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Abstract

Large language models (LLMS) have shown increasing effectiveness in Text-
to-SQL tasks. However, another closely related problem, Cross-System SQL
Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database
system (e.g., MySQL) into its equivalent one for another system (e.g., Click-
House), is of great practical importance but remains underexplored. Existing
SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) fo-
cus on a limited set of database systems (often just SQLite) and (2) cannot cap-
ture many system-specific SQL dialects (e.g., customized functions, data types,
and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And
Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises
598 translation pairs from 38 open-source benchmarks and real-world business
services, specifically prepared to challenge system-specific SQL understanding
(e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide
multiple benchmark variants, including PARROT-Diverse with 28,003 translations
(for extensive syntax testing) and PARROT-Simple with 5,306 representative sam-
ples (for focused stress testing), covering 22 production-grade database systems.
To promote future research, we release a public leaderboard and source code at:
https://coded4db.github.io/parrot-bench/,

1 Introduction

Understanding and processing database SQL queries is a key criterion for evaluating large language
models (LLMS) in both general and specific domains [1} 2. However, existing researches mainly
focus on advancing LLMs in the Text-to-SQL task [3]. In contrast, Cross-System SQL translation,
so-called SQL-to-SQL, aims to adapt a SQL query written for one database system (e.g., MySQL) into
an equivalent query for another system (e.g., ClickHouse), which is of critical practical importance in
real-world scenarios, where enterprises frequently operate heterogeneous database environments and
require seamless query migration across systems. Despite its significance, existing SQL benchmarks
are mainly for Text-to-SQL, which are ill-suited for evaluating SQL-to-SQL capabilities. That is,
they typically target a narrow range of database systems (mostly SQLite) and fail to capture diverse,
system-specific dialect characteristics. As shown at the top of Figure[T] by testing with representative
SQLs, we can identify critical problems of existing models in the SQL-to-SQL problem:

o SQL-( needs to be modified in calculation to execute in MySQL (i.e., “1 / col” — “1 /NULLIF(col,
0)”) to avoid division-by-zero errors. However, the tested LLM (GPT-40) fails to inject this safeguard
because it lacks dialect-specific error-handling knowledge.

e SQL-( uses “GROUP BY ROLLUP(- - - )” that requires MySQL-specific syntax adjustments.
GPT-40 cannot accurately locate and adapt the nested ‘ROLLUP’ due to distractions from lengthy
unrelated clauses and an inability to isolate dialect-critical constructs.
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Figure 1: Top — Example queries illustrating key limitations of LLMS in SQL-to-SQL translation.
Bottom — Empirical statistics from 28 open-source SQL-related benchmarks: (1) Left: Most bench-
marks focus solely on SQLite (limited system diversity); (2) Middle: Over 89% of BIRD benchmark
queries are system-agnostic (inadequate system coverage); (3) Right: Fewer than 13% of PostgreSQL
and MySQL queries in BIRD-mini exhibit system-specific syntax (low dialect diversity).

e SQL-@®) defines an alias ‘RETURNS’ in a CTE subquery, which is not accessible in the outer
query in MySQL. However, the LLM mistakenly assumes alias visibility across scopes, resulting in a
reference to an undefined column and semantic failure during execution.

Limitations of Existing Benchmarks. Existing benchmarks lack sufficient such SQL queries for
the SQL-to-SQL task. As shown in the bottom of Figure [I] our investigation of 28 open-source
SQL-related benchmarks reveals several critical limitations. First, most benchmarks are designed
for NL2SQL tasks and focus on a limited set of systems (e.g., primarily SQLite). Their queries are
typically simple and do not require system-specific translation, making them unsuitable for this task.
In contrast, real-world queries (e.g., those involving UDFs) often demand complex translation across
database systems. Second, although a small portion of queries (e.g., fewer than 13% in BIRD-mini)
require system-specific handling, they lack corresponding labels across multiple systems, offering
only single-system SQLs, which limits their usability. Third, the volume of translation-relevant
queries is small, and many critical SQL translation scenarios are underrepresented.

Our Methodology. To close this gap, we introduce PARROT (Practical And Realistic BenchmaRk
for CrOss-System SQL Translation), the first large-scale dataset and evaluation suite dedicated to
cross-system SQL translation. First, we curate a diverse translation corpus of 598 manually verified
query pairs from 38 public benchmarks and real-world business applications, maximizing dialect
diversity and real-world relevance. Second, we craft a specialized challenge set of 5,306 unit-style
test cases spanning 22 production-grade database systems that isolate system-specific constructs
(e.g., window-function variants, geo-types, and bitmap operations), thereby exposing brittle model
behaviors invisible in prior work. Third, we provide an augmented training pool of 28,003 SQL
statements mined and automatically tagged with dialect information. Fourth, we propose a unified
evaluation protocol featuring reference executors, schema normalizers, and an execution-first metric
that rewards semantic correctness over superficial string similarity. Finally, we release extensive
community resources, including a public leaderboard, an open-sourced annotation toolchain, and two
lighter benchmark variants, i.e., PARROT-DIVERSE for extensive syntax tests and PARROT-SIMPLE



for focused stress testing, and so researchers and practitioners can tailor evaluation to their specific
needs. Empirical analysis reveals that state-of-the-art LLMs fail to achieve desirable performance
across different dialects (i.e., ranging from around 17% - 60%), underscoring substantial headroom
for future research.

2 Problem Formulation

Cross-System SQL Translation is the task of converting a SQL query in a source database system
(e.g., PostgreSQL) into a form that (1) strictly conforms to the target system’s SQL syntax and (2)
preserves the original query’s semantics, so that it executes with equivalent functionality on the target
database system (e.g., ClickHouse).

Functional Equivalence. The functional equivalence requires two query operations to be both syn-
tactically compatible and semantically consistent. A query operation g/, which is an implementation
of syntax S7, in database D7 is functionally equivalent to a query operation ¢; in database D
if it adheres to the syntax standards in D (i.e., syntactically compatible) and produces the same
execution results or has the same effect as qf (i.e., semantically consistent).

For example, in PostgreSQL, the function CURRENT_TIMESTAMP returns the current date
and time, while in MySQL, the equivalent function is NOW(). These operations are functionally
equivalent, both producing the current system timestamp, although their syntax (dialects) differ.

Cross-System SQL Translation. Given a query Q° written in a source system SQL, Q* is composed
of one or more operations {g”}. Cross-System SQL Translation refers to the process of mapping
each operation qf to one or more functionally equivalent operations in the target system SQL. The
translated query Q7 must (1) strictly follow the target dialect syntax S7 (i.e., syntactically compatible
with no runtime errors) and (2) maintain functional equivalence to Q° (i.e., semantically consistent
to produce the same results). We utilize dialect to refer to SQLs designed for specific data systems.

Cross-System SQL translation (a.k.a, SQL-to-SQL) is a fundamental task that can serve as a founda-
tion for a wide range of applications (e.g., data transformation pipelines, object-relational mapping
tools, and cross-database interoperability), including text-to-SQL by translating their output (often
tailored for SQLite) automatically into production-ready dialects used across different enterprise
systems. For instance, at ByteDance, auto-generated queries from business intelligence tools require
translation when migrating from Hive or Spark to ClickHouse database to ensure performance and
compatibility. This process sustains a production workload exceeding 1,000 queries per second (QPS)
while adapting syntax, optimizations, and engine-specific functions.

3 Collection and Curation of PARROT

PARROT is constructed using real-world SQLs for two key reasons: (1) Assembling representative
workloads by humans is both labor-intensive and requires insightful domain expertise; (2) Although
LLM-based query synthesis enables large-scale generation, the resulting queries often lack the
structural nuances and operational patterns characteristic of production workloads (e.g., complex
nested structures for specific service SQLs), making them less effective in reflecting real scenarios [4].

Overall, we first collect SQL samples from public open-source repositories as well as private
proprietary workloads. The collected queries then pass through a rigorous curation pipeline (including
clustering the SQLs based on their normalized representation and selecting the representative ones)
that retains only those queries satisfying Jim Gray’s four benchmark design principles [5]].

3.1 SQL Source Collection

To make the prepared benchmark practical and realistic, we collect real-world queries from both the
open-source and private domains rather than synthesizing from scratch.

e Open-Source Domain. To make the benchmark collection more practical, we collect SQLs
available online in two ways: (1) Open-Source Benchmark: the dataset for benchmarking SQL-
related tasks, including NL2SQL benchmarks [6, (7, (8} 9] for natural language interface and database
specialized benchmarks [10} [11]] for dedicated query optimization. Specifically, we collect the SQLs
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Figure 2: SQL Source Collection and Curation Workflow of PARROT.

from 38 benchmarks; (2) Public Code Repository: the hosting platform of actively maintained
translation tools (e.g., SQLGlot [12], jOOQ [13])), including the test cases involved in the code
repositories and the queries from the relevant GitHub issues (e.g., the ones with the keywords of
“translation”). Specifically, we collect 1,041 tesecases from the repository.

e Private Proprietary Domain. To make the benchmark more realistic, we further introduce a
dataset that includes real-world SQLs derived from ByteDance’s internal data business scenarios. It
encompasses 102 tables and comprises 343 SQL pairs. ByteDance has independently developed the
cloud-native data warehouse system, ByteHouse [4]], which adheres to ClickHouse syntax. During
the process of migrating existing OLAP services within the company, a significant number of SQL
queries written in Postgres-variant syntax needed to be rewritten into ClickHouse syntax. This dataset
represents only a portion of the internal data. It was carefully created through manual rewriting and
subsequent verification by senior SQL experts.

More details about SQL sources, including the collected domain analysis, are presented in Section [A]

3.2 SQL Curation Workflow

However, the collected SQL queries require further refinement to serve as a qualified benchmark for
cross-system translation, due to the following limitations.

1. Redundancy and Limited Complexity: Many queries are either duplicated from the same
underlying templates (e.g., with different parameter values) or rely on simple, commonly used
operations such as the SUM() and COUNT() aggregation functions. This lack of diversity and
complexity limits the effectiveness of evaluation, as these translation-friendly queries fail to reflect
the syntactic and semantic challenges present in real-world scenarios.

2. Single-Dialect Limitation: Since existing benchmarks were not designed for dialect translation,
the majority of queries are written in a single SQL dialect (one database system). Consequently,
additional annotation and mapping are necessary to construct functionally equivalent queries in other
dialects, enabling effective cross-dialect evaluation.

To address these issues, PARROT proposes a comprehensive SQL curation workflow dedicated to
the translation benchmark construction. As shown in Figure[2} it consists of five steps.

o Step 1: Real-World SQL Preprocessing. Since SQLs from different benchmarks are typically
structured in a heterogeneous format, we first integrate these SQLs into a standardized representation
to facilitate the subsequent steps. Specifically, we collect SQLs from the domains mentioned above,
format these SQLs (e.g., remove redundant whitespace) and deduplicate the repetitive ones, where
each line corresponds to a single SQL. Moreover, to protect privacy in benchmarks derived from
proprietary domains, we apply three levels of anonymization.



(1) Entity-level Anonymization: Obscure schema semantics by replacing descriptive table and column
names with generic identifiers (e.g., table_1, column_1) and randomly merging tables based on
join relationships to mask the original schema structure.

(2) Field-level Anonymization: Protect sensitive data in the field content by injecting noise into
numeric fields and substituting text fields with synthetic or placeholder values (e.g., NULL), while
preserving data utility, as specific values typically do not affect cross-system translation.

(3) Query-level Anonymization: Remove identifiable query patterns by abstracting structural elements
such as continuous identical filter conditions. The redundant snippets are pruned to generalize the
query form while maintaining its syntactic integrity and logical flow.

o Step 2: Type-Based SQL Filter. To eliminate low-quality SQL queries from the large corpus and
reduce the burden of subsequent steps, we propose automated filtering strategies tailored to address
different types of deficiencies in the collected SQLs.

(1) Syntax and Semantic Checking for Equivalent SQLs: Given that some of the integrated SQLs
might already be equivalent in the target systems, wastes over assessing these SQLs should be
prevented. Therefore, we first utilize parsers with dialect syntax (e.g., the ANTLR) to exclude SQLs
that are already compatible (i.e., no parsing error raised).

(2) Clustering then Selection for Repetitive SQLs: Based on the observation that queries originating
from the same query template (i.e., only differ in the parameters) occupy a large proportion, we
employ clustering then selection for this problem. First, we normalize the SQLs and propose a
prefix-based method to cluster them into several groups. Specifically, we normalize the identifiers
in the SQLs (e.g., replace specific table and column names with the unified “table” and “column”
representation). Moreover, to enhance the clustering accuracy, we shrink multiple identifiers into
a single one representation (e.g., transform continuous “table, table, table” into a single
“table”). With a specified prefix length proportional to the original SQL length (e.g., 0.25), we
cluster SQLs of the same prefix into the same groups. Second, we select the SQLs based on the
clustered groups and utilize a code coverage assessment tool to enrich the diversity. We sort the SQLs
in the descending order over the average SQL length within one group with the intuition that longer
SQLs are typically more complex and diverse. Then, we successively sample one SQL from the
current group and invoke the coverage assessment tool to determine whether it can increase the code
coverage of the parser. If so, the corresponding SQL is added to an unique set for later processing.
We proceed to the next group if the sample SQLs fail to increase the coverage within specified rounds
(e.g., 5) and the whole process terminates for the last group.

e Step 3: Ensemble SQL Annotator. Given that existing benchmark only provides SQLs within
single dialect, we introduce an automatic annotation mechanism to effectively expand these SQLs to
other dialects. Specifically, we utilize the traditional rule-based tools to derive the initial annotations
(which will be validated in later steps). Considering different methods might vary in the effectiveness
across different dialects [14], we adopt an ensemble paradigm to enhance the annotation accuracy.
We employ multiple tools (i.e., SQLGlot [[12], jOOQ [13]]) for translation and accumulate their
results. We also consider a recent LLM-based method as the candidate annotator [[14]. However,
we prioriterize the rule-based tools considering their efficiency and effectiveness over the collected
diverse SQLs of a large volume. Besides, we also employ small-scale LLMS (e.g., Llama3.1-8B [15]])
as the annotator and grounded as the baseline for a guidance of later selection. These annotated SQLSs
are then serve as the input to the next step for validation and selection.

o Step 4: Error-Guided SQL Selector. The translation tools might inevitably produce incorrect
translations (e.g., missing specific rules), introducing errors in the constructed benchmark. Therefore,
we further employ a hybrid strategy to select and revise the annotated SQLs based on the possible
error types. Overall, the translation errors can be classified into two categories, tightly coupled with
the characteristics of this problem introduced in Section 2]

(1) Incorrect Syntax: We rely on parsers with dialect syntax (e.g., the ANTLR [16]) to verify whether
the annotated SQLs violate dialect-specific syntax. For SQLs that raise parsing errors, we call for
human experts (e.g., ByteHouse engineers) to fix these errors. The human experts collaborate with
LLMS (e.g., provide related hints as assistants) in the fixing process to enhance both the accuracy and
the efficiency. The revised SQLs are passed to the same parsers to check if any syntax errors persist.




Table 1: Statistics of Different Datasets in PARROT.

Dataset #Dialect #SQL #Token / SQL #Translation Type
25th  Medium 75th
PARROT 8 598 75.0 249.0 951.0 7
PARROT-Diverse 22 28,003 29.0 47.0 71.0 7
PARROT-Simple 22 5,306 4.0 6.0 10.0 7
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Figure 3: SQL Distribution over Different Dialects in PARROT.

If the syntax errors can be not resolved within given attempts, the SQLs will be excluded in the
benchmark. In contrast, the syntactically-correct SQLs undergo the subsequent semantic checking.

(2) Inconsistent Semantic: Total reliance on human experts to perform semantic checking over SQLs
of large volume is impractical. Hence, we propose an automatic strategy to determine the equivalence
based on the execution results of the generated testcases. Recent studies have shown that LLMS
have the capability to generate effective testcases, thus we also utilize LLMS for testcase generation.
Specifically, we carefully prompt LLMS to generate SQLs (i.e., the INSERT statements) that ensure
non-empty execution results of the two SQLs. We also specify to steer LLMS to generate SQLs that
can lead to inconsistent results in the instructions. This generation process takes place within given
rounds (e.g., 5) and the SQLs are excluded from the final benchmark once inconsistent result occurs.
Besides, we also remove the SQLs if they can be already successfully translated by the small-scale
LLMS in the last step to enhance the difficulty of the constructed benchmark.

e Step 5: Unified SQL Serialization. With the above processing steps, we finally dump the
benchmark into a unified “. json” file. As shown in Figure[2} each item in the file corresponds to a
SQL pair including the specification of the unique data id, the source dialect, the target dialect, and
the corresponding SQLs.

4 PARROT Benchmark Analysis

We present more details about how PARROT meets with the benchmark design criteria proposed by
Jim Gray [5] and showcase detailed information about the underlying benchmark statistics.

o Relevance. PARROT is the first benchmark for assessing LLMS in dialect translation, including a
collection of 33,952 SQL pairs across 22 data systems. It accumulates the real-world SQLs from both
open-source domains and private domains, including 38 SQL-relevant benchmarks and enterprise
customer workloads encompassing 102 tables in ByteHouse business scenarios. Furthermore, these
SQLs vary in the intrinsic complexity (e.g., the token length can up to 2,182 tokens) and the translation
difficulty (i.e., involve multiple translation types introduced in Section [2).

e Scalability. PARROT offers several variants with additional expanded datasets to satisfy the
assessment purposes in diverse scenarios. Apart from the main dataset, it provides three variants.



Table 2: Translation Accuracy (%) over PARROT across Diverse Dialects (* — PostgreSQL
indicates PostgreSQL serves as the target dialect in the translation process).

* & * * &
Model 1 { 1 4 4
PostgreSQL.  MySQL Oracle DuckDB SQL Server
Open-Source LLM

DeepSeek-R1 7B 17.24 20.59 17.24 14.29 15.79
DeepSeek-R1 32B 58.62 58.82 39.66 10.71 42.11
DeepSeek-Coder-V2 Lite 34.48 32.35 32.76 3.57 21.05
DeepSeek V3 671B 55.17 55.88 51.72 53.57 36.84
DeepSeek R1 671B 48.28 44.12 50.00 42.86 36.84
Proprietary LLM
GPT-4o 58.62 50.00 55.17 60.71 42.11
03-mini 31.03 8.82 43.10 3571 21.05
Gemini 2.5 Pro 48.28 23.53 32.76 53.57 21.05
Claude 3.7 Sonnet 58.62 44.12 58.00 42.86 36.84

(1) PARROT-DIVERSE: It consists 28,003 samples of SQL pairs across 22 dialects. It is aimed
at the evaluation of LLMS across diverse data systems and can measure whether LLMS perform
equivalent well among the data systems (i.e., obtain superior translation performance).

(2) PARROT-SIMPLE: It consists of 5,306 SQL pairs based on testcases collected from the code
repository of rule-based translation tools. The testcases are typically SQL snippets dedicated to a
single translation type. Therefore, this variant can be utilize to measure whether LLMS internalize
specific translations.

o Simplicity. PARROT selects representative SQL queries from diverse domains while avoiding
redundancy that could compromise evaluation efficiency. As outlined in Section [3] it follows a
systematic SQL collection and curation workflow to prepare high-quality benchmark queries. This
process significantly reduces the volume of raw SQLs, e.g., distilling 9,912,231 SQL pairs down
to 28,003 representative queries, by identifying and retaining only those that are structurally and
semantically diverse within defined groups.

e Portability. PARROT proposes multiple assessment strategy in terms of different aspects to
enable it adapt to diverse setting and evaluation scenarios. Specifically, it currently supports the
following assessment criteria corresponding to two aspects (i.e., syntax and semantic) in functional
equivalence defined in Section[2]

(1) Dialect Compatability (Accgx): The ratio of the translated queries that are executable (i.e.,
syntactically correct) in the target database without raising incompatibility error (e.g., incorrect data
types or functions);

(2) Result Consistency (Accrps): The ratio of the translated queries that return the strictly identical
results (i.e., semantically consistent) in the target database as the source queries in the source database,
including the returned data format, precision, and displayed order.

The SQLs which require translation are typically tightly coupled with the daily business service.
Hence, their execution efficiency is also an important factor, where we can also propose an relevant
efficiency score [17]. However, the efficiency can be enhanced by subsequent utilization of external
tools [18]], our primary focus lies in the translation accuracy in this paper.

5 Experiments

5.1 Experimental Setup

Baselines. We assess the translation performance of prevalent LLMS in terms of three aspects in
the experiments. (1) Usage License: We consider both the open-source LLMS (e.g., DeepSeek-V3
671B [19]) and the proprietary LLMS (e.g., Claude 3.7 Sonnet and GPT-4o0 [20]); (2) Parameter
Scale: We consider LLMS with varied and increasing parameter scales (e.g., from DeepSeek-R1
7B [21]] to 03-mini and ol-preview); (3) Task Scope: We consider both LLMS that can handle diverse



Table 3: Translation Accuracy (%) with  Table 4: Efficiency Analysis (Limetarget ) with Real-

Timesource

Real-World Workload in ByteHouse. World Workload in ByteHouse.
Model Accpx  Accrps Model Mean Median 95th 99th
Open-Source LLM Open-Source LLM

DeepSeek-R132B ~ 21.00 1691 peepSeek-R132B 059 049  1.18 132
DeepSeek-V3671B 3994 32.65  peepSeek-V3671B 062 053 113 125
DeepSeek-R1671B  46.94  40.52  peepSeek-R1671B 058 051 111 138

Proprietary LLM Proprietary LLM
GPT-40 2391 2187  GPT-4o 063 050 133 144
03-m1n1. 58.60 54.23 03-mini 0.59 0.53 1.12  1.38
ol-preview 56.26 48.69 ol-preview 0.57 0.50 1.15 137

Claude 3.7 Sonnet 2420 2274 Claude 3.7 Sonnet  0.62 051 120 133

tasks with a general purpose (e.g., DeepSeek-R1 671B [21]) and dedicated to specialized code-
related tasks (e.g., DeepSeek-Coder-V2 Lite). Each LLM performs dialect translations based on the
well-crafted prompt including detailed problem instructions that can be found at Section [A]

Evaluation. We adopt the evaluation metrics (i.e., Accgx and Accrps) defined in SectionE} The
workstation setup is two Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main memory, and
four GeForce RTX 3080 and H100 Ti graphics cards.

5.2 Comparative Analysis

We assess the translation performance across diverse dialects of different LLMS over PARROT.

(Observation 1) - LLMS exhibit performance oscillation across the translations among different
dialects. As shown in Table[2] we notice that LLMS showcase different capabilities over the evaluated
dialects. Specifically, GPT-40 achieves the highest accuracy (i.e., 58.62%) over the translation to
PostgreSQL while its performance degrades with the accuracy (i.e., 50.00%) over the translation
to MySQL, even lower than DeepSeek-R1 32B. It corresponds to the characteristics of the dialect
translation problem, which involves a collection of stringent syntax standards among different
dialects. Therefore, LLMS are expected to clearly capture the nuanced differences of diverse dialect
standards to perform well. This phenomenon makes us reflect upon how to design a LLM or augment
existing ones to specifically enhance the dialect translation capability so that different dialects can
be equivalently handled well. Moreover, the capability can only be obtained to develop specialized
LLM for each or similar dialect pairs.

(Observation 2) - A larger scale of the parameter volume might not contribute to the consistent
improvement of the translation accuracy. As displayed in Table [2] we observe that large scale or
more advanced LLMS might not perform better than the smaller ones. For example, DeepSeek-R1
32B performs better over translations to PostgreSQL, MySQL, and SQL Server with the respective
accuracy 58.62%, 58.82%, and 42.11% than 48.28%, 44.12%, and 36.84% by DeepSeek-R1 671B.
Moreover, to our surprise, we notice that advanced reasoning LLMS (i.e., 03-mini) exhibit undesirable
translation performance. This result reflects the mismatched capability enhancement of large scale or
advanced LLMS, typically aimed at complex problems with intrincate reasoning process unlike the
capability required in cross-system dialect translation. Based on the experimental results, we identify
two abilities are desired for accurate translation: (1) the SQL understanding ability to analyze and
write specific SQLs and (2) the SQL syntax matching ability to be aware of the equivalent operations.

(Observation 3) - LLMS struggle to obtain accurate translation when the SQLs become more
lengthy with more complex operations. We present a more fine-grained analysis about the translation
performance of LLMS considering the characteristics of input SQLs. Specifically, we tokenize the
SQLs and classify them into several groups based on the number of derived tokens. As shown in
Table [3] and Figure [3] we observe that all the LLMS encounter performance regression when the
SQLs become more lengthy despite the translated queries do not exhibit degraded performance
(e.g., no extreme slowdowns or timeouts in Table ). Specifically, all the LLMS exhibit an average
performance degration when the number of tokens involved in the SQL increase from 0 — 402 to
1214 — 2182. This result can be attributed to two aspects: (1) longer queries typically involve more
operations to be resolved, thus increasing the translation difficulty; (2) lengthy queries increase the



Table 5: Error Analysis over PARROT with Real-World Workload in ByteHouse.

DeepSeek-R1  DeepSeek V3  DeepSeek-R1 . . Claude 3.7
Model 32B 671B 671B GPT-40 03-mini ol-preview Sonnet
Syntax Parsing 0.05 0.28 0.10 0.00 0.11 0.03 0.03
Identifier Resolution 0.02 0.00 0.07 0.00 0.01 0.06 0.00
Function Resolution 0.28 0.00 0.05 0.40 0.64 0.37 0.04
Function Usage 0.62 0.72 0.70 0.60 0.24 0.54 0.93
Type Compatibility 0.01 0.00 0.08 0.00 0.00 0.00 0.00
Other Errors 0.02 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4: Distribution of Translation Accuracy (%) over SQL Length.

risk of triggering the limitation of LLMS, including the hallucination and lost-in-the-middle problem.
Therefore, it calls for techniques to enable LLMS perform accurate translation over lengthy SQLs
(e.g., the segment-based translation strategy proposed in [22} [14]).

5.3 Error Analysis

We further conducted a detailed analysis of failure cases over the results in real-world ByteHouse
workloads, including error frequency distributions across different LLMS. These failures fall into six
categories. (1) Syntax Parsing: SQL statements that violate grammar rules, e.g., missing clauses or
invalid keyword usage. (2) Identifier Resolution: References to undefined or ambiguous database
objects, e.g., using a column name when multiple tables share the same field. (3) Function Resolution:
Use of unknown or misclassified functions, e.g., calling a non-existent function or incorrectly treating
a scalar function as an aggregate. (4) Function Usage: Valid functions called with incorrect argument
types, counts, or values, e.g., passing a string where a number is expected. (5) Type Compatibility:
Operations that combine incompatible data types or schemas, e.g., performing UNION ALL between
two queries with different returned value types. (6) Other Errors: Miscellaneous issues outside the
above categories, such as unsupported SQL features or incomplete syntax constructs.

From Table 5] we have two observations. (1) Failure patterns vary across different LLMs. For
instance, DeepSeek-V3 671B primarily struggles with Function Usage (0.72) and Syntax Parsing
(0.28), indicating difficulties in correctly applying functions and adhering to SQL grammar. In
contrast, ol-preview exhibits a higher rate of failures in Function Resolution (0.37) and Function
Usage (0.54), suggesting challenges in identifying correct functions and using them properly. (2) The
majority of failures stem from misuse of built-in functions. For example, Function Resolution and
Function Usage account for 89% of all errors on average, highlighting that the translation of database-
specific functions is the most significant obstacle. These observations align with the complexity
posed by the diverse and extensive range of custom functions implemented across databases, which
significantly increases the difficulty for LLMs to accurately translate functions across dialects.

5.4 Case Study

We perform a case study based on the detailed analysis of an SQL query that failed to be translated
by LLMS. As shown in Table[] this SQL is extracted from the ByteHouse real-world customer
workloads, where LLMS (e.g., 03-mini) incur two translation errors. The first error involves the



Table 6: Case Study of Translation Errors Incurred by LLM.

Original PostgreSQL SQL Correct ClickHouse SQL Translation by 03-mini
SELECT SELECT SELECT
TO_CHAR( formatDateTime( formatDateTime( X
TO_TIMESTAMP( parseDateTimeOrNull( parseDateTimeBestEffort(
virtual_T1."day" || "', virtual_T1."day" || '', virtual_T1.day
'YYYYMMDD' ), 'YYYY' TeY%mM%d' ), %Y ), '%Y') AS coll 2, ...
) AS "coll 2", ... ) AS "coll 2", ... FROM ( ...
FROM ( ... FROM ( ... UNION ALL SELECT ...
UNION ALL SELECT ... UNION ALL SELECT ... if( tl.p_rate != '', X
CASE WHEN NOT CASE WHEN NOT ( concat(tl.p_rate, '%'),
tl.p_rate IS NULL tl.p_rate IS NULL *' ) As p_rate, ..
THEN CONCAT( ) THEN CONCAT( FROM ... AS t1
tl.p_rate, '%' tl.p_rate, '%' WHERE rn = 1
) ELSE "' ) ELSE "' ) AS virtual T1
END AS p_rate, ... END AS p_rate, ..
FROM ... AS t1 FROM ... AS t1

WHERE tl.rn = 1 WHERE tl.rn = 1
) AS virtual_T1 ) AS virtual_T1

translation over operation that intends to convert the input string into a datetime data type. Specifi-
cally, the source PostgreSQL-variant SQL operation (i.e., TO_TIMESTAMP (virtual_T1."day" ||
€2, ‘YYYYMMDD’)) converts the column values (i.e., virtual_T1."day") into a time stamp data
type based on the specified format (i.e., ‘YYYYMMDD?). Since the column (i.e., virtual_T1."day")
is defined as an integer data type, it utilizes an additional expression (i.e., || ¢?) to transform
it into a string data type so that it can be processed by the TO_TIMESTAMP () function. However,
03-mini directly translates this operation into parseDateTimeBestEffort(virtual_T1.day)
in ByteHouse, where the column (i.e., virtual_T1.day) is not converted to an integer data
type and leads to runtime errors (i.e., Il1legal type Int64 of first argument of function
parseDateTimeBestEffort). Moreover, the datetime format equivalent to ‘YYYYMMDD’ in the
source SQL is left out. The second error refers to the incorrect processing of columns with NULL val-
ues. Specifically, the CASE WHEN NOT tl1.p_rate IS NULL THEN CONCAT(tl.p_rate, ‘%)
ELSE ¢? END in the source PostgreSQL-variant SQL processes t1.p_rate with different log-
ics (i.e., CASE WHEN) by validating whether it corresponds to NULL values with IS NOT NULL
operation. However, 03-mini incorrectly translates the validation over the NULL values to
!'= ¢’ and leads to a runtime error (i.e., Cannot read floating point value: while
converting ‘’ to Float64). Based on these error analyses, we notice that even though LLMS
can identify certain equivalent translations with internal knowledge (e.g., TO_TIMESTAMP () and
parseDateTimeBestEffort () functions), they are still too careless to miss some operations in the
source SQLs and struggle to ensure the consistency over stringent dialect syntax standards.

6 Related Work

Dialect Translation Tools. Tools such as SQLGlot [12], SQLines [23]], and jOOQ [13] support
rule-based translation across dialects. These systems typically encode translation logic through
handcrafted rules or pattern-based templates, enabling basic conversion of common syntax.

NL2SQL Benchmarks. Benchmarks such as Spider [8]], BIRD [17], and WikiSQL [9] have
significantly advanced NL2SQL research by providing large-scale datasets of natural language
questions paired with SQL queries. However, these datasets primarily target a single SQL dialect
(most commonly SQLite) and do not reflect the syntactic or semantic variations across database
systems. For instance, they lack annotations indicating dialect-specific syntax. This limits the
applicability of existing NL2SQL benchmarks to the problem of cross-system SQL translation, where
both syntactic fidelity and semantic correctness must be preserved across diverse systems.

7 Conclusion

In this paper, we propose PARROT, which is the first benchmark for effectively evaluating cross-
system SQL translation. Through a carefully curated and richly diverse dataset, specialized diagnostic
cases, and a robust evaluation protocol, PARROT enables a comprehensive and practical assessment
of existing LLMS in system-specific translation. Our benchmark not only facilitates reproducible
research but also empowers the development of more robust, accurate, and generalizable SQL
translation methods across different database systems.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have clarified the contributions and scope in Section [I]and Section 2}
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discuss the limitations in Section [
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to Section[3for the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have released the material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are averaged based on multiple rounds.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section[3] for more details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have carefully reviewed the ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: We have clarified the motivation and the importance of our work in Section T]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have carefully followed this rule.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Please refer to our code website for more details.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We have paid the human for the benchmark construction.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our work does not involve such issue.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have declared the LLM usage in the submission website.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

PARROT categorizes cross-dialect SQL translation challenges into several common types based on

structural, lexical, and functional differences across database systems.

Below, we present the details of the collected benchmarks included in PARROT, highlighting their

Table 7: Typically Translation Types in PARROT.

Translation Description

Syntax Rule lefgrences in syntactic structure
requirements across databases.

Kevword Naming differences for reserved

y words or functional keywords.

Naming or precision differences

Data Type for equivalent logical data types.

Operator & Name/behavior differences for

Built-in Function

Stored Procedure
UDF

Other

operators or built-in functions.
Differences in definition

and invocation syntax.
Differences in creation and
usage of user-defined functions.

Miscellaneous special differences
(e.g., variable prefixes, comment symbols).

sources, dialect coverage, and key statistics.

Table 8: Details of Collected Benchmarks in PARROT.

Benchmark Year SQL Dialects Language Domain Type Turn Collection
Supported
ATIS 1994  SQLite, MySQL English Single-domain Single Manual
GeoQuery 1996  MySQL, SQLite English Single-domain Single Manual
Restaurants 2000 SQLite English Single-domain Single Manual
Academic 2014 Unspecified English Single-domain Single Manual
IMDb 2017 Unspecified English Single-domain Single Manual
Yelp 2017 Unspecified English Single-domain Single Manual
Scholar 2017 Unspecified English Single-domain Single Manual
WikiSQL 2017 SQLite3 English Cross-domain Single Manual
Advising 2018  SQLite, MySQL English Single-domain Single Manual
Spider 2018 SQLite English Cross-domain Single Manual
SParC 2019 SQLite English Cross-domain Multiple ~ Manual
CoSQL 2019 SQLite English Cross-domain Multiple ~ Manual
CSpider 2019 SQLite Chinese Cross-domain Single Manual
MIMICSQL 2020 SQLite English Single-domain Single Hybrid®
SQUALL 2020 SQLite English Cross-domain Single Manual
FIBEN 2020 Db2, PostgreSQL English Single-domain Single Manual
ViText2SQL 2020 General SQL Vietnamese Cross-domain Single Manual
DuSQL 2020 Unspecified Chinese Cross-domain Single Hybrid*
PortugueseSpider 2021 SQLite Portuguese Cross-domain Single Hybrid®
CHASE 2021 SQLite Chinese Cross-domain Multiple Manual
Spider-Syn 2021 SQLite English Cross-domain Single Manual
Spider-DK 2021 SQLite English Cross-domain Single Manual
Spider-Realistic 2021 SQLite English Cross-domain Single Manual
KaggleDBQA 2021 SQLite English Cross-domain Single Manual
SEDE 2021 T-SQL English Single-domain Single Manual
MT-TEQL 2021 SQLite English Cross-domain Single  Automatic
PAUQ 2022 SQLite Russian Cross-domain Single Manual
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Table 8 — continued from previous page

Benchmark Year SQL Dialects Language Domain Type Turn Collection
Supported

knowSQL 2022 Unspecified Chinese Cross-domain Single Manual

Dr.Spider 2023 SQLite English Cross-domain Single Hybrid"

BIRD 2023 SQLite English Cross-domain Single Manual

AmbiQT 2023 SQLite English Cross-domain Single LLM-

aided

ScienceBenchmark 2024 General SQL English Single-domain Single Hybrid®

BookSQL 2024 SQLite English Single-domain Single Manual

Archer 2024 SQLite English/ Cross-domain Single Manual

Chinese
BULL 2024 SQLite English/ Single-domain Single Manual
Chinese

Spider2 2024 SQLite, DuckDB, English Cross-domain Single Manual
PostgreSQL

TPC-H FROID 2018 T-SQL, English Cross-domain Single Hybrid®
PostgreSQL

DSB 2021 T-SQL, English Decision Support  Single Hybrid®
PostgreSQL

TPC-DS 2005 T-SQL, English Decision Support  Single Hybrid"
PostgreSQL

SQL-ProcBench 2021 SQL Server, English Enterprise Single  Production-
PostgreSQL, workloads derived

IBM Db2

¥ Hybrid means the dataset was created using both automatic generation and manual annotation.

We introduce the SQL annotation interface and prompt design adopted in PARROT, which facilitate
efficient user interaction and enhance LLM-guided SQL understanding.

Table 9: SQL Annotation System and User Prompt in PARROT.

System Prompt

## CONTEXT ##
You are a database expert specializing in various SQL dialects, such as **{src_dialect}** and
**{tgt_dialect}**, with a focus on accurately translating SQL queries between these dialects.

## OBJECTIVE ##

Your task is to translate the input SQL from **{src_dialect}** into **{tgt_dialect}**, ensuring
the following criteria are met:

1. **Grammar Compliance**: The translated SQL must strictly adheres to the grammar and
conventions of {tgt_dialect} (e.g., correct usage of keywords and functions);

2. **Functional Consistency**: The translated SQL should produce the same results and
maintain the same functionality as the input SQL (e.g., same columns and data types).

3. **Clarity and Efficiency**: The translation should be clear and efficient, avoiding unneces-
sary complexity while achieving the same outcome.

During your translation, please consider the following candidate translation points:

1. **Keywords and Syntax**: Ensure {tgt_dialect} supports all the keywords from the input
SQL, and that the syntax is correct;

2. **Built-In Functions**: Verify that any built-in functions from {src_dialect} are available
in {tgt_dialect}, paying attention to the argument types and the return types;

3. **Data Types**: Ensure that {tgt_dialect} supports the data types used in the input SQL.
Address any expressions that require explicit type conversions;

Continued on next page

20



Table 9 — continued from previous page

4. **Incompatibilities**: Resolve any other potential incompatibility issues during translation.

This task is crucial, and your successful translation will be recognized and rewarded.
Please start by carefully reviewing the input SQL and then proceed with the translation.

User Prompt

## INPUT ##

Please translate the input SQL from **{src_dialect}** to **{tgt_dialect}**.

The input SQL is:

cec Sql

{sql}

## OUTPUT FORMAT ##

Please return your response without any redundant information, strictly adhering to the
following format:

313

json

{{
"Answer": "The translated SQL",

"Reasoning": "Your detailed reasoning for the translation steps (clear and succinct, no more
than 200 words)",
"Confidence": "The confidence score about your translation (0 - 1)"

1}

1113

## OUTPUT ##
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