

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFERENCE-TIME CORRECTION OF ERRORS IN AI- GENERATED CHEST X-RAY RADIOLOGY REPORTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Automated radiology report generators are being increasingly explored in clinical workflow pilots, particularly for chest X-ray imaging. However, their factual correctness with respect to the description of the findings has often been less than accurate, making their adoption slow and requiring detailed verification by clinical experts. In this paper, we propose an automatic report correction method that uses both image and textual information in automated radiology reports to spot identity and location errors in findings through fact-checking models. Prompts for a pre-trained large language model are then generated from the analysis of these errors to produce corrected sentences by selectively modifying target findings described in the automated report sentences. We show that this method of report correction, on the average, improves the report quality between 17-30% across various SOTA report generators over multi-institutional chest X-ray datasets.

1 INTRODUCTION

Radiology practices are piloting automated radiology report generator tools for expediting and streamlining structured report generationSyeda-Mahmood et al. (2020). Such reporting tools have progressed the most in chest X-ray radiology thanks to the availability of relatively large datasets such as MIMICJohnson et al. (2019a) and CheXpertIrvin et al. (2019) that come with their companion reports for training vision-language generative (VLM) modelsBannur et al. (2024); Guo et al. (2018); Krause et al. (2017). However, the results with pilots are revealing a predominance of hallucinations and factual errors which have hampered their adoption in clinical workflows. While these tools continue to be improved, there will still be a need for a fact-checking and correction model that can work with deployed and frozen report generators at inference time as a last checkpoint before the information being presented to clinicians.

In this paper, we present a report correction method with a built-in discriminative image-guided fact-checking (FC) model that detects and localizes the errors in the report. The error analysis along with the report sentences is used to generate a corrective prompt to an LLM which then produces the corrected sentence. We show that this method of report correction improves the report quality of report generators between between 17-30% across various SOTA report generators over multi-institutional chest X-ray datasets.

Figure 1d illustrates report correction by our method for an automatically generated report in Figure 1 using both the chest X-ray image (Figure 1a) and structured finding descriptions derived from the automated report in Figure 1c. The result is an improved match to the ground truth report of Figure 1b.

Our approach is based on 3 key insights. First, a fact-checking examiner model that has the authority to find and correct errors in automated AI reports must be developed independent of the techniques used to develop reporting models, meaning it cannot be based on LLMs. Secondly, it should still cover the space of possible error instances made by such report generators, even if restricted to known types of errors without requiring data on instances of errors made by automatic report generators to be available. Such data wold be difficult to acquire needing not only access to all report generators but also large variety of clinician-annotated ground truth datasets to catalog the errors. Next, the correction must be done in a conservative way weighing the self-consistency of the examiner to account for the eventuality that the examiner model itself makes a mistake. Finally, the report correction should lead to an overall improvement in the quality of the report.

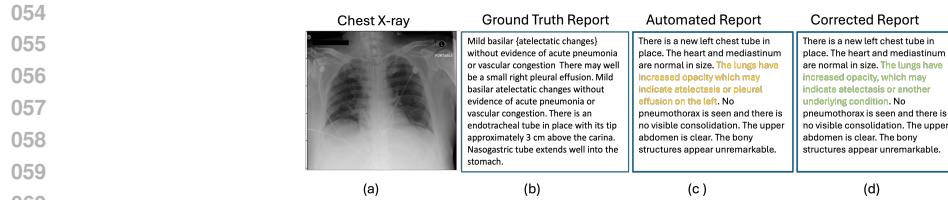


Figure 1: Illustration of report correction. (a) Chest X-ray image. (b) A section of its ground truth radiology report. (c) Automatically generated report by XrayGPTThawkar et al. (2023). (d) Corrected report by our method. The sentence with error in finding is colored orange in (c) and corrected sentence is shown in green in (d). Here the erroneous finding of "pleural effusion" is removed while still retaining location information for the remaining finding in the sentence, i.e. atelectasis.

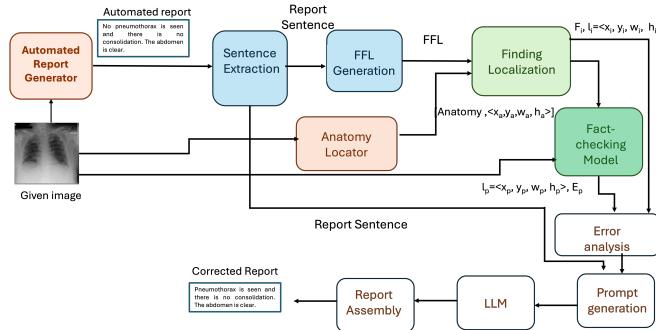


Figure 2: Illustration of the report correction workflow using a fact-checking model-guided LLM.

2 RELATED WORK

While there is considerable work in chest x-ray radiology report generation literatureBannur et al. (2024); Endo et al. (2021); Gao et al. (2024); Li et al. (2019); Pang et al. (2023); Ramesh et al. (2022); Ranjit et al. (2023); Syeda-Mahmood et al. (2020), papers focusing on detecting and correcting errors in radiology report generation have only recently been emerging for inference-time fact-checkingMahmood et al. (2023). However, the correction approach has been to simply remove the entire sentence. Standard approaches of hallucination reduction through direct policy optimization (DPO)Hardy et al. (2024); Passi & Shah (2022); Rafailov et al. (2023); Zhou et al. (2023) or proximal policy optimization (PPO)Zheng et al. (2023); Ziegler et al. (2019) are not applicable at clinical inference time. Other inference-time fact-checking methods that consult external knowledge sources cannot be used for patient-specific radiology reports either. Lab; Passi & Shah (2022); Suprem & Pu (2022). Even powerful LLM-as-a-judge models are not often trained for such domain and patient-specific applications, to be reliable enough in the role of the examiner. Thus, to our knowledge, combining fact-checking models with large language models for radiology report correction, has not been previously attempted.

3 REPORT CORRECTION METHOD

The overall report correction process is illustrated in Figure 2. A report produced by an automated report generator for chest X-rays is pre-processed to extract sentences, and findings from sentences. The extracted findings are structured as fine-grained label (FFL) patternsSyeda-Mahmood et al. (2020), documenting the presence or absence of a finding and any associated anatomical location information. A finding localization algorithm is then used to extract an indicated anatomical image location $l_i = < x_i, y_i, w_i, h_i >$ for the finding from the report. A fact-checking model uses the image I , and the finding pattern F_i to predict an expected location $l_p = < x_p, y_p, w_p, h_p >$ and a veracity label E_p for F_i . The spatial overlap error between the predicted and indicated location along with the veracity indicator E_p is used to generate distinct prompts for different actions in the error analysis module. These are submitted to a large language model (LLM) to perform the sentence

No	Sentence	FFL
1.	FINDINGS: The heart appears mildly enlarged.	anatomical finding yes enlarged cardiac silhouette heart
2.	Cardiac size is slightly enlarged allowing for limitations of this AP view.	anatomical finding yes enlarged cardiac silhouette heart
3.	Pleural vasculature is not engorged and the patient has moderate pulmonary edema on the right.	anatomical finding no vascular congestion lung
		anatomical finding yes pulmonary edema lung right

Table 1: Illustration of structured finding extraction using the FFL pattern extraction algorithmSyeda-Mahmood et al. (2020).

correction. The corrected sentences along with valid sentences from the report are combined in order to assemble the overall corrected report.

3.1 SYNTHESIZING THE SPACE OF FINDING ERRORS

We focus on modeling the most common types of errors made in radiology reports, which are false predictions, omissions, and incorrect finding location reportingRao et al. (2025); Yu et al. (2023). To ensure coverage of instances of these errors in AI reports during synthesis, the set of findings seen in chest X-rays must be known and captured in a structured way to enable synthesis. Fortunately, previous work has already cataloged all clinically significant findings in chest X-rays in a chest X-ray lexiconWu et al. (2020). Further, algorithms are available that reliably extract the findings from report sentences in the form of structured patterns called fine-grained finding patterns (FFL) which normalize them to the standard vocabulary from the chest X-ray lexiconSyeda-Mahmood et al. (2020). We chose the FFL extraction algorithm as it could detect the largest number of findings (78 core findings and 101,088 distinct FFL patterns Wu et al. (2020)) with over 97% accuracySyeda-Mahmood et al. (2020). Using this algorithm, a finding F_i is described in a structured way as:

$$F_i = T_i|N_i|C_i|A_i|L_i \quad (1)$$

where T_i is the finding type, $N_i = \text{yes}|\text{no}$ indicates a present or absent finding respectively, C_i is the normalized core finding name, A_i is the anatomical location, L_i reflects laterality of the core finding C_i . In this paper, we use F_i to refer to the full FFL pattern as in Equation 1 as well its shortened form $N_i|C_i$ as appropriate. The FFL pattern is a normalized way to describe the finding using standard vocabulary as shown for sentence 1 and 2 in Table 1 for cardiomegaly.

To synthesize the finding locations, we use an anatomical localization algorithm that locates all distinct anatomical regions known to contain chest X-ray findings through bounding boxes Wu et al. (2021a). This algorithm detects the largest number of anatomical regions (36 regions) with average localization precision and recall of 0.896 and 0.881 respectivelyWu et al. (2021a) and was used to generated the ChestImaGenome dataset for MIMIC imagesJohnson et al. (2019a). The findings are then localized by merging the bounding boxes of the relevant anatomical regions covered by the finding as given by the clinical knowledge in the chest X-ray lexiconWu et al. (2021a). Although this method can over or underestimate the precise boundary of a finding, since locations are only roughly described in radiology reports, this is sufficient for report verification. We rely on clinician-corrected bounding box locations, however, during training the fact-checking model to enable higher precision in localization.

We assembled a large ground truth dataset of chest X-ray images with their associated clinician-produced radiology reports reflecting over 78 clinically significant findings. Structured finding descriptors (FFL) and anatomical locations of findings were extracted. We then derived a synthetic dataset of correct and incorrect pairings of images with findings by mixing and matching findings of one image with the another allowing us to create a very large synthetic dataset of over 24 million pairs. Since the findings were derived from clinical knowledge rather than their occurrence in automated reports, all major error combinations made by report generators are guaranteed to resolve to these findings, thus ensuring sufficient coverage of the finding combinations seen in automated reports.

162 Specifically, let $\langle I, R \rangle$ be a sample set of ground truth image-report pairs in a publicly available
 163 dataset D . Let $F = \{F_j\}$ be the total list of possible findings across chest X-ray datasets. Given
 164 a real finding f_{ij} at location l_{ij} for a sample image-report pair D_i , we create 3 variants to reflect
 165 (a) reversal of polarity (b) relocation of the finding (c) and substitution with appropriate relocation
 166 as $FL_{iincorrect} = \{\langle \overline{f_{lj}}, f_{lk}, f_{lm} \rangle\}$, where $\overline{f_{lj}}$ is the reversed finding, f_{lk} is finding f_{ij}
 167 relocated to a new position $l_k \in L_j$, and f_{lm} is obtained by substituting finding f_j with $f_m \notin F_i$
 168 at location $l_n \in L_m$.

169 Randomly selecting findings and choosing to vary their locations can create a large variety of com-
 170 binations. However, to cover both physically plausible (correct/real) as well as impossible com-
 171 binations (incorrect/fake), we mine the finding statistics in ground truth reports to derive conditional
 172 probabilities of co-occurrence of findings. We then adopt a Monte Carlo sampling strategy to intro-
 173 duce randomness in the synthesis process so that those findings that are likely to co-occur frequently
 174 do not bias the generation. As a result of this sampling, each data item can be described by the
 175 tuple $\langle I, F, \langle x, y, w, h, E \rangle \rangle$ where I is the image, F is an FFL pattern, $\langle x, y, w, h \rangle$ is the
 176 bounding box assigned to the finding F and E is a binary label indicating correct/incorrect nature
 177 of the findings with $E = 1$ denoting a correct finding.

178 3.2 DESIGNING THE FACT-CHECKING MODEL

180 Our fact-checking model is a multi-modal, multi-label supervised contrastive regression network
 181 consisting of a feature learner and a regressor as shown in Figure 3. The feature learner is a con-
 182 trastive encoder that learns a joint representation of images and short FFL patterns. The regressor
 183 learns the association of the combined image-text features with the locations of the findings in the
 184 image. Throughout, a supervision label of correct or incorrect association E guides the learning.

185 Feature learning

187 A natural choice for a multimodal contrastive encoder is a vision language model such as
 188 CLIPRadford et al. (2021). However, unlike CLIP, instead of a single positive image-text pair,
 189 we have multiple such pairs corresponding to the findings reported as present or absent in the im-
 190 age. Further, all other pairings are not considered negative as in CLIP since some findings may not
 191 even be reported (i.e. are unknown or not important enough to report). Unlike the self-supervision
 192 provided by the pairs in CLIP, we have additional supervision coming from the E label indicat-
 193 ing the correctness of the finding and location. This results in a non-diagonal similarity matrix for
 194 our feature encoder as shown in Figure 3. To train this similarity matrix, we define a multi-label
 195 cross-modal supervised contrastive loss function as:

$$196 \mathcal{L}_{SupC_i} = \frac{-1}{|F_{incorrect}|} \sum_{f_{ij} \in F_{incorrect}} \log \frac{e^{s_{if_{ij}}/\tau}}{\sum_{a_{ik} \in F_{incorrect}} e^{s_{ia_{ik}}/\tau}} \quad (2)$$

200 where $s_{if_{ij}} = z_i \cdot z_{f_{ij}}$ is the pairwise cosine similarity between image and textual embedding
 201 vectors from the correct findings $f_{ij} \in F_{incorrect}$, and $s_{ia_{ik}} = z_i \cdot z_{a_{ik}}$ is with the incorrect findings
 202 where $a_{ik} \in F_{incorrect}$. The overall loss is obtained by averaging across all the samples in the
 203 batch. Here τ is the temperature parameter. Note that unlike the usual supervised contrastive loss
 204 functionKhosla et al. (2020), the summation in the denominator is only over the incorrect findings
 205 instead of all negative pairs, thus resulting in a new loss function.

206 Regression network

207 The joint embedding space of the feature encoder is not directly suitable for separating the correct
 208 from incorrect finding-image associations as the cosine similarity values between their encodings
 209 overlap completely. Instead, we found that by forming a high-dimensional feature space by concate-
 210 nating the contrastively learned image and text embeddings results in better separability between
 211 correct and incorrect pairings. The regression classifier, therefore, is a neural network that takes
 212 the projected joint embeddings $T_{ijcorrect} = [z_i | z_{f_{ij}}]$ of image I_i paired with correct finding label
 213 $f_{ij} \in F_{incorrect}$ or incorrect labels $T_{ijincorrect} = [z_i | z_{a_{ik}}]$ where $a_{ik} \in F_{incorrect}$ and the cor-
 214 responding supervision label $Y_g = \langle Y_{1g}, Y_{2g} \rangle$ where $Y_{1g} = \langle x, y, w, h \rangle$ is the location and
 215 $Y_{2g} = E = 1$ for the real finding and 0 otherwise. Using $Y_p = \langle Y_{1p}, Y_{2p} \rangle$ as the prediction
 from the network, we can express the regression loss per sample as a combination of an MSE loss

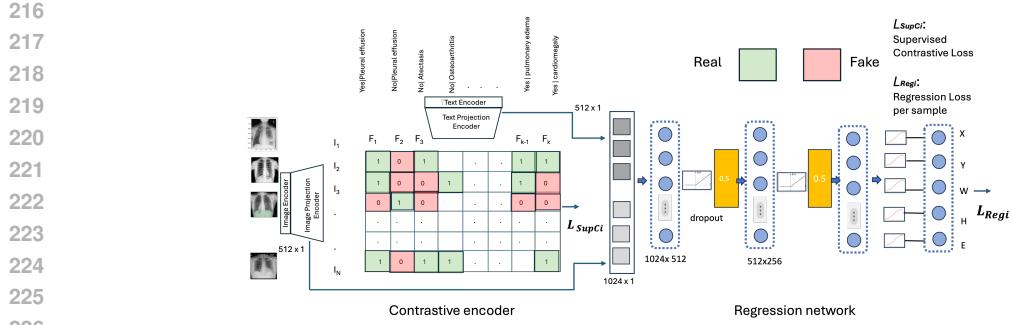


Figure 3: Illustrative of the multimodal supervised contrastive regression network. Here the feature extractor is a supervised contrastive encoder training with a non-diagonal similarity matrix. The classification network is a regressor on both the location and veracity of the label using the combined image and textual input from the finding pattern.

measuring the spatial overlap in location and a binary cross-entropy loss for the correctness of the predicted finding, reflecting the dual attributes being optimized as:

$$\mathcal{L}_{Reg_i} = \underbrace{|Y_{1p} - Y_{1g}|^2}_{\mathcal{L}_{Spatial_i}} - \underbrace{[Y_{2g} \log(Y_{2p}) + (1 - Y_{2g}) \log(1 - Y_{2p})]}_{\mathcal{L}_{Identity_i}} \quad (3)$$

End-to-end training the FC Model

Bringing these two networks together, the fact-checking model was trained as a single end-to-end learning network as shown in Figure 3. The encoder model was based on a chest X-ray pre-trained CLIP and reused its image and text encoders Ramesh et al. (2022). The joint embedding projection layers of this model (768x512 for image and 512x512 for text) were, however, fresh-trained using the new supervised contrastive loss mentioned in Equation 2. The regression network (657,413 parameters) consists of two linear layers, two drop out layers followed by a RELU for the intermediate layers and separate sigmoidal functions for producing the output regression vectors as shown in Figure 3. The losses defined in Equations 2 and 3 were applied at the respective heads with the backpropagation for the regression loss going back into the contrastive learning part as well. The total trainable parameters were 151,277,313 parameters making it possible to build this model on an NVIDIA A100 GPU with 40GB of memory. The network was trained for 100 epochs using the AdamW optimizer with a batch size of 32. The cosine annealing learning rate scheduler was used with the maximum learning rate of 1e-5 and 50 steps for warm up.

3.3 REPORT CORRECTION

To correct the reports, the output of the FC model is analyzed. Given an indicated finding F_i extracted from the automated report associated with a given image I at inference time, it can predict a location $l_p = \langle x_p, y_p, w_p, h_p, E_p \rangle$. Using the finding localization algorithm of Section 3.1, we can also derive the finding's indicated location as $l_i = \langle x_i, y_i, w_i, h_i \rangle$. The corrective action rules are formed both using the predicted veracity indicator E_p and the spatial overlap between l_i and l_p measured through IOU as

$$\overline{IOU}_{pi} = 1 - IOU_{pi} = 1 - \frac{|l_p \cap l_i|}{|l_p \cup l_i|} \quad (4)$$

Given the possible values of $l_p, E_p, F_i, \overline{IOU}_{pi}$, there could be a large number of error cases to consider. To simplify the analysis, we quantized these values into ranges. For F_i we consider two major classes of findings, namely, presence findings and absence findings as the location indicators are very different for these. The absence findings are associated with the location coordinates $\langle 0, 0, 0, 0 \rangle$ in both l_i and l_p if predicted correctly. Thus the values of l_p could be categorized into two categories if $l_p \approx 0 = \langle 0, 0, 0, 0 \rangle$ or > 0 . The veracity label E_p is already a binary indicator. Similarly, \overline{IOU}_{pi} can be thresholded by a parameter Γ to indicate a small difference in the spatial location ($\overline{IOU}_{pi} \leq \Gamma$) or not. Here we choose $\Gamma = 0.01$ in normalized image coordinates as that

270
 271 Table 2: Illustration of error analysis using the output of the FC model. The error interpretation and
 272 suggested corrective action for a finding F_i mentioned in the sentence S_i are shown in the table.

l_p	E_p	F_p	\overline{IOU}_{pi}	Interpretation	Corrective Action	Prompt
≈ 0	1	Absence	$\leq \Gamma$	Both finding and location are correct.	Do nothing as it is correct.	None
> 0	0	Absence	$> \Gamma$	Finding is present as per FC.	Flip the finding from absence to presence. Leave the location unspecified.	Remove "no $< F_i >$ " and add "yes $< F_i >$ " in the sentence: $< S_i >$
≈ 0	0	Presence	$\leq \Gamma$	FC Model is saying finding is absent	Flip the finding from present to absent. Leave the location unspecified as it is either close or unspecified already.	Remove "yes $< F_i >$ " and add "no $< F_i >$ " in the sentence: $< S_i >$
≈ 0	0	Presence	$> \Gamma$	FC model is saying finding is absent	Flip the finding from present to absent. Remove location hint since the location is far away.	Remove "yes $< F_i >$ ", add "no $< F_i >$ ", and remove location $< A_i >$ from the sentence: $< S_i >$
> 0	1	Presence	$\leq \Gamma$	Both finding and location are correct. Finding is a presence finding	Do nothing as it is correct.	None
> 0	1	Presence	$> \Gamma$	Finding is correct and present but location is wrong	Drop location only. Keep the finding.	Remove location $< A_i >$ from the sentence: $< S_i >$
All other combinations.				Either E_p or l_p is incorrect.	Do Nothing as FC Model itself is incorrect.	None

291
 292 was empirically found to be the gap between anatomical regions in chest X-ray regional annotations.
 293 With this quantization, we have $2 \times 2 \times 2 \times 2 = 16$ possible combinations to analyze for errors. Of
 294 these, the combination ($L_p = 0, E_p = 1, \overline{IOU}_{pi} > \Gamma$) is impossible for an absent finding since
 295 its location is not mentioned in reports. Of the 15 combinations, 6 correspond to consistent output
 296 from the FC model. These were manually analyzed to arrive at an interpretation and a corrective
 297 action, from which 5 unique prompt templates were designed as shown in Column 6 of Table 2. The
 298 remaining combinations were potential inconsistency cases in the prediction of the FC model itself.
 299 While the FC model performed well across the datasets tested, a potential error in the FC model
 300 could potentially worsen the report quality. Fortunately, because we regressed on both location and
 301 veracity, we can spot such inconsistencies through these combinations to conservatively disable any
 302 corrective action. For example, a combination of ($L_p = 0, E_p = 0, \overline{IOU}_{pi} \leq \Gamma$) for an absent
 303 finding F_i is a case where either the location prediction or the veracity indicator is incorrect.

304 LLM-based sentence correction

305 Given the FFL patterns and sentences extracted from automated reports, instances of prompts are
 306 obtained using the prompt templates indicated in Column 6 Table 2 and given to a large language
 307 model to initiate sentence modification and correction. Any well-trained LLM would be sufficient
 308 for our purpose as these days, they can all be instruction-tuned for sentence correction, and their
 309 choice mainly effects the readability of the report rather than the finding and its description. Never-
 310 theless, we used Llama3.2 as it was freely available and fit within the GPU size of our server. Since
 311 the average sentence in a report has 13-15 words, and sentence correction task is fairly deterministic,
 312 we used 400 token limit with a temperature of 0 for sentence correction. The sentence returned by
 313 the LLM are then assembled to form the corrected report. Since duplicate sentences could arise from
 314 multiple findings being edited in a given sentence, they are detected and removed. Depending on the
 315 order of findings edited, the actual sentences in the corrected report may come in a different order
 316 than the automated report, which can also be corrected in a post-processing final step of assembly.

317 4 RESULTS

318
 319 We now report our evaluation of the report correction approach using multiple benchmark datasets
 320 and report generators.

321 Datasets used and created

322 We selected several publicly available multi-institutional datasets of chest X-ray images annotated
 323 for findings and their locations as summarized in Table 3. All datasets were clinician validated and

324
325
326
327

Table 3: Details of the datasets used in experiments.

Dataset	Patients Train/Val/Test	Images	Findings	Regions	Real/Synth.
RadCheckMahmood (2025)	44,133/6,274/12,538	243,311	49	922,295	1.616M/27.047M
CIImaGenomeGWu et al. (2021a)	288/33/69	461	35	5,477	4,063/23,463
MS-CXRJohnson et al. (2019a)	478/54/114	925	8	2,254	2,247/24,338
ChestXray8Wang et al. (2017)	457/51/109	880	8	1,571	1,571/10,137
VinDr-CXRNguyen et al. (2022)	9,450/1,050/2,250	15,000	23	69,052	47,973/132,632

334
335
336

Table 4: Illustration of LLM-based report correction showing the original sentence, the incorrect finding, the actual LLM prompt generated, and the resulting corrected sentence.

Original Sentence	Incorrect finding	LLM Prompt (w/o sentence)	LLM-Corrected Sentence
Left-sided pleural effusion found and the right atelectasis still remains.	yes pleural effusion	Remove "pleural effusion" from sentence:	Right atelectasis still remains.
The chest x ray image shows no focal consolidation, pulmonary edema, pleural effusion or pneumothorax	no pneumothorax	Remove "no pneumothorax" from the sentence:	The chest X-ray image shows no focal consolidation, pulmonary edema, pleural effusion.
The chest x ray image shows no focal consolidation, pulmonary edema, pleural effusion or pneumothorax	no pneumothorax	Remove "no pneumothorax" and add "yes pneumothorax" in the sentence:	The chest X-ray image shows no focal consolidation, pulmonary edema, or pleural effusion, but shows pneumothorax.
There is left pleural effusion and pneumothorax	yes pleural effusion	Remove "left pleural effusion" but keep the "left pneumothorax" in the sentence:	There is left pneumothorax.
The chest x ray image shows no left focal consolidation.	no consolidation	Remove "left" from the sentence:	The chest x ray image shows no focal consolidation.

354
355
356

Table 5: Illustration of FC model evaluation under multiple datasets. The last two rows show comparison with two SOTA methods for fact-checking and phrasal grounding. Here CG stands for ChestImaGenome Gold, C8 is ChestXray-8, MCXR is MS-CXR, and VinDr stands for VindDr-CXR.

Method	Metric	CG	MCXR	C8	VinDr
FC Model	Accuracy	0.92	0.94	0.92	0.90
FC Model	MIOU	0.54	0.53	0.57	0.49
R/F Model	Accuracy	0.84	0.78	0.81	0.83
Maira-2	MIOU	0.39	0.48	0.51	0.42

366
367
368

Table 6: Illustration of the report quality improvement using fact-checking guided LLM using various report quality metrics. Here RadF1 stands for Radgraph F1.

Generator	RadF1		RQ		BLEU		SBERT	
	(A,G)	(C,G)	(A,G)	(C,G)	(A,G)	(C,G)	(A,G)	(C,G)
RGRGTanida et al. (2023)	0.52	0.67	0.46	0.52	0.24	0.29	0.33	0.43
XrayGPTThawkar et al. (2023)	0.39	0.45	0.37	0.48	0.14	0.24	0.26	0.38
GPT4-in	0.43	0.51	0.35	0.47	0.11	0.19	0.09	0.14
R2GenGPTWang et al. (2023)	0.54	0.58	0.37	0.49	0.19	0.27	0.38	0.47
CV2GPT2Nicolson et al. (2023)	0.41	0.49	0.38	0.48	0.14	0.24	0.43	0.54
CheXRepairRamesh et al. (2022)	0.38	0.43	0.36	0.44	0.21	0.28	0.39	0.46
Maira-2Bannur et al. (2024)	0.58	0.63	0.52	0.59	0.20	0.26	0.43	0.51
Avg.Improv.	13.5%		27%		48.2%		32.5%	

377

378 vetted for bias and fairness during their IRB approval. For training the fact-checking model, we
 379 created a synthetic dataset as described in Section 3.1 starting from the ChestImaGenome Silver
 380 dataset Wu et al. (2021b) which in turn was derived from MIMIC-CXR Johnson et al. (2019b). The
 381 resulting dataset called RadCheck contains over 24 million samples of image pairings with both
 382 correct and incorrect finding-location descriptions and is now available in open source on Hug-
 383 gingfaceMahmood (2025). Finally, as other datasets listed in Table 3 already provided findings
 384 and locations without ground truth reports, we used the same mixing and matching methodology
 385 specified in Section 3.1 to create the correct and incorrect pairings for our evaluations experiments.
 386 The testing partitions of the datasets were used for the evaluations, while the training partition of
 387 RadCheck was used for training the FC model.

388 Report generators

389 We also selected 7 SOTA automated report generators whose Github code was freely available.
 390 These included MAIRA-2Bannur et al. (2024), ChexRepairRamesh et al. (2022), RGRGTanida et al.
 391 (2023), XrayGPTThawkar et al. (2023), R2GenGPTWang et al. (2023), CV2DistillGPT2Nicolson
 392 et al. (2023) and our in-house hospital implementation of GPT-4 (GPT4-inhouse). These included
 393 automated report generation methods that are based on the latest LLava-style VLM models, with
 394 varying capabilities including phrasal ground (RGRG), multi-view and longitudinal information
 395 handling (MAIRA-2), and distillation-based models.

396 Finding error detection performance

397 We evaluated the accuracy of FC model in finding veracity prediction and localization using the
 398 test partitions of the datasets shown in Table 3. The performance was seen to remain stable for
 399 different datasets with the model consistently yielding an accuracy over 90% for correct/incorrect
 400 finding classification, as shown in Table 5. By using 10 fold cross-validation in the generation of the
 401 (70-10-20) splits for the datasets, the average accuracy of the test sets lay in the range 0.92 ± 0.12 .
 402 In addition, we measured the spatial localization performance through mean IOU measure of spatial
 403 overlap between the predicted and ground truth bounding boxes of finding provided in the datasets.
 404 This was found to lie in the range 0.49-0.57, indicating that the predicted locations of findings from
 405 the fact-checking model have at least 50% overlap with the ground truth finding locations.

406 Comparison to other methods

407 With no prior work on fact-checking with phrasal grounding for chest X-ray reports, we compared
 408 to the nearest methods that either do phrasal grounding Maira-2Bannur et al. (2024) or real/fake
 409 classification (the R/F Model from Mahmood et al. (2023)). The results are shown in Table 5 with
 410 the last two rows recording the relevant numbers for a regressor or classifier respectively showing
 411 that the FC Model outperforms both these methods across all the datasets.

413 Report correction performance

414 Using an LLM to correct report sentences based on the corrective action templates provided in
 415 Table 2 resulted in well-formed sentences with the erroneous portions removed. Table 4 shows
 416 examples of report sentences corrected through the LLM in this manner. As can be seen, the resulting
 417 sentences are properly formatted language-wise, and reflect the intended corrective action.

418 To objectively measure the performance improvement across report generators, we ran the report
 419 generation tools on the test partitions of all the datasets. We then extracted the findings (FFL
 420 patterns) and their anatomical locations as described in Section 3.1. A similar processing was applied
 421 to the corrected reports and the ground truth reports when available.

423 Report quality improvement across metrics

424 We then recorded the report quality improvement by noting the difference in similarity between
 425 automated report (A) to the ground truth report (A,G), versus the similarity between corrected report
 426 (C) and the ground truth report (C,G). The similarity between two reports was measured using
 427 several metrics, selecting representative methods from lexical word overlap scores (BLEUPapineni
 428 et al. (2002)), semantic textual matching (SBERTZhang et al. (2019)), clinical accuracy F1-score
 429 Jain et al. (2021), and phrasal-grounded accuracy such as RQMahmood et al. (2025). We used
 430 the Chest ImaGenome Gold dataset for this experiment as it had ground truth report with clinician
 431 validated findings. The resulting values of these metrics across the report generators for this dataset
 are shown in Table 6. This table indicates that the report quality improved across all report generators

432
 433 Table 7: Illustration of report quality improvement using RQ score across various datasets and
 434 report generators. In each case, the corrected report (C) shows higher similarity to the ground truth
 435 report (G) than the automated report. Here CG=ChestImaGenome Gold, C8=Chest-Xray8, and
 436 VinDr=VinDr-CXR datasets.

437 Generator	438 CG		439 MCXR		440 C8		441 VinDr	
	442 RQ	443 (A,G)	RQ	(A,G)	(C,G)	RQ	(A,G)	(C,G)
RGRGTanida et al. (2023)	0.46	0.52	0.51	0.62	0.38	0.49	0.51	0.63
XrayGPTThawkar et al. (2023)	0.37	0.48	0.45	0.49	0.35	0.42	0.46	0.54
GPT4-inhouse	0.35	0.47	0.46	0.54	0.41	0.48	0.51	0.58
R2GenGPTWang et al. (2023)	0.37	0.49	0.44	0.54	0.38	0.47	0.51	0.57
CV2DistillGPT2Nicolson et al. (2023)	0.38	0.48	0.39	0.49	0.41	0.47	0.52	0.6
CheXRepairRamesh et al. (2022)	0.36	0.44	0.45	0.51	0.43	0.49	0.51	0.59
Maira-2Bannur et al. (2024)	0.52	0.59	0.47	0.58	0.41	0.49	0.50	0.61
Avg. Impv.		13.5%		18.7%		19.14%		16.5%

444
 445 independent of which metric was used for comparison with improvements ranging from 13.5%-
 446 48.2% across the metrics and an average around 30.5% improvement seen for this dataset.

447 Report quality improvement across datasets

448 Finally, we evaluated the generalization of the report quality improvement performance across mul-
 449 tiple datasets and report generators. Since some of the metrics (BLEU, SBERT) needed full ground
 450 truth reports which were not available for all datasets, we focused the evaluation using the RQ score
 451 as it utilized the finding as well as location information in the provided ground truth across datasets.
 452 The resulting performance of the 7 report generators tested across 4 datasets is shown in Table 7.
 453 Since RQ score recorded agreement in the finding identity and spatial overlap in the locations of
 454 findings, it was able to capture the combined improvement in report quality well across all datasets
 455 for all report generators tested, averaging an improvement around 17% across the datasets as shown
 456 in that table.

457 Limitations

458 Although our work is the first to date to correct radiology reports in this automated way, it does have
 459 limitations. Due to limited scope, it does not address severity and measurement errors relating to
 460 findings. Secondly, the corrections can be applied to only mentioned findings in reports while missed
 461 mentions cannot be added to the report. Next, potential errors in finding extraction and localization
 462 could lead to prediction error in the FC model and inconsistencies in error interpretation leading to
 463 the selection of incorrect prompts. Finally, the phrasal grounding is currently using bounding boxes
 464 which only approximately localize a finding. Full-fledged segmentation of findings may lead to
 465 better results. Due to space limitations, we have not reported here the performance of our model in
 466 terms of the type of finding errors and their criticality. Finally, the LLM-based report correction can
 467 be continually improved with the design of more specific prompts per finding further specializing
 468 the templates. Since their output is not guaranteed to be the same in each run, variability could still
 469 exist in the reports. These issues will be addressed in future work.

470 5 CONCLUSIONS

471 In this paper, we have presented a novel method of correction of generative AI reports for chest
 472 X-rays by focusing on findings. We developed a fact-checking model covering a large fraction of
 473 finding errors and interpreted its output to carve out a set of corrective actions and suitable prompts
 474 to result in a higher quality report. Working across data sets and report generators, we have shown
 475 an average improvement in report quality ranging from 17-30% across report generators. We hope
 476 that such a report correction approach can expedite the adoption of AI reporting models in clinical
 477 workflows in future.

478 REFERENCES

479 Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton Schwaighofer, Anja Thieme, Sam Bond-
 480 Taylor, Maximilian Ilse, Fernando Pérez-García, Valentina Salvatelli, Harshita Sharma, Felix
 481 Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Noel C. F. Codella, Fabian Falck, Ozan
 482 Oktay, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarez-Valle, and Stephanie L.

486 Hyland. Maira-2: Grounded radiology report generation, 2024. URL <https://arxiv.org/abs/2406.04449>.

487

488

489 Mark Endo, Rayan Krishnan, Viswesh Krishna, Andrew Y. Ng, and Pranav Rajpurkar. Retrieval-
490 based chest x-ray report generation using a pre-trained contrastive language-image model. *Pro-
491 ceedings of Machine Learning Research*, 158:209–219, 11 2021. ISSN 2640-3498.

492 Danyang Gao, Ming Kong, Yongrui Zhao, Jing Huang, Zhengxing Huang, Kun Kuang, Fei Wu, and
493 Qiang Zhu. Simulating doctors’ thinking logic for chest x-ray report generation via transformer-
494 based semantic query learning. *Medical Image Analysis*, 91:102982, 1 2024. ISSN 1361-8415.
495 doi: 10.1016/J.MEDIA.2023.102982.

496

497 Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via
498 adversarial training with leaked information. In *AAAI-2018*, pp. 5141–5148, 2018.

499 R. Hardy, E. K. Sung, D. H. Ro, and P. Rajpurkar. Rextrust: A model for fine-grained hallucination
500 detection in ai-generated radiology reports, December 2024. URL <https://arxiv.org/abs/2412.15264v3>. *arxiv:2412.15264*.

501

502 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
503 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest radio-
504 graph dataset with uncertainty labels and expert comparison. In *Thirty-Third AAAI Conference
505 on Artificial Intelligence*, 2019.

506

507 Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven Q. H. Truong, Du Nguyen Duong, Tan Bui,
508 Pierre J. Chambon, Yuhao Zhang, Matthew P. Lungren, Andrew Y. Ng, Curtis P. Langlotz, and
509 Pranav Rajpurkar. Radgraph: Extracting clinical entities and relations from radiology reports.
510 *CoRR*, abs/2106.14463, 2021. URL <https://arxiv.org/abs/2106.14463>.

511 A. E. W. Johnson, T. J. Pollard, S. J. Berkowitz, N. R. Greenbaum, M. P. Lungren, C. y. Deng, R. G.
512 Mark, and S. Horng. Mimic-cxr: A large publicly available database of labeled chest radiographs.
513 *arXiv preprint arXiv:1901.07042*, 2019a.

514

515 Alistair E W Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lun-
516 gren, Chih-ying Deng, Roger G Mark, and Steven Horng. MIMIC-CXR: A large publicly avail-
517 able database of labeled chest radiographs. *arXiv:1901.07042 [cs.CV]*, 2019b.

518 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
519 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *arXiv preprint
520 arXiv:2004.11362*, 2020.

521

522 Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. A hierarchical approach for
523 generating descriptive image paragraphs. In *Proceedings of the IEEE Conference on Computer
524 Vision and Pattern Recognition*, pp. 317–325, 2017.

525 Nieman Journalism Lab. Ai will start fact-checking. we may not
526 like the results. URL <https://www.niemanlab.org/2022/12/ai-will-start-fact-checking-we-may-not-like-the-results/>.

527

528 Christy Y Li, Xiaodan Liang, Zhitong Hu, and Eric P Xing. Knowledge-driven encode, retrieve,
529 paraphrase for medical image report generation. *arXiv preprint arXiv:1903.10122*, 2019.

530

531 R. Mahmood. Radcheck - a dataset of real/fake chest x-ray radiology report findings and loca-
532 tions. <https://huggingface.co/datasets/razi-mahmood/RadCheck>, 2025. Ac-
533 cessed: 2025-07-28.

534

535 R. Mahmood et al. Evaluating automated radiology report quality through fine-grained phrasal
536 grounding of clinical findings. In *Proc. IEEE Int. Symp. Biomed. Imaging*, pp. 1–5, 2025.

537 Razi Mahmood, Ge Wang, Mannudeep Kalra, and Pingkun Yan. Fact-checking of ai-generated
538 reports. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
539 ligence and Lecture Notes in Bioinformatics)*, 14349 LNCS:214–223, 7 2023. ISSN 16113349.
doi: 10.1007/978-3-031-45676-3_22. URL <https://arxiv.org/abs/2307.14634v1>.

540 Ha Q. Nguyen et al. Vindr-cxr: An open dataset of chest x-rays with radiologist's annotations.
 541 *Scientific Data* 2022 9:1, 9:1–7, 7 2022. ISSN 2052-4463. URL <https://www.nature.com/articles/s41597-022-01498-w>.

543 Aaron Nicolson, Jason Dowling, and Bevan Koopman. Improving chest X-ray report generation by
 544 leveraging warm starting. *Artificial Intelligence in Medicine*, 144:102633, 2023. ISSN 0933-3657.
 545 doi: <https://doi.org/10.1016/j.artmed.2023.102633>. URL <https://www.sciencedirect.com/science/article/pii/S0933365723001471>.

548 Ting Pang, Peigao Li, and Lijie Zhao. A survey on automatic generation of medical imaging
 549 reports based on deep learning. *BioMedical Engineering OnLine*, 22:48, 2023. ISSN
 550 1475-925X. doi: 10.1186/s12938-023-01113-y. URL <https://doi.org/10.1186/s12938-023-01113-y>.

552 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 553 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association*
 554 *for Computational Linguistics*, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
 555 Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040>.

557 Kalpdrum Passi and Aanan Shah. Distinguishing fake and real news of twitter data with the help of
 558 machine learning techniques. *ACM International Conference Proceeding Series*, pp. 1–8, 8 2022.
 559 doi: 10.1145/3548785.3548811.

560 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 561 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 562 Sutskever. Learning transferable visual models from natural language supervision. *Proceed-
 563 ings of Machine Learning Research*, 139:8748–8763, 2 2021. ISSN 26403498. URL <https://arxiv.org/abs/2103.00020v1>.

566 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 567 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-
 568 seventh Conference on Neural Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2305.18290>.

570 Vignav Ramesh, Nathan A. Chi, and Pranav Rajpurkar. Improving radiology report generation
 571 systems by removing hallucinated references to non-existent priors. *Proceedings of Machine*
 572 *Learning Research*, 193:456–473, 9 2022. ISSN 26403498. URL <https://arxiv.org/abs/2210.06340v2>.

574 Mercy Ranjit, Gopinath Ganapathy, Ranjit Manuel, and Tanuja Ganu. Retrieval augmented chest x-
 575 ray report generation using openai gpt models. *Proceedings of Machine Learning Research*, 219:
 576 650–666, 5 2023. ISSN 26403498. URL <https://arxiv.org/abs/2305.03660v1>.

578 V.M. Rao, S. Zhang[†], J N. Acosta, S. Adithan, and P. Rajpurkar. Rexerr: Synthesizing clinically
 579 meaningful errors in diagnostic radiology reports. In *Pacific Symposium on Bio-Computing Con-
 580 ference*, pp. 1–9, 2025.

581 Abhijit Suprem and Calton Pu. Midas: Multi-integrated domain adaptive supervision for fake news
 582 detection. *ArXiv*, abs/2205.09817, 2022. URL <https://api.semanticscholar.org/CorpusID:248965377>.

584 Tanveer Syeda-Mahmood, Ken C L Wong, Yaniv Gur, Joy T Wu, Ashutosh Jadhav, Satyananda
 585 Kashyap, Alexandros Karargyris, Anup Pillai, Arjun Sharma, Ali Bin Syed, Orest Boyko, and
 586 Mehdi Moradi. Chest x-ray report generation through fine-grained label learning. In *MICCAI-
 587 2020*, 2020.

588 Tim Tanida, Philip Müller, Georgios Kaassis, and Daniel Rueckert. Interactive and explainable
 589 region-guided radiology report generation. In *CVPR*, 2023.

591 Omkar Thawkar, Abdelrahman Shaker, Sahal Shaji Mullappilly, Hisham Cholakkal, Rao Muham-
 592 mad Anwer, Salman Khan, Jorma Laaksonen, and Fahad Shahbaz Khan. Xraygpt: Chest
 593 radiographs summarization using medical vision-language models. 6 2023. URL <https://arxiv.org/abs/2306.07971v1>.

594 Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
 595 mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
 596 classification and localization of common thorax diseases. 2017. URL <https://uts.nlm.nih.gov/metathesaurus.html>.

597

598 Zhanyu Wang, Lingqiao Liu, Lei Wang, and Luping Zhou. R2gengpt: Radiology report gen-
 599 eration with frozen llms. *Meta-Radiology*, 1:100033, 11 2023. ISSN 2950-1628. doi:
 600 10.1016/J.METRAD.2023.100033.

601

602 J. Wu et al. Ai accelerated human-in-the-loop structuring of radiology reports. In *Proc. American*
 603 *Medical Association Annual Symposium (AMIA)*, pp. 1305–1314, Nov. 2020.

604

605 Joy T. Wu, Nkechinyere N. Agu, Ismini Lourentzou, Arjun Sharma, Joseph A. Paguio, Jasper S.
 606 Yao, Edward C. Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, Leo A. Celi,
 607 and Mehdi Moradi. Chest imangenome dataset for clinical reasoning. 7 2021a. URL <https://arxiv.org/abs/2108.00316v1>.

608

609 Joy T. Wu, Nkechinyere N. Agu, Ismini Lourentzou, Arjun Sharma, Joseph A. Paguio, Jasper S.
 610 Yao, Edward C. Dee, William Mitchell, Satyananda Kashyap, Andrea Giovannini, Leo A. Celi,
 611 and Mehdi Moradi. Chest imangenome dataset for clinical reasoning. *CoRR*, abs/2108.00316,
 612 2021b. URL <https://arxiv.org/abs/2108.00316>.

613 Feiyang Yu, Mark Endo, Rayan Krishnan, Curtis P Langlotz, Vasantha Kumar Venugopal, and Ra-
 614 jpurkar Correspondence. Evaluating progress in automatic chest x-ray radiology report genera-
 615 tion. *Patterns*, 4:100802, 2023. doi: 10.1016/j.patter.2023.100802. URL <https://doi.org/10.1016/j.patter.2023.100802>.

616

617 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 618 ating text generation with BERT. *CoRR*, abs/1904.09675, 2019. URL <http://arxiv.org/abs/1904.09675>.

619

620 Rui Zheng, Shihan Dou, Songyang Gao, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin Liu,
 621 Limao Xiong, Lu Chen, Zhiheng Xi, Yuhao Zhou, Nuo Xu, Wenbin Lai, Minghao Zhu, Rongxi-
 622 ang Weng, Wensen Cheng, Cheng Chang, Zhangyue Yin, Yuan Hua, Haoran Huang, Tianxiang
 623 Sun, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of rlhf in large
 624 language models part i: Ppo. 2023.

625

626 Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit
 627 Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language
 628 models. *arXiv preprint arXiv:2310.00754*, 2023.

629

630 Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
 631 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
 632 *preprint arXiv:1909.08593*, 2019. URL <https://arxiv.org/abs/1909.08593>.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647