
FINDE: Neural Differential Equations
for Finding and Preserving Invariant Quantities

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural networks have shown promise for modeling dynamical systems from data.1

Recent models, such as Hamiltonian neural networks, have been designed to2

ensure known geometric structures of target systems and have shown excellent3

modeling accuracy. However, in most situations where neural networks learn4

unknown systems, their underlying structures are also unknown. Even in such5

cases, one can expect that target systems are associated with first integrals (a.k.a. in-6

variant quantities), which are quantities remaining unchanged over time. First7

integrals come from the conservation laws of system energy, momentum, and mass,8

from constraints on states, and from other features of governing equations. By9

leveraging projection methods and discrete gradient methods, we propose first10

integral-preserving neural differential equations (FINDE). The proposed FINDE11

finds and preserves first integrals from data, even in the absence of prior knowl-12

edge about the underlying structures. Experimental results demonstrate that the13

proposed FINDE is able to predict future states of given systems much longer and14

find various quantities consistent with well-known first integrals of the systems in15

a unified manner.16

1 Introduction17

Although neural networks have achieved remarkable results in image and natural language pro-18

cessing [17, 28], they have also been actively investigated for modeling dynamical systems [41].19

Target systems include the chemical dynamics to accelerate computer simulations [46], the climate20

dynamics for climate change prediction and weather forecasting [47, 52], and the physical dynamics21

of vehicles and robots for optimal control [41]. Their history dates back to at least the 1990s, and22

many approaches have been proposed so far (see [7, 12, 35, 40, 49, 55] for example). Recently,23

neural ordinary differential equation (NODE) has redefined neural networks for continuous-time24

dynamics [8]. A target system is described by an ordinary differential equation (ODE) d
dtu = f(t,u),25

where u denotes the system state. Then, a NODE replaces the vector field f with a neural network26

and employs a numerical integrator to obtain a solution u(t).27

Most real-world systems are associated with first integrals (a.k.a. invariant quantities), which are28

quantities remaining unchanged over time [27]. If a system has a first integral V (u), the solution29

u(t) for the initial condition u(0) remains at a contour line V (u(t)) = V (u(0)) over time. Many30

previous studies have attempted to learn a target system accurately by incorporating prior knowledge31

about first integrals. Greydanus et al. [26] proposed Hamiltonian neural network (HNN), which32

employs a neural network to approximate Hamilton’s equation, thereby conserving the system energy33

called the Hamiltonian. Finzi et al. [19] proposed neural network architectures that conserve linear34

and angular momenta by utilizing the graph structure. Finzi et al. [20] also extended HNN to a system35

with holonomic constraints, which lead to first integrals such as a pendulum length. Matsubara et al.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Table 1: Comparison between Related Studies on Preservation of First Integrals.

energy
monentum

mass constraint
learning invariants

exact conservation

NODE [8]
HNN [26] X
LieConv [19] X X
DGNet [38] X X X
CHNN [20] X X

continuous FINDE (proposed) X X X X X
discrete FINDE (proposed) X X X X X X

[38] proposed a model that preserves the total mass of a discretized partial differential equation37

(PDE). These studies have demonstrated that a neural network with more prior knowledge about first38

integrals predicts the dynamics of the target system more accurately. See Table 1 for comparison.39

Previous studies have mainly attempted to preserve known first integrals. However, in situations40

where a neural network learns an unknown target system, it is naturally expected that first integrals41

associated with the target system are also unknown, and it is not clear which of the above methods are42

available. Given the above, this study proposes First Integral-preserving Neural Differential Equation43

(FINDE) to find and preserve first integrals from data. FINDE has the following advantages.44

Learning First Integrals For modeling continuous-time dynamics with known first integrals, many45

studies have designed architectures or operations of neural networks [13, 19, 20, 26, 38]. For each46

type of first integral, one dedicated method was proposed. However, the properties of a target system47

are generally unknown in practice. In contrast, the proposed FINDE finds various kinds of first48

integrals from data in a unified manner and preserves them in predictions. A symbolic regression49

confirms that the learned first integrals are consistent with well-known first integrals of target systems.50

Combination with Known First Integrals The proposed FINDE can be combined with previously51

proposed neural networks designed to preserve known first integrals, such as HNN. Therefore, FINDE52

is available in various situations.53

Exact Preservation of First Integrals Even if a first integral is associated with a continuous-time54

system, it is destroyed after the system is discretized in time for computer simulations. This is true55

even when using a symplectic integrator, which preserves the system energy only approximately [27].56

By leveraging discrete gradients [38], the discrete-time version of FINDE preserves first integrals57

exactly (up to rounding errors) in discrete time and further improves the prediction performance.58

2 Background and Related Work59

First Integrals Let us consider a time-invariant differential system d
dtu = f(u) on an N -60

dimensional manifold M, where u denotes the system state and f : M → TuM represents a61

vector field on the manifoldM. The manifoldM can beM = S1 × R1 for a pendulum. In this62

paper, we suppose the manifoldM be a Eucleadian space RN for simplicity.63

Definition 1 (first integral). A quantity V : M → R is referred to as a first integral of a system64
d
dtu = f(u) if it remains constant along with any solution u(t), i.e., d

dtV (u) = 0.65

If a differential system d
dtu = f(u) is associated with K functionally independent first integrals66

V1, . . . , VK , the solution u(t) given an initial value u0 stays at the (N−K)-dimensional submanifold67

68

M′ = {u ∈M : V1(u) = V1(u0), . . . , VK(u) = VK(u0)}. (1)
The tangent space TuM′ ⊂ TuM of the submanifold M′ ⊂ M at a point u is the orthogonal69

complement to the space spanned by the gradients∇Vk(u) of the first integrals Vk for k = 1, . . . ,K,70

that is,71

TuM′ = {w ∈ TuM : ∇Vk(u)>w = 0 for k = 1, . . . ,K} (2)

2

If a quantity Vk is a first integral of the system d
dtu = f(u), the time-derivative f at point u is on the72

tangent space TuM′, being orthogonal to the gradient ∇Vk of the first integral Vk. Then, it holds73

that d
dtVk(u) = ∇Vk(u)> d

dtu = ∇Vk(u)>f(u) = 0.74

One of the most well-known first integrals is the Hamiltonian H , which represents the system energy75

of a Hamiltonian system. Noether’s theorem states that a continuous symmetry of a system leads to a76

conservation law (and hence a first integral) [27]; a Hamiltonian system is symmetric to translation77

in time and conserves the Hamiltonian. Symmetries to translation and rotation in space lead to the78

conservation of linear and angular momenta. Not all first integrals are related to symmetries. A79

pendulum can be expressed in Cartesian coordinates, and then the rod length constrains the mass80

position. This kind of constraint is called a holonomic constraint and leads to a first integral. A model81

for disease spreading called an susceptible-infected-recovered (SIR) model and the dynamics of82

chemical reactions have the total mass (population) as a first integral. Also for a system described by83

a PDE, the total mass is sometimes a first integral [23]. See Appendix A for theoretical classification84

of dynamics.85

First Integrals in Numerical Analysis For computer simulations, a differential system is dis-86

cretized in time and solved by numerical integration. Then, the geometric structures of the system87

are often destroyed, and most first integrals are no longer preserved. A common remedy is a sym-88

plectic integrator, which preserves the symplectic structure and integrates a Hamiltonian system89

accurately [27]. However, Ge–Marsden theorem states that a symplectic integrator conserves the90

Hamiltonian only approximately [56]. Hence, many numerical schemes have also been investigated91

for preserving first integrals exactly, while they cannot preserve the symplectic structure.92

Let a superscript s denote the state us or time ts at s-th time step, and ∆ts = ts+1 − ts denote a93

time step size. A projection method predicts a next state ũs+1 from the current state us using a94

numerical integrator and projects it onto the submanifoldM′, obtaining the projected state us+1 that95

preserves the first integrals Vk [24] (see also [27, Section IV.4]). In particular, the projected state96

us+1 is obtained by solving the optimization problem97

us+1 = arg min
u′s+1

||u′s+1 − ũs+1|| subject to Vk(u′s+1) = Vk(us) for k = 1, . . . ,K. (3)

A local coordinate method defines a coordinate system to the neighborhood of the current state us98

and integrates a differential equation on it [43] (see also [27, Section IV.5]). A discrete gradient99

method defines a discrete analogue to a given differential system and integrates it in discrete time [6,100

23, 25, 29, 44, 45]. This method eliminates numerical errors caused by temporal discretization and is101

used to preserve the Hamiltonian exactly (up to rounding errors) in discrete time.102

Except for DGNet, which used discrete gradients to preserve the Hamiltonian [38], all the above103

methods have never been applied to neural networks due to difficulties that we will introduce later. To104

our best knowledge, the discrete-time version of FINDE is the first projection method for dynamical105

systems modeled using neural networks.106

Preservation of First Integrals by Neural Networks NODE defines an ODE using a neural net-107

work in the most general way with no associated first integrals [8]. NODE is a universal approximator108

to ODEs [51], and it can approximate any ODE with arbitrary accuracy if there is an infinite amount109

of training data. In practice, the amount of training data is limited, and prior knowledge about the110

target system is helpful for learning (see [48] for the case with convolutional neural networks). HNN111

assumes the target system to be a Hamiltonian system in the canonical form [26]. HNN guarantees112

various properties of Hamiltonian systems by definition, including the conservation of the energy113

and the preservation of the symplectic structure in continuous time [27]. Some studies employed a114

symplectic integrator for HNN to preserve the energy and symplectic structure with smaller numerical115

errors [10]. LieConv and EMLP-HNN employed neural network architectures with translational116

and rotational symmetries to preserve momenta [19, 21]. CHNN incorporates a known holonomic117

constraint in the dynamics [20]. Deep conservation extracts latent dynamics of a PDE system and118

preserves a quantity of interest by forcing its flux to be zero [34]. HNN++ also guarantees the119

conservation of the mass in PDE systems by using a coefficient matrix derived from differential120

operators [38].121

Several studies proposed neural networks to learn Lyapunov functions, which are expected to be122

non-increasing over time, in contrast to first integrals [37, 50]. If the state moves in the direction of123

3

increasing the function, it is projected onto or moved inside the counter line of the gradient of the124

Lyapunov function. Their idea is similar to the continuous-time version of FINDE but limited to a125

single non-increasing quantity in continuous time. On the other hand, our proposed FINDE preserves126

multiple quantities in both continuous and discrete time.127

Previous studies aimed to preserve known first integrals. Moreover, except for DGNet [38], all128

the above methods suffer from numerical errors caused by temporal discretization. In contrast, our129

proposed FINDE learns first integrals from data and can eliminate discretization errors.130

3 First Integral-Preserving Neural Differential Equation131

The main purpose is to find and preserve first integrals from data by neural networks. We suppose132

that a target system has at least K unknown functionally independent first integrals. Even when133

a NODE learns the target system, it is not guaranteed to learn these first integrals. Hence, we134

introduce a neural network with K outputs, each of which is expected to learn one of first integrals135

expressed as Vk : RN → R for k = 1, . . . ,K. We denote the set of first integrals by a vector136

V (u) = (V1(u) V2(u) . . . VK(u))>. Then, the submanifold M′ is defined using the neural137

network V as in Eq. (1).138

Because there is no way to define local coordinates on such submanifolds, a local coordinate method139

is not applicable. When using a projection method, the optimization problem in Eq. (3) should140

be solved at every training iteration as well as in the prediction phase. Optimization problems are141

computationally expensive, and common libraries for neural networks do not provide backpropagation142

algorithms for optimization problems [1, 42].1 Until a recent study has proposed an algorithm [38],143

there was no way to obtain discrete gradients of neural networks. Because of these difficulties,144

no methods for preserving first integrals have been applied to neural networks. By leveraging a145

projection method and a discrete gradient method, we propose FINDE as follows.146

3.1 Continuous FINDE: Time-Derivative Projection Method147

First, we propose a time-derivative projection method called continuous FINDE (cFINDE) for neural148

networks, which projects the time-derivative onto the tangent space TuM′. While it still suffers from149

numerical errors, it is sufficient to find first integrals from data.150

We suppose that a neural network called a base model defines the time-derivative f̂ : RN → RN .151

Then, we define the time-derivative f of the cFINDE d
dtu = f(u) as152

f(u) = f̂(u)−
∑K
k=1 λk∇Vk(u) = f̂(u)−M(u)>λ(u), (4)

where λk is a Lagrange multiplier, M = ∂V
∂u , and λ(u) = (λ1(u) λ2(u) . . . λK(u))>. If Vk153

remains constant,154

0 = d
dtV (u(t)) = M(u) d

dtu = M(u)f(u) = M(u)(f̂(u)−M(u)>λ(u)), (5)

where 0 = (0 . . . 0)>. By transforming Eq. (5), we obtain the Lagrange multiplier λ(u) =155

(M(u)M(u)>)−1M(u)f̂(u). By eliminating it, the cFINDE d
dtu = f(u) is given by156

f(u) = (I − Y (u))f̂(u) where Y (u) = M(u)>(M(u)M(u)>)−1M(u) (6)
Remark 1 (continuous-time first integral preservation). The cFINDE d

dtu = f(u) preserves all first157

integrals Vk for k = 1, . . . ,K in continuous time, i.e., d
dtVk = 0.158

The base model f̂ can be a NODE, an HNN, or other models depending on available prior knowledge.159

Also, if a first integral is already known, one can use it directly as one of first integrals Vk instead160

of learning it using a neural network. Note that even though the base model f̂ is an HNN, due to161

projection, the cFINDE f is no longer a Hamiltonian system in the strict sense.162

Compared to the base model f̂ , the cFINDE requires the additional computation of the neural network163

V , several matrix multiplications, and an inverse operation. The inverse operation needs a computa-164

tional cost of O(K3), which is not costly if the number K of first integrals is small. For satisfying165

the constraints and geometric structures, many previous models also need the inverse operation, such166

as Lagrangian neural network (LNN) [13], neural symplectic form [9], and CHNN [20].167

1The algorithm proposed in [2] might work, but it is outside the scope of this paper.

4

3.2 Discrete FINDE: Discrete-Time Projection Method168

To eliminate numerical errors caused by temporal discretization, we employ discrete gradients and169

propose a projection method called discrete FINDE (dFINDE).170

A discrete gradient∇V is a discrete analogue to a gradient∇V [6, 23, 25, 29, 44, 45]. Recall that a171

gradient ∇V of a function V : RN → R can be regarded as a function RN → RN that satisfies the172

chain rule d
dtV (u) = ∇V (u)> d

dtu. Analogously, a discrete gradient ∇ is defined as follows.173

Definition 2 (discrete gradient). A discrete gradient ∇V of a function V : RN → R is a function174

RN × RN → RN that satisfies175

V (v)− V (u) = ∇V (v,u)>(v − u) and ∇V (u,u) = ∇V (u). (7)

The first condition is a discrete analogue to the chain rule when replacing the time-derivatives d
dtV176

and d
dtu with finite differences (V (v)− V (u)) and (v − u), respectively, and the second condition177

ensures the consistency with the ordinary gradient ∇V . A discrete gradient ∇V is not uniquely178

determined and has been obtained manually. Recently, the automatic discrete differentiation algorithm179

(ADDA) has been proposed in [38], which obtains a discrete gradient of a neural network in a similar180

way to the automatic differentiation algorithm [1, 42]. The discrete gradient is defined in discrete181

time, and hence a numerical integration using the discrete gradient is free from numerical errors182

caused by temporal discretization. See Appendix B and the references [6, 23, 38] for more details.183

Following [11, 15], we introduce a discrete analogue to the tangent space TuM′ called the discrete184

tangent space T(v,u)M′. In particular, for a pair (v,u) ∈M′ of points, it is defined as185

T(v,u)M′ = {w ∈ RN : ∇Vk(v,u)>w = 0 for k = 1, . . . ,K}. (8)

If the finite difference (us+1 − us) between the predicted and current states is on the discrete186

tangent space T(us+1,us)M′, the first integrals Vk are preserved because Vk(us+1) − Vk(us) =187

∇Vk(us+1,us)>(us+1 − us) = 0. Note that similar concepts defined in different ways are also188

referred to as discrete tangent spaces [14, 16].189

Let ψ̂ denote a discrete-time base model that satisfies ũs+1−us

∆ts = ψ̂(us; ∆ts), where ũs+1 denotes190

the predicted state. We assume that the base model ψ̂ is composed of a continuous-time base model191

f̂ and a numerical integrator. Then, the dFINDE us+1−us

∆ts = ψ(us+1,us; ∆ts) is given by192

ψ(us+1,us; ∆ts) = ψ̂(us; ∆ts)−M(us+1,us)>λ(us+1,us), (9)

where M(us+1,us) = (∇V1(us+1,us) . . . ∇VK(us+1,us))>. As is the case in continuous time,193

the preservation of the first integrals Vk leads to194

0 = V (us+1)−V (us)
∆ts = M(us+1,us)us+1−us

∆ts = M(us+1,us)ψ(us+1,us; ∆ts). (10)

Substituting Eq. (9) and eliminating the Lagrange multiplier λ, we obtain195

ψ(us+1,us; ∆ts) = (I − Y (us+1,us))ψ̂(us; ∆ts) where Y = M
>

(M M
>

)−1M. (11)

Remark 2 (discrete-time first integral preservation). The dFINDE us+1−us

∆ts = ψ(us+1,us; ∆ts)196

preserves all first integrals Vk for k = 1, . . . ,K in discrete time, i.e., Vk(us+1)− Vk(us) = 0.197

Due to projection, dFINDE can be regarded as a projection method using discrete gradients. For the198

base model ψ̂, the continuous-time base model f̂ can be a NODE, an HNN, or other models, and the199

numerical integrator can be a Runge–Kutta method, the leapfrog integrator, or others.200

Because dFINDE is an implicit method, it is computationally expensive for prediction. However, the201

next stateus+1 is given for training, and the ADDA can explicitly obtain the discrete gradient w.r.t. the202

pair (us+1,us) as well as its computational graph. Thus, dFINDE can be computed explicitly and203

optimized by standard backpropagation algorithms. Moreover, we suppose that dFINDE projects204

the finite difference ψ̂ only at every time step, whereas cFINDE projects the time-derivative f̂ at205

every substep inside a numerical integrator. Therefore, dFINDE is less computationally expensive206

than cFINDE for training. In contrast, a typical projection method requires much computational207

cost to solve an optimization problem for training, and standard backpropagation algorithms are not208

applicable to it.209

5

Table 2: Datasets, Dynamics, and First Integrals.
First Integrals

Dataset Dynamics N Energy Momentum Mass Constraint

Two-body problem Canonical Hamiltonian 8 X X
Discretized KdV equation Non-canonical Hamiltonian 50 X X
Double pendulum Poisson 8 X X
FitzHugh–Nagumo model Dirac 4 X

Remark 3 (trainability). The dFINDE can be trained using the standard backpropagation algorithm,210

whereas a straightforward application of a projection method cannot.211

4 Experiments212

4.1 Experimental Settings213

Target Systems We evaluated FINDE and base models using datasets associated with first integrals,214

summarized in Table 2. A gravitational two-body problem (2-body) on a 2-dimensional configuration215

space is a typical Hamiltonian system in the canonical form. In addition to the total energy, it has first216

integrals related to symmetries in space, namely, the linear and angular momenta. The Korteweg–De217

Vries (KdV) equation is a PDE model of shallow water waves. This is a Hamiltonian system in a218

non-canonical form and has the Hamiltonian, total mass, and many other quantities as first integrals.219

A double pendulum (2-pend) is a Hamiltonian system in polar coordinates. However, we transformed220

it to Cartesian coordinates; it was no longer a Hamiltonian system but a Poisson system. The lengths221

of two rods work as holonomic constraints and lead to four first integrals. The FitzHugh–Nagumo222

model is a biological neuron model as an electric circuit, which exhibits a rapid and transient change223

of voltage called a spike. As an electric circuit, the currents through and voltages applied to the224

inductor and capacitor can be regarded as system states, and the states are constrained by the circuit225

topology and Kirchhoff’s current and voltage laws. Then, this system has a state of four elements and226

two first integrals. Due to energy dissipation in the resistor, the model is not a Poisson system, but227

one can find a Dirac structure [53]. See Appendix C for more details.228

Implementation We implemented the proposed FINDE and evaluated it under the following229

settings. We implemented all codes by modifying the officially released codes of HNN [26] 2 and230

DGNet [38]3. We used Python v3.8.12 with packages scipy v1.7.3, pytorch v1.10.2, torchdiffeq v0.1.1,231

functorch v1.10 preview, and gplearn v0.4.2. We used the Dormand–Prince method (dopri5) [18]232

as the numerical integrator, unless otherwise stated. All experiments were performed on a single233

NVIDIA A100 provided by (ANONYMOUS PROVIDER).234

Following HNN [26] and DGNet [38], we represented the first integrals V , NODE, and HNN H235

using fully-connected neural networks with two hidden layers. Each hidden layer had 200 units236

and preceded a hyperbolic tangent activation function. Each weight matrix was initialized as an237

orthogonal matrix. The input was the state u, and the output represented the first integrals V for238

FINDE, time-derivative f̂ for NODE, and the Hamiltonian H for HNN. For the KdV dataset, we used239

a 1-dimensional convolutional neural network (CNN), each of whose layers had a kernel size of 3.240

The double pendulum is a second–order system, implying that the time-derivative d
dtq of the position241

q is known as the velocity v. Hence, we treated only the acceleration d
dtv as the output to learn. This242

assumption slightly improved the absolute performances but did not change the relative trends.243

We used the 1-step error as the loss function to be minimized. In particular, it is the mean squared244

error (MSE) between the ground truth state usGT and the state uspred. predicted from the previous step245

us−1
GT . The base model and FINDE were jointly trained using the Adam optimizer [33] with the246

parameters (β1, β2) = (0.9, 0.999) and a batch size of 200. The learning rate was initialized to 10−3247

and decayed to zero with a cosine annealing [36].248

2https://github.com/greydanus/hamiltonian-nn (Apache-2.0 License)
3https://github.com/tksmatsubara/discrete-autograd (MIT License)

6

https://github.com/greydanus/hamiltonian-nn
https://github.com/tksmatsubara/discrete-autograd

Evaluation Metric As an evaluation metric, we used the 1-step error, which is identical to the loss249

function. We displayed it at the scale of ×10−9. The lower this indicator, the better, as emphasized250

by ↓. While several studies used the MSEs of the state or system energy over the whole time251

series [26, 38], we consider these indicators are misleading, as pointed in several studies [4]. For252

example, in the case of a periodic orbit, an orbit that is correctly learned except for a slight difference253

in angular velocity will have the same MSE as an orbit that never moves from its initial position.254

Instead, we used the valid prediction time (VPT) [4, 32, 54]. VPT denotes the time point s divided by255

the length S of time series at which the MSE of the predicted state uspred. exceeds a given threshold θ256

for the first time in an initial value problem, that is,257

V PT (upred.;uGT) = 1
S arg maxsf {sf |MSE(uspred.,u

s
GT) < θ for all s ≤ sf}. (12)

To obtain VPTs, we normalized each element of state to have zero mean and unit variance in the258

training data and set θ to 0.01. The higher this indicator, the better, as emphasized by ↑. Because of259

the “spiking” behavior of the FitzHugh–Nagumo model, a small error in phase is regarded as a large260

error in state. To measure the qualitative performance, we calculated VPTs by allowing for a delay261

and advance of up to 5 steps.262

4.2 First Integral Preservation for Hamiltonian System263

−1.0

0.0

1.0

st
a

te q

v

0 50step s

0.495

0.500

en
er

g
y

analytical

cFINDE

leapfrog

dFINDE

Figure 1: Integration of a known
mass-spring system.

Before learning first integrals from data, we first evaluated264

FINDE as a numerical integrator using a known mass-spring265

system. The system has the state u = (q v)>, the dynamics266
d
dtq = v and d

dtv = −q, and the system energy E(q, v) =267
1
2 (q2 +v2). Using the initial value (1.0 0.0)> and the time step268

size ∆t = 0.2, we solved the initial value problem of the true269

ODE using the leapfrog integrator. We applied FINDE with the270

true system energy E as the first integral V . Note that no neural271

networks nor training were involved.272

The results with the analytical solution are shown in Fig. 1. The upper panel shows that the time series273

predicted by comparison methods overlap each other and are apparently almost identical. However,274

the lower panel shows that the energy obtained from the states predicted by the leapfrog integrator is275

fluctuating. The same is true for the case with the cFINDE. This is because the symplectic integrator276

and the cFINDE suffer from numerical errors caused by temporal discretization. In contrast, the277

dFINDE preserves the energy accurately. This is because, at every step, the dFINDE projects the state278

(q v)> onto the discrete tangent space T(v,u)M′. Although a smaller step size reduces numerical279

errors, this result demonstrates the advantage of dFINDE.280

4.3 Learning First Integrals from Data of Hamiltonian System281

We evaluated FINDE on learning from the 2-body dataset. We used HNN as the base model f̂ . We282

found that the FINDE got better performances if it did not treat the Hamiltonian H of the HNN283

as one of first integrals Vk. The medians and standard deviations of 5 trials are summarized in the284

leftmost column of Table 3. The cFINDE achieved better VPTs than the vanilla HNN with K = 1285

to 2, and the performance was suddenly degraded for K = 3. The dFINDE showed a similar trend286

with slightly better performances. The HNN with FINDE found two first integrals in addition to the287

Hamiltonian H of the HNN. Even though a two-body problem is a Hamiltonian system that HNN288

can learn, the prior knowledge that there exist first integrals other than the Hamiltonian H can be289

a clue to better learning. The HNN with FINDE got worse 1-step errors, suggesting that without290

FINDE, HNN overfitted short-term change and had difficulty predicting long-term dynamics.291

We performed a symbolic regression of first integrals V learned by the neural network. For K = 2,292

the learned first integrals V were identical to the linear momenta in the x- and y-directions up to293

affine transformation in most cases. See Appendix D.1 for more details.294

We depict example results in Fig. 2. In the absence of FINDE, the mass positions (x1, y1), (x2, y2)295

became inaccurate in a short time and the center-of-gravity position (xc, yc) = (x1+x2

2 , y1+y2
2)296

deviated rapidly. The HNN with cFINDE accurately predicted the state for a longer period. Even after297

errors in the mass positions became non-negligible, errors in the center-of-gravity position were still298

small. We show the absolute errors averaged over all trials in Fig. 3. In each of x- and y-directions,299

7

Table 3: Results of FINDE.
2-body + HNN KdV 2-pend FitzHugh–Nagumo

Model K 1-step↓ VPT↑ 1-step↓ VPT↑ 1-step↓ VPT↑ 1-step↓ VPT↑

base model – 5.17 ±0.570 0.362 ±0.026 5.59 ±0.300 0.339 ±0.038 0.82 ±0.020 0.110 ±0.035 73.66 ±12.59 0.236 ±0.053

1 7.10 ±1.250 0.374 ±0.036 6.24 ±0.440 0.371 ±0.088 0.75 ±0.040 0.156 ±0.042 54.18 ±8.120 0.127 ±0.148

2 7.78 ±1.390 0.450 ±0.052 2.59 ±0.110 0.608 ±0.085 0.73 ±0.050 0.198 ±0.088 37.03 ±3.810 0.437 ±0.084

+ cFINDE 3 >103 0.147 ±0.146∗ 3.19 ±0.370 0.730 ±0.091 0.69 ±0.030 0.411 ±0.093 >106 0.007 ±0.007∗

4 >103 0.101 ±0.005 3.65 ±0.300 0.641 ±0.071 0.77 ±0.070 0.395 ±0.083 —
5 >103 0.080 ±0.014 4.68 ±0.430 0.601 ±0.069 0.80 ±0.070 0.585 ±0.097 —
6 >103 0.070 ±0.019 7.79 ±0.510 0.425 ±0.067 12.53 ±0.000 0.005 ±0.000∗ —

1 7.01 ±1.060 0.379 ±0.040 11.61 ±6.600 0.288 ±0.083 0.75 ±0.100 0.152 ±0.017 47.07 ±8.030 0.117 ±0.122

2 7.03 ±1.000 0.475 ±0.022 2.70 ±0.260 0.598 ±0.059 0.74 ±0.050 0.271 ±0.111 33.24 ±3.400 0.455 ±0.032

+ dFINDE 3 54.78 ±36.39 0.309 ±0.024 3.78 ±0.270 0.636 ±0.024 0.69 ±0.050 0.447 ±0.081 319.70 ±91.11 0.049 ±0.007

4 >103 0.102 ±0.015 3.48 ±0.320 0.780 ±0.059 0.71 ±0.030 0.454 ±0.060 —
5 >103 0.086 ±0.011∗ 5.26 ±0.150 0.718 ±0.038 0.86 ±0.090 0.591 ±0.087 —
6 >103 0.059 ±0.017 9.60 ±3.610 0.573 ±0.121 58.88 ±22.98 0.037 ±0.039 —

A standard deviation follows ± symbol. Underlines indicate results better than the base models’ results, and
bolded fonts indicate the best results. ∗ denotes that some trials failed in training because of the underflow of the
step size. A dash denotes a case we did not try.

ground truth HNN +cFINDE

true (xc, yc)

(xc, yc)

(x1, y1)

(x2, y2)

Figure 2: Example results of the 2-body dataset.

0 104
HNN

0

2

0 104
+cFINDE

0.0

0.5

x1, x2

y1, y2

xc

yc

Figure 3: Mean absolute errors of states for
the 2-body dataset with or without cFINDE.

the HNN without FINDE produced errors in the center-of-gravity position xc (or yc) and those in the300

mass positions x1, x2 (or y1, y2) at almost the same level. In contrast, when the cFINDE is present,301

errors in the center-of-gravity position were much smaller than those in the mass positions, implying302

that errors in one mass position canceled out errors in the other mass position.303

Therefore, we conclude that FINDE not only had better prediction accuracy but also found and304

preserved linear momenta (which are related to symmetries in space) more accurately despite not305

having prior knowledge about symmetries.306

4.4 Learning First Integrals from Data of Unknown Systems307

It is often unclear whether a target system is a Hamiltonian system or not, but one can expect that the308

target system has several first integrals. We evaluated FINDE using NODE as the base model. We309

summarized the results in Table 3.310

For the KdV dataset, the NODE with FINDE got much better 1-step errors and VPTs for a wide311

range of K. Figure 4 shows an example result. The top panels show that the prediction results were312

apparently similar. The bottom panels summarize mean absolute errors in states u, total mass
∑
k uk,313

and energy. In the absence of FINDE, the NODE increased all of its errors in proportion to time. With314

the cFINDE, the error in total mass increased at the point where the two solitons collided but then315

returned to the original level. Although the calculation is slightly inaccurate, the cFINDE learned316

to preserve the total mass. The rightmost panel shows that the error in energy continued to increase317

for K = 2, but it stayed within a small range for K = 3. These results suggest that the first or318

second quantity learned by the cFINDE was total mass, the third quantity was system energy, and the319

remaining quantity may correspond to one of the many first integrals of the KdV equation.320

8

Ground Truth
0

50

NODE
0

50

+cFINDEK=2
0

50

+cFINDEK=3
0

50

Truth

NODE

K= 2

K= 3

0 104
error in state

0

2

0 104
error in total mass

0.0

0.5

0 104
error in energy

0

5

10

−10

0

10

Figure 4: Example results of the KdV dataset. (top) Predicted states. Red belts denote moving
solitons. (bottom) Mean absolute errors.

Ground Truth NODE +cFINDE

Figure 5: Example results of the
2-pend dataset for 2,000 steps.

−5

0

5

V
C

Truth NODE K = 1 K = 2

−2

0

2

V
L

0 2000

−1

0

1

I C

0 2000
−5

0

5

I L

Figure 6: Example results of the FitzHugh–Nagumo dataset.

For the 2-pend dataset, the NODE with FINDE got better 1-step errors and VPTs for K = 1 to 5321

except for the 1-step error of the dFINDE with K = 5. In addition to the system energy, the double322

pendulum has two holonomic constraints on the position, which lead to two additional constraints323

involving the velocity (see Appendix C for details). Thus, it is reasonable that the NODE with FINDE324

got the best VPTs for K = 5 first integrals and totally failed when assuming K > 5 first integrals.325

As exemplified in Fig. 5, the NODE without FINDE did not preserve the lengths of rods, making326

the states deviate gradually. See Appendix D.2 for the case when actual constraints are known. For327

the FitzHugh–Nagumo dataset, the NODE with FINDE got much better 1-step errors and VPTs for328

K = 2. As exemplified in Fig. 6, the ground truth state converged to a periodic orbit, and only the329

NODE with cFINDE for K = 2 reproduced such dynamics. On the other hand, the state did not330

stay at a limited region without FINDE and converged to a wrong equilibrium with the cFINDE for331

K = 1. For K = 1, the sole quantity V1 may have tried to learn both of the two first integrals and332

remained under-trained. In these two cases, FINDE found all first integrals; K = 5 for the 2-pend333

dataset and K = 2 for the FitzHugh–Nagumo dataset.334

5 Conclusion335

This study proposed first integral-preserving neural differential equation (FINDE). FINDE projects336

the time evolution onto the submanifold defined using the (discrete) gradients of first integrals337

represented by a neural network. With an appropriate number of assumed first integrals, FINDE338

predicted future states more accurately than base models. Not only that, FINDE found and preserved339

the system energy and the total mass as first integrals, first integrals related to symmetries in space,340

and first integrals led by constraints in a unified manner. Therefore, FINDE has the potential to make341

a scientific discovery by revealing unknown properties of target dynamical systems.342

The 1-step errors were on the order of 10−5 to 10−4 in absolute error, being much larger than the343

numerical error tolerance of 10−9 used in the experiments; numerical errors were negligible compared344

to modeling errors. However, the dFINDE tended to get VPTs better than the cFINDE despite the345

fact that its advantage is to eliminate numerical errors caused by temporal discretization. This result346

suggests that a method leading to smaller numerical errors results in a model with smaller modeling347

errors. Similar tendencies have been observed in previous works [10, 38], and these results may form348

a new frontier for integrating numerical and modeling errors.349

9

References350

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,351

Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser,352

L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens,353

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,354

Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016). TensorFlow: Large-scale machine355

learning on heterogeneous systems. USENIX Symposium on Operating Systems Design and Implementation356

(OSDI).357

[2] Bai, S., Kolter, J. Z., and Koltun, V. (2019). Deep Equilibrium Models. In Advances in Neural Information358

Processing Systems (NeurIPS).359

[3] Barrett, D. G. T. and Dherin, B. (2021). Implicit Gradient Regularization. In International Conference on360

Learning Representations (ICLR).361

[4] Botev, A., Jaegle, A., Wirnsberger, P., Hennes, D., and Higgins, I. (2021). Which priors matter? Benchmark-362

ing models for learning latent dynamics. In Advances in Neural Information Processing Systems (NeurIPS)363

Track on Datasets and Benchmarks.364

[5] Cao, Y., Fang, Z., Wu, Y., Zhou, D. X., and Gu, Q. (2021). Towards Understanding the Spectral Bias of365

Deep Learning. International Joint Conference on Artificial Intelligence (IJCAI), pages 2205–2211.366

[6] Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., and Quispel, G. (2012).367

Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. Journal of368

Computational Physics, 231(20):6770–6789.369

[7] Chen, S., Billings, S. A., and Grant, P. M. (1990). Non-linear system identification using neural networks.370

International Journal of Control, 51(6):1191–1214.371

[8] Chen, T. Q., Rubanova, Y., Bettencourt, J., Duvenaud, D., Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and372

Duvenaud, D. (2018). Neural Ordinary Differential Equations. In Advances in Neural Information Processing373

Systems (NeurIPS), pages 1–19.374

[9] Chen, Y., Matsubara, T., and Yaguchi, T. (2021). Neural Symplectic Form : Learning Hamiltonian Equations375

on General Coordinate Systems. In Advances in Neural Information Processing Systems (NeurIPS).376

[10] Chen, Z., Zhang, J., Arjovsky, M., and Bottou, L. (2020). Symplectic Recurrent Neural Networks. In377

International Conference on Learning Representations (ICLR), pages 1–23.378

[11] Christiansen, S. H., Munthe-Kaas, H. Z., and Owren, B. (2011). Topics in structure-preserving discretiza-379

tion. Acta Numerica, 20:1–119.380

[12] Clouse, D. S., Giles, C. L., Horne, B. G., and Cottrell, G. W. (1997). Time-delay neural networks:381

representation and induction of finite-state machines. IEEE Transactions on Neural Networks, 8(5):1065–70.382

[13] Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., and Ho, S. (2020). Lagrangian Neural383

Networks. In ICLR Deep Differential Equations Workshop, pages 1–9.384

[14] Cuell, C. and Patrick, G. W. (2009). Geometric discrete analogues of tangent bundles and constrained385

Lagrangian systems. Journal of Geometry and Physics, 59(7):976–997.386

[15] Dahlby, M., Owren, B., and Yaguchi, T. (2011). Preserving multiple first integrals by discrete gradients.387

Journal of Physics A: Mathematical and Theoretical, 44(30).388

[16] Dehmamy, N., Walters, R., Liu, Y., Wang, D., and Yu, R. (2021). Automatic Symmetry Discovery with Lie389

Algebra Convolutional Network. In Advances in Neural Information Processing Systems (NeurIPS), number390

2018, pages 1–30.391

[17] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional392

Transformers for Language Understanding. arXiv, pages 1–15.393

[18] Dormand, J. R. and Prince, P. J. (1986). A reconsideration of some embedded Runge-Kutta formulae.394

Journal of Computational and Applied Mathematics, 15(2):203–211.395

[19] Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. (2020a). Generalizing Convolutional Neural396

Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. In International Conference on397

Machine Learning (ICML), pages 3146–3157.398

10

[20] Finzi, M., Wang, K. A., and Wilson, A. G. (2020b). Simplifying Hamiltonian and Lagrangian Neural399

Networks via Explicit Constraints. In Advances in Neural Information Processing Systems (NeurIPS).400

[21] Finzi, M., Welling, M., and Wilson, A. G. (2021). A Practical Method for Constructing Equivariant401

Multilayer Perceptrons for Arbitrary Matrix Groups. In International Conference on Machine Learning402

(ICML).403

[22] Furihata, D. (2001). A stable and conservative finite difference scheme for the Cahn-Hilliard equation.404

Numerische Mathematik, 87(4):675–699.405

[23] Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving406

Numerical Method for Partial Differential Equations. Chapman and Hall/CRC.407

[24] Gear, C. W. (1986). Maintaining Solution Invariants in the Numerical Solution of ODE s. SIAM Journal408

on Scientific and Statistical Computing, 7(3):734–743.409

[25] Gonzalez, O. (1996). Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science,410

6(5):449–467.411

[26] Greydanus, S., Dzamba, M., and Yosinski, J. (2019). Hamiltonian Neural Networks. In Advances in Neural412

Information Processing Systems (NeurIPS), pages 1–16.413

[27] Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric Numerical Integration: Structure-Preserving414

Algorithms for Ordinary Differential Equations, volume 31 of Springer Series in Computational Mathematics.415

Springer-Verlag, Berlin/Heidelberg.416

[28] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In IEEE417

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9.418

[29] Hong, J., Zhai, S., and Zhang, J. (2011). Discrete Gradient Approach to Stochastic Differential Equations419

with a Conserved Quantity. SIAM Journal on Numerical Analysis, 49(5):2017–2038.420

[30] Izhikevich, E. M. and FitzHugh, R. (2006). FitzHugh-Nagumo model.421

[31] Jin, P., Zhang, Z., Kevrekidis, I. G., and Karniadakis, G. E. (2020a). Learning Poisson systems and422

trajectories of autonomous systems via Poisson neural networks. pages 1–12.423

[32] Jin, P., Zhu, A., Karniadakis, G. E., and Tang, Y. (2020b). Symplectic networks: Intrinsic structure-424

preserving networks for identifying Hamiltonian systems. Neural Networks, 132:166–179.425

[33] Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In International426

Conference on Learning Representations (ICLR), pages 1–15.427

[34] Lee, K. and Carlberg, K. (2021). Deep Conservation: A latent-dynamics model for exact satisfaction of428

physical conservation laws. In AAAI Conference on Artificial Intelligence (AAAI).429

[35] Levin, A. U. and Narendra, K. S. (1995). Recursive identification using feedforward neural networks.430

International Journal of Control, 61(3):533–547.431

[36] Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. In International432

Conference on Learning Representations (ICLR), pages 1–16.433

[37] Manek, G. and Kolter, J. Z. (2019). Learning Stable Deep Dynamics Models. In Advances in Neural434

Information Processing Systems (NeurIPS), pages 1–9.435

[38] Matsubara, T., Ishikawa, A., and Yaguchi, T. (2020). Deep Energy-Based Modeling of Discrete-Time436

Physics. In Advances in Neural Information Processing Systems (NeurIPS).437

[39] Miura, R. M., Gardner, C. S., and Kruskal, M. D. (1968). Korteweg-de Vries equation and generalizations.438

II. Existence of conservation laws and constants of motion. Journal of Mathematical Physics, 9(8):1204–1209.439

[40] Narendra, K. S. and Parthasarathy, K. (1990). Identification and Control of Dynamical Systems Using440

Neural Networks. IEEE Transactions on Neural Networks, 1(1):4–27.441

[41] Nelles, O. (2001). Nonlinear System Identification. Springer Berlin Heidelberg, Berlin, Heidelberg.442

[42] Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., and Devito, Z. (2017). Automatic443

differentiation in PyTorch. In Autodiff Workshop on Advances in Neural Information Processing Systems,444

pages 1–4.445

11

[43] Potra, F. A. and Yen, J. (1991). Implicit numerical integration for euler-lagrange equations via tangent446

space parametrization. Mechanics of Structures and Machines, 19(1):77–98.447

[44] Quispel, G. R. and Capel, H. W. (1996). Solving ODEs numerically while preserving a first integral.448

Physics Letters, Section A: General, Atomic and Solid State Physics, 218(3-6):223–228.449

[45] Quispel, G. R. and Turner, G. S. (1996). Discrete gradient methods for solving ODEs numerically while450

preserving a first integral. Journal of Physics A: Mathematical and General, 29(13).451

[46] Raff, L., Komanduri, R., Hagan, M., and Bukkapatnam, S. (2012). Neural Networks in Chemical Reaction452

Dynamics.453

[47] Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., and Thuerey, N. (2020). WeatherBench: A454

Benchmark Data Set for Data-Driven Weather Forecasting. Journal of Advances in Modeling Earth Systems,455

12(11).456

[48] Sannai, A., Imaizumi, M., and Kawano, M. (2021). Improved Generalization Bounds of Group Invariant457

/ Equivariant Deep Networks via Quotient Feature Spaces. In Conference on Uncertainty in Artificial458

Intelligence (UAI).459

[49] Sjöberg, J., Hjalmarsson, H., and Ljung, L. (1994). Neural Networks in System Identification. IFAC460

Proceedings Volumes, 27(8):359–382.461

[50] Takeishi, N. and Kawahara, Y. (2020). Learning dynamics models with stable invariant sets. In AAAI462

Conference on Artificial Intelligence (AAAI).463

[51] Teshima, T., Tojo, K., Ikeda, M., Ishikawa, I., and Oono, K. (2020). Universal Approximation Property464

of Neural Ordinary Differential Equations. In NeurIPS Workshop on Differential Geometry meets Deep465

Learning (DiffGeo4DL).466

[52] Trigo, R. M. and Palutikof, J. P. (1999). Simulation of daily temperatures for climate change scenarios467

over Portugal: A neural network model approach. Climate Research, 13(1):45–59.468

[53] van der Schaft, A. and Jeltsema, D. (2014). Port-Hamiltonian Systems Theory: An Introductory Overview.469

Foundations and Trends® in Systems and Control, 1(2):173–378.470

[54] Vlachas, P. R., Pathak, J., Hunt, B. R., Sapsis, T. P., Girvan, M., Ott, E., and Koumoutsakos, P. (2020).471

Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of472

complex spatiotemporal dynamics. Neural Networks, 126:191–217.473

[55] Wang, Y. J. and Lin, C. T. (1998). Runge-Kutta neural network for identification of dynamical systems in474

high accuracy. IEEE Transactions on Neural Networks, 9(2):294–307.475

[56] Zhong, G. and Marsden, J. E. (1988). Lie-Poisson Hamilton-Jacobi Theory and Lie-Poisson Integrators.476

Physics Letters A, 133(3):3–8.477

[57] Zhong, Y. D., Dey, B., and Chakraborty, A. (2020). Dissipative SymODEN: Encoding Hamiltonian478

Dynamics with Dissipation and Control into Deep Learning. arXiv, pages 1–6.479

12

Checklist480

1. For all authors...481

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s482

contributions and scope? [Yes] The theoretical contributions are summarized in483

Remarks 1 and 2. The performance improvements were validated numerically in484

Table 3 and visually in Figs. 1–6.485

(b) Did you describe the limitations of your work? [Yes] We have discussed an increase in486

computational complexity at the bottoms of Sections 3.1 and 3.2. We also presented487

the limitations in Appendix D.2 while their situations were originally outside the scope488

of the proposed method.489

(c) Did you discuss any potential negative societal impacts of your work? [N/A] No490

societal impact is supposed.491

(d) Have you read the ethics review guidelines and ensured that your paper conforms to492

them? [N/A] We have read the guidelines carefully, but no ethical impact is supposed.493

2. If you are including theoretical results...494

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have495

introduced the background of the proposed method and provided the full set of as-496

sumptions in Section 2. Even though a slight modification may make the proposed497

method available on a general manifold, we have clearly stated that our theoretical and498

experimental results were limited to the finite-dimensional Eucleadian spaces.499

(b) Did you include complete proofs of all theoretical results? [Yes] We have provided a500

proof just before each of Remarks 1 and 2.501

3. If you ran experiments...502

(a) Did you include the code, data, and instructions needed to reproduce the main exper-503

imental results (either in the supplemental material or as a URL)? [Yes] We have504

enclosed the source code to reproduce all experiments in supplemental materials.505

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they506

were chosen)? [Yes] We have provided the software and hardware environment,507

network architectures, and hyperparameters in Section 4.1. We have also provided508

detailed hyperparameters to generate datasets in Appendix C.509

(c) Did you report error bars (e.g., with respect to the random seed after running experi-510

ments multiple times)? [Yes] We have summarized the standard deviations over five511

trials in Table 3.512

(d) Did you include the total amount of compute and the type of resources used (e.g., type513

of GPUs, internal cluster, or cloud provider)? [Yes] We have provided the hardware514

environment in Section 4.1, but we have anonymized the cloud service providers to515

avoid a potential violation of the double-blind policy.516

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...517

(a) If your work uses existing assets, did you cite the creators? [Yes] We have made518

the source code for all experiments by modifying the source codes of HNN [26] and519

DGNet [38]. We have cited these references and added links to respective repositories520

in the footnotes.521

(b) Did you mention the license of the assets? [Yes] We have verified that the source codes522

of HNN [26] and DGNet [38] are provided in Apache-2.0 License and MIT License,523

respectively. We have clearly stated these facts in the footnotes.524

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]525

We have enclosed the source code to generate datasets in supplemental materials.526

(d) Did you discuss whether and how consent was obtained from people whose data you’re527

using/curating? [N/A]528

(e) Did you discuss whether the data you are using/curating contains personally identifiable529

information or offensive content? [N/A]530

5. If you used crowdsourcing or conducted research with human subjects...531

(a) Did you include the full text of instructions given to participants and screenshots, if532

applicable? [N/A]533

13

(b) Did you describe any potential participant risks, with links to Institutional Review534

Board (IRB) approvals, if applicable? [N/A]535

(c) Did you include the estimated hourly wage paid to participants and the total amount536

spent on participant compensation? [N/A]537

14

