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ABSTRACT

Automated radiology report generators are being increasingly explored in clini-
cal workflow pilots, particularly for chest X-ray imaging. However, their factual
correctness with respect to the description of the findings has often been less than
accurate, making their adoption slow and requiring detailed verification by clinical
experts. In this paper, we propose an automatic report correction method that uses
both image and textual information in automated radiology reports to spot identity
and location errors in findings through fact-checking models. Prompts for a pre-
trained large language model are then generated from the analysis of these errors
to produce corrected sentences by selectively modifying target findings described
in the automated report sentences. We show that this method of report correction,
on the average, improves the report quality between 17-30% across various SOTA
report generators over multi-institutional chest X-ray datasets.

1 INTRODUCTION

Radiology practices are piloting automated radiology report generator tools for expediting and
streamlining structured report generationSyeda-Mahmood et al. (2020). Such reporting tools have
progressed the most in chest X-ray radiology thanks to the availability of relatively large datasets
such as MIMICJohnson et al. (2019a) and CheXpertIrvin et al. (2019) that come with their compan-
ion reports for training vision-language generative (VLM) modelsBannur et al. (2024); Guo et al.
(2018); Krause et al. (2017). However, the results with pilots are revealing a predominance of hallu-
cinations and factual errors which have hampered their adoption in clinical workflows. While these
tools continue to be improved, there will still be a need for a fact-checking and correction model that
can work with deployed and frozen report generators at inference time as a last checkpoint before
the information being presented to clinicians.

In this paper, we present a report correction method with a built-in discriminative image-guided
fact-checking (FC) model that detects and localizes the errors in the report. The error analysis along
with the report sentences is used to generate a corrective prompt to an LLM which then produces
the corrected sentence. We show that this method of report correction improves the report quality
of report generators between between 17-30% across various SOTA report generators over multi-
institutional chest X-ray datasets.

Figure 1d illustrates report correction by our method for an automatically generated report in Fig-
ure 1 using both the chest X-ray image (Figure 1a) and structured finding descriptions derived from
the automated report in Figure 1c. The result is an improved match to the ground truth report of
Figure 1b.

Our approach is based on 3 key insights. First, a fact-checking examiner model that has the au-
thority to find and correct errors in automated AI reports must be developed independent of the
techniques used to develop reporting models, meaning it cannot be based on LLMs. Secondly, it
should still cover the space of possible error instances made by such report generators, even if re-
stricted to known types of errors without requiring data on instances of errors made by automatic
report generators to be available. Such data wold be difficult to acquire needing not only access to
all report generators but also large variety of clinician-annotated ground truth datasets to catalog the
errors. Next, the correction must be done in a conservative way weighing the self-consistency of the
examiner to account for the eventuality that the examiner model itself makes a mistake. Finally, the
report correction should lead to an overall improvement in the quality of the report.
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Figure 1: Illustration of report correction. (a) Chest X-ray image. (b) A section of its ground
truth radiology report. (c) Automatically generated report by XrayGPTThawkar et al. (2023). (c)
Corrected report by our method. The sentence with error in finding is colored orange in (c) and
corrected sentence is shown in green in (d). Here the erroneous finding of ”pleural effusion” is
removed while still retaining location information for the remaining finding in the sentence, i.e.
atelectasis.

Figure 2: Illustration of the report correction workflow using a fact-checking model-guided LLM.

2 RELATED WORK

While there is considerable work in chest x-ray radiology report generation literatureBannur et al.
(2024); Endo et al. (2021); Gao et al. (2024); Li et al. (2019); Pang et al. (2023); Ramesh et al.
(2022); Ranjit et al. (2023); Syeda-Mahmood et al. (2020), papers focusing on detecting and cor-
recting errors in radiology report generation have only recently been emerging for inference-time
fact-checkingMahmood et al. (2023). However, the correction approach has been to simply remove
the entire sentence. Standard approaches of hallucination reduction through direct policy optimiza-
tion (DPO)Hardy et al. (2024); Passi & Shah (2022); Rafailov et al. (2023); Zhou et al. (2023) or
proximal policy optimization (PPO)Zheng et al. (2023); Ziegler et al. (2019) are not applicable at
clinical inference time. Other inference-time fact-checking methods that consult external knowl-
edge sources cannot be used for patient-specific radiology reports either. Lab; Passi & Shah (2022);
Suprem & Pu (2022). Even powerful LLM-as-a-judge models are not often trained for such do-
main and patient-specific applications, to be reliable enough in the role of the examiner. Thus, to
our knowledge, combining fact-checking models with large language models for radiology report
correction, has not been previously attempted.

3 REPORT CORRECTION METHOD

The overall report correction process is illustrated in Figure 2. A report produced by an automated
report generator for chest X-rays is pre-processed to extract sentences, and findings from sentences.
The extracted findings are structured as fine-grained label (FFL) patternsSyeda-Mahmood et al.
(2020), documenting the presence or absence of a finding and any associated anatomical location
information. A finding localization algorithm is then used to extract an indicated anatomical image
location li =< xi, yi, wi, hi > for the finding from the report. A fact-checking model uses the
image I , and the finding pattern Fi to predict an expected location lp =< xp, yp, wp, hp > and a
veracity label Ep for Fi. The spatial overlap error between the predicted and indicated location along
with the veracity indicator Ep is used to generate distinct prompts for different actions in the error
analysis module. These are submitted to a large language model (LLM) to perform the sentence
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No Sentence FFL
1. FINDINGS: The heart appears

mildly enlarged.
anatomical finding|yes|enlarged cardiac silhouette|heart

2. Cardiac size is slightly enlarged al-
lowing for limitations of this AP
view.

anatomical finding|yes|enlarged cardiac silhouette|heart

3. Pleural vasculature is not engorged
and the patient has moderate pul-
monary edema on the right.

anatomicalfinding|no|vascular congestion|lung

anatomicalfinding|yes|pumonary edema|lung|right

Table 1: Illustration of structured finding extraction using the FFL pattern extraction algo-
rithmSyeda-Mahmood et al. (2020).

correction. The corrected sentences along with valid sentences from the report are combined in
order to assemble the overall corrected report.

3.1 SYNTHESIZING THE SPACE OF FINDING ERRORS

We focus on modeling the most common types of errors made in radiology reports, which are false
predictions, omissions, and incorrect finding location reportingRao et al. (2025); Yu et al. (2023). To
ensure coverage of instances of these errors in AI reports during synthesis, the set of findings seen
in chest X-rays must be known and captured in a structured way to enable synthesis. Fortunately,
previous work has already cataloged all clinically significant findings in chest X-rays in a chest
X-ray lexiconWu et al. (2020). Further, algorithms are available that reliably extract the findings
from report sentences in the form of structured patterns called fine-grained finding patterns (FFL)
which normalize them to the standard vocabulary from the chest X-ray lexiconSyeda-Mahmood
et al. (2020). We chose the FFL extraction algorithm as it could detect the largest number of findings
(78 core findings and 101,088 distinct FFL patterns Wu et al. (2020)) with over 97% accuracySyeda-
Mahmood et al. (2020). Using this algorithm, a finding Fi is described in a structured way as:

Fi = Ti|Ni|Ci|Ai|Li (1)
where Ti is the finding type, Ni = yes|no indicates a present or absent finding respectively, Ci is
the normalized core finding name, Ai is the anatomical location, Li reflects laterality of the core
finding Ci. In this paper, we use Fi to refer to the full FFL pattern as in Equation 1 as well its
shortened form Ni|Ci as appropriate. The FFL pattern is a normalized way to describe the finding
using standard vocabulary as shown for sentence 1 and 2 in Table 1 for cardiomegaly.

To synthesize the finding locations, we use an anatomical localization algorithm that locates all
distinct anatomical regions known to contain chest X-ray findings through bounding boxes Wu et al.
(2021a). This algorithm detects the largest number of anatomical regions (36 regions) with average
localization precision and recall of 0.896 and 0.881 respectivelyWu et al. (2021a) and was used to
generated the ChestImaGenome dataset for MIMIC imagesJohnson et al. (2019a). The findings are
then localized by merging the bounding boxes of the relevant anatomical regions covered by the
finding as given by the clinical knowledge in the chest X-ray lexiconWu et al. (2021a). Although
this method can over or underestimate the precise boundary of a finding, since locations are only
roughly described in radiology reports, this is sufficient for report verification. We rely on clinician-
corrected bounding box locations, however, during training the fact-checking model to enable higher
precision in localization.

We assembled a large ground truth dataset of chest X-ray images with their associated clinician-
produced radiology reports reflecting over 78 clinically significant findings. Structured finding de-
scriptors (FFL) and anatomical locations of findings were extracted. We then derived a synthetic
dataset of correct and incorrect pairings of images with findings by mixing and matching findings
of one image with the another allowing us to create a very large synthetic dataset of over 24 million
pairs. Since the findings were derived from clinical knowledge rather than their occurrence in au-
tomated reports, all major error combinations made by report generators are guaranteed to resolve
to these findings, thus ensuring sufficient coverage of the finding combinations seen in automated
reports.
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Specifically, let < I,R > be a sample set of ground truth image-report pairs in a publicly available
dataset D. Let F = {Fj} be the total list of possible findings across chest X-ray datasets. Given
a real finding fij at location lij for a sample image-report pair Di, we create 3 variants to reflect
(a) reversal of polarity (b) relocation of the finding (c) and substitution with appropriate relocation
as FLiincorrect = {< flij , f lik, f lmn >}, where flij is the reversed finding, flik is finding fij
relocated to a new position lk ∈ Lj , and flmj is obtained by substituting finding fj with fm ̸∈ Fi

at location ln ∈ Lm.

Randomly selecting findings and choosing to vary their locations can create a large variety of com-
binations. However, to cover both physically plausible (correct/real) as well as impossible combi-
nations (incorrect/fake), we mine the finding statistics in ground truth reports to derive conditional
probabilities of co-occurrence of findings. We then adopt a Monte Carlo sampling strategy to intro-
duce randomness in the synthesis process so that those findings that are likely to co-occur frequently
do not bias the generation. As a result of this sampling, each data item can be described by the
tuple < I, F,< x, y, w, h,E >> where I is the image, F is an FFL pattern, < x, y, w, h > is the
bounding box assigned to the finding F and E is a binary label indicating correct/incorrect nature
of the findings with E = 1 denoting a correct finding.

3.2 DESIGNING THE FACT-CHECKING MODEL

Our fact-checking model is a multi-modal, multi-label supervised contrastive regression network
consisting of a feature learner and a regressor as shown in Figure 3. The feature learner is a con-
trastive encoder that learns a joint representation of images and short FFL patterns. The regressor
learns the association of the combined image-text features with the locations of the findings in the
image. Throughout, a supervision label of correct or incorrect association E guides the learning.

Feature learning

A natural choice for a multimodal contrastive encoder is a vision language model such as
CLIPRadford et al. (2021). However, unlike CLIP, instead of a single positive image-text pair,
we have multiple such pairs corresponding to the findings reported as present or absent in the im-
age. Further, all other pairings are not considered negative as in CLIP since some findings may not
even be reported (i.e. are unknown or not important enough to report). Unlike the self-supervision
provided by the pairs in CLIP, we have additional supervision coming from the E label indicat-
ing the correctness of the finding and location. This results in a non-diagonal similarity matrix for
our feature encoder as shown in Figure 3. To train this similarity matrix, we define a multi-label
cross-modal supervised contrastive loss function as:

LSupCi
=

−1

|Ficorrect|
∑

fij∈Ficorrect

log
esifij/τ∑

aik∈Fiincorrect
esiaik

/τ
(2)

where sifij = zi · zfij is the pairwise cosine similarity between image and textual embedding
vectors from the correct findings fij ∈ Ficorrect, and siaik

= zi · zaik
is with the incorrect findings

where aik ∈ Fiincorrect. The overall loss is obtained by averaging across all the samples in the
batch. Here τ is the temperature parameter. Note that unlike the usual supervised contrastive loss
functionKhosla et al. (2020), the summation in the denominator is only over the incorrect findings
instead of all negative pairs, thus resulting in a new loss function.

Regression network

The joint embedding space of the feature encoder is not directly suitable for separating the correct
from incorrect finding-image associations as the cosine similarity values between their encodings
overlap completely. Instead, we found that by forming a high-dimensional feature space by concate-
nating the contrastively learned image and text embeddings results in better separability between
correct and incorrect pairings. The regression classifier, therefore, is a neural network that takes
the projected joint embeddings Tijcorrect = [zi|zfij ] of image Ii paired with correct finding label
fij ∈ Ficorrect or incorrect labels Tijincorrect = [zi|zaik

] where aik ∈ Fiincorrect and the cor-
responding supervision label Yg =< Y1g, Y2g > where Y1g =< x, y, w, h > is the location and
Y2g = E = 1 for the real finding and 0 otherwise. Using Yp =< Y1p, Y2p > as the prediction
from the network, we can express the regression loss per sample as a combination of an MSE loss

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Illustrative of the multimodal supervised contrastive regression network. Here the feature
extractor is a supervised contrastive encoder training with a non-diagonal similarity matrix. The
classification network is a regressor on both the location and veracity of the label using the combined
image and textual input from the finding pattern.

measuring the spatial overlap in location and a binary cross-entropy loss for the correctness of the
predicted finding, reflecting the dual attributes being optimized as:

LRegi = |Y1p − Y1g|2︸ ︷︷ ︸
LSpatiali

− [Y2glog(Y2p) + (1− Y2g)log(1− Y2p)]︸ ︷︷ ︸
LIdentityi

(3)

End-to-end training the FC Model

Bringing these two networks together, the fact-checking model was trained as a single end-to-end
learning network as shown in Figure 3. The encoder model was based on a chest X-ray pre-trained
CLIP and reused its image and text encodersRamesh et al. (2022). The joint embedding projection
layers of this model (768x512 for image and 512x512 for text) were, however, fresh-trained us-
ing the new supervised contrastive loss mentioned in Equation 2. The regression network (657,413
parameters) consists of two linear layers, two drop out layers followed by a RELU for the interme-
diate layers and separate sigmoidal functions for producing the output regression vectors as shown
in Figure 3. The losses defined in Equations 2 and 3 were applied at the respective heads with the
backpropagation for the regression loss going back into the contrastive learning part as well. The
total trainable parameters were 151,277,313 parameters making it possible to build this model on
an NVIDIA A100 GPU with 40GB of memory. The network was trained for 100 epochs using the
AdamW optimizer with a batch size of 32. The cosine annealing learning rate scheduler was used
with the maximum learning rate of 1e-5 and 50 steps for warm up.

3.3 REPORT CORRECTION

To correct the reports, the output of the FC model is analyzed. Given an indicated finding Fi ex-
tracted from the automated report associated with a given image I at inference time, it can predict
a location lp =< xp, yp, wp, hp, Ep >. Using the finding localization algorithm of Section 3.1, we
can also derive the finding’s indicated location as li =< xi, yi, wi, hi >. The corrective action rules
are formed both using the predicted veracity indicator Ep and the spatial overlap between li and lp
measured through IOU as

IOUpi = 1− IOUpi = 1− |lp ∩ li|
|lp ∪ li|

(4)

Given the possible values of lp, Ep, Fi, IOUpi, there could be a large number of error cases to
consider. To simplify the analysis, we quantized these values into ranges. For Fi we consider two
major classes of findings, namely, presence findings and absence findings as the location indicators
are very different for these. The absence findings are associated with the location coordinates <
0, 0, 0, 0 > in both li and lp if predicted correctly. Thus the values of lp could be categorized into
two categories if lp ≈ 0 =< 0, 0, 0, 0 > or > 0. The veracity label Ep is already a binary indicator.
Similarly, IOUpi can be thresholded by a parameter Γ to indicate a small difference in the spatial
location (IOUpi ≤ Γ) or not. Here we choose Γ = 0.01 in normalized image coordinates as that
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Table 2: Illustration of error analysis using the output of the FC model. The error interpretation and
suggested corrective action for a finding Fi mentioned in the sentence Si are shown in the table.

lp Ep Fp IOUpi Interpretation Corrective Action Prompt

≈
0

1 Absence <=
Γ

Both finding and loca-
tion are correct.

Do nothing as it is correct. None

>
0

0 Absence > Γ Finding is present as
per FC.

Flip the finding from ab-
sence to presence. Leave
the location unspecified.

Remove ”no < Fi >
and add ”yes < Fi >”
in the sentence: < Si >

≈
0

0 Presence <=
Γ

FC Model is saying
finding is absent

Flip the finding from
present to absent. Leave
the location unspecified
as it is either close or
unspecified already.

Remove ”yes < Fi >
and add ”no < Fi >” in
the sentence: < Si >

≈
0

0 Presence > Γ FC model is saying
finding is absent

Flip the finding from
present to absent. Remove
location hint since the
location is far away.

Remove ”yes < Fi >,
add ”no < Fi >” ,
and remove location <
Ai > from the sentence:
< Si >

>
0

1 Presence <=
Γ

Both finding and loca-
tion are correct. Find-
ing is a presence find-
ing

Do nothing as it is correct. None

>
0

1 Presence > Γ Finding is correct and
present but location is
wrong

Drop location only. Keep
the finding.

Remove location
< Ai > from the
sentence: < Si >

All other combinations. Either Ep or lp is in-
correct.

Do Nothing as FC Model it-
self is incorrect.

None

was empirically found to be the gap between anatomical regions in chest X-ray regional annotations.
With this quantization, we have 2 x 2 x 2 x 2 = 16 possible combinations to analyze for errors. Of
these, the combination (Lp = 0, Ep = 1, IOUpi > Γ) is impossible for an absent finding since
its location is not mentioned in reports. Of the 15 combinations, 6 correspond to consistent output
from the FC model. These were manually analyzed to arrive at an interpretation and a corrective
action, from which 5 unique prompt templates were designed as shown in Column 6 of Table 2. The
remaining combinations were potential inconsistency cases in the prediction of the FC model itself.
While the FC model performed well across the datasets tested, a potential error in the FC model
could potentially worsen the report quality. Fortunately, because we regressed on both location and
veracity, we can spot such inconsistencies through these combinations to conservatively disable any
corrective action. For example, a combination of (Lp = 0, Ep = 0, IOUpi ≤ Γ) for an absent
finding Fi is a case where either the location prediction or the veracity indicator is incorrect.

LLM-based sentence correction

Given the FFL patterns and sentences extracted from automated reports, instances of prompts are
obtained using the prompt templates indicated in Column 6 Table 2 and given to a large language
model to initiate sentence modification and correction. Any well-trained LLM would be sufficient
for our purpose as these days, they can all be instruction-tuned for sentence correction, and their
choice mainly effects the readability of the report rather than the finding and its description. Never-
theless, we used Llama3.2 as it was freely available and fit within the GPU size of our server. Since
the average sentence in a report has 13-15 words, and sentence correction task is fairly deterministic,
we used 400 token limit with a temperature of 0 for sentence correction. The sentence returned by
the LLM are then assembled to form the corrected report. Since duplicate sentences could arise from
multiple findings being edited in a given sentence, they are detected and removed. Depending on the
order of findings edited, the actual sentences in the corrected report may come in a different order
than the automated report, which can also be corrected in a post-processing final step of assembly.

4 RESULTS

We now report our evaluation of the report correction approach using multiple benchmark datasets
and report generators.

Datasets used and created

We selected several publicly available multi-institutional datasets of chest X-ray images annotated
for findings and their locations as summarized in Table 3. All datasets were clinician validated and
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Table 3: Details of the datasets used in experiments.

Dataset Patients Images Findings Regions Real/Synth.
Train/Val/Test

RadCheckMahmood (2025) 44,133/6,274/12,538 243,311 49 922,295 1.616M/27.047M
CImaGenomeGWu et al. (2021a) 288/33/69 461 35 5,477 4,063/23,463
MS-CXRJohnson et al. (2019a) 478/54/114 925 8 2,254 2,247/24,338
ChestXray8Wang et al. (2017) 457/51/109 880 8 1,571 1,571/10,137
VinDr-CXRNguyen et al. (2022) 9,450/1,050/2,250 15,000 23 69,052 47,973/132,632

Table 4: Illustration of LLM-based report correction showing the original sentence, the incorrect
finding, the actual LLM prompt generated, and the resulting corrected sentence.

Original Sentence Incorrect find-
ing

LLM Prompt (w/o sen-
tence)

LLM-Corrected Sentence

Left-sided pleural effusion
found and the right atelec-
tasis still remains.

yes|pleural effu-
sion

Remove ”pleural effu-
sion” from sentence:

Right atelectasis still remains.

The chest x ray image
shows no focal consoli-
dation, pulmonary edema,
pleural effusion or pneu-
mothorax

no|pneumothorax Remove ”no pneumoth-
orax” from the sentence:

The chest X-ray image shows
no focal consolidation, pul-
monary edema, pleural effu-
sion.

The chest x ray image
shows no focal consoli-
dation, pulmonary edema,
pleural effusion or pneu-
mothorax

no|pneumothorax Remove ”no pneumoth-
orax” and add ”yes
pneumothorax” in the
sentence:

The chest X-ray image shows
no focal consolidation, pul-
monary edema, or pleural effu-
sion, but shows pneumothorax.

There is left pleural effu-
sion and pneumothorax

yes|pleural effu-
sion

Remove ”left pleural ef-
fusion” but keep the
”left pneumothorax” in
the sentence:

There is left pneumothorax.

The chest x ray image
shows no left focal consoli-
dation.

no|consolidation Remove ”left” from the
sentence:

The chest x ray image shows
no focal consolidation.

Table 5: Illustration of FC model evaluation under multiple datasets. The last two rows show com-
parison with two SOTA methods for fact-checking and phrasal grounding. Here CG stands for
ChestImaGenome Gold, C8 is ChestXray-8, MCXR is MS-CXR, and VinDr stands for VindDr-
CXR.

Method Metric CG MCXR C8 VinDr
FC Model Accuracy 0.92 0.94 0.92 0.90
FC Model MIOU 0.54 0.53 0.57 0.49
R/F Model Accuracy 0.84 0.78 0.81 0.83
Maira-2 MIOU 0.39 0.48 0.51 0.42

Table 6: Illustration of the report quality improvement using fact-checking guided LLM using vari-
ous report quality metrics. Here RadF1 stands for Radgraph F1.

Generator RadF1 RQ BLEU SBERT
(A,G) (C,G) (A,G) (C,G) (A,G) (C,G) (A,G) (C,G)

RGRGTanida et al. (2023) 0.52 0.67 0.46 0.52 0.24 0.29 0.33 0.43
XrayGPTThawkar et al. (2023) 0.39 0.45 0.37 0.48 0.14 0.24 0.26 0.38
GPT4-in 0.43 0.51 0.35 0.47 0.11 0.19 0.09 0.14
R2GenGPTWang et al. (2023) 0.54 0.58 0.37 0.49 0.19 0.27 0.38 0.47
CV2GPT2Nicolson et al. (2023) 0.41 0.49 0.38 0.48 0.14 0.24 0.43 0.54
CheXRepairRamesh et al. (2022) 0.38 0.43 0.36 0.44 0.21 0.28 0.39 0.46
Maira-2Bannur et al. (2024) 0.58 0.63 0.52 0.59 0.20 0.26 0.43 0.51
Avg.Improv. 13.5% 27% 48.2% 32.5%
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vetted for bias and fairness during their IRB approval. For training the fact-checking model, we
created a synthetic dataset as described in Section 3.1 starting from the ChestImaGenome Silver
datasetWu et al. (2021b) which in turn was derived from MIMIC-CXRJohnson et al. (2019b). The
resulting dataset called RadCheck contains over 24 million samples of image pairings with both
correct and incorrect finding-location descriptions and is now available in open source on Hug-
gingfaceMahmood (2025). Finally, as other datasets listed in Table 3 already provided findings
and locations without ground truth reports, we used the same mixing and matching methodology
specified in Section 3.1 to create the correct and incorrect pairings for our evaluations experiments.
The testing partitions of the datasets were used for the evaluations, while the training partition of
RadCheck was used for training the FC model.

Report generators

We also selected 7 SOTA automated report generators whose Github code was freely available.
These included MAIRA-2Bannur et al. (2024), ChexRepairRamesh et al. (2022), RGRGTanida et al.
(2023), XrayGPTThawkar et al. (2023), R2GenGPTWang et al. (2023), CV2DistillGPT2Nicolson
et al. (2023) and our in-house hospital implementation of GPT-4 (GPT4-inhouse). These included
automated report generation methods that are based on the latest LLava-style VLM models, with
varying capabilities including phrasal ground (RGRG), multi-view and longitudinal information
handling (MAIRA-2), and distillation-based models.

Finding error detection performance

We evaluated the accuracy of FC model in finding veracity prediction and localization using the
test partitions of the datasets shown in Table 3. The performance was seen to remain stable for
different datasets with the model consistently yielding an accuracy over 90% for correct/incorrect
finding classification, as shown in Table 5. By using 10 fold cross-validation in the generation of the
(70-10-20) splits for the datasets, the average accuracy of the test sets lay in the range 0.92 ± 0.12.
In addition, we measured the spatial localization performance through mean IOU measure of spatial
overlap between the predicted and ground truth bounding boxes of finding provided in the datasets.
This was found to lie in the range 0.49-0.57, indicating that the predicted locations of findings from
the fact-checking model have at least 50% overlap with the ground truth finding locations.

Comparison to other methods

With no prior work on fact-checking with phrasal grounding for chest X-ray reports, we compared
to the nearest methods that either do phrasal grounding Maira-2Bannur et al. (2024)) or real/fake
classification (the R/F Model from Mahmood et al. (2023)). The results are shown in Table 5 with
the last two rows recording the relevant numbers for a regressor or classifier respectively showing
that the FC Model outperforms both these methods across all the datasets.

Report correction performance

Using an LLM to correct report sentences based on the corrective action templates provided in
Table 2 resulted in well-formed sentences with the erroneous portions removed. Table 4 shows
examples of report sentences corrected through the LLM in this manner. As can be seen, the resulting
sentences are properly formatted language-wise, and reflect the intended corrective action.

To objectively measure the performance improvement across report generators, we ran the report
generation tools on the test partitions of all the datasets. We then extracted the findings (FFL pat-
terns) and their anatomical locations as described in Section 3.1. A similar processing was applied
to the corrected reports and the ground truth reports when available.

Report quality improvement across metrics

We then recorded the report quality improvement by noting the difference in similarity between
automated report (A) to the ground truth report (A,G), versus the similarity between corrected report
(C) and the ground truth report (C,G). The similarity between two reports was measured using
several metrics, selecting representative methods from lexical word overlap scores (BLEUPapineni
et al. (2002)), semantic textual matching (SBERTZhang et al. (2019)), clinical accuracy F1-score
Jain et al. (2021), and phrasal-grounded accuracy such as RQMahmood et al. (2025). We used
the Chest ImaGenome Gold dataset for this experiment as it had ground truth report with clinician
validated findings. The resulting values of these metrics across the report generators for this dataset
are shown in Table 6. This table indicates that the report quality improved across all report generators
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Table 7: Illustration of report quality improvement using RQ score across various datasets and
report generators. In each case, the corrected report (C) shows higher similarity to the ground truth
report (G) than the automated report. Here CG=ChestImaGenome Gold, C8=Chest-Xray8, and
VinDr=VinDr-CXR datasets.

Generator CG MCXR C8 VinDr
RQ RQ RQ RQ

(A,G) (C,G) (A,G) (C,G) (A,G) (C,G) (A,G) (C,G)
RGRGTanida et al. (2023) 0.46 0.52 0.51 0.62 0.38 0.49 0.51 0.63
XrayGPTThawkar et al. (2023) 0.37 0.48 0.45 0.49 0.35 0.42 0.46 0.54
GPT4-inhouse 0.35 0.47 0.46 0.54 0.41 0.48 0.51 0.58
R2GenGPTWang et al. (2023) 0.37 0.49 0.44 0.54 0.38 0.47 0.51 0.57
CV2DistillGPT2Nicolson et al. (2023) 0.38 0.48 0.39 0.49 0.41 0.47 0.52 0.6
CheXRepairRamesh et al. (2022) 0.36 0.44 0.45 0.51 0.43 0.49 0.51 0.59
Maira-2Bannur et al. (2024) 0.52 0.59 0.47 0.58 0.41 0.49 0.50 0.61
Avg. Impv. 13.5% 18.7% 19.14% 16.5%

independent of which metric was used for comparison with improvements ranging from 13.5%-
48.2% across the metrics and an average around 30.5% improvement seen for this dataset.

Report quality improvement across datasets

Finally, we evaluated the generalization of the report quality improvement performance across mul-
tiple datasets and report generators. Since some of the metrics (BLEU, SBERT) needed full ground
truth reports which were not available for all datasets, we focused the evaluation using the RQ score
as it utilized the finding as well as location information in the provided ground truth across datasets.
The resulting performance of the 7 report generators tested across 4 datasets is shown in Table 7.
Since RQ score recorded agreement in the finding identity and spatial overlap in the locations of
findings, it was able to capture the combined improvement in report quality well across all datasets
for all report generators tested, averaging an improvement around 17% across the datasets as shown
in that table.

Limitations

Although our work is the first to date to correct radiology reports in this automated way, it does have
limitations. Due to limited scope, it does not address severity and measurement errors relating to
findings. Secondly, the corrections can be applied to only mentioned findings in reports while missed
mentions cannot be added to the report. Next, potential errors in finding extraction and localization
could lead to prediction error in the FC model and inconsistencies in error interpretation leading to
the selection of incorrect prompts. Finally, the phrasal grounding is currently using bounding boxes
which only approximately localize a finding. Full-fledged segmentation of findings may lead to
better results. Due to space limitations, we have not reported here the performance of our model in
terms of the type of finding errors and their criticality. Finally, the LLM-based report correction can
be continually improved with the design of more specific prompts per finding further specializing
the templates. Since their output is not guaranteed to be the same in each run, variability could still
exist in the reports. These issues will be addressed in future work.

5 CONCLUSIONS

In this paper, we have presented a novel method of correction of generative AI reports for chest
X-rays by focusing on findings. We developed a fact-checking model covering a large fraction of
finding errors and interpreted its output to carve out a set of corrective actions and suitable prompts
to result in a higher quality report. Working across data sets and report generators, we have shown
an average improvement in report quality ranging from 17-30% across report generators. We hope
that such a report correction approach can expedite the adoption of AI reporting models in clinical
workflows in future.
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