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Abstract

Perfect machine translation (MT) would ren-001
der cross-lingual transfer (XLT) by means of002
multilingual language models (mLMs) super-003
fluous. Given, on the one hand, the large body004
of work on improving XLT with mLMs and,005
on the other hand, recent advances in mas-006
sively multilingual MT, in this work, we sys-007
tematically evaluate existing and propose new008
translation-based XLT approaches for transfer009
to low-resource languages. We show that all010
translation-based approaches dramatically out-011
perform zero-shot XLT with mLMs—with the012
combination of round-trip translation of the013
source-language training data and the trans-014
lation of the target-language test instances at015
inference—being generally the most effective.016
We next show that one can obtain further em-017
pirical gains by adding reliable translations018
to other high-resource languages to the train-019
ing data. Moreover, we propose an effective020
translation-based XLT strategy even for lan-021
guages not supported by the MT system. Fi-022
nally, we show that model selection for XLT023
based on target-language validation data ob-024
tained with MT outperforms model selection025
based on the source-language data. We be-026
lieve our findings warrant a broader inclusion027
of more robust translation-based baselines in028
XLT research.029

1 Introduction030

Multilingual language models (mLMs) like031

mBERT (Devlin et al., 2019), XLM-R (Conneau032

et al., 2020), or mT5 (Xue et al., 2021) have be-033

come the backbone of multilingual NLP. Their mul-034

tilingual pretraining and the consequent ability to035

encode texts from a wide range of languages make036

them suitable for cross-lingual transfer (XLT) for037

downstream NLP tasks: fine-tuned on available038

task-specific data in high-resource languages, they039

can be used to make predictions for languages040

that lack task-specific (training) data. Their ef- 041

fectiveness as vehicles of both zero-shot (no task- 042

specific training instances in the target language, 043

ZS-XLT) and few-shot XLT (few training instances 044

in the target language, FS-XLT) has been docu- 045

mented for a plethora of tasks and languages (Wu 046

and Dredze, 2019; Wang et al., 2019; Lauscher 047

et al., 2020; Schmidt et al., 2022). Cross-lingual 048

transfer with mLMs, however, yields poor perfor- 049

mance for low-resource target languages that are 050

(i) un(der)represented in the pretraining corpora, 051

especially if they are additionally (ii) linguistically 052

distant from the source language (Lauscher et al., 053

2020; Adelani et al., 2022; Ebrahimi et al., 2022). 054

Recent years have witnessed a large body of 055

work that focused on improving XLT, in partic- 056

ular for low-resource target languages. First, a 057

multitude of new multilingual benchmarks have 058

been introduced, aiming to either evaluate XLT 059

with mLMs on sets of linguistically diverse lan- 060

guages (Clark et al., 2020; Ponti et al., 2020; Ruder 061

et al., 2021) or on groups of related low-resource 062

languages from underrepresented language fami- 063

lies (i.e., families without any high-resource lan- 064

guage) and/or geographies (Adelani et al., 2021, 065

2022; Ebrahimi et al., 2022; Aggarwal et al., 2022; 066

Muhammad et al., 2022; Armstrong et al., 2022; 067

Winata et al., 2023, inter alia). Second, a diverse 068

set of methodological proposals have been intro- 069

duced, ranging from (i) attempts to better align 070

mLMs’ representation subspaces of languages (Wu 071

and Dredze, 2020; Hu et al., 2021; Yang et al., 2022, 072

inter alia) over (ii) those that increase the represen- 073

tational capacity for underrepresented languages, 074

typically via additional post-hoc language-specific 075

language modeling training (Pfeiffer et al., 2020, 076

2022; Ansell et al., 2022; Parović et al., 2022, inter 077

alia) to (iii) various FS-XLT proposals that seek 078

to maximally exploit small sets of task-specific 079

target language instances (Hedderich et al., 2020; 080
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Lauscher et al., 2020; Zhao et al., 2021; Schmidt081

et al., 2022, inter alia).082

Much of the above work rendered translation-083

based XLT strategies—in which an MT model is084

employed to either translate the source-language085

training data into the target language before train-086

ing (referred to as translate-train) or translate the087

target-language instances to the source language088

before inference (translate-test)—competitive w.r.t.089

mLM-based transfer (Hu et al., 2020; Ruder et al.,090

2021; Ebrahimi et al., 2022; Aggarwal et al., 2022).091

Sporadically, however, MT has been leveraged for092

more elaborate translation-based strategies—e.g.,093

translating source-language training data to mul-094

tiple (related) target languages (Hu et al., 2020),095

combining the translated target-language training096

data with the original source-language training data097

(Chen et al., 2023), or using monolingual English098

LMs instead of mLMs for translate-test (Artetxe099

et al., 2020, 2023)—complicating the selection of100

translation-based baselines in XLT research. In101

fact, the most recent evidence (Artetxe et al., 2023)102

suggests that the potential of translation-based XLT103

has been underestimated due to the selection of sub-104

optimal translation strategies. What is more, much105

of the work on low-resource XLT completely disre-106

gards translation-based baselines, arguing a priori,107

without empirical confirmation, that (1) due to the108

lack of parallel data, MT models for low-resource109

languages exhibit poor performance, which directly110

caps the potential of translation-based XLT and/or111

(2) their evaluation encompasses target languages112

that are unsupported by (state-of-the-art, commer-113

cial) MT systems.114

Two recent developments, however, warrant a115

systematic (re-)evaluation of translation-based XLT116

for low-resource languages: (i) the availability of117

open massively multilingual MT models that not118

only support an increasingly large set of languages119

(Tiedemann and Thottingal, 2020; Liu et al., 2020;120

Fan et al., 2021; Team et al., 2022; Kudugunta121

et al., 2023), but also yield meaningful translations122

even for the smallest of those languages; and (ii)123

recent proposals of novel translation-based XLT124

strategies that have been largely uninvestigated in125

XLT to truly low-resource languages (Hu et al.,126

2020; Chen et al., 2023; Artetxe et al., 2023).127

Contributions. In this work, we contribute to the128

body of translation-based XLT in light of these re-129

cent advances, focusing explicitly on low-resource130

target languages: 1) we offer a systematic compar- 131

ison of different translation-based XLT strategies 132

on three established benchmarks for sequence- and 133

token-level classification, encompassing in total 134

40 different low-resource languages; 2) Motivated 135

by the success of multi-source training (Ruder, 136

2017; Ansell et al., 2021) and ensembling (Oh 137

et al., 2022), as well as the high quality of MT 138

between high-resource languages, we propose two 139

novel strategies that integrate translations from 140

the source data to three diverse high-resource lan- 141

guages (Turkish, Russian, and Chinese); we find 142

that integrating translations to other high-resource 143

languages substantially improves performance for 144

sequence-level classification tasks; 3) We propose 145

a simple and effective translation-based XLT ap- 146

proach for languages not covered by the MT mod- 147

els in which we translate from/to the linguistically 148

closest supported language, demonstrating substan- 149

tial gains over ZS-XLT with mLMs; 4) We intro- 150

duce a translation-based model selection in which 151

the optimal model checkpoint is selected based on 152

performance on the validation data automatically 153

translated to the target language; we show that this 154

results in better performance than model selection 155

based on source-language validation data. 5) Fi- 156

nally, we run several ablations, offering insights 157

into the impact of lower-level design decisions— 158

such as the MT decoding strategy or joint vs. se- 159

quential fine-tuning—on translation-based XLT. 160

2 Translation-Based Strategies 161

Most of the existing XLT work evaluates only the 162

most straightforward translate-train (T-Train) and 163

translate-test (T-Test) baselines. The former as- 164

sumes the translation of the training data, available 165

in some high-resource language (almost always En- 166

glish), to the target language in which inference is 167

performed. The latter trains on the clean source- 168

language data but, at inference time, translates the 169

target language instances to the source language 170

before making predictions. More recent works (Oh 171

et al., 2022; Artetxe et al., 2023) propose a combi- 172

nation of the two, which we dub roundtrip-train- 173

test (RTT), where the source-language training data 174

is round-trip translated (i.e., to the target language 175

and then back) so that the translated test data at 176

inference time better matches the training distribu- 177

tion, reflecting the idiosyncrasies of the same MT 178

model. In what follows, we describe the variants of 179
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Figure 1: Schematic overview of translation-based XLT methods. Clean source or target language data is indicated
in black, while noisy translated data is shown in orange.

T-Train, T-Test, and RTT that we evaluate. Fig-180

ure 1 concisely illustrates all MT-based approaches181

under evaluation.182

2.1 Translate-Train (T-Train)183

Target (TRG). This is the standard T-Train where184

the source-language training data is translated into185

one particular target language. The mLM is then186

fine-tuned on the automatically translated (i.e.,187

noisy) target-language training dataset.188

Multi-Target (M-TRG). This is a generalization of189

T-Train in which we translate the source-language190

training data into each language from a set of (pre-191

sumably related) target languages: in our experi-192

ments, these are all languages of a particular bench-193

mark dataset supported by the MT model, e.g., all194

AmericasNLI languages (Ebrahimi et al., 2022).195

We then fine-tune the mLM in a multi-source setup,196

i.e., on the concatenation of the training data trans-197

lated to each of the target languages (per task).198

Keeping the Source-Language Data (+SRC). In199

this variant, we concatenate the noisy translated200

training dataset in the target language (or a set201

of target languages) with the original (i.e., clean)202

training data in the source language. We denote203

these variants TRG+SRC (if we concatenate source204

language data to TRG) and M-TRG+SRC (if we con-205

catenate the source-language data to M-TRG).206

Adding Diverse High-Resource Languages207

(+HR). We additionally explore translating the208

source-language training data to a (small) set of209

linguistically diverse high-resource languages. The210

motivation for this is two-fold: (1) multilingual211

(i.e., multi-source) fine-tuning has been shown to212

bring benefits compared to monolingual (English-213

only) fine-tuning (Ansell et al., 2021); and (2) au-214

tomatic translation from high-resource source lan- 215

guage (i.e., English) to other high-resource lan- 216

guages (i.e., Chinese, Turkish, and Russian) is 217

generally of much higher quality than translation 218

to low-resource target languages (e.g., Guarani). 219

Exploiting strong MT between high-resource lan- 220

guages will, under this assumption, allow us 221

to obtain linguistically diverse yet high-quality 222

training data, which should consequently lead to 223

improvements in XLT to any low-resource lan- 224

guage. We evaluate variants in which transla- 225

tions to high-resource languages are added to 226

TRG+SRC (i.e., TRG+SRC+HR) and M-TRG+SRC (i.e., 227

M-TRG+SRC+HR). 228

2.2 Translate-Test (T-Test) 229

We evaluate the standard T-Test baseline where 230

the model is trained on the original source-language 231

data and, at inference time, the target-language in- 232

stances are translated to the source language before 233

the source-language model makes the prediction. 234

2.3 Roundtrip-Train-Test (RTT) 235

Round-Trip T-Train + T-Test (RT). Prior work 236

suggested that the mismatch between high-quality 237

training data and noisily translated evaluation data 238

poses a challenge for the T-Test approach (Artetxe 239

et al., 2020; Oh et al., 2022; Artetxe et al., 2023). 240

To overcome this shift in data distribution that 241

the model is exposed to at test time, in RTT, we 242

also train on the noisy source-language data ob- 243

tained via round-trip translation of the original 244

clean source-language data to the target language 245

and back. Similar to T-Train, we evaluate the vari- 246

ants of RTT where the noisy source-language data 247

is obtained via round-trip translation to a single tar- 248

get language (denoted with RT) and multiple target 249
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languages (M-RT) and, finally, concatenated to the250

original (i.e., clean) source-language data (RT+SRC,251

M-RT+SRC).252

Model Ensembling for RTT (M-RT-Ens). Follow-253

ing our idea of exploiting other high-resource lan-254

guages in translation-based XLT, we propose a255

novel RTT variant in which we not only round-256

trip translate the source-language data into the tar-257

get language and back into the source language258

but also translate the source data into the target259

language and then into different high-resource260

languages, other than the initial source language261

(e.g., Source→Target→Chinese). We apply this262

paradigm to the same three high-resource lan-263

guages used for the T-Train-based approaches264

(i.e., Chinese, Russian, and Turkish). Here in en-265

sembling, however, for each of these high-resource266

languages, we independently fine-tune an mLM267

instance on the round-trip translated data of that268

language, concatenated with the original source-269

language (i.e., English) data (e.g., for English as270

source and Chinese as the high-resource auxiliary,271

we concatenate the clean original English with the272

noisy Chinese data obtained via two-step trans-273

lation). Finally, we ensemble the predictions of274

the (four) fine-tuned models (English, Chinese,275

Turkish, Russian): we average the class proba-276

bility distributions of the models obtained for a277

target-language test instance, previously translated278

to each of the high-resource languages, respec-279

tively. We denote this RTT ensemble approach280

with M-RT-Ens-HR. Since model ensembles are281

known to outperform single models (Wortsman282

et al., 2022), in our experiments, we compare283

M-RT-Ens-HR against the ensemble (of equally284

many models) fine-tuned on the round-trip trans-285

lated source-language data (i.e., round-trip trans-286

lated English) only, using different random seeds287

(we denote this with M-RT-Ens-SRC).288

2.4 Unsupported Languages289

Even though recent multilingual MT models cover290

a broad range of low-resource languages, the ma-291

jority of the world’s languages remain unsupported.292

Motivated by prior work on finding the best trans-293

fer source for a given target language (Lin et al.,294

2019; Adelani et al., 2022; Glavaš and Vulić, 2021),295

we propose to translate to (T-Train) and from296

(T-Test) an MT-supported language that is linguis-297

tically closest to the unsupported target: to this end,298

we quantify the linguistic proximity of languages 299

as the cosine similarity of their typological vectors 300

from the URIEL database (Littell et al., 2017). 301

3 Experimental Setup 302

Machine Translation. For translation, we leverage 303

the state-of-the-art massively multilingual NLLB 304

model with 3.3B parameters (Team et al., 2022). 305

Building on prior work (Artetxe et al., 2023), we 306

ablate over decoding strategies, including greedy 307

decoding, nucleus sampling with top-p = 0.8, and 308

beam search with beam size 5. In our final evalua- 309

tion, translations are generated using beam search. 310

Evaluation Tasks and Datasets.. Following 311

prior work on low-resource XLT (Ansell et al., 312

2021, 2022; Schmidt et al., 2022), we evaluate on 313

sequence- and token-level classification tasks cov- 314

ering languages un(der)represented in the pretrain- 315

ing corpus of our base models. In all experiments, 316

English is the source language. 317

Natural Language Inference (NLI). We evaluate our 318

approaches on AmericasNLI (AmNLI) (Ebrahimi 319

et al., 2022). AmNLI contains 10 indigenous lan- 320

guages of the Americas, only 3 of which are sup- 321

ported by the NLLB model we use.1 We utilize the 322

English training and validation portion of XNLI 323

(Conneau et al., 2018) as our source-language data. 324

The dataset covers 393k training and 2490 valida- 325

tion instances. We jointly encode the hypothesis- 326

premise pair and feed the transformed sequence 327

start token into a feed-forward softmax classifier. 328

Text Classification (TC). We use the sentiment 329

classification dataset NusaX (Winata et al., 2023), 330

which comprises 10 languages from Indonesia, 7 331

of which are supported by the NLLB model. The 332

English training (500 instances) and validation 333

portions (100 instances) are used as our source- 334

language data. Similar to NLI, we feed the trans- 335

formed representation of the sequence start token— 336

output of the Transformer encoder—into the soft- 337

max classifier. 338

Named Entity Recognition (NER). Our evaluation 339

spans a set of 20 languages from MasakhaNER 340

2.0 (Masakha) (Adelani et al., 2022). The dataset 341

comprises a diverse set of underrepresented lan- 342

guages spoken in Sub-Saharan Africa. Among 343

1We provide the complete list of languages in App. A.
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these, 18 languages are supported by the NLLB344

model we use for MT. Our source data are the En-345

glish training and validation portions of CoNLL346

(Tjong Kim Sang and De Meulder, 2003), with347

more than 14k instances for training and 3250 vali-348

dation instances. In this token-level task, the classi-349

fier makes a prediction from the output (i.e., trans-350

formed) representation of each input token.351

Word Aligner. Translation-based transfer for352

token-level tasks requires label projection, i.e.,353

mapping of the labels from source-language tokens354

to the tokens of the translated target sequence. To355

that end, we map labels post-translation with Ac-356

cAlign (Wang et al., 2022), a state-of-the-art word357

aligner based on the multilingual sentence encoder358

LaBSE (Feng et al., 2022).2 When recovering the359

labels for the translated sequences, we discard a360

training instance whenever we cannot map a la-361

beled source-language token to its target-language362

counterpart. The projection rates (for training data),363

i.e., the percentage of successful token mappings,364

is given for all supported languages in the App. B.365

Downstream Fine-Tuning. We use XLM-R366

(Large) (Conneau et al., 2020) in all our experi-367

ments. For T-Test and RTT, we also experiment368

with RoBERTa (Large) (Liu et al., 2019). We369

outline the downstream fine-tuning details in Ap-370

pendix C. We evaluate models at various check-371

points of training: (i) at the end of the epoch3 with372

the best performance on source-language valida-373

tion data (Val-Src), (ii) at the end of the epoch with374

the best performance on source-language valida-375

tion data machine translated to the target language376

(Val-MT-Trg), and (iii) at the end of the epoch with377

the best performance on target-language validation378

data (Val-Trg). Val-MT-Trg and Val-Trg cannot be379

directly applied to T-Test and RTT as both model380

selection methods use (translated) target language381

data, while the training data of T-Test and RTT is382

solely in English. Hence, we adapt Val-MT-Trg and383

Val-Trg for T-Test and RTT: for Val-MT-Trg, we384

conduct round-trip translation on the source vali-385

dation data pivoting through the target language386

(i.e., Source→Target→Source), and for Val-Trg,387

we simply MT-ed the (oracle) target validation data388

to the source language. Unless specified otherwise,389

we report results based on Val-Src and show the390

results for Val-MT-Trg and Val-Trg in Appendix F.391

2We adhere to the hyperparameters specified in their work.
3For AmNLI, we checkpoint after every 10% of an epoch.

AmNLI NusaX Masakha Avg

Zero-Shot

SRC X 44.7±1.2 71.2±1.3 47.9±0.6 54.6±1.1

Translate-Train

TRG X 61.1±0.4 77.8±0.8 62.1±0.3 67.0±0.5

TRG+SRC X 62.4±0.3 79.7±0.6 64.1±0.3 68.8±0.4

M-TRG X 63.4±0.5 79.0±0.7 56.9±0.4 66.4±0.5

M-TRG+SRC X 63.6±0.6 80.8±0.4 57.4±0.6 67.3±0.5

incl. Translations to High-Resource Languages

TRG+SRC+HR X 62.9±0.5 78.1±1.3 62.9±0.3 68.0±0.8

M-TRG+SRC+HR X 64.7±0.4 79.1±1.9 58.0±0.5 67.3±1.2

Translate-Test

SRC R 53.1±0.1 79.4±0.4 54.7±0.1 62.4±0.2

SRC X 52.9±0.5 80.9±0.8 54.1±0.1 62.6±0.5

Roundtrip-Train-Test

RT+SRC R 62.4±0.6 81.2±0.4 54.6±0.1 66.1±0.4

RT+SRC X 63.1±0.4 81.6±0.5 53.6±0.2 66.1±0.4

M-RT+SRC R 64.3±0.2 81.0±0.4 54.0±0.2 66.4±0.3

M-RT+SRC X 64.0±0.3 82.1±0.4 53.0±0.4 66.4±0.4

M-RT-Ens-SRC X 63.7±0.2 82.8±0.3 53.7±0.1 66.7±0.2

incl. Translations to High-Resource Languages

M-RT-Ens-HR X 66.1±0.2 83.9±0.4 45.8±0.1 65.3±0.3

Table 1: Results for translation-based XLT for languages
supported by the MT model. We use XLM-R (X) and
RoBERTa (R). The best results are shown in bold.

We run experiments with 3 distinct random seeds 392

and report mean accuracy for NLI and average F1 393

for NER and TC, as well as the standard deviation. 394

4 Main Results and Discussion 395

Table 1 summarizes our main results: performance 396

of MT-based T-Train, T-Test, and RTT variants 397

in low-resource XLT on three low-resource XLT 398

benchmarks. 399

T-Train vs. T-Test. We first assess the widely 400

used T-Train and T-Test baselines. These sim- 401

ple translation-based XLT strategies outperform 402

ZS-XLT dramatically: from 6.2% on Masakha 403

(T-Test with XLM-R) up to 18.9% on AmNLI 404

(M-TRG+SRC), rendering them as unavoidable base- 405

lines for any XLT effort. Keeping the original clean 406

source language data in the training mix is benefi- 407

cial: TRG+SRC and M-TRG+SRC consistently outper- 408

form TRG and M-TRG, respectively. For sequence- 409

level classification tasks (AmNLI and NusaX), 410

training on the concatenation of the clean source 411

data and the source data translated to a set of re- 412

lated target languages (M-TRG+SRC) yields the best 413

results. For NER on Masakha, TRG+SRC maxi- 414
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mizes XLT performance. We further observe that415

the optimal T-Train (TRG+SRC) strategy signifi-416

cantly outperforms (+6.2%) the best T-Test ap-417

proach. Our T-Test results also demonstrate that418

in low-resource XLT, mLMs yield comparable per-419

formance to monolingual LMs: this contradicts the420

recent T-Test finding for high-resource languages421

of Artetxe et al. (2023).422

RTT. For sequence-level classification tasks, we423

find that RTT outperforms the best T-Train strat-424

egy (M-TRG+SRC), which is in line with prior find-425

ings (Artetxe et al., 2023; Oh et al., 2022). For426

NusaX, this observation holds for all RTT variants.427

For AmNLI, only M-RT+SRC consistently outper-428

forms M-TRG+SRC. We further observe inconclusive429

results regarding the LM for which we get the high-430

est performance for M-RT+SRC: while RoBERTa is431

superior on AmNLI, XLM-R displays better perfor-432

mance on NusaX. This result, however, does not ex-433

tend to RT+SRC, for which XLM-R consistently out-434

performs RoBERTa. As already seen, T-Test lags435

T-Train on Masakha, and this is also true for RTT.436

Even more so, RTT progressively degrades in perfor-437

mance the more round-trip translated data is intro-438

duced (i.e., RT+SRC trails T-Test by at least 0.1%439

whereas M-RT+SRC does so by 0.7%). We hypothe-440

size that both the amount of round-trip translated441

data and the type of task drive the performance442

of monolingual LMs like RoBERTa in translation-443

based XLT to low-resource languages. Our re-444

sults challenge prior work (Artetxe et al., 2023; Oh445

et al., 2022), in which T-Test and RTT are better446

with monolingual LMs than with mLMs. Their ex-447

periments, however, covered predominantly high-448

resource target languages.449

Adding High-Resource Languages. Table 1 fur-450

ther reports results of T-Train and RTT variants451

that include high-resource languages (i.e., Chi-452

nese, Russian, and Turkish) for translation-based453

XLT. The results for T-Train are inconsistent.454

For AmNLI, including high-resource languages455

(M-TRG+SRC+HR) boosts performance by at least456

1.1%. These gains persist for different model457

selection strategies (cf. Appendix F). However,458

such multilingual data augmentation adversely af-459

fects the performance on NusaX and Masakha.460

We posit that the choice of high-resource lan-461

guages critically affects T-Train since the test462

data is still in the low-resource target language,463

increasing the risk of negative transfer. In con-464

AmNLI NusaX Masakha Avg

Translate-Train

Val-Src 62.6±0.5 79.3±0.6 60.1±0.4 67.3±0.5

Val-MT-Trg 62.8±0.5 79.6±0.7 60.3±0.3 67.6±0.5

Val-Trg 62.9±0.5 80.2±0.6 62.2±0.4 68.4±0.5

Translate-Test

Val-Src 53.0±0.4 80.1±0.6 54.4±0.6 62.5±0.5

Val-MT-Trg 53.1±0.5 79.8±0.5 54.3±0.1 62.4±0.4

Val-Trg 53.4±0.4 80.8±0.7 54.4±0.1 62.9±0.5

Roundtrip-Train-Test

Val-Src 63.5±0.4 81.5±0.4 53.8±0.3 66.3±0.4

Val-MT-Trg 63.5±0.4 81.4±0.5 53.7±0.2 66.2±0.4

Val-Trg 63.4±0.5 81.7±0.4 54.0±0.2 66.4±0.4

Table 2: Comparison of model selection strategies for
languages supported by the MT model. We average
the results of TRG, TRG+SRC, M-TRG, and M-TRG+SRC for
T-Train, SRC for T-Test, and RT+SRC and M-RT+SRC
for RTT. The best results per task and training setup
(e.g., T-Train) are underlined; the best results for each
training setup are shown in bold.

trast, integrating high-resource languages into RTT 465

(i.e., M-RT-Ens-HR) results in substantial gains 466

of at least 1.8% for AmNLI and NusaX com- 467

pared to M-RT+SRC. Unlike its success on sequence- 468

level classification tasks, M-RT-Ens-HR degrades 469

performance for Masakha. While ensembles of- 470

ten inherently produce higher scores than single 471

models (Wortsman et al., 2022), our results on 472

sequence-level tasks show that ensembles trained 473

on round-trip translations to various high-resource 474

languages (M-RT-Ens-HR) outperform ensembles 475

trained solely on round-trip translated data to the 476

source language (M-RT-Ens-SRC). In contrast to 477

T-Train, integrating high-resource languages in 478

RTT reduces the likelihood of negative transfer 479

since the test data is in the same language as the 480

training data. Ensembling additionally smooths 481

over language-specific translation and downstream 482

transfer errors. Finally, ensembling monolingual 483

LMs might offer further gains but requires such 484

models for each high-resource language. 485

MT-Strategies for Model Selection. In XLT, 486

model selection is done using validation data in 487

the source or target language, with the latter violat- 488

ing true ZS-XLT (Schmidt et al., 2022, 2023). The 489

usage of MT to create validation data for model se- 490

lection, however, remains understudied (Ebrahimi 491

et al., 2022). We thus next explore MT-based model 492

selection strategies and compare them against stan- 493

dard counterparts (cf. §3) in Table 2. In T-Train, 494
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AmNLI NusaX Masakha Avg

Zero-Shot

SRC X 44.2±0.6 57.8±1.4 60.2±1.6 54.1±1.3

Translate-Train

TRG+SRC X 47.5±0.4 67.5±1.3 61.8±0.8 59.0±0.9

M-TRG+SRC X 46.5±0.3 74.0±1.4 61.0±1.2 60.5±1.1

Translate-Test

SRC R 36.5±0.2 54.4±1.3 48.1±0.5 46.3±0.8

SRC X 37.4±0.3 54.9±1.5 46.6±1.4 46.3±1.2

Roundtrip-Train-Test

M-RT+SRC R 38.8±0.3 60.5±0.7 45.0±0.4 48.1±0.5

M-RT+SRC X 39.1±0.2 59.1±1.2 44.0±1.4 47.4±1.1

incl. Translations to High-Resource Languages

M-RT-Ens-HR X 41.1±0.2 65.0±0.6 42.8±0.6 49.6±0.5

Table 3: Results for translation-based XLT for languages
not supported by the MT model. We use XLM-R (X)
and RoBERTa (R). The best results are shown in bold.

in line with prior work (Ebrahimi et al., 2022;495

Schmidt et al., 2022), Val-Trg outperforms all other496

model selection variants. We show, however, for497

the first time, that it is also the upper bound of498

T-Test and RTT. Additionally, in T-Train Val-MT-499

Trg (i.e., model selection based on the automat-500

ically translated target language validation data)501

surpasses Val-Src on average across all tasks; this502

is notably not the case for T-Test and RTT.503

Unsupported Languages. Even the most multi-504

lingual MT models (Team et al., 2022) support505

only a tiny fraction of the world’s 7000+ lan-506

guages. Table 3 summarizes the performance of507

our MT-based XLT strategy for languages not sup-508

ported by MT, where we translate to/from the509

closest respective supported language (see §2.4).510

We find that T-Train strategies remain success-511

ful and substantially improve by 4.9% (TRG+SRC)512

and 6.4% (M-TRG+SRC) over the ZS-XLT on av-513

erage. In contrast, T-Test and RTT for unsup-514

ported languages substantially trail ZS-XLT per-515

formance. This is because it is not really possible516

to get good translations in the source language by517

simply pretending the input comes from a differ-518

ent, supported language (in T-Test and RTT). In519

contrast, with T-Train, we obtain proper trans-520

lations in a supported language that is close to521

the real target (as in T-Train): the transfer then522

amounts to the mLM-based ZS-XLT ability from523

the close, MT-supported language to the real MT-524

unsupported target. This further supports the find-525

AmNLI NusaX Masakha Avg

Nucleus 56.2±3.2 75.6±2.4 60.5±1.9 64.1±2.6

Greedy 62.5±0.6 79.5±2.2 64.0±1.1 68.7±1.5

Beam 62.6±0.5 79.4±2.1 64.8±1.2 68.9±1.4

Table 4: Results for T-Train (TRG) for different de-
coding strategies evaluated on the validation data of
AmNLI, NusaX, and Masakha. The best results are
shown in bold.

AmNLI NusaX Masakha Avg

Joint 63.5±0.4 80.7±0.4 62.8±0.4 69.0±0.4

Sequential 64.1±1.4 80.1±0.7 62.4±0.4 68.9±0.9

Table 5: Comparison of sequential vs. joint translation-
based XLT for languages supported by the MT model.
We average the results of TRG+SRC and M-TRG+SRC
and the respective sequential variants (SRC→TRG and
SRC→M-TRG). The best results are shown in bold.
Model selection is done on the best epoch based on
target language validation data (Val-Trg).

ing that MT quality much less affects performance 526

of T-Train strategies than of T-Test or RTT ap- 527

proaches (Artetxe et al., 2023). 528

5 Further Findings 529

Decoding Strategy. Previous work examined the 530

impact of various decoding strategies on down- 531

stream performance, particularly in the context 532

of back-translation (Edunov et al., 2018) and 533

sequence-level classification (Artetxe et al., 2023). 534

They found nucleus sampling consistently superior 535

to beam search and greedy decoding. However, our 536

results in Table 4 suggest a noteworthy deviation 537

for low-resource languages. We find beam search 538

and greedy decoding substantially outperform nu- 539

cleus sampling. We posit that the underrepresenta- 540

tion of low-resource languages in the training data 541

of MT models contributes to this contrast.4 542

Joint vs. Sequential Training. Prior work primar- 543

ily concatenated the source data with the translated 544

target language data and trained on both jointly (Hu 545

et al., 2020; Oh et al., 2022; Artetxe et al., 2023). 546

In contrast, Aggarwal et al. (2022) propose a se- 547

quential T-Train approach in which the model is 548

first trained on the source-language data and then, 549

in a subsequent step, on the translated data of ei- 550

ther (i) a single target language (TRG) or (ii) multi- 551

4We present details on the resource availability of the tasks
we evaluated, compared to related work, in Appendix E.
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ple target languages jointly (M-TRG). We adopt this552

in our T-Train variants (denoted SRC→TRG and553

SRC→M-TRG) and compare them against the more554

established joint training: results in Table 5 show555

comparable performance between the two. This556

favors sequential training, as it is more computa-557

tionally efficient (Schmidt et al., 2022).558

6 Related Work559

Translation-based Transfer. Translation-based560

XLT has been adopted early (Fortuna and Shawe-561

Taylor, 2005; Banea et al., 2008; Shi et al., 2010)562

yet remains a competitive baseline to date (Ruder563

et al., 2021; Ebrahimi et al., 2022; Aggarwal et al.,564

2022). Prior work evaluated training on the trans-565

lated data of a single target language (Ebrahimi566

et al., 2022), on the concatenation of all target lan-567

guages (Ruder et al., 2021), and have integrated568

the source language either by sequentially training569

first on the source followed by the translated target570

language data (Aggarwal et al., 2022) or by jointly571

training on the concatenation of both (Chen et al.,572

2023). While earlier approaches focus primarily573

on the translation of the training data (T-Train),574

more recent work evaluated the translation of test575

data as well (Hu et al., 2020; Isbister et al., 2021)576

(T-Test). Finally, both approaches can be com-577

bined by training the model on round-trip trans-578

lated noisy source data (i.e., translating source data579

to the target language and back to the source) and580

evaluating it on target language test data translated581

to the source language (Artetxe et al., 2020; Oh582

et al., 2022; Artetxe et al., 2023). Previous stud-583

ies have either focused on improving one of these584

paradigms or utilized them as baselines. In con-585

trast, we provide a comparative empirical evalu-586

ation of existing translation-based approaches to587

XLT, testing them explicitly against ZS-XLT for588

low-resource languages.589

Label projection. Translation-based transfer590

for token-level tasks necessitates label projec-591

tion, which is achieved through either alignment-592

based or (Tjong Kim Sang and De Meulder, 2003;593

Jalili Sabet et al., 2020; Nagata et al., 2020) marker-594

based approaches (Lee et al., 2018; Lewis et al.,595

2020; Hu et al., 2020; Bornea et al., 2021). The596

former maps each token in the source sequence to a597

token in the translated target sequence, with recent598

neural word aligners utilizing contextualized em-599

beddings of mLMs to produce the alignment (Dou600

and Neubig, 2021; Wang et al., 2022). Marker- 601

based alignment, in contrast, entails marking la- 602

beled tokens in the sequence prior to translation, 603

often by enclosing them in XML or HTML tags, 604

and preserving them throughout the translation pro- 605

cess. Subsequently, the labels can be recovered 606

from the markers. While alignment-based methods 607

are prone to issues like error propagation, transla- 608

tion shift (Akbik et al., 2015), and non-contiguous 609

alignments (Zenkel et al., 2020), marker-based pro- 610

jection compromises translation performance by 611

introducing artificial tokens and is susceptible to 612

vanishing markers, particularly with non-industrial, 613

publicly available translation models (Chen et al., 614

2023). In XLT for NER (Masakha), we leveraged 615

a state-of-the-art alignment-based model (Wang 616

et al., 2022). 617

7 Conclusion 618

We reviewed the field of translation-based cross- 619

lingual transfer (XLT) to low-resource lan- 620

guages through a comparative evaluation of var- 621

ious approaches—derived from translate-train 622

(T-Train), translate-test (T-Test), and roundtrip- 623

train-test (RTT)—on three established benchmarks 624

encompassing 40 languages. We demonstrated that 625

translation-based XLT substantially outperforms 626

zero-shot XLT no matter the task. Furthermore, ir- 627

respective of the translation-based strategy, includ- 628

ing the clean source language data in the training 629

yielded consistent improvements. For sequence- 630

level tasks, training on the source language data 631

round-trip translated through a set of related target 632

languages and evaluating, at inference, the target 633

language instances translated back to the source lan- 634

guage performed best (RTT). In contrast, for token- 635

level tasks, training on the translations to a single 636

target language showed the best results (T-Train). 637

Additionally, we proposed novel translation-based 638

XLT strategies for T-Train and RTT by including 639

translations to a set of typologically diverse high- 640

resource languages. Further, we successfully pro- 641

posed translation-based strategies for languages 642

unsupported by the MT model and showcased the 643

effectiveness of using automatically translated val- 644

idation data for model selection. Our empirical 645

comparison and its findings warrant broader inclu- 646

sion of more competitive translation-based XLT 647

approaches as standard baselines in all research 648

efforts set to improve XLT with mLMs. 649
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8 Limitations650

We strove to provide a comprehensive and system-651

atic evaluation of translation-based XLT to low-652

resource languages, additionally providing novel653

T-Train and RTT paradigms. However, our study654

faces limitations, primarily stemming from the655

prevalent practice of obtaining benchmarks for low-656

resource languages by translating datasets from657

high-resource languages, which applies to AmNLI,658

NusaX, and some languages of Masakha. The re-659

sulting data possesses distinctive characteristics660

arising from the translation process, commonly re-661

ferred to as translationese. On the one hand, we ex-662

plicitly exploit this behavior by demonstrating that663

augmenting the training data in the same way as we664

augment the test data (i.e., RTT) yields the best re-665

sults. On the other hand, there exist uncontrollable666

implications potentially influencing our results, for667

instance, that translation often becomes easier for668

datasets originating from translation themselves.669
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A Models and Datasets1208

The models for translation, word alignment, and1209

downstream fine-tuning were accessed through the1210

Hugging Face transformers library (Wolf et al.,1211

2020). Additional adapter checkpoints for the1212

used word aligner were downloaded from the cor-1213

responding GitHub repository: AccAlign (Wang1214

et al., 2022). We accessed all our datasets through1215

the Hugging Face datasets library (Lhoest et al.,1216

2021). Further, we ensured compliance with the1217

licenses of the models and datasets.1218

AmNLI. The dataset comprises ten languages, three1219

of which are supported by our translation model:1220

Aymara (AYM), Guarani (GN), Quechua (QUY),1221

and seven which are not: Asháninka (CNI), Bribri1222

(BZD), Nahuatl (NAH), Otomí (OTO), Rarámuri1223

(TAR), Shipibo-Konibo (SHP), Wixarika (HCH).1224

NusaX. The dataset consists of ten languages:1225

Acehnese (ACE), Balinese (BAN), Banjarese1226

(BJN), Buginese (BUG), Madurese (MAD), Mi-1227

nangkabau (MIN), Javanese (JAV), Ngaju (NIJ),1228

Sundanese (SUN), and Toba Batak (BBC). The fol-1229

lowing three are not supported by our translation1230

model: Ngaju, Sundanese, and Toba Batak.1231

Masakha. The benchmark covers 20 languages.1232

Among these, 18 languages are supported by1233

our translation model: Bambara (BAM), Éwé1234

(EWE), Fon (FON), Hausa (HAU), Igbo (IBO),1235

Kinyarwanda (KIN), Luganda (LUG), Luo (LUO),1236

Mossi (MOS), Chichewa (NYA), chiShona (SNA),1237

Kiswahili (SWA), Setswana (TSN), Akan/Twi1238

(TWI), Wolof (WOL), isiXhosa (XHO), Yorùbá1239

(YOR), isiZulu (ZUL), and the remaining two are1240

not: Ghomálá’ (BBJ), Naija (PCM).1241

B Word Alignment1242

Table 6 shows the projection rates for AccAlign1243

(Wang et al., 2022) (used in our work) and the1244

state-of-the-art marker-based method EasyProject1245

(EasyProj) (Chen et al., 2023). The projection rate1246

is computed as the ratio of retained training in-1247

stances after label projection to all instances in the1248

original training data. The results highlight that1249

the downstream performance of AccAlign is on par1250

with the competitive EasyProj. Nevertheless, we1251

attribute variations in the projection rate not only to1252

superior alignment but also to differences in filter-1253

ing strategies. While Chen et al. (2023) filter trans-1254

AccAlign EasyProj

BAM 94.4 90.9
EWE 95.6 92.2
FON 92.9 83.4
HAU 97.5 94.4
IBO 98.3 96.1
KIN 97.2 93.8
LUG 97.0 95.3
LUO 96.6 94.0
MOS 90.3 92.3
NYA 98.5 96.7
SNA 98.7 95.6
SWA 98.8 96.3
TSN 98.0 95.0
TWI 96.2 94.6
WOL 93.0 93.4
XHO 97.8 95.1
YOR 97.3 94.3
ZUL 97.7 93.1

Avg Proj. Rate 96.4 93.7

Avg. Perf. 65.5 65.6

Table 6: Projection rates and average performance in
the TRG+SRC setup for word alignments produce by Ac-
cAlign (Wang et al., 2022) and EasyProj (Chen et al.,
2023). Model selection is done on the best epoch based
on target-language validation data (Val-Trg).

AmNLI NusaX Masakha

Task NLI TC NER
Epochs 2 20 10
Batch Size 32 32 32
Learning Rate 2e-6 1e-5 1e-5
Weight Decay 0.01 0.01 0.01

Table 7: Hyperparameters for downstream fine-tuning.

lated instances that do not match the number and 1255

type of tags in the source instance, our approach 1256

filters instances if a tagged source-language token 1257

cannot be mapped to its target language equivalent. 1258

We leave the exploration of the impact of different 1259

filtering approaches to future work. 1260

C Training and Computational Details 1261

Table 7 outlines the hyperparameters for down- 1262

stream fine-tuning of our utilized tasks.5 Along- 1263

side, we implement a linear schedule of 10% warm- 1264

up and decay and employ mixed precision. All 1265

translations were run on a single A100 with 40GB 1266

VRAM, and all downstream training and evalua- 1267

tion runs were completed on a single V100 with 1268

32GB VRAM. We roughly estimate that GPU time 1269

5We used a comparably small learning rate for AmNLI
as single seeds did not converge for higher learning rates in
preliminary experiments.
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AmNLI NusaX Masakha Avg

NLLB GT NLLB GT NLLB GT NLLB GT

Translate-Train

TRG+SRC X 62.9 63.1 87.0 87.0 66.0 65.3 72.0 71.8

Translate-Test

SRC R 53.1 63.6 85.3 85.7 54.8 59.7 64.4 69.7
SRC X 52.9 64.8 85.8 86.6 54.1 59.0 64.3 70.1

Roundtrip-Train-Test

RT+SRC R 62.4 69.9 85.2 86.9 55.0 59.9 67.5 72.2
RT+SRC X 63.1 69.1 86.0 87.5 54.0 59.2 67.7 71.9

Table 8: Results for translation-based XLT for two MT
systems (NLLB and GT) for languages supported by
both MT models. For T-Train, model selection is done
on the best epoch based on target-language validation
data (Val-Trg), and for T-Test and RTT, based on source-
language validation data (Val-Src). We evaluated XLM-
R (X) and RoBERTa (R).

accumulates to 3500 hours across all translations1270

and downstream fine-tunings.1271

D Industrial MT Model1272

In the landscape of MT, industrial-grade systems1273

exhibit superior performance over their publicly1274

available counterparts. However, this advantage1275

does not come without its trade-offs, most notably1276

the necessity to pay for these services. In this ab-1277

lation, we assess the impact of generating trans-1278

lations through Google Translate (GT)—a repre-1279

sentative example of an industrial MT system—on1280

translation-based XLT. We systematically evalu-1281

ate the impact on T-Train (i.e., TRG+SRC), T-Test1282

(i.e., SRC), and RTT (i.e., RT+SRC). Our results in1283

Table 8 indicate that the performance remains com-1284

parable for T-Train, while GT surpasses NLLB by1285

a substantial margin in the context of T-Test and1286

RTT. This observation contributes to the existing1287

body of knowledge, emphasizing that T-Test and1288

RTT are more susceptible to translation quality than1289

T-Train. Furthermore, our ablation confirms that1290

RTT remains the most competitive translation-based1291

XLT method for sequence-level classification tasks.1292

Unfortunately, GT does not support the same lan-1293

guages as NLLB. Hence, we conduct the ablation1294

on the following languages: for AmNLI, we use Ay-1295

mara, Guarani, and Quechua; for NusaX: Javanese1296

and Sundanese; and for Masakha: Bambara, Éwé,1297

Hausa, Igbo, Kinyarwanda, chiShona, Kiswahili,1298

Akan/Twi, isiXhosa, Yorùbá, isiZulu.1299

E Resource Availability 1300

To substantiate our claim that the languages we 1301

evaluate are characterized by far lower resource 1302

availability compared to related work, we assess the 1303

relative size of parallel data used for training NLLB 1304

for languages encompassed in the datasets we used 1305

and those employed in Artetxe et al. (2023). For 1306

each language, we calculate the ratio of available 1307

parallel data to the total size of the parallel corpus 1308

and, subsequently, average the results per dataset. 1309

The computations are based on the following 1310

corpus https://huggingface.co/datasets/allenai/nllb. 1311

Our metric serves as a proxy for the average cover- 1312

age of a dataset in the training data of NLLB. As 1313

shown in Table 9, the resource availability for the 1314

datasets we evaluated is approximately an order of 1315

magnitude smaller. 1316

15
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Artetxe et al. (2023) Ours

XNLI PAWS-X MARC XStory XCOPA EXAMS Avg AmNLI NusaX Masakha Avg

Avg. Res. Availability 2.67 3.61 4.24 2.24 1.17 2.67 2.78 0.09 0.21 0.41 0.24

Table 9: Average percentage of available parallel data per task from the corpus used to train NLLB for three datasets
we evaluated on: AmNLI, NusaX, and Masakha; and six datasets Artetxe et al. (2023) did: XNLI (Conneau et al.,
2018), PAWS-X (Yang et al., 2019), MARC (Keung et al., 2020), XStoryCloze (XStory) (Lin et al., 2022), XCOPA
(Ponti et al., 2020), EXAMS (Hardalov et al., 2020).

F Detailed Main Results

AYM GN QUY Avg

I II III I II III I II III I II III

Zero-Shot

SRC X 43.2 44.0 42.4 46.5 46.8 47.7 44.3 44.7 44.2 44.7 45.2 44.8

Translate-Train

SRC+HR X 38.0 38.8 38.8 42.0 44.8 44.5 40.2 42.1 41.7 40.1 41.9 41.7
T X 58.4 59.5 58.7 63.6 63.2 62.8 61.5 62.2 61.8 61.1 61.6 61.1
TRG+SRC X 59.4 59.4 59.6 66.1 65.6 65.6 61.9 62.3 63.4 62.4 62.4 62.9
SRC→TRG X 53.8 62.8 61.9 64.1 66.2 67.0 54.8 64.3 62.7 57.6 64.4 63.9
TRG+SRC+HR X 59.4 59.7 59.8 65.8 65.8 66.2 63.5 63.9 64.3 62.9 63.1 63.4
M-TRG X 61.2 61.6 61.4 64.4 64.1 64.2 64.7 64.4 64.7 63.4 63.4 63.5
M-TRG+SRC X 61.4 62.4 62.3 65.5 65.2 65.2 63.8 64.0 64.8 63.6 63.9 64.1
SRC→M-TRG X 58.3 62.1 62.6 60.6 66.8 66.8 59.5 65.0 65.0 59.5 64.7 64.8
M-TRG+SRC+HR X 62.7 63.0 62.7 66.6 67.0 66.3 64.7 64.6 65.1 64.7 64.9 64.7

Translate-Test

SRC R 46.9 46.9 46.9 60.2 60.1 60.0 52.3 52.5 52.8 53.1 53.2 53.2
SRC X 46.3 46.3 47.8 60.8 61.0 60.8 51.7 52.0 52.5 52.9 53.1 53.7

Roundtrip-Train-Test

RT+SRC R 58.1 59.2 58.4 68.5 67.6 68.2 60.6 61.3 61.3 62.4 62.7 62.6
RT+SRC X 58.9 59.3 59.3 69.7 69.7 69.3 60.7 60.4 60.6 63.1 63.1 63.1
M-RT+SRC R 60.8 61.0 60.4 69.6 69.0 69.2 62.4 62.6 62.0 64.3 64.2 63.9
M-RT+SRC X 59.8 59.7 59.6 69.6 69.5 69.3 62.7 62.9 62.9 64.0 64.0 63.9
M-RT-Ens-SRC X 59.6 60.0 60.1 70.1 69.9 69.2 61.4 62.3 62.7 63.7 64.0 64.0
M-RT-Ens-HR X 61.1 61.6 62.7 70.3 70.1 70.0 66.8 66.1 66.1 66.1 65.9 66.3

Table 10: Results for translation-based XLT evaluated of AmNLI for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on translated
source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg (III)). We
use XLM-R (X) and RoBERTa (R).
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BZD CNI HCH NAH OTO SHP TAR AVG

I II III I II III I II III I II III I II III I II III I II III I II III

Zero-Shot

SRC X 44.1 42.4 44.5 44.0 44.1 44.9 40.9 40.9 40.7 45.9 45.9 46.5 43.8 44.0 44.1 50.5 50.0 49.7 40.1 43.4 44.4 44.2 44.4 45.0

Translate-Train

SRC+HR X 42.0 42.0 43.6 40.9 43.9 43.9 36.1 39.2 38.1 43.1 44.2 44.0 43.8 44.0 44.1 45.1 48.5 46.8 38.2 41.5 42.5 41.3 43.3 43.3
TRG X 43.2 42.6 45.0 48.8 46.4 48.4 44.6 46.1 46.4 49.3 49.2 49.5 47.5 47.4 46.8 50.5 49.1 50.7 47.7 49.2 49.1 47.4 47.1 48.0
TRG+SRC X 44.9 44.4 45.7 47.6 47.5 48.8 44.8 45.0 45.7 48.4 48.4 48.6 47.8 47.8 48.0 51.0 48.0 51.0 47.7 48.5 49.0 47.5 47.1 48.1
SRC→TRG X 46.1 44.2 45.7 47.8 48.0 48.9 45.7 46.0 45.4 47.9 47.4 49.3 47.2 48.9 47.6 49.7 49.7 49.6 45.4 46.5 47.1 47.1 47.2 47.7
TRG+SRC+HR X 44.5 44.4 44.9 46.8 47.0 47.6 44.7 44.8 45.6 49.2 50.1 48.9 47.3 48.1 47.4 48.1 47.8 49.0 49.4 49.1 49.6 47.2 47.3 47.6
M-TRG X 45.9 44.9 46.2 46.1 46.1 45.6 45.0 44.8 45.1 49.6 49.1 48.6 46.3 46.9 45.5 48.5 48.9 48.8 47.2 46.6 49.5 46.9 46.8 47.0
M-TRG+SRC X 45.5 45.5 46.1 45.5 46.6 46.7 44.4 44.9 44.6 48.1 47.7 48.7 46.9 46.9 46.1 49.5 49.2 50.2 45.6 45.8 46.4 46.5 46.7 47.0
SRC→M-TRG X 46.4 46.0 45.5 47.4 47.4 47.0 45.7 45.3 45.1 48.5 47.4 48.8 47.8 47.5 47.6 50.8 49.2 51.0 46.8 46.0 47.0 47.6 47.0 47.4
M-TRG+SRC+HR X 45.2 45.3 46.9 45.8 46.5 46.5 45.2 45.1 45.0 48.2 48.6 50.1 47.0 47.4 47.1 50.0 50.1 50.7 46.3 46.2 47.7 46.8 47.0 47.7

Translate-Test

SRC R 35.8 36.0 35.6 32.9 33.7 33.1 36.5 36.1 36.9 39.5 40.1 39.6 38.4 38.2 37.3 38.5 38.8 39.2 33.8 34.4 33.5 36.5 36.8 36.5
SRC X 35.3 35.1 36.1 35.8 36.4 36.4 37.0 37.1 36.3 38.8 39.2 38.7 39.4 39.4 38.0 41.4 40.9 40.8 33.8 34.3 33.9 37.4 37.5 37.2

Roundtrip-Train-Test

RT+SRC R 36.4 36.7 36.8 36.5 36.9 36.7 37.3 36.5 37.2 39.8 39.8 39.5 41.5 40.6 40.6 42.7 42.1 41.5 34.5 34.7 34.0 38.4 38.2 38.0
RT+SRC X 37.4 36.2 35.8 37.4 37.2 36.7 37.3 37.3 36.8 39.5 39.6 39.2 40.4 40.2 40.9 43.5 44.4 43.2 35.1 35.8 35.0 38.6 38.7 38.2
M-RT+SRC R 37.1 37.5 37.1 38.9 39.3 37.9 38.4 37.9 38.6 39.4 39.4 40.2 40.9 40.8 41.8 41.9 41.7 43.3 35.3 34.7 34.5 38.8 38.7 39.0
M-RT+SRC X 37.1 36.8 37.2 39.0 38.8 37.8 39.6 39.4 39.5 41.1 40.4 41.0 39.3 39.8 39.4 43.2 42.8 42.9 34.8 34.8 34.9 39.1 39.0 38.9
M-RT-Ens-SRC X 37.0 37.0 36.8 38.7 39.0 38.2 39.2 38.6 39.4 41.3 40.2 40.3 39.4 38.6 41.2 43.5 42.5 43.2 34.8 34.5 35.1 39.1 38.6 39.2
M-RT-Ens-HR X 41.1 40.7 41.4 39.1 38.9 39.2 39.9 40.7 40.5 43.7 43.3 44.9 40.2 40.9 42.2 46.6 47.2 46.7 37.4 38.3 37.6 41.1 41.4 41.8

Table 11: Results for translation-based XLT evaluated of AmNLI for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).

ACE BAN BJN BUG JAV MIN SUN Avg

I II III I II III I II III I II III I II III I II III I II III I II III

Zero-Shot

SRC X 65.7 64.6 65.7 72.5 72.7 71.9 79.5 79.7 80.1 36.9 42.6 43.9 82.7 79.9 84.8 79.2 80.3 80.4 81.8 83.9 83.6 71.2 72.0 72.9

Translate-Train

SRC+HR X 67.0 68.0 68.8 72.0 72.5 73.0 80.4 80.4 80.6 39.6 44.1 43.5 80.7 83.7 86.0 77.2 79.1 78.9 81.3 80.8 81.0 71.2 72.7 73.1
TRG X 74.1 74.4 75.3 73.2 75.5 74.0 83.4 82.7 82.1 62.2 64.6 64.7 86.1 86.0 88.9 82.2 83.2 83.1 83.6 83.4 84.3 77.8 78.6 78.9
TRG+SRC X 76.2 75.6 77.6 76.8 75.9 75.6 82.4 83.4 82.0 65.1 65.6 67.0 88.1 87.1 90.9 85.1 84.6 85.3 84.6 84.1 83.0 79.7 79.5 80.2
SRC→TRG X 74.6 75.0 75.6 76.3 77.0 77.0 81.9 82.1 82.6 64.7 62.9 65.4 86.9 87.2 89.7 83.5 84.3 82.9 84.1 83.9 83.6 78.9 78.9 79.5
TRG+SRC+HR X 73.1 75.1 75.4 75.4 76.2 76.1 81.5 81.6 82.2 63.6 61.8 64.6 87.4 87.8 89.5 82.6 83.8 84.7 83.1 84.4 83.9 78.1 78.7 79.5
M-TRG X 74.8 77.8 77.9 75.6 77.5 77.1 84.1 84.3 84.5 65.0 64.6 65.2 84.8 86.0 88.8 85.1 84.0 84.3 83.6 84.4 84.6 79.0 79.8 80.3
M-TRG+SRC X 77.7 77.8 76.4 77.4 77.3 78.5 86.1 84.8 86.0 65.1 66.2 66.8 86.5 84.4 88.3 86.5 85.8 86.2 86.5 86.4 86.5 80.8 80.4 81.2
SRC→M-TRG X 75.3 76.7 75.4 77.1 78.5 78.0 84.2 83.6 85.0 64.0 66.8 67.7 84.0 83.2 88.2 84.3 84.4 84.4 85.6 85.7 83.5 79.2 79.8 80.3
M-TRG+SRC+HR X 76.8 78.2 77.8 76.5 78.0 77.1 84.0 84.1 84.9 65.6 66.9 66.0 81.8 84.9 88.5 83.5 83.9 85.1 85.5 85.1 85.4 79.1 80.2 80.7

Translate-Test

SRC R 77.3 75.5 77.5 74.1 75.5 75.8 82.2 79.6 82.0 69.5 71.8 72.3 85.8 84.3 85.5 81.9 82.0 82.9 84.8 84.3 84.8 79.4 79.0 80.1
SRC X 78.8 77.9 78.5 77.2 77.4 78.8 83.6 83.3 82.3 71.7 70.1 74.5 85.5 86.1 85.8 83.4 83.6 84.6 86.1 86.3 85.8 80.9 80.7 81.5

Roundtrip-Train-Test

RT+SRC R 79.5 79.3 79.1 76.1 77.9 77.8 82.8 82.4 82.2 74.5 74.3 73.7 85.7 83.7 85.0 85.6 84.3 84.3 84.6 84.7 85.3 81.2 81.0 81.0
RT+SRC X 78.3 79.4 79.7 78.8 78.1 77.1 83.9 83.8 84.1 73.1 74.1 75.3 86.5 86.8 86.4 84.9 85.5 85.9 85.6 84.9 85.7 81.6 81.8 82.0
M-RT+SRC R 78.6 77.8 78.2 77.8 79.3 80.1 83.6 83.6 83.4 73.8 73.4 74.6 85.8 85.3 86.0 83.9 84.2 84.2 83.7 83.6 83.5 81.0 81.0 81.4
M-RT+SRC X 78.8 78.6 79.8 79.6 78.0 80.3 85.2 84.8 85.0 74.5 75.1 75.6 86.9 87.1 86.6 84.7 84.3 84.8 85.0 85.1 84.8 82.1 81.9 82.4
M-RT-Ens-SRC X 79.8 79.1 80.2 80.2 80.0 80.5 86.5 86.5 86.3 74.8 75.8 75.7 87.5 87.3 86.6 85.3 85.8 85.3 85.8 85.7 84.2 82.8 82.9 82.7
M-RT-Ens-HR X 83.2 83.5 83.2 82.2 81.6 82.4 86.0 85.7 85.1 75.2 75.5 74.6 88.0 88.0 87.0 86.5 86.1 86.7 86.5 86.9 86.0 83.9 83.9 83.6

Table 12: Results for translation-based XLT evaluated of NusaX for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on translated
source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg (III)). We
use XLM-R (X) and RoBERTa (R).

17



BJN MAD NIJ Avg

I II III I II III I II III I II III

Zero-Shot

SRC X 41.4 45.5 45.9 65.5 64.8 67.4 66.6 65.7 67.2 57.8 58.7 60.2

Translate-Train

SRC+HR X 42.7 46.5 45.3 65.1 62.8 68.5 62.7 62.1 65.6 56.8 57.1 59.8
TRG X 60.6 60.9 62.2 70.1 69.6 73.1 66.1 67.4 69.9 65.6 65.9 68.4
TRG+SRC X 61.2 62.2 64.0 72.4 72.4 71.9 69.0 69.7 68.6 67.5 68.1 68.2
SRC→TRG X 63.8 62.7 66.1 70.7 69.5 70.7 69.6 69.2 70.1 68.0 67.1 68.9
TRG+SRC+HR X 62.2 63.2 61.7 71.7 72.1 72.4 71.5 68.9 71.6 68.5 68.1 68.6
M-TRG X 65.8 67.8 66.8 76.8 75.6 78.9 74.8 74.5 76.2 72.5 72.6 74.0
M-TRG+SRC X 66.3 67.9 65.2 78.2 76.6 77.8 77.5 75.7 77.8 74.0 73.4 73.6
SRC→M-TRG X 68.0 68.3 65.6 77.8 77.9 78.0 76.1 77.2 78.4 74.0 74.5 74.0
M-TRG+SRC+HR X 65.1 66.9 64.0 76.7 75.5 77.0 75.2 75.3 76.8 72.3 72.6 72.6

Translate-Test

SRC R 42.6 47.8 49.2 56.4 56.4 58.8 64.3 63.7 65.8 54.4 56.0 57.9
SRC X 40.4 38.5 55.1 60.9 59.8 63.6 63.4 62.1 65.8 54.9 53.5 61.5

Roundtrip-Train-Test

RT+SRC R 49.6 45.5 50.2 55.1 56.1 58.1 60.9 62.0 63.1 55.2 54.5 57.1
RT+SRC X 44.0 46.6 54.6 62.5 62.2 64.3 64.6 65.2 64.3 57.0 58.0 61.1
M-RT+SRC R 51.5 50.5 52.5 61.7 60.8 61.6 68.3 66.4 68.3 60.5 59.2 60.8
M-RT+SRC X 47.2 54.2 55.3 62.7 64.6 66.7 67.3 68.5 67.0 59.1 62.4 63.0
M-RT-Ens-SRC X 49.4 54.1 56.4 65.7 68.0 68.5 68.3 69.5 69.6 61.1 63.9 64.8
M-RT-Ens-HR X 51.9 56.9 58.1 69.8 68.8 70.9 73.2 72.5 72.7 65.0 66.1 67.2

Table 13: Results for translation-based XLT evaluated of NusaX for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).

BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 36.9 67.9 46.8 73.4 48.0 42.0 58.6 37.7 47.6 47.4 35.8 85.5 48.1 43.3 48.2 22.8 31.1 41.1 47.9

Translate-Train

SRC+HR X 35.8 70.4 50.5 72.5 54.6 43.3 63.9 40.9 50.6 53.3 55.4 81.9 52.5 42.7 52.3 56.9 33.6 59.1 53.9
TRG X 51.3 72.6 64.5 71.4 65.8 53.5 69.7 47.7 53.9 63.9 65.6 76.3 68.0 60.3 58.8 68.7 36.4 69.0 62.1
TRG+SRC X 48.9 75.4 65.9 72.3 68.1 54.7 74.3 50.1 57.0 68.0 69.9 77.4 68.7 61.5 61.7 70.0 38.0 71.4 64.1
SRC→TRG X 51.0 71.4 65.7 72.1 68.3 54.2 73.2 48.8 56.1 65.0 67.4 76.2 69.7 60.1 56.9 69.1 38.1 70.9 63.0
TRG+SRC+HR X 47.9 71.8 67.2 71.5 70.2 54.4 73.3 48.6 54.5 66.6 68.1 76.1 68.0 61.0 58.0 68.5 38.0 68.7 62.9
M-TRG X 43.8 65.1 60.7 69.2 63.7 51.1 66.2 47.1 45.2 57.0 62.1 75.2 58.2 58.9 48.4 58.1 36.2 58.6 56.9
M-TRG+SRC X 44.1 65.5 58.1 70.1 61.8 53.2 66.7 45.6 46.7 56.6 60.7 76.1 62.4 59.7 46.8 61.2 35.9 62.8 57.4
SRC→M-TRG X 48.3 68.0 63.7 69.8 64.8 54.0 67.0 48.4 50.1 58.6 61.2 75.9 61.2 60.1 52.5 62.0 38.7 62.5 59.3
M-TRG+SRC+HR X 45.7 65.4 64.3 69.0 64.9 52.7 65.2 46.5 49.2 56.9 60.7 75.3 57.9 58.6 53.9 60.4 36.7 61.7 58.0

Translate-Test

SRC R 39.9 61.3 56.4 58.0 55.8 51.6 68.1 45.5 39.6 63.7 58.5 62.0 60.1 56.8 49.7 58.0 43.9 57.0 54.8
SRC X 39.4 61.5 56.3 57.8 54.9 50.5 67.9 43.2 39.1 63.1 58.0 61.6 57.9 55.2 49.9 57.6 43.4 56.7 54.1

Roundtrip-Train-Test

RT+SRC R 39.7 61.2 57.2 58.3 60.6 49.9 65.6 44.0 37.6 63.8 57.8 62.2 59.8 57.2 50.9 55.9 45.2 57.4 54.7
RT+SRC X 39.0 60.0 57.2 57.8 58.2 50.6 65.1 42.6 36.4 62.5 57.0 61.8 57.6 55.2 50.1 55.0 44.3 56.5 53.7
M-RT+SRC R 40.0 57.9 55.0 58.3 59.8 49.6 63.7 43.0 35.5 62.3 55.3 62.7 59.5 55.6 50.1 54.5 43.7 55.4 53.4
M-RT+SRC X 39.1 59.0 55.8 58.4 59.6 49.3 65.1 41.1 36.9 61.1 55.3 62.4 58.2 56.0 50.2 53.5 43.0 55.7 53.3
M-RT-Ens-SRC X 39.9 59.2 56.2 58.0 60.3 50.2 64.8 41.5 38.1 61.7 56.0 62.4 57.0 56.5 50.9 54.1 44.2 55.8 53.7
M-RT-Ens-HR X 33.8 50.6 46.7 47.6 50.4 42.1 53.7 34.7 34.7 53.1 50.2 54.1 48.3 47.0 44.3 47.9 38.6 46.6 45.8

Table 14: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on source-language validation data (Val-Src). We use XLM-R (X)
and RoBERTa (R).
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BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 38.9 69.1 49.4 73.2 50.6 43.3 62.4 38.4 49.8 49.0 35.7 85.3 49.6 45.2 50.9 22.6 32.4 41.3 49.3

Translate-Train

SRC+HR X 38.7 72.4 54.4 72.6 58.5 46.0 65.5 40.6 51.9 54.4 54.6 82.0 52.9 47.7 51.6 57.3 33.7 59.4 55.2
TRG X 50.0 74.4 65.0 71.2 65.7 53.8 73.0 48.4 55.0 64.6 66.3 76.4 68.6 58.7 58.8 68.2 37.1 70.2 62.5
TRG+SRC X 50.6 75.5 66.0 72.2 68.6 55.3 75.0 50.0 55.6 67.5 69.2 77.7 69.5 61.8 60.6 69.3 38.6 72.1 64.2
SRC→TRG X 50.8 73.6 66.0 72.0 68.5 56.0 74.9 50.0 56.1 67.0 70.0 76.9 69.9 61.8 61.0 69.5 38.4 71.3 64.1
TRG+SRC+HR X 50.9 72.0 67.5 71.6 69.7 54.1 73.9 49.1 54.1 67.5 69.3 76.8 68.7 61.5 57.9 68.8 39.1 70.2 63.5
M-TRG X 46.5 64.4 59.0 69.4 64.1 51.4 65.4 45.3 46.7 56.9 60.3 74.6 59.6 58.3 52.4 59.6 36.6 60.0 57.2
M-TRG+SRC X 44.7 65.5 59.4 68.8 66.2 51.7 63.3 46.8 47.4 56.7 60.3 74.8 59.9 57.4 53.5 59.8 36.0 61.8 57.4
SRC→M-TRG X 45.1 64.6 62.9 69.6 65.1 51.6 67.3 46.1 46.4 55.6 60.4 73.8 59.1 60.1 51.1 61.3 34.9 61.1 57.6
M-TRG+SRC+HR X 45.0 64.0 59.5 68.4 65.5 51.0 62.3 47.1 48.0 56.5 60.3 74.6 59.1 57.9 51.7 59.3 33.6 61.0 56.9

Translate-Test

SRC R 39.9 61.4 56.3 58.0 55.9 51.4 67.8 44.8 39.7 63.7 58.5 62.0 60.0 56.3 49.8 57.6 44.1 57.4 54.7
SRC X 39.2 61.2 55.6 57.8 54.8 50.6 67.7 43.0 39.1 63.3 57.8 61.7 57.8 54.5 49.7 57.5 43.0 56.6 53.9

Roundtrip-Train-Test

RT+SRC R 39.7 61.1 56.9 58.4 61.2 50.2 65.9 44.5 37.7 63.5 57.8 62.4 59.8 56.9 51.4 55.9 45.5 57.0 54.8
RT+SRC X 39.7 59.6 56.5 58.0 58.6 50.7 66.0 42.5 36.4 62.7 57.1 61.9 57.0 54.1 50.7 55.1 44.3 56.0 53.7
M-RT+SRC R 39.1 58.4 56.6 58.1 60.2 49.1 62.3 42.0 35.1 62.3 56.2 62.2 59.8 57.2 50.3 54.5 43.2 55.7 53.5
M-RT+SRC X 40.4 57.2 55.4 58.1 61.2 49.0 62.5 42.0 35.9 61.5 54.7 62.1 57.8 55.7 49.7 50.9 42.6 54.2 52.8
M-RT-Ens-SRC X 40.2 58.8 55.9 58.3 60.7 50.0 64.7 40.8 36.8 61.8 56.0 62.7 57.1 56.2 51.2 53.7 43.7 55.8 53.6
M-RT-Ens-HR X 33.9 50.6 47.1 47.9 50.3 41.9 53.3 34.2 34.5 53.3 49.8 54.7 48.3 47.4 44.5 47.8 37.8 46.9 45.8

Table 15: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on translated source-language validation data (Val-MT-Trg). We
use XLM-R (X) and RoBERTa (R).

BAM EWE FON HAU IBO KIN LUG LUO MOS NYA SNA SWA TSN TWI WOL XHO YOR ZUL Avg

Zero-Shot

SRC X 39.6 70.8 50.9 73.4 52.9 43.5 64.7 39.3 49.6 51.6 40.6 85.5 52.7 46.0 51.6 22.2 34.4 41.9 50.6

Translate-Train

SRC+HR X 40.3 72.3 56.2 72.9 60.9 46.4 66.0 39.9 53.9 54.1 55.9 84.0 53.4 49.5 53.8 57.2 35.2 60.9 56.3
TRG X 52.0 75.5 64.7 71.3 66.8 54.5 75.0 49.5 59.3 64.6 67.9 76.6 67.8 61.8 59.5 67.9 37.7 69.8 63.4
TRG+SRC X 54.6 77.1 67.1 72.6 69.9 56.8 76.5 50.9 58.5 68.3 70.2 79.2 69.8 62.4 61.8 70.1 40.2 72.9 65.5
SRC→TRG X 52.0 75.5 66.8 72.8 69.5 56.8 76.5 49.3 59.1 68.0 70.1 77.9 69.8 61.3 61.6 69.9 39.7 71.7 64.9
TRG+SRC+HR X 52.9 74.4 68.1 73.0 70.2 55.0 74.7 49.1 57.8 69.1 70.0 77.8 68.5 61.9 60.2 69.5 40.1 69.6 64.5
M-TRG X 49.1 71.7 63.4 71.3 66.2 54.9 66.2 47.6 49.3 58.4 63.0 76.9 62.9 57.7 54.9 63.4 37.8 63.7 59.9
M-TRG+SRC X 49.0 70.0 61.2 71.0 67.3 53.5 69.4 47.1 50.4 59.1 62.7 76.8 62.3 58.3 55.9 62.6 39.1 64.7 60.0
SRC→M-TRG X 48.7 70.3 64.7 70.8 66.6 55.1 69.6 49.4 50.4 59.9 62.2 76.0 62.1 59.2 52.6 63.0 38.2 63.7 60.1
M-TRG+SRC+HR X 48.6 68.3 64.5 70.9 68.2 53.9 68.9 45.8 49.3 59.3 62.9 76.6 63.3 61.8 55.5 63.0 39.2 63.1 60.2

Translate-Test

SRC R 39.7 61.4 56.6 58.0 56.5 51.6 67.9 45.0 39.7 63.6 58.4 61.8 59.6 56.9 49.8 57.8 44.3 57.0 54.7
SRC X 39.8 61.1 56.1 57.8 55.1 50.7 67.9 42.5 38.9 63.3 57.7 61.6 57.8 54.9 49.6 57.3 43.0 56.7 54.0

Roundtrip-Train-Test

RT+SRC R 40.6 60.3 56.5 58.3 61.1 51.1 66.9 43.4 38.0 63.6 57.8 62.6 60.3 57.0 51.7 55.7 45.4 56.0 54.8
RT+SRC X 40.4 60.4 57.3 58.2 58.3 50.6 66.9 41.8 37.1 63.0 56.9 62.4 55.7 56.8 51.0 55.2 44.6 56.9 54.1
M-RT+SRC R 40.9 59.1 55.9 57.9 61.6 50.1 65.1 42.7 36.5 62.4 55.5 63.7 59.6 57.2 50.7 53.7 44.1 55.7 54.0
M-RT+SRC X 40.7 59.3 55.4 58.1 61.5 49.4 63.9 40.2 36.6 61.2 55.0 63.1 58.2 56.3 49.9 50.0 44.0 54.9 53.2
M-RT-Ens-SRC X 40.5 59.8 55.9 58.2 61.0 50.6 65.5 41.7 38.1 62.0 56.1 63.3 57.7 57.3 51.0 51.7 44.7 55.2 53.9
M-RT-Ens-HR X 35.4 52.4 48.3 48.4 51.8 43.3 57.1 35.4 35.5 53.4 50.6 55.3 49.3 49.1 45.4 48.1 40.2 49.4 47.1

Table 16: Results for translation-based XLT evaluated of Masakha for languages supported by the translation model.
Model selection is done on the best epoch based on target-language validation data (Val-Trg). We use XLM-R (X)
and RoBERTa (R).
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BBJ PCM Avg

I II III I II III I II III

Zero-Shot

SRC X 41.9 42.0 45.4 78.5 78.3 78.2 60.2 60.1 61.8

Translate-Train

SRC+HR X 45.8 45.7 44.6 77.2 77.3 76.5 61.5 61.5 60.6
TRG X 43.2 41.8 44.1 75.0 75.7 75.9 59.1 58.7 60.0
TRG+SRC X 46.3 46.5 48.7 77.3 77.2 77.6 61.8 61.8 63.2
SRC→TRG X 46.0 46.7 47.5 76.3 76.4 77.1 61.2 61.5 62.3
TRG+SRC+HR X 42.0 44.8 46.3 77.0 77.0 77.4 59.5 60.9 61.9
M-TRG X 48.4 48.1 49.9 72.6 73.7 73.0 60.5 60.9 61.4
M-TRG+SRC X 47.9 47.0 51.0 74.0 72.9 75.8 61.0 60.0 63.4
SRC→M-TRG X 50.0 46.7 51.0 73.9 72.7 73.5 61.9 59.7 62.2
M-TRG+SRC+HR X 48.4 47.3 49.8 73.4 72.8 75.1 60.9 60.1 62.4

Translate-Test

SRC R 31.8 31.7 32.4 64.4 64.3 64.4 48.1 48.0 48.4
SRC X 30.5 30.3 32.1 62.6 62.4 62.5 46.6 46.4 47.3

Roundtrip-Train-Test

RT+SRC R 30.4 29.7 31.7 61.9 62.1 62.9 46.2 45.9 47.3
RT+SRC X 30.6 30.6 32.3 60.0 59.5 60.3 45.3 45.1 46.3
M-RT+SRC R 30.8 30.8 34.1 59.3 58.7 59.4 45.0 44.7 46.8
M-RT+SRC X 30.4 31.0 32.4 57.6 56.4 58.2 44.0 43.7 45.3
M-RT-Ens-SRC X 34.5 35.4 35.4 57.9 57.3 58.9 46.2 46.3 47.2
M-RT-Ens-HR X 35.4 35.1 37.1 50.2 49.3 50.3 42.8 42.2 43.7

Table 17: Results for translation-based XLT evaluated of Masakha for languages not supported by the translation
model. Model selection is done on the best epoch based on source-language validation data (Val-Src (I)), based on
translated source-language validation data (Val-MT-Trg (II)), and based on target-language validation data (Val-Trg
(III)). We use XLM-R (X) and RoBERTa (R).
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