Moreover, the split within each class may result in data leakage in one subgraph, as explained in the
previous paragraph. To maintain a fair split despite differences in class sizes, our framework prioritizes splitting
smaller classes initially. It subsequently removes already split nodes from larger class node sets. This approach
guarantees an equitable split within each class and from within the whole subgraph, preventing larger classes from
dominating the splits and ensuring adequate representation for smaller classes.

• Application for graph/edge-level CGL. AGALE can be directly applied for the graph classification task, each
input data is an independent graph without interconnections. For the edge classification task, our framework can
be applied by first transforming the original graph G into a line graph L(G), where for each edge in G, we create a
node in L(G); for every two edges in G that have a node in common, we make an edge between their corresponding
nodes in L(G).

4 Related Work

4.1 Continual Learning

Continual Learning (van de Ven & Tolias, 2019; Hadsell et al., 2020; Nguyen et al., 2018; Aljundi et al., 2019; Li & Hoiem,
2016; Aljundi et al., 2017; Wang et al., 2023a), a fundamental concept in machine learning, addresses the challenge of
enabling models to learn from and adapt to evolving data streams over time. Continual learning has applications in a
wide range of domains, including computer vision, natural language processing, and reinforcement learning, making
it an active area of research with practical implications for the lifelong adaptation of machine learning models. Unlike
traditional batch learning, where models are trained on static datasets, continual learning systems aim to learn from
new data while preserving previously acquired knowledge sequentially. This paradigm is particularly relevant in
real-world scenarios where data is non-stationary and models need to adapt to changing environments.

The key objectives of continual learning are to avoid catastrophic forgetting, where models lose competence in
previously learned tasks as they learn new ones, and to ensure that the model’s performance on earlier tasks remains
competitive. Various techniques have been proposed in the literature to tackle these challenges, which can be
categorized into four categories.

• Knowledge distillation methods. The methods from this category (Li & Hoiem, 2016; Wang et al., 2021; 2020b)
retain the knowledge from the past by letting the new model mimic the old model on the previous task while
adapting to the new task. Overall, the learning objective can be summarized as to minimize the following loss
function:

L = λoLold

(
Yo, Ŷo

)
+ Lnew

(
Yn, Ŷn

)
+ R, (11)

where Lold and Lnew represent the loss functions corresponding to the old and new tasks, respectively. The
parameter λo is the weight for balancing the losses, and R encapsulates the regularization term. The process of

9

Published in Transactions on Machine Learning Research (June/2024)

transferring knowledge from a pre-existing model (teacher) to a continually evolving model (student) in knowledge
distillation unfolds within Lold, where the new model undergoes training to align its predictions on new data for
the old task, denoted as Ŷo, with the predictions of the previous model on the same new data for the old task,
represented as Yo. Simultaneously, the new model approximates its prediction of the new data on the new task
Ŷn to their true labels Yn. For example, LwF (Li & Hoiem, 2016) minimize the difference between the outputs
of the previous model and the new model on the new coming data for the previous tasks while minimizing the
classification loss of the new model on the new task.

• Regularization strategies. The methods in this category maintain the knowledge extracted from the previous
task by penalizing the changes in the parameters θ of the model trained for the old tasks. Typically, the following
loss is minimized:

L(θ) = Lnew(θ) + λ
∑

i

Ωi (θi − θi
∗)2 (12)

where Lnew denotes the loss function for the new task, θ is the set of model parameters. The parameter λ functions as
the weight governing the balance between the old and new tasks, while Ωi represents the importance score assigned
to the ith parameter θi. For example, MAS (Aljundi et al., 2017) assigns importance scores for the parameters
by measuring how sensitive the output is to the change of the parameters. The term θ∗

i refers to the prior task’s
parameter determined through optimization for the previous task.

• Replay mechanisms. Methods from this category extract representative data from the previous tasks and employ
them along with the new coming data for training to overcome catastrophic forgetting (Shin et al., 2017; Kim et al.,
2020b). Methods under this category mainly differ with respect to their approaches to sampling representative data
from the old task for storage in the buffer. For example, Kim et al. (2020b) maintains a target proportion of different
classes in the memory to tackle the class imbalance in the multi-label data.

• Dynamic architectures. Methods from this category (Lee et al., 2017; Wei et al., 2021) dynamically expand their
architecture when needed for new tasks. This expansion may include adding new layers or neurons to accommodate
new knowledge. For example, Lee et al. (2017) dynamically expands the network architecture based on the relevance
between new and old tasks.

Another line of work in CL focuses on benchmarking evaluation methods. For instance, Farquhar & Gal (2019) and
Lange et al. (2023) provide more robust and realistic evaluation metrics for the CL methods, incorporating real-world
challenges like varying task complexities and the stability gap.

4.2 Continual Graph Learning

As a sub-field of continual learning, Continual Graph Learning (CGL) addresses the catastrophic forgetting problem
as the model encounters new graph-structured data over time. Within CGL, two primary lines of work exist. The first
involves establishing evaluation frameworks that define incremental settings in CGL scenarios and their corresponding
data partitioning algorithms. The second line of work focuses on proposing new methods based on specific predefined
CGL incremental settings derived from these evaluation frameworks. Our work mainly falls into the first category in
which we develop a more holistic evaluation framework covering the multi-label scenario for graph-structured data.

The previously established CGL frameworks focus on benchmarking tasks in CGL. For instance, Zhang et al. (2022)
defined Task- and Class- Incremental settings for single-labeled node and graph classification tasks in CGL and
studied the impact of including the inter-task edges among the subgraph. Ko et al. (2022) expanded this by adding the
domain- and time-incremental settings and including the link prediction task in the CGL benchmark. Additionally,
surveys like Febrinanto et al. (2022) and Yuan et al. (2023) focus on categorizing the approaches in CL and CGL.

However, none of the above works sufficiently addressed the complexities of defining themulti-label node classification
task within the CGL scenario. The only exception is Ko et al. (2022), which used a graph with multi-labeled nodes, but
that too in a domain incremental setting. In particular, each task was constituted of nodes appearing from a single
domain. Consequently, a node appears in one and only one task together with all of its labels. This does not cover
the general multi-label scenario in which the same node can appear in multiple tasks each time with different or
expanding label sets.

10

Published in Transactions on Machine Learning Research (June/2024)

Existing methods for CGL focus mainly on the multi-class scenario and fall into one of the four categories (see
the previous subsection) of continual learning methods. For example, GraphSAIL (Xu et al., 2020) is a knowledge
distillation approach that distills each node’s local and global structure and its self-embedding knowledge, respectively.
Regularization approach TWP (Liu et al., 2020) adds a penalization to the parameters that are important to the learned
topological information in addition to the task-related loss to stabilize the parameters playing pivotal roles in the
topological aggregation. ERGNN (Zhou & Cao, 2021) is based on the replay mechanism and carefully selects nodes
from the old tasks to the buffer and replays them with the new graph. Wang et al. (2020a) combines replay and
regularization to preserve existing patterns.

4.3 Learning on dynamic graphs

Since streaming graphs find applications in various domains, including social network analysis, recommendation
systems, fraud detection, and knowledge graph refinement, several methods (Wang et al., 2023b; Yu et al., 2018; 2017;
Xu et al., 2019) have been proposed in the field of dynamic graph learning (DGL) to utilize the knowledge from the
past to enhance the model’s performance on the graph in the current timestamp. For example, Rossi et al. (2020) uses
the memory unit to represent the node’s history in the compressed format, and Pareja et al. (2019) uses recurrent
architecture between the models trained for the adjacent time steps to let the newmodel inherent knowledge extracted
from the old tasks. However, the designing goal of the methods in DGL is to utilize the knowledge extracted from the
old tasks to enhance the performance of the model on the current task, while in CGL, we focus on the catastrophic
forgetting problem, i.e., the model needs not only to perform well on the current task but also on the previous tasks
in the task sequence. We compare and analyze the models from these two categories in detail in Section 6.

4.4 Application of graph machine learning in continual learning

Some work (Tang & Matteson, 2021; Liu et al., 2023) also attempts to use graph structures to alleviate catastrophic
forgetting in Euclidean data. For instance, Tang & Matteson (2021) augments independent image data in memory
with a learnable random graph, capturing similarities among them to alleviate catastrophic forgetting. However, as
our current focus is solely on graph-structured data, these endeavors fall beyond the scope of this study.

5 Experiment Setup

In this section, we test the state-of-art models from CL, DGL, and CGL domains. Note that in this study, we employ
P = 3, indicating that we generate three random orders for the classes in each dataset in the experimental section.
We introduce the models according to their categories.

5.1 Methods

This subsection introduces all the methods used in the experiment section. The CL methods use Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) as the backbone.

• SimpleGCN: We train GCN on each of the subgraph sequences without any continual learning technique, which
is denoted as SimpleGCN in the following sections.

• JointTrainGCN: We also include GCN trained on all the tasks simultaneously and therefore should not have the
catastrophic forgetting problem. This setting is referred to as JointTrainGCN in the following section.

• Continual Learning Methods: We choose Learning Without Forgetting (LwF), Elastic Weight Consolidation
(EWC), and Memory Aware Synapses (MAS) from this category. LwF distill the knowledge from the old model to
the new model to prevent the model from catastrophic forgetting. EWC andMAS are both regularization-based
methods. The difference is that EWC penalizes the changes in the parameters that are important to the previous task,
while MAS measures the importance of the parameters based on the sensitivity of the output on the parameters.

• Dynamic Graph Neural Network: We choose EvolveGCN (Pareja et al., 2019) from this category, which uses
recurrent architecture between the models trained for the adjacent time steps to let the new model inherent
knowledge extracted from the old tasks to enhance the model’s performance on the current task.

11

Published in Transactions on Machine Learning Research (June/2024)

• Continual Graph Learning Methods: We choose ERGNN (Zhou & Cao, 2021) from this category, which samples
representative nodes from the old tasks in the buffer and replays them with the new data to address the catastrophic
forgetting problem.

5.2 Datasets

We demonstrate our evaluation framework on 3 multi-label datasets in this work. We also include 1 multi-class
dataset CoraFull as an example to demonstrate the generalization of our evaluation framework on single-label
nodes. We include the description of the CoraFull and the results on it in the Appendix A.2.

The inter-task edges are defined in (Zhang et al., 2022) as the edges that connect the new subgraph to the overall
graph. We do not allow inter-task edges in our evaluation framework, i.e., at each time step, only the subgraph for
the new task is used as input. The reason is that in CL, the assumption is that the model loses access to the data from
the previous time steps. With the inter-task edges, the node features from the previous time step would also be used
as input, which violates this assumption and alleviates the forgetting problem.

Below, we introduce the datasets used in this work:

1. PCG(Zhao et al., 2023), in which nodes are proteins and edges correspond to the protein functional interaction,
and the labels the phenotype of the proteins.

2. DBLP(Akujuobi et al., 2019), in which nodes represent authors and edges the co-authorship between the authors,
and the labels indicate the research areas of the authors.

3. Yelp(Zeng et al., 2019), in which nodes correspond to the customer reviews and edges to their friendships with
node labels representing the types of businesses.

The statistics about the datasets are summarized in Table 1. We use the label homophily defined for multi-label graphs
in Zhao et al. (2023). Following the application of a data partitioning algorithm, the given static graphs by the datasets
are split into subgraph sequences. We also summarize the characteristics of the subgraphs to provide insights into the
partitioned structure.

Table 1: The data statistics. Specifically, |V|, |E|, |C|, |L|, and rhomo denote the number of nodes, edges, classes, mean
label count per node, and label homophily of the static graph given by the dataset, respectively. |T | signifies the count
of tasks in the resulting task sequence. Additionally, |V| and |E| represent the average number of nodes and edges in
a subgraph. Further details on label homophily are captured through |r|tsk and |r|cls, representing the averaged label
homophily of subgraphs in the Task-IL setting and Class-IL setting), respectively.

|V| |E| |C| |L| |T | rhomo |V| |E| |r|tsk |r|cls

PCG 3K 37K 15 1.93 7 0.17 808 4763 0.64 0.38
DBLP 28K 68K 4 1.18 2 0.76 15K 37K 0.86 0.81
Yelp 716K 7.34M 100 9.44 50 0.22 121K 921K 0.75 0.47

In Theorem 1 we theoretically analyzed the label homophily of the edges in the subgraphs where we showed that in
cases of single-labeled nodes and for higher homophily edges, the homophily in subgraphs typically increases. Table
1 further shows that the average label homophily of the subgraphs is in fact higher than the label homophily of the
corresponding static graph.

5.3 Evaluation

5.3.1 Metrics

We evaluate the models using performance matrix M ∈ RT ×T , where Mi,k denotes the performance score reported
by an evaluation metric (e.g. AUC-ROC, average precision etc.) on task Sk after the model has been trained over
a sequence of tasks from S1 to Si. At each time step t, the average performance of the model is measured by the

12

Published in Transactions on Machine Learning Research (June/2024)

average of the model’s performances on task S1 to task Si, i.e., the average of the row i in performance matrix M.
After the whole task sequence is presented to the model, we report the average performance AP as:

AP =
∑T

i=1 MT,i

T
(13)

which is the higher, the better.

We use the average forgetting AF score proposed in Lopez-Paz & Ranzato (2017). The forgetting on task Si is
measured by the performance change on task Si after the model is trained on the whole task sequence. Formally, we
report the average forgetting AF on all the tasks as:

AF =
∑T

i=1(MT,i − Mi,i)
T − 1 (14)

Note that we here compute a single metric to quantify the incurred forgetting over past tasks when the model is
trained for the last task ST . The summand indicates the performance decrease on some task Si after learning on later
task ST .

When the average forgetting is negative, its absolute value indicates the averaged performance decrease on all
previous tasks when the model is trained on the last task ST in the task sequence.

A positive AF score indicates that the performance on some of the past tasks actually increased after training on task
ST . A positive AF score might be the result of correlation among tasks that the model exploited, thus showing an
improvement over past tasks.

Such an observation may be when the tasks from a graph are highly correlated with each other, training on the new
task would help further improve the performance on the old tasks.

Overall, we report the AP and AF for each model, and the scores we obtain from the two metrics are interpreted in
the following Table 2.

high AF low AF
high AP preserves well-rounded knowledge across

all the tasks
performs well on the new task, while for-
getting about the old tasks

low AP preserves the knowledge from the old tasks
and harms the overall performance indi-
cates the tasks are not correlated, improve-
ments on one task harm the performance
on the other tasks

forgets about the old task, and fail to per-
form well on the new task

Table 2: The interpretation of the average performance score (AP) and the average forgetting score (AF).

5.3.2 Visualization

We use the heatmaps and lineplots to visualize the performance matrix M. Due to the limited space, we add the
heatmaps in the Appendix A.4. The lineplots are shown in Figure 7, which have the time steps as x axis, the y axis
indicates the average performance of the model over all the tasks that have been encountered so far.

6 Results and Analysis

In this section, we summarize the experimental results on the multi-label datasets in the Task-IL setting and Class-IL
setting defined in section 2 in the Table 3 and Table 4, respectively. To use a single numerical value to quantify the
overall performance of the models, we calculate an average performance matrix M̂ from the performance matrices
from the three random splits and report the AP and AF from the averaged performance matrix.

13

Published in Transactions on Machine Learning Research (June/2024)

(a) The visualization of the performances
of GCN on the subgraphs and the joint
train graph from PCG and the label ho-
mophily of the graphs.

(b) The distribution of the number of la-
bels per node in the better-than-average
subset and in the worse-than-average sub-
set.

(c) The distribution of the label homophily
of the nodes in the better-than-average
subset and in the worse-than-average sub-
set.

Figure 6: Visualization of the analysis on the performance of SimpleGCN and JointTrainGCN using PCG as an
example.

6.1 Lower and Upper Bounds in CGL

(a) PCG (b) DBLP (c) Yelp

In Task-IL setting

(d) PCG (e) DBLP (f) Yelp

In Class-IL setting

Figure 7: Learning curves showing the dynamics of the average performance during learning on the task sequences
of different datasets. The color coding and legend names remain consistent across all subfigures. To avoid obstructing
the line plot, we omit the legend in the subplots corresponding to PCG.

In the previous CGL frameworks (Zhang et al., 2022; Ko et al., 2022), SimpleGCN and JointTrainGCN are shown to
have the worst and the best performance. Such a result is also expected as (i) SimpleGCN is employed on sequential

14

Published in Transactions on Machine Learning Research (June/2024)

data without any enhanced abilities to deal with catastrophic forgetting (thereby showing performance degradation)
and (ii) in JointTrainGCN all data is used to train the base GNN. However, the results from multi-label datasets in
both incremental settings, as shown in Table 3 and Table 4, reveal that SimpleGCN and JointTrain are no longer
suitable as lower and upper bounds for evaluating CGL performance in a more generalized scenario of multi-label
datasets. In the following, we theoretically and empirically analyze the rationale behind such a finding.

6.1.1 Label homophily and GCN

GNNs, specifically GCN, which is used as a base network are known to have better performance on high label-
homophilic graphs. As shown in Theorem 1, splitting labels into distinct prediction tasks and creating subgraphs for
each task results in an increase in label homophily of the edges in the subgraphs as compared to that in the full graph.
In particular, if in a dataset there are a large number of single-labeled nodes in the full graph with a non-zero edge
label homophily, the increase in label homophily of edges in subgraphs helps SimpleGCN to assign correct labels to
the corresponding nodes. However, in JointTrain, the presence of diverse neighborhoods around single-labeled
nodes leads to low label homophily, impacting its performance negatively.

Empirical evidence. Figure 6 illustrates the above statements with an example from one random shuffle of PCG
using the subgraphs generated for the Task-IL setting (colored in blue), Class-IL setting (colored in green) and
the original static graph given by the dataset (colored in red). On the x axis, we show the label homophily level of
the input graphs, while on the y axis, we show the performance of SimpleGCN after it is trained on the subgraph
in the corresponding incremental settings and JointTrainGCN on the whole static graph. We make the following
observations.

• The subgraphs in Task-IL setting andClass-IL setting have higher label homophily than the full graph, explaining
the better performance of SimpleGCN as compared to JointTrainGCN.

• We also observe that as compared to Task-IL setting, the subgraphs generated for Class-IL setting have lower
label homophily. This happens because of expanding label sets in Class-IL setting.

In Figure 6b and 6c, we further analyze the causes of the bad performance of the JointTrainGCN. We used the
JointTrainGCN model on test nodes from the joint train graph in PCG and calculated an average precision score for
each node. The mean value of the scores is then used as a threshold to divide the test nodes into the set of nodes that
perform better-than-average and the worse-than-average performing node subset, indicated by the blue and orange
bars in the plots. To remove the influence of the difference in the sizes of the subsets, we use the percentage of the
nodes in the corresponding subset as the y axis.

Based on the edge homophily defined in 1, we define the label homophily in the direct neighborhood of a node as the
averaged edge homophily connected to this node:
Definition 2. For a node v in the graph G, we define the label homophily of a node v with respect to its immediate

neighborhood N v
, represented as hv

, as the average of label homophily of the edges connected to v:

hv =
∑

e(i,j)|j∈N v he(i,j)

|N v|

We make the following observations.

• In Figure 6b, the percentage of single-labeled nodes in the worse-than-average performing subset is higher than
that the better-than-average subset.

• Figure 6c shows that in fact, the high percentage of worse-performing nodes have very low label homophily
(computed using Definition 2) close to 0.

• The above two observations indicate that the performance of JointTrainGCN suffers due to the presence of a
higher percentage of low label homophily edges with at least one single-labeled node.

15

Published in Transactions on Machine Learning Research (June/2024)

For completeness, we include in Figure 6c a Kernel Density Estimation on the node homophily distribution, which
shows a clear shift in the distributions of the label homophily in the better-performing subset as compared to the
worse-than-average subset.

In the following sections, we summarize the performance of the chosen baselines in the Task-IL setting and Class-IL
setting and provide a detailed analysis of the performances of the baselines on different datasets.

6.2 Results in Task-IL setting

Table 3: Performance of the baseline models in the Task-IL setting setting. The performances are reported in
Average Precision. "AP" stands for Average Precision, and the higher, the better. "AF" indicates the average forgetting,
and the higher, the better.

Task-IL PCG DBLP Yelp
AP AF AP AF AP AF

SimpleGCN 54.34 ± 0.04 −6.11 ± 0.03 87.47 ± 0.12 −15.76 ± 0.00 54.87 ± 0.03 −1.43 ± 0.05
LwF 58.12 ± 0.05 −2.84 ± 0.02 95.01 ± 0.01 −0.98 ± 0.00 54.89 ± 0.03 −2.07 ± 0.05
EWC 56.17 ± 0.03 −3.77 ± 0.03 92.28 ± 0.05 −6.51 ± 0.01 56.53 ± 0.05 −0.17 ± 0.02
MAS 56.26 ± 0.04 −2.64 ± 0.03 93.93 ± 0.03 −3.17 ± 0.00 56.05 ± 0.03 −0.76 ± 0.05
EvolveGCN 52.76 ± 0.06 −3.68 ± 0.03 78.94 ± 0.25 −35.20 ± 0.00 55.93 ± 0.07 −5.11 ± 0.07
ERGNN 53.64 ± 0.06 −1.39 ± 0.02 67.70 ± 0.03 −24.96 ± 0.00 54.99 ± 0.03 −0.92 ± 0.04
JointTrain 22.47 ± 0.47 − 85.60 ± 0.25 − 13.80 ± 0.08 −

Table 3 presents results for three real-world multi-label datasets in Task-IL setting. In general, the knowledge
distillation method LwF excels on graphs with shorter task sequences (e.g., PCG and DBLP with 7 and 2 tasks,
respectively). In contrast, all methods perform comparably on the graph with a long task sequence in Yelp with 50
tasks, among which regularization-based methods like EWC andMAS slightly outperform other approaches. This
disparity arises because LwF distills knowledge only from the last time step, leading to a performance drop with
longer sequences. Meanwhile, regularization-based methods, like EWC and MAS, which penalize the changes in
the important parameters for previous tasks, prove effective for longer task sequences. The weak performance of
the replay-based methods ERGNN indicates the importance of including the local topological structure around the
nodes in the buffer instead of sampling isolated nodes in the buffer. Dynamic graph neural networks like EvolveGCN
struggle with substantial forgetting despite achieving notable average precision scores because they only focus on
the current task. We visualize the learning curve of the models in the Task-IL setting on PCG, DBLP, and Yelp in
Figure 7a, 7b, and 7c, respectively. The x axis indicates the current time step, and the corresponding value on the y
axis infers the average performance of the model at the current time step over all the tasks encountered so far.

6.3 Detailed analyses on different datasets

PCG. PCG has a relatively shorter task sequence with 7 tasks. SimpleGCN showcases competitive scores but
is susceptible to forgetting, indicating the low correlation among the tasks. LwF outperforms SimpleGCN and
notably improved robustness against forgetting, which indicates the shorter task sequence in PCG contributes to
the effectiveness of LwF in retaining task knowledge because LwF only distills knowledge from the previous model.
EWC andMAS also exhibit competitive performance, demonstrating moderate resistance to forgetting. Meanwhile,
because of the low correlations among the tasks, EvolveGCN faces challenges using with a lower performance and
notable forgetting. JointTrainGCN has the poorest performance because of the low label homophily level on the
joint train graph.

DBLP. DBLP has the shortest task sequence length with only 2 tasks. LwF once again stands out with the highest
performance and minimal forgetting. The SimpleGCN has the worst forgetting on DBLP compared to the other two
datasets, indicating the tasks in DBLP have the lowest task correlation. While EWC andMAS present comparable
performance to LwF, they suffer from worse forgetting. Notably, the low task correlation also results in the low
performance and extreme forgetting of EvolveGCN and ERGNN, indicating the information from the previous task

16

Published in Transactions on Machine Learning Research (June/2024)

that lies in the model, and the data can not assist the model’s performance on the new task. And because the joint
train graph in DBLP has the highest level of label homophily, the JointTrainGCN also achieves better performances
compared to its performance on the other two multi-label datasets.

Yelp. The Yelp dataset is characterized by the longest task sequence encompassing 50 tasks and featuring the
highest task correlations, which is indicated by the competitive performance shown by SimpleGCN. Despite the
extended task sequence, training on a new task does not significantly impair performance on the previous tasks. The
long task sequence poses a potential challenge for LwF, as prolonged sequences lead to increased forgetting. EWC
and MAS emerge as robust performers in this demanding setting, demonstrating solid performance with competitive
performances and modest forgetting. EvolveGCN encounters a lower score coupled with considerable forgetting,
as the high task correlation makes the utilization of the previous model helpful to improve the performance of the
current task, EvolveGCN pays no attention to maintaining the performance on the old tasks. Additionally, ERGNN
achieves a comparable performance with minimal forgetting, positioning it as a strong contender on the Yelp dataset.
JointTrainGCN achieves the lowest performance because of the low label homophily level in the joint train graph.

6.4 Class-IL setting

Table 4: Performance of the baseline models in Class-IL setting setting. The performances are reported in Average
Precision. "AP" stands for Average Precision and the higher the better. "AF" indicates the average forgetting, and the
higher, the better.

Class-IL PCG DBLP Yelp
AP AF AP AF AP AF

SimpleGCN 56.70 ± 0.04 −2.48 ± 0.03 93.22 ± 0.03 −3.90 ± 0.00 55.78 ± 0.03 −1.56 ± 0.05
LwF 38.13 ± 0.13 3.48 ± 0.03 81.98 ± 0.18 −0.69 ± 0.00 33.72 ± 0.05 0.59 ± 0.05
EWC 35.12 ± 0.13 2.17 ± 0.03 81.88 ± 0.06 −8.92 ± 0.00 32.32 ± 0.08 1.71 ± 0.03
MAS 33.00 ± 0.15 0.98 ± 0.02 82.82 ± 0.10 −4.87 ± 0.00 32.07 ± 0.07 −1.10 ± 0.04

EvolveGCN 29.44 ± 0.12 0.23 ± 0.01 68.18 ± 0.03 −29.69 ± 0.00 23.45 ± 0.06 −0.70 ± 0.05
ERGNN 29.80 ± 0.14 −2.82 ± 0.03 59.99 ± 0.12 3.14 ± 0.00 24.00 ± 0.06 −0.12 ± 0.01

JointTrain 22.47 ± 0.47 − 85.60 ± 0.25 − 13.80 ± 0.08 −

Table 4 presents results for three real-world multi-label datasets in Class-IL setting. Overall, SimpleGCN achieves a
superior performance across all datasets. This performance contrast is noteworthy when compared to its performance
on multi-class datasets in the previous works (Zhang et al., 2022; Ko et al., 2022). The key distinction lies in our
evaluation framework, where we enable the label vectors of multi-labeled nodes to expand during Class-IL setting.
In essence, this approach incorporates the previous labels of multi-labeled nodes as part of the target labels in
subsequent tasks. This strategy serves a dual purpose: it mitigates the problem of forgetting while simultaneously
improving the performance on earlier tasks. This improvement is indicated by the positive average forgetting scores
in the Class-IL setting context. The performance of JointTrainGCN is not influenced by the change in the setting,
as it is trained on all the tasks simultaneously.

The drop in the performances of other baseline models is a result of the increasing number of classes in the tasks
at each time step, i.e., the difficulty of the task increases at each time step. We visualize the learning curve of the
models in the Class-IL setting on PCG, DBLP, and Yelp in Figure 7d, 7e, and 7f, respectively. The x axis indicates
the current time step, and the corresponding value on the y axis infers the average performance of the model at the
current time step over all the tasks encountered so far. Below, we analyze the performance of the chosen baseline
models on each of the datasets.

6.5 Detailed analyses on different datasets

PCG. SimpleGCN leads with the highest average performance overall tasks with low forgetting, as it has no CL
technique to prevent forgetting. On the other hand, the CL methods sacrificed the average performance on the task
sequence but successfully maintained a positive AF. This means the knowledge distillation- and regularization-based
models are able to retain the knowledge from the old tasks in the Class-IL setting. EvolveGCN and ERGNN achieve

17

Published in Transactions on Machine Learning Research (June/2024)

comparable average performance on the task sequence, but the ERGNN fails to retain the knowledge from the old task
as it only samples the isolated nodes in the replay buffer while ignoring the topological structure. JointTrainGCN
remains the worst-performing model because of the low label homophily in the input graph.

DBLP. DBLP has the shortest task sequence, but SimpleGCN and CL methods LwF, EWC, andMAS suffered from
the most severe forgetting problem on it. These negative average forgetting scores observed in DBLP indicate low
task correlation, i.e., the knowledge from the old task hinders the model from achieving better performance on the
new task. As the least multi-labeled graph, DBLP witnesses the least pronounced performance dip in the Class-IL
setting compared to Task-IL setting. This observation suggests that multi-label datasets pose a more challenging
test for models when the label vectors of nodes continue to grow.

Yelp. In Yelp, nodes are more multi-labeled compared to PCG and DBLP, as shown in Table 1. Overall, we see a
clear performance difference in Class-IL setting compared to Task-IL setting on Yelp. Furthermore, knowledge
distillation- and regularization-based methods surpass the dynamic graph neural network EvolveGCN and the replay-
based method ERGNN. This is primarily due to the fact that EvolveGCN neglects the preservation of knowledge from
previous tasks, which ultimately hampers overall performance. ERGNN, on the other hand, disregards the topological
structure surrounding the sampled experience nodes, further impacting its efficacy in handling the evolving tasks.

7 Conclusion

We develop a new evaluation framework which we refer to as AGALE for continual graph learning. Filling in the
gaps in the current literature, we (i) define two generalized incremental settings for the more general multi-label
node classification task, (ii) develop new data split algorithms for curating CGL datasets, and (iii) perform extensive
experiments to evaluate and compare the performance of methods from continual learning, dynamic graph learning
and continual graph learning. Through our theoretical and empirical analyses we show important differences of the
multi-label case with respect to the more studied single-label scenario. We believe that our work will encourage the
development of new methods tackling the general scenario of multi-label classification in continual graph learning.

Following the current literature, we focus on quantifying catastrophic forgetting in AGALE. In realistic scenarios,
there is also the case where the model could be required to selectively forget about the past. For example, users in the
social network might not further show interest in certain topics and un-follow some of the friends. Developing new
evaluation metrics as well as new models to reward selective forgetting of some tasks while avoiding catastrophic
forgetting overall is an interesting avenue for future research.

References
Uchenna Akujuobi, Yufei Han, Qiannan Zhang, and Xiangliang Zhang. Collaborative graph walk for semi-supervised

multi-label node classification. CoRR, abs/1910.09706, 2019. URL http://arxiv.org/abs/1910.09706.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. CoRR, abs/1711.09601, 2017. URL http://arxiv.org/abs/1711.
09601.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. CoRR, abs/1812.03596, 2018.
URL http://arxiv.org/abs/1812.03596.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning, 2019.

Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Aggarwal. Graph lifelong learning: A
survey, 2022.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual learning in deep
neural networks. Trends in cognitive sciences, 24(12):1028–1040, 2020.

18

http://arxiv.org/abs/1910.09706
http://arxiv.org/abs/1711.09601
http://arxiv.org/abs/1711.09601
http://arxiv.org/abs/1812.03596

Published in Transactions on Machine Learning Research (June/2024)

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning reservoir
sampling. CoRR, abs/2009.03632, 2020a. URL https://arxiv.org/abs/2009.03632.

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning reservoir
sampling, 2020b.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR,
abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Jihoon Ko, Shinhwan Kang, and Kijung Shin. Begin: Extensive benchmark scenarios and an easy-to-use framework
for graph continual learning. arXiv preprint arXiv:2211.14568, 2022.

Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong learning: Identifying
the stability gap, 2023.

Jeongtae Lee, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Lifelong learning with dynamically expandable
networks. CoRR, abs/1708.01547, 2017. URL http://arxiv.org/abs/1708.01547.

Zhizhong Li and Derek Hoiem. Learning without forgetting. CoRR, abs/1606.09282, 2016. URL http://arxiv.
org/abs/1606.09282.

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph neural networks. CoRR,
abs/2012.06002, 2020. URL https://arxiv.org/abs/2012.06002.

Jinghua Liu, Yaojin Lin, Weiping Ding, Hongbo Zhang, and Jixiang Du. Fuzzy mutual information-based multi-label
feature selection with label dependency and streaming labels. IEEE Transactions on Fuzzy Systems, 31:1–15, 01 2022.
doi: 10.1109/TFUZZ.2022.3182441.

Jinghua Liu, Yaojin Lin, Weiping Ding, Hongbo Zhang, and Jixiang Du. Fuzzy mutual information-based multilabel
feature selection with label dependency and streaming labels. IEEE Transactions on Fuzzy Systems, 31(1):77–91,
2023. doi: 10.1109/TFUZZ.2022.3182441.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continuum learning. CoRR, abs/1706.08840,
2017. URL http://arxiv.org/abs/1706.08840.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural networks? CoRR,
abs/2106.06134, 2021. URL https://arxiv.org/abs/2106.06134.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning, 2018.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, and
Charles E. Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic graphs. CoRR, abs/1902.10191,
2019. URL http://arxiv.org/abs/1902.10191.

German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. CoRR, abs/1802.07569, 2018. URL http://arxiv.org/abs/1802.
07569.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M. Bronstein.
Temporal graph networks for deep learning on dynamic graphs. CoRR, abs/2006.10637, 2020. URL https:
//arxiv.org/abs/2006.10637.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. Advances
in neural information processing systems, 30, 2017.

Binh Tang and David S. Matteson. Graph-based continual learning, 2021.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. CoRR, abs/1904.07734, 2019. URL
http://arxiv.org/abs/1904.07734.

19

https://arxiv.org/abs/2009.03632
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1708.01547
http://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
https://arxiv.org/abs/2012.06002
http://arxiv.org/abs/1706.08840
https://arxiv.org/abs/2106.06134
http://arxiv.org/abs/1902.10191
http://arxiv.org/abs/1802.07569
http://arxiv.org/abs/1802.07569
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
http://arxiv.org/abs/1904.07734

Published in Transactions on Machine Learning Research (June/2024)

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via continual learning. CoRR,
abs/2009.10951, 2020a. URL https://arxiv.org/abs/2009.10951.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application, 2023a.

Tianchun Wang, Dongsheng Luo, Wei Cheng, Haifeng Chen, and Xiang Zhang. Dyexplainer: Explainable dynamic
graph neural networks, 2023b.

Yigong Wang, Zhuoyi Wang, Yu Lin, Latifur Khan, and Dingcheng Li. Cifdm: Continual and interactive feature
distillation for multi-label stream learning. In Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’21, pp. 2121–2125, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450380379. doi: 10.1145/3404835.3463096. URL https://doi.org/10.
1145/3404835.3463096.

Zhen Wang, Liu Liu, and Dacheng Tao. Deep streaming label learning. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning

Research, pp. 9963–9972. PMLR, 13–18 Jul 2020b. URL https://proceedings.mlr.press/v119/
wang20n.html.

Tong Wei, Jiang-Xin Shi, and Yu-Feng Li. Probabilistic label tree for streaming multi-label learning. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pp. 1801–1811, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467226. URL
https://doi.org/10.1145/3447548.3467226.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. Spatio-temporal attentive rnn for node
classification in temporal attributed graphs. In Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, IJCAI-19, pp. 3947–3953. International Joint Conferences onArtificial Intelligence Organization,
7 2019. doi: 10.24963/ijcai.2019/548. URL https://doi.org/10.24963/ijcai.2019/548.

Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail: Graph structure aware
incremental learning for recommender systems. CoRR, abs/2008.13517, 2020. URL https://arxiv.org/
abs/2008.13517.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Haifeng Chen, and Wei Wang. Link prediction with spatial and
temporal consistency in dynamic networks. In Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI-17, pp. 3343–3349, 2017. doi: 10.24963/ijcai.2017/467. URL https://doi.org/
10.24963/ijcai.2017/467.

Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, KDD ’18, pp. 2672–2681, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220024. URL https:
//doi.org/10.1145/3219819.3220024.

Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong, and Victor Chang. Continual graph
learning: A survey, 2023.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graphsaint: Graph
sampling based inductive learning method. CoRR, abs/1907.04931, 2019. URL http://arxiv.org/abs/
1907.04931.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Cglb: Benchmark tasks for continual graph learning. In Thirty-sixth

Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

20

https://arxiv.org/abs/2009.10951
https://doi.org/10.1145/3404835.3463096
https://doi.org/10.1145/3404835.3463096
https://proceedings.mlr.press/v119/wang20n.html
https://proceedings.mlr.press/v119/wang20n.html
https://doi.org/10.1145/3447548.3467226
https://doi.org/10.24963/ijcai.2019/548
https://arxiv.org/abs/2008.13517
https://arxiv.org/abs/2008.13517
https://doi.org/10.24963/ijcai.2017/467
https://doi.org/10.24963/ijcai.2017/467
https://doi.org/10.1145/3219819.3220024
https://doi.org/10.1145/3219819.3220024
http://arxiv.org/abs/1907.04931
http://arxiv.org/abs/1907.04931

Published in Transactions on Machine Learning Research (June/2024)

Tianqi Zhao, Thi Ngan Dong, Alan Hanjalic, and Megha Khosla. Multi-label node classification on graph-structured
data. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=EZhkV2BjDP.

Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with experience replay.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4714–4722, May 2021. doi: 10.1609/aaai.v35i5.16602.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16602.

A Appendix

Organization. We analyze the characteristics of the subgraphs generated by AGALE and compare them with the full
graph given in the dataset in Section A.1. Furthermore, we also apply our AGALE on single-label graph CoraFull and
summarize and analyze the results in section A.2 to further demonstrate the generalization of AGALE in sing-label
scenarios. Additionally, we provide detailed time and space complexity analysis in Section A.3 and measure and
summarize the run time of the conducted experiments as well. Last but not least, we provide the visualization of the
performance matrix using heatmaps in Section A.4.

A.1 Data Analysis Of The Subgraphs

In this section, we present an analysis of the subgraphs derived by our evaluation framework from the static graph in
PCG, showcasing the efficacy of our approach. Figure 8 illustrates the degree distribution of nodes within the seven
subgraphs generated from the PCG dataset. We see from the degree distribution that the nodes in the subgraphs also
have a similar degree distribution to the nodes in the original static graph.

Figure 8: The Node Degree Distribution In the seven Subgraphs Generated From PCG.

A.2 Application Of Our Evaluation Framework On Single-label Graphs

In this section, we provide an example of applying our evaluation framework to single-label graphs. Here, we use
CoraFull as an example. We summarize the characteristics of CoraFull in Table 5. As shown in the Table, CoraFull
has 70 classes, which are divided into 35 tasks in 3 random orders.

In Table 6 and 7, we summarize the performance of LwF and ERGNN on the dataset CoraFull in Task-IL setting
and Class-IL setting and use the line plots in Figure 9 to visualize the learning curves of the chosen models in the
two settings on CoraFull.

21

https://openreview.net/forum?id=EZhkV2BjDP
https://openreview.net/forum?id=EZhkV2BjDP
https://ojs.aaai.org/index.php/AAAI/article/view/16602

Published in Transactions on Machine Learning Research (June/2024)

Table 5: The data statistics. Specifically, |V|, |E|, |C|, |L|, and rhomo denote the number of nodes, edges, classes, mean
label count per node, and label homophily of the static graph given by the dataset, respectively. |T | signifies the count
of tasks in the resulting task sequence. Additionally, |V| and |E| represent the average number of nodes and edges in
a subgraph. Further details on label homophily are captured through |r|tsk and |r|cls, representing the averaged label
homophily of subgraphs in the Task-IL setting and Class-IL setting), respectively.

|V| |E| |C| |T | rhomo |V| |E| |r|tsk |r|cls

CoraFull 19K 130K 70 35 0.57 566 1035 0.99 0.99

Table 6: Performance of the baseline models in Task-IL setting setting. The performances are reported in Average
Precision. "AP" stands for Average Precision and the higher the better. "AF" indicates the average forgetting, and the
higher, the better.

Task-IL setting CoraFull
AP AF

LwF 53.46 ± 0.12 −9.53 ± 0.16
ERGNN 59.49 ± 0.20 4.37 ± 0.34

Table 7: Performance of the baseline models in Class-IL setting setting. The performances are reported in Average
Precision. "AP" stands for Average Precision and the higher the better. "AF" indicates the average forgetting, and the
higher, the better.

Class-IL setting CoraFull
AP AF

LwF 5.42 ± 0.15 −7.45 ± 0.14
ERGNN 40.39 ± 0.27 −56.08 ± 0.25

A.3 Time And Space Complexity Analysis

Here, we provide theoretical time and space complexity analysis of the models used in this work.

Complexity analysis for the base model. As the base model used by all compared methods is GCN (Kipf &
Welling, 2016), we first analyze its complexity. To keep the notations simpler let us assume that the feature (including
the input features) dimension in all layers is equal to d. Let n, m denote the number of nodes and edges, respectively
in the input graph at any time point. For the sake of brevity in the presentation, we assume that the number of nodes
and edges stay the same for all time points.

For GCN, at each layer, the operation includes feature transformation, neighbourhood aggregation, and activation.
The feature transformation over two layers leads to the multiplication of matrices of sizes (i) n × d and d × d, and (ii)
d × d and d × d which leads to a total time complexity of O(nd2).

And the neighborhood aggregation requires a multiplication between matrices of size n × n and n × d, yielding
O(n2d). In practice, we compute this using a sparse operator, such as the PyTorch scatter function for each entry (i, j)
in the adjacency matrix of the edge e ∈ E , which yields a total cost of O(md). Finally, the activation is an element-wise
function with the time complexity of O(n). Overall, the time complexity of a L layer GCN is O(nd2L + mdL + nL).

For computing space requirements of GCN, we include (i) the space required for the input adjacency matrix of size
n × n, (ii) the feature matrix of size n × d, and (iii) the model itself with d2 + d parameters for weight and bias in
each layer. In total, the space complexity of GCN is O(n2 + nd + L(d2 + d)).

As all methods mentioned in this work either use GCN as the backbone model or are built upon GCN, we denote in
the following discussion and the Table 8 the time and space requirement of GCN as TGCN and SGCN respectively.

22

Published in Transactions on Machine Learning Research (June/2024)

(a) LwF inTask-IL setting andClass-IL setting onCoraFull
(b) ERGNN in Task-IL setting and Class-IL setting on Cora-
Full

Figure 9: Our Framework on Single-label Datasets

Complexity analysis of SimpleGCN. SimpleGCN trains a GCN for each time step t ∈ T . And because it does
not apply any continual learning techniques to remember from previous time steps, the time is the same with GCN,
i.e., O(|T |TGCN) and the space complexity is SGCN .

Complexity analysis of LwF. LwF uses GCN as the backbone model, the GCN is trained at each time step
t ∈ T for the new task, which gives the time complexity of O(|T |TGCN). To do the knowledge distillation, the
previous model also calls GCN forward passes with time complexity of O(|T |TGCN). Overall, the time complexity is
O(2|T |TGCN). The space consumption consists of loading the current GCN model and the previous GCN model for
the knowledge distillation, with space complexity of O(2SGCN).

Complexity analysis of EWC. EWC calls forward passes of GCN at each time step, and for each parameter at
each time step t ∈ T , the values on the diagonal of the fisher matrix are approximated using the value of each model
parameter itself and its gradient. This is an element-wise calculation, which gives the time complexity of O(|T | × M),
M indicates the number of parameters in the GCN, which is L(d2 + d). Overall, the time complexity of EWC is
the time complexity of GCN plus the calculation of the fisher matrix, which is O(|T | × (TGCN + M)). The space
requirement of EWC consists of the space requirement of GCN, and the matrix stores the gradients of the parameters
at each time step of size O(|T | × M). In total, the space complexity of EWC is O(SGCN + |T |M).

Complexity analysis of MAS. Similarly, MAS using GCN as backbone model, at each time step t ∈ T , there are
forward passes of GCN and the calculation of fisher matrix for parameters, which gives the overall time complexity
of O(|T |(TGCN + M)). The space requirement of MAS consists of the space complexity of GCN and one matrix for
the gradient of the parameters of size O(M), which yields in total O(SGCN + M).

Complexity analysis of EvolveGCN. EvolveGCN is a method from the category of Dynamic Graph Neural
networks, which trains a new model at each time step with time complexity same as GCN, i.e., TGCN and updates
the model parameter using a recurrent neural network using the corresponding parameter from previous time step as
input, which has the time complexity of O(|T |nd). Overall, EvolveGCN is more expensive than the other Continual
Learning methods with time complexity of O(TGCN + |T |nd). The space requirement of EvolveGCN consists of
the space requirement of the GCN plus the recurrent unit for the reset, update, and new gate with 3(d2 + d). In
our implementation, we use one recurrent layer for each layer in GCN. Thus the overall space complexity yields
O(2SGCN + 3M).

Complexity analysis of ERGNN. ERGNN is a replay-based method. At each time step t ∈ T , it retrains the GCN
on the current graph and the buffer-nodes-formed graph, and the sampling process goes through the nodes in the
new graph, which gives the time complexity of O(2|T |TGCN + n). The space requirement of ERGNN consists of the
buffer size of |B| and the space complexity of GCN. In total, it yields the space complexity of O(SGCN + |B|).

23

Published in Transactions on Machine Learning Research (June/2024)

Complexity analysis of JointTrainGCN. JointTrainGCN has the same time and space complexity as the base
model GCN. It uses the whole static graph as input and is only trained once without the task sequence.

The above time and space complexity analyses are summarized in Table 8.

Table 8: The simplified time complexity analysis. TGCN and SGCN corresponds to the time and space requirement of
the base GCN model.

Model Time Complexity Space Complexity
SimpleGCN O(|T |TGCN) SGCN

LwF O(2|T |TGCN) O(2SGCN)
EWC O(|T | × (TGCN + M)) O(SGCN + |T |M)
MAS O(|T |(TGCN + M)) O(SGCN + M)
EvolveGCN O(TGCN + |T |nd) O(2SGCN + 3M)
ERGNN O(2|T |TGCN + n) O(SGCN + |B|)
JointTrainGCN TGCN SGCN

Besides, we also measured the run time of the experiments in this work. The results are summarized in Table 9. Note
that the running time of the experiments can be biased due to different splits and how the resources are distributed
on the computer. The theoretical analysis may provide more insights into the complexity of time.

Table 9: The computation time of the experiments from Section 6 in second. The computation time is measured with
one random split for each dataset.

Task-IL setting Class-IL setting
PCG DBLP Yelp PCG DBLP Yelp

SimpleGCN 43.47 801.85 77163.32 88.31 886.79 104869.58
LwF 49.17 1193.40 142468.01 111.23 732.76 264657.47
EWC 51.32 939.79 79804.48 135.44 790.73 200649.31
MAS 148.19 1169.50 75255.31 135.93 1230.88 145917.67

EvolveGCN 40.34 427.99 120580.88 94.94 497.80 310540.41
ERGNN 47.27 536.20 416090.74 172.05 131.57 167624.39

JointTrainGCN 166.82 796.19 80827.72 166.82 796.19 80827.72

A.4 Visualization of the Performance Matrix

In this section, we provide the visualization of the performance matrix using the heatmap on the three multi-label
datasets. In the heatmap, each cell corresponds to a unique entry in M, and its position in the heatmap mirrors its
position in the matrix. We use the gradient of the color to indicate the performance. The color intensity indicates the
magnitude of the value.

In the Figure 10, 11, and 12, we show the heatmaps correspond to the performance matrices of the baseline models in
the Task-IL setting on datasets PCG, DBLP, and Yelp, respectively, while in the Figure 13, 14, and 15, we show the
heatmaps correspond to the performance matrices of the baseline models in the Class-IL setting on datasets PCG,
DBLP, and Yelp, respectively.

24

Published in Transactions on Machine Learning Research (June/2024)

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 10: Visualization of the performance matrix of the methods in TaskIL setting on dataset PCG

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 11: Visualization of the performance matrix of the methods in TaskIL setting on dataset DBLP

25

Published in Transactions on Machine Learning Research (June/2024)

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 12: Visualization of the performance matrix of the methods in TaskIL setting on dataset Yelp

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 13: Visualization of the performance matrix of the methods in Class-IL setting on dataset PCG

26

Published in Transactions on Machine Learning Research (June/2024)

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 14: Visualization of the performance matrix of the methods in Class-IL setting on dataset DBLP

(a) Simple GCN (b) LwF (c) EWC

(d) MAS (e) EvolveGCN (f) ERGNN

Figure 15: Visualization of the performance matrix of the methods in Class-IL setting on dataset Yelp

27

