
Fast T2T: Optimization Consistency Speeds Up
Diffusion-Based Training-to-Testing Solving for

Combinatorial Optimization

Yang Li1†, Jinpei Guo1†, Runzhong Wang2, Hongyuan Zha3, Junchi Yan1 ∗
1Dept. of CSE & School of AI & MOE Key Lab of AI, Shanghai Jiao Tong University

2Massachusetts Institute of Technology
3The Chinese University of Hong Kong, Shenzhen

{yanglily,mike0728,yanjunchi}@sjtu.edu.cn
runzhong@mit.edu, zhahy@cuhk.edu.cn

Abstract

Diffusion models have recently advanced Combinatorial Optimization (CO) as
a powerful backbone for neural solvers. However, their iterative sampling process
requiring denoising across multiple noise levels incurs substantial overhead. We
propose to learn direct mappings from different noise levels to the optimal solution
for a given instance, facilitating high-quality generation with minimal shots. This
is achieved through an optimization consistency training protocol, which, for a
given instance, minimizes the difference among samples originating from varying
generative trajectories and time steps relative to the optimal solution. The proposed
model enables fast single-step solution generation while retaining the option of
multi-step sampling to trade for sampling quality, which offers a more effective
and efficient alternative backbone for neural solvers. In addition, within the
training-to-testing (T2T) framework, to bridge the gap between training on histor-
ical instances and solving new instances, we introduce a novel consistency-based
gradient search scheme during the test stage, enabling more effective exploration
of the solution space learned during training. It is achieved by updating the latent
solution probabilities under objective gradient guidance during the alternation of
noise injection and denoising steps. We refer to this model as Fast T2T. Extensive
experiments on two popular tasks, the Traveling Salesman Problem (TSP) and
Maximal Independent Set (MIS), demonstrate the superiority of Fast T2T regarding
both solution quality and efficiency, even outperforming LKH given limited time
budgets. Notably, Fast T2T with merely one-step generation and one-step gradient
search can mostly outperform the SOTA diffusion-based counterparts that require
hundreds of steps, while achieving tens of times speedup. The codes are publicly
available at https://github.com/Thinklab-SJTU/Fast-T2T.

1 Introduction

Combinatorial Optimization (CO) problems, which involve optimizing discrete variables under
given objectives, are essential in computer science and operational research. Due to the inherent
computational difficulty, e.g. NP-hardness, solving efficiency poses significant challenges and
requires exhaustive human efforts to design solving heuristics. Recent progress in this domain has
shown promise in automatically learning heuristics with Machine Learning (ML) in a data-driven

∗Correspondence author. † denotes equal contribution. This work was partly supported by NSFC (92370201,
62222607) and Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Thinklab-SJTU/Fast-T2T

𝐱! . . . 𝐱" 𝐱"!

𝑓!(𝐱" , 𝑇, 𝐺)

. . . 𝐱#

Solution
Random

Noise

. . .
𝑓!(𝐱#! , 𝑡$, 𝐺)

𝑓!(𝐱# , 𝑡, 𝐺)

𝐺

Graph
Instance

Figure 1: Optimization consistency models for CO solving where the model learns how to map from
varying levels of noise to the solution distribution, conditioned on the problem graph instance.

manner [1, 2, 3, 4, 5, 6, 7, 8], bringing practical advantages in both quality and speed, especially
when the instances are within a certain domain. In addition, learning can help quickly uncover new
heuristics for new problems or new instance distributions where experts are not there.

Learning-based solvers for CO typically employ neural networks to generate neural predictions
for solution construction or search guidance, aiming to minimize either the objective score [2, 4,
5, 6, 9] or the deviation from reference solutions [10, 3, 11, 12, 13]. The problem-solving task
places significant demands on the testing performance of the model, while optimizing the average
performance across training data does not ensure optimal performance for every encountered test
instance. Thus, methods [14, 15, 6, 8] have been proposed to perform tailored optimization on neural
predictions for every testing instance. In particular, generative modeling like diffusion has shown
promise in learning instance-conditioned quality solution distributions [7, 8] with robust expressive
power to achieve state-of-the-art performance, which also provides more informative support for
further exploitation like gradient search in the solving stage, which was previously proposed as the
diffusion-based training-to-testing (T2T) framework [8]. However, a major drawback of the diffusion
backbone lies in its costly inference process, which necessitates tens or hundreds of denoising steps
to solve one problem instance. This limitation in inference speed is crucial since CO seeks to achieve
the highest solution quality within the shortest possible time, where both performance and efficiency
are pivotal metrics in this pursuit. Although the diffusion solvers [7, 8] can exhibit superiority in
inference speed compared to certain traditional methods and prior learning-based solvers, there
remains substantial potential for speed enhancement, where bolstering this aspect could provide
fundamental support and several-fold speedup for neural solvers based on generative modeling.

To resolve this issue, drawing inspiration from the successful practice of consistency models [16] for
image generation, we propose the optimization consistency models to speed up the diffusion-based
T2T framework, dubbed as Fast T2T, specifically for optimization problem-solving. We follow [8] to
approach CO problems as conditional generation tasks, with the goal of modeling the distribution of
high-quality solutions specific to given problem instances. As illustrated in Fig. 1, Fast T2T builds
upon the methodology foundation of the discrete diffusion models [17, 18, 19] where a smooth
transition from random uniform noise to the high-quality solution distribution is established. Given
a problem instance, Fast T2T trains the conditional prediction consistency directly from varying
noise levels to the solution distribution centered on the optimal solution to enable fast one-step
solution distribution estimation. Meanwhile, to bridge the disparity between data-driven training and
problem-solving, Fast T2T incorporates a novel objective gradient search for every instance in the
testing phase based on the trained optimization consistency mappings.

Specifically, for the solving task, the model is expected to deliver the optimal solution output to the
best extent possible for a given input instance. Thus, we define the optimization consistency property
for the optimization scenario by conditional generation: conditoned on a given instance G, points
on all trajectories of all noising steps consistently map to the optimal solution of G. Compared to
the diffusion prediction of the data distribution from noising step t to step t − 1, the consistency
modeling enables generating solutions (x0 in Fig. 1) from random noise vectors (xT in Fig. 1) by a
single step of model inference. This is achieved by an optimization consistency training protocol
that minimizes the difference among samples originating from varying trajectories and noising steps
relative to the optimal solution. The model retains the capability for multi-step sampling to trade for
sampling quality by alternating noise introduction on x0 to generate a less noisy point xt and solution
reconstruction to obtain a new x0. Additionally, we design a novel objective gradient-based search

2

on top of the learned consistency mapping to further explore the learned solution distribution for
every test instance. We introduce instance-specific guidance from the objective to the learned solution
prior pθ(x|G) and obtain the posterior pθ(x|y∗, G) where y∗ represents the optimal objective score
given instance G, thereby directing the sampling process to the optimal x∗. It specifically entails
minimizing the free energy corresponding to the posterior by updating the probability parameters
of intermediate noisy points through exponential gradient updates guided by the objective function
during the alternation of noise injection and denoising steps.

We show the efficacy of Fast T2T on two typical CO problems for edge-decision and node-decision
types respectively, i.e., Traveling Salesman Problem (TSP) and Maximum Independent Set (MIS).
We show that Fast T2T, even with a single-step initial solution generation and a single-step gradient
search, can mostly outperform the SOTA diffusion-based counterparts with hundreds of inference
steps. Meanwhile, due to its reduced step requirement, Fast T2T naturally demands significantly less
inference time to achieve comparable quality, with more steps for further enhancement.

The highlights of this paper include: 1) We introduce the optimization consistency condition
and establish Fast T2T based on the proposed optimization consistency models to facilitate fast
high-quality CO solving, which offers a highly effective and efficient backbone for learning-based
solvers. 2) To complement the learned prior and bridge the disparity between data-driven training and
the requirement of problem-solving, we introduce a novel gradient search with objective guidance
based on consistency mappings to conduct a tailored search for every test instance. 3) Extensive
experiments show that Fast T2T exhibits strong performance superiority over existing SOTA neural
solvers on benchmark datasets across various scales.

2 Related Work

Machine Learning for Combinatorial Optimization. Current learning-based CO solvers can be cat-
egorized into constructive approaches and improvement-based approaches. Constructive approaches
refer to autoregressive methods [20, 2, 4, 21, 5] that directly construct solutions by sequentially
determining decision variables until a complete solution is constructed, and non-autoregressive
methods [3, 12, 22, 6, 7, 23] that predict soft-constrained solutions in one shot and then perform post-
processing to achieve feasibility. Improvement-based solvers [24, 25, 26, 27, 28] learn to iteratively
refine a solution through local search operators toward minimizing the optimization objective.

Generative modeling for CO has recently shown promise with its potent representational capabilities
and informative distribution estimation. It models the problem-solving task as a conditional generation
task for learning solution distributions conditioned on given instances [21, 29, 7, 30, 31, 8]. Drawing
from diffusion models, DIFUSCO [7] has attained SOTA performance in solving TSP and MIS.
Nonetheless, it does not incorporate any instance-specific search paradigms to fully capitalize on the
estimated solution distribution. Addressing this limitation, the T2T framework [8] further introduces
an objective-guided gradient search process during solving to leverage the learned distribution.
However, every aspect of this system, including distribution learning and gradient search, hinges on
the diffusion model for step-by-step generation. This reliance renders the diffusion-based approaches
computationally inefficient and impedes further search computations to trade for solution quality.

Diffusion Models and Consistency Models. Diffusion models entail a dual process comprising noise
injection and learnable denoising, wherein neural networks predict the data distribution at each step
based on the data from the previous step. For Diffusion in continuous space [17, 32, 33, 34, 35, 36, 37],
the solution trajectories can be modeled by Probability Flow ODE [38]. Similar paradigms have
also been adopted for discrete data using binomial or multinomial/categorial noises [17, 18, 19].
On top of the foundation of diffusion models, consistency models [16] define the self-consistency
for every generation trajectory and introduce a consistency training paradigm for continuous data
to directly learn the mappings from noise to the data. Inspired by this paradigm, we define the
optimization consistency condition tailored for the optimization scenario, which requires consistency
across multiple trajectories and time steps with the optimal solution as the target in a conditional
context, thereby proposing the optimization consistency models as the solver embodiment. The
models are employed on the discrete multinomial data for the benefit of CO.

3

3 Preliminaries and Problem Definition

Adopting the conventions established in [39, 40] we define G as the collection of CO problem instances
represented by graphs G(V,E) ∈ G, where V and E denote the nodes and edges respectively. CO
problems can be broadly classified into two types based on the solution composition: edge-decision
problems that involve determining the selection of edges and node-decision problems that determine
nodes. Let x ∈ {0, 1}N×2 denote the optimization variable, where each entry is represented by a
one-hot vector, i.e., each entry with (0, 1) indicates that it is included in x and (1, 0) indicates the
opposite. For edge-decision problems, N = n2 and xi,j indicates whether Ei,j is included in x. For
node-decision problems, N = n and xi indicates whether Vi is included in x. The feasible set Ω
consists of x satisfying specific constraints as feasible solutions. A CO problem on G aims to find a
feasible x that minimize the given objective function l(·;G) : {0, 1}N×2 → R≥0:

min
x∈{0,1}N×2

l(x;G) s.t. x ∈ Ω (1)

TSP is defined on an undirected complete graph G = (V,E), where V represents n cities and each
edge Ei,j is assigned a non-negative weight wi,j representing the distance between cities i and j. The
problem revolves around identifying a Hamiltonian cycle of minimum weight in G. For MIS, given
an undirected graph G = (V,E), an independent set is a subset of vertices S ⊆ V such that no two
vertices in S are adjacent in G. MIS entails finding an independent set of maximum cardinality in G.

4 Training-Stage Optimization Consistency Modeling

4.1 Solution Encoding and Noising Process

Using the notations in Sec. 3, we represent the solutions of CO problems as x ∈ {0, 1}N×2 with
x ∈ Ω. The distribution of x is represented by N Bernoulli distributions indicating whether each entry
should be selected, i.e., p(x) ∈ [0, 1]N×2. The objective of utilizing generative modeling for problem-
solving is to capture the distribution of high-quality solutions conditioned on a given instance G,
denoted as pθ(x|G). The neural models try to establish transition trajectories from random uniform
noise to high-quality soft-constrained solutions, i.e., x ∈ {0, 1}N×2. These soft-constrained solutions
are directly sampled from the estimated Bernoulli distributions where feasibility constraints can be
broadly captured through learning and eventually hard-guaranteed by post-processing.

To establish the transition trajectories of data, we follow the discrete diffusion modeling [7, 8] to
define the noising process, which takes the initial solution x0 sampled from the distribution q(x0|G)
and progressively introduces noise to generate a sequence of latent variables x1:T = x1,x2, · · · ,xT .
Specifically, the noising process is formulated as q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), which is achieved

by multiplying xt ∈ {0, 1}N×2 at step t with a forward transition probability matrix Qt ∈ [0, 1]2×2

which indicates the transforming probability of decision state. We set Qt =

[
βt 1− βt

1− βt βt

]
[18],

where βt ∈ [0, 1] such that the transition matrix is doubly stochastic with strictly positive entries,
ensuring that the stationary distribution is uniform which is an unbiased prior for sampling. The
noising process for each step and the t-step marginal are formulated as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt) and q(xt|x0) = Cat(xt;p = x0Qt) (2)

where Cat(x;p) is a categorical distribution over N one-hot variables and Qt = Q1Q2 · · ·Qt.

4.2 Optimization Consistency Training Scheme

Unlike the diffusion models modeling pθ(xt−1|xt, G), we aim to directly map random noise to data by
pθ(x0|xt, G) in an optimization context. In continuous-time diffusion models defined on (ϵ, T] [38],
consistency models [16] defines the self-consistency property as points on the same trajectory
map to the same initial point, and optimize the learned consistency function fθ(·, ·) to satisfy the
requirement by: 1) boundary condition: fθ(xϵ, ϵ) = xϵ; 2) self-consistency property: fθ outputs
consistent estimation for arbitrary pairs of (xt, t) that belong to the same trajectory, i.e., fθ(xt, t) =
fθ(xt′ , t

′),∀ t, t′ ∈ [ϵ, T]. The joint effect of these two constraints serves as the necessary and
sufficient condition to achieve a reliable data prediction from noise step T to data, i.e., fθ(xT , T)→

4

𝑝 𝒙! 𝑝 𝐱" = 𝛿(𝐱" − 𝐱∗)

𝐱∗

...
...

...
...

Trajectories

𝑓!(𝐱"
𝒋 , 𝑡, 𝐺)

𝑓!(𝐱$𝒊 , 𝑇, 𝐺)

𝑓!(𝐱"!
𝒌 , 𝑡', 𝐺)

(𝐱$(, 𝑇)

(𝐱"
) , 𝑡) (𝐱"!

* , 𝑡')

Conditioned on Instance 𝐺

𝑝 𝐱! 𝑝 𝐱"

...
...

...
...

Trajectories

𝑓!(𝐱"𝒊 , 𝑡)

𝑓!(𝐱$𝒊 , 𝑇) 𝑓!(𝐱"!
𝒊 , 𝑡')

(𝐱$(, 𝑇) (𝐱"(, 𝑡)

(𝐱"!
(, 𝑡')

(a) Vanilla Consistency Models (b) Optimization Consistency Models

Figure 2: Vannila consistency models are trained to map points on any trajectory to its origin.
Optimization consistency enforces that all trajectories conditioned on G consistently map to the same
initial point, i.e., the optimal solution of G.

xϵ. In the optimization scenario of mapping instance G to approximate its optimal solution x∗, the
generation process is conditioned on the problem instance G with a reference optimal solution x∗

serving as the commonly targeted initial point for all the conditional trajectories. Based on the discrete
diffusion process with an explicit sampling process [18, 7, 8], we use the consistency function to
estimate the optimal solution distribution as a point estimate δ(x− x∗) where δ(·) represents Dirac
delta. Below defines optimization consistency for the conditional context of problem-solving.
Definition 4.1 (Optimization Consistency). Given a solution trajectory {xt}t∈[0,T], we define the
consistency function as f : (xt, t, G) 7→ δ(x− x∗), which maintains the optimization consistency
property: conditioned on instance G, all points along any trajectory map to its optimal solution, i.e.,
fθ(x

i
t, t, G) = fθ(x

j
t′ , t

′, G) = δ(x− x∗) for distinct trajectories i and j at distinct steps t and t′.

As illustrated in Fig. 2, the goal of the consistency model fθ in the optimization context, is to estimate
the consistency function from data by learning to enforce optimization consistency. To achieve such
consistency in the context of optimization to learn f : G 7→ x∗, given its nature as a conditional gener-
ation and the aim for an explicit optimal solution x∗, we can seamlessly integrate x∗ into the objective
function for smooth training. Instead of optimizing the expectation of the variation of the consistency
mappings over two noise points x and x′, i.e., LCM(θ) = E

[
d
(
fθ (x, t, G) , fθ (x

′, t′, G)
)]

, we
introduce x∗ to optimize the upper bound of LCM through triangle inequality of distance measures as

LOptCM(θ) = E
[
d
(
fθ(x, t, G), δ(x− x∗)

)
+ d

(
fθ(x

′, t′, G), δ(x− x∗)
)]
≥ LCM(θ). (3)

Here d(·, ·) is a distance metric function. In this case, the boundary conditions become less significant,
since we have already dispersed the information of x∗ across all noise time steps. Therefore, we
can directly utilize the neural network θ to estimate the consistency function fθ(·, ·, ·). In addition,
all learned trajectories are expected to map to the optimal solution x∗ given the instance G, and
the estimated solution distribution is expected to center on x∗. This calls for the requirement of
consistency extending across all trajectories, rather than being confined within a single trajectory.
Definition 4.2. The optimization consistency loss for conditional problem-solving is defined as:

LNt

OptCM(θ) := E
[
λ(tn)

(
d
(
fθ(x

i
tn , tn, G), δ(x− x∗)

)
+ d

(
fθ(x

j
tn+1

, tn+1, G), δ(x− x∗)
))]

(4)

where the expectation is taken with respect to G ∼ pG, n ∼ U [1, Nt − 1], xi
tn ∼ Cat(xtn ;p =

x∗Qtn), and xj
tn+1
∼ Cat(xtn+1

;p = x∗Qtn+1
). Here U [1, Nt−1] denotes the uniform distribution

over {1, 2, · · · , N − 1}, λ(·) ∈ R+ is a positive weighting function.

Since the model outputs N Bernoulli distributions as the distribution of x0, we adopt the binary cross
entropy to measure the distance between the estimation pθ(x) and δ(x − x∗). We set λ(tn) ≡ 1

and discover a decent empirical performance. xi
tn and xj

tn+1
are identically and independently

sampled from different noising trajectories, in comparison to xi
tn ∼ Cat(xtn ;p = x∗Qtn),x

i
tn+1
∼

Cat(xtn+1 ;p = xtnQtn+1 · · ·Qtn+1) where xi
tn and xi

tn+1
are from the same trajectory. Since

very close tn and tn+1 would make Eq. 4.2 very easy to learn, we reschedule the time horizon into
Nt − 1 sub-intervals t1 = 1 < t2 < · · · < tNt

= T through the cosine denoising schedular such that
ti = ⌊cos

(
1−π·ci

2

)
· T ⌋ following DDIM [34]. This training procedure enforces the model to learn

5

conditional consistency across different noise steps to consistently map to the optimal solution x∗ of
the given condition G. Note that although we enforce the noise to map to the Dirac delta on x∗, the
generative modeling process with a single sample per instance condition during training still enables
the model to estimate a solution distribution (centering around the optimal solution) to enjoy diversity
to enhance performance via parallel sampling, as evidenced by the experiments in Table. 2.

Specifically for implementation, the network θ is embodied as an anisotropic graph neural network
with edge gating mechanisms [3], and instance G serves as a part of the conditional input as the node
or edge features. For TSP, the 2D coordinates of the vertices serve as the instance condition, and the
input edge features are from the embeddings of entries in xt integrated with the embedding of the
input time step t. For MIS, the edges E serve as the instance condition and the node embeddings are
from xt to collectively form the input. After the GNN iterations, the features of the decision variables
(edges for TSP and nodes for MIS) are projected to 2-D outputs pθ(x0|xt, G) ∈ [0, 1]N×2 featuring
N Bernoulli distributions for N entries in x0 via a linear layer followed by a Softmax layer.

5 Testing-Stage Problem Solving via Consistency-Based Gradient Search

The solving involves obtaining the initial solution from the raw consistency sampling process and a
consistency-based gradient search process with objective feedback for iterative solution improvement.

5.1 Consistency Sampling for Initial Solutions

Algorithm 1 Multistep Consistency Sampling

Input: Consistency model fθ(·, ·, ·), graph
problem instance G, sequence of time
points τ1 > τ2 > · · · > τNτ−1

Sample xT from uniform distribution U
pθ(x0|G)← fθ(xT , T,G)
x0 ∼ pθ(x0|G)
for n = 1 to Nτ − 1 do

Sample xτn ∼ Cat(xτn ;p = x0Qτn)
pθ(x0|G)← fθ(xτn , τn, G)
x0 ∼ pθ(x0|G)

end for
Output: Solution x0

With a well-trained fθ(·, ·, ·), we generate solutions
for a given instance G by sampling xT from the
uniform distribution and then evaluate it for x0 ∼
pθ(x0) = fθ(xT , T,G). This process requires only
one forward pass through the consistency model, re-
sulting in sampling in a single step. Solution sam-
pling with multiple steps of inferences can also be
accomplished via alternating denoising and noise
injection, allowing trading runtime for improved
solving quality. Given a sequence of time points
τ1 > τ2 > · · · > τNτ−1, in time step τn, the multi-
step sampling process adds noise to the x0 obtained
from the last step τn−1 by xτn ∼ Cat(xτn ;p =
xQτn), then denoise to find the new solution by
x0 ∼ fθ(xτn , τn, G), as shown in Algorithm. 1.

5.2 Consistency-based Gradient Search with Objective Feedback

For CO, the integration of objective optimization facilitates direct engagement with the objective and
enables efficient exploration of the solution space to minimize the score. [8] has established such a
procedure for the step-by-step denoising function, yet it is not transferable to the consistency function,
and incorporating objective optimization may prove more challenging as the consistency function
maps across longer distance time steps. With the learned conditional solution prior pθ(x|G), this sec-
tion aims to introduce a constraint c(x, y∗|G) on x to this prior for inference, where y∗ represents the
optimal objective score given the instance G. That is, we want to find an approximation to the posterior
distribution pθ(x|y∗, G) ∝ pθ(x|G)c(x, y∗|G) to guide the sampling process to the optimal x∗.

Here we follow [8] to determine c(x, y∗|G) by utilizing energy-based modeling [41] with the energy
function E(y,x, G) = |y − l(x;G)|, which quantifies the compatibility between y and (x, G), and it
reaches zero when y is exactly the objective score of x with respect to G. Such a design enables the
best y matching the inputs to maintain the highest probability density and the probability density is
positively correlated with the matching degree. Then we employ the Gibbs distribution to characterize
the probability distribution over a collection of arbitrary energies:

c(x, y|G) =
exp(−E(y,x, G))∫

y′ exp(−E(y′,x, G))
= Z exp(− |y − l(x;G)|) (5)

6

Following [42], we introduce an approximate variational posterior q(x|G) and the free energy

F = −Eq(x|G)q(h|x,G) [log pθ(x,h|G)− log q(x)q(h|x, G)]︸ ︷︷ ︸
F1

−Eq(x|G) [log c(x, y
∗|G)]︸ ︷︷ ︸

F2

(6)

is minimized when KL(q(x|G)||pθ(x|y∗, G)) is minimized. Here h = x1, · · · ,xT represent the
latent variables. Through the diffusion process, we can obtain q(h|x) =

∏T
t=1 q(xt|xt−1). We apply

an approximation to the posterior over x = x0 as a point estimate q(x|G) = δ(x − η). F1 aligns
with the objective of the consistency and diffusion models and F2 can be transformed using Eq. 5:

F1 = Eq(h|η,G)

[
log

q(h|η, G)

pθ(η,h|G)

]
and F2 = − log c(η, y∗|G) = l(η;G)− logZ − y∗. (7)

Initializing η from Sec. 5.1, we aim to update η to reach conditional solution distribution pθ(x|y∗, G)
through exponential gradient decent on the latent continuous probability px = p(xαT) = ηQαT ∈
[0, 1]N×2 at each iteration minimizing F1 and F2. Here px parameterizes N Bernoulli distributions
and α serves as a hyperparameter to control the noise degree. We view px as the expectation of xαT

over px, i.e., Epx(xαT) = px, since px is a multivariate Bernoulli. To obtain reliable gradients on
px, we estimate the expected distribution of x0 by fθ(px, αT,G). Note F1 is exactly the (implicit)
objective of the diffusion and consistency models, i.e., the variational upper bound of the negative
log-likelihood with the targeted data η, which we optimize by minimizing the consistency over
the re-predicted solutions d

(
fθ(px, αT,G), δ(x− η)

)
. While F2 can be optimized by minimizing

l
(
fθ(px, αT,G);G

)
+ Const(px), where the objectives are defined following [8] as lMIS(x;G) ≜

−
∑

1≤i≤N xi + β
∑

(i,j)∈E xixj and lTSP = x⊙D where D ∈ Rn×n
+ denotes the distance matrix.

In each iteration, with current η, we obtain px = ηQαT , pθ(η) = fθ (px, αT,G) and update px by

px ← px ⊙ exp
{
−∇px

[
λ1 · d

(
Epθ(η)η, δ (x− η)

)
+ λ2 · l

(
Epθ(η)η;G

)]}
(8)

where λ1, λ2 are weighting hyperparameters. Then we sample xαT ∼ px and reconstruct a new
distribution estimate of η by p′θ(η) = fθ(xαT , αT,G). To guarantee the feasibility, we utilize the
logits of pθ(η) and p′θ(η) to produce the heatmaps where each element denotes each edge/node’s
confidence to be selected, and then adopt post-processing2 to obtain two feasible solutions. This
iteration concludes by outputting the lower-cost solution as η.

6 Experiments

We test on two CO problems, TSP and MIS. The comparison includes SOTA learning-based solvers,
heuristics, and exact solvers for each problem. To configure the generative-based models, we adopt Ts
and Tg to represent the number of inference steps in initial solution sampling and the number of gradi-
ent search steps, respectively. For diffusion-based baselines including DIFUSCO [7] and T2T [8], we
adopt Ts=50 and involve 3 iterations with 5 guided denoising steps per iteration for T2T’s gradient
search, i.e., Tg=15. Fast T2T can achieve promising results with merely one-step initial solution sam-
pling and one-step gradient search, i.e., Ts=1 and Tg=1. However, the affordability of model inference
facilitates a more extensive exploration of the solution distribution through a thorough search.

6.1 Experiments for TSP

Datasets. A TSP instance includes N 2-D coordinates and a reference solution obtained by heuristics.
Training and testing instances are generated via uniformly sampling N nodes from the unit square
[0, 1]2, which is a standard procedure as adopted in [2, 21, 3, 48, 6, 7, 8]. We experiment on various
problem scales including TSP-50, 100, 500, and 1000.

Metrics. Following [2, 3, 6, 7, 8], we adopt three evaluation metrics: 1) Length: the average total
distance or cost of the solved tours w.r.t. the corresponding instances, as directly corresponds to the
objective. 2) Drop: the relative performance drop w.r.t. length compared to the global optimality or
the reference solution; 3) Time: the average computational time to solve the problems.

2We follow previous works [6, 7, 8] to perform greedy decoding by sequentially inserting edges or nodes
with the highest confidence if there are no conflicts. For TSP, the 2Opt heuristic [43] is optionally applied.

7

Table 1: Results with Greedy Decoding on TSP-50 and TSP-100. RL: Reinforcement Learning, SL:
Supervised Learning, G: Greedy Decoding. ∗ denotes results that are quoted from previous works.

ALGORITHM TYPE
TSP-50 TSP-100

LENGTH↓ DROP↓ TIME↓ LENGTH↓ DROP↓ TIME↓
Concorde [44] Exact 5.69 0.00% (3m) 7.76 0.00% (12m)
LKH3 [45] Heuristics 5.69 0.00% (3m) 7.76 0.00% (33m)
2Opt [46] Heuristics 5.86 2.95% – 8.03 3.54% –

AM∗ [2] RL+G 5.80 1.76% (2s) 8.12 4.53% (6s)
GCN∗ [3] SL+G 5.87 3.10% (55s) 8.41 8.38% (6m)
Transformer∗ [47] RL+G 5.71 0.31% (14s) 7.88 1.42% (5s)
POMO∗ [4] RL+G 5.73 0.64% (1s) 7.84 1.07% (2s)
Sym-NCO∗ [5] RL+G – – – 7.84 0.94% (2s)
Image Diffusion∗ [42] SL+G 5.76 1.23% – 7.92 2.11% –

DIFUSCO (Ts=1) [7] SL+G 6.42 12.84% (16s) 9.32 20.20% (20s)
DIFUSCO (Ts=50) [7] SL+G 5.71 0.45% (9m) 7.85 1.21% (9m)
DIFUSCO (Ts=100) [7] SL+G 5.71 0.41% (18m) 7.84 1.16% (18m)
Fast T2T (Ts=1) SL+G 5.71 0.31% (11s) 7.86 1.31% (16s)
Fast T2T (Ts=3) SL+G 5.69 0.05% (25s) 7.77 0.17% (33s)
Fast T2T (Ts=5) SL+G 5.69 0.02% (1m) 7.76 0.07% (1m)
T2T (Ts=1,Tg=1) [8] SL+G 6.15 8.15% (55s) 9.00 16.09% (1m)
T2T (Ts=50,Tg=15) [8] SL+G 5.69 0.07% (18m) 7.77 0.20% (18m)
T2T (Ts=50,Tg=30) [8] SL+G 5.69 0.03% (26m) 7.76 0.11% (42m)
Fast T2T (Ts=1,Tg=1) SL+G 5.69 0.03% (54s) 7.76 0.10% (1m)
Fast T2T (Ts=2,Tg=2) SL+G 5.69 0.02% (2m) 7.76 0.04% (2m)
Fast T2T (Ts=3,Tg=3) SL+G 5.69 0.01% (3m) 7.76 0.03% (3m)

Results for TSP-50/100. Given the recent success of learning-based solvers in achieving near-optimal
performance on small-scale problems, we follow [8] to assess methods within the naive greedy
decoding setting, aiming for a more discernable evaluation. The comparison includes state-of-the-art
learning-based methods with greedy decoding and traditional solvers. Hyperparameter α is set as 0.2.
The sampling steps and gradient search steps are explicitly marked. Table. 1 shows that Fast T2T with
merely one-step sampling steps approximates diffusion-based solvers with 100 sampling steps with a
slight average performance gain of 5.7%, yet with an average speedup of 82.8x. A similar conclusion
can be made for methods with gradient search with an average performance gain of 4.5% and speedup
of 35.4x. Fast T2T variants with more sampling and gradient search steps achieve 82.1% performance
gain with 14.7x speedup compared to previous state-of-the-art diffusion-based counterparts.

Results for TSP-500/1000. Learning-based solvers are compared using greedy decoding and
sampling decoding (× 4), i.e., sampling multiple solutions and reporting the best one. Hyperparameter
α is set as 0.2. The sampling steps and gradient search steps are explicitly marked. Table. 2 shows that
Fast T2T with merely one-step sampling steps averagely outperforms diffusion-based solvers with
100 sampling steps by a performance gain of 10.1% and a speedup of 16.8x. A similar conclusion
can be made for methods with gradient search with an average performance gain of 14.9% and a
speedup of 8.5x. Fast T2T variants with more sampling and gradient search steps achieve 52.1%
performance gain with 7.4x speedup compared to previous SOTA diffusion-based counterparts.

Table 3: Generalization results. Tour length and drop
with Greedy Decoding are reported.

Testing
Training TSP-50 TSP-100 TSP-500 TSP-1000

TSP-50

DIFUSCO (Ts=50)∗ [7] 5.69, 0.09% 5.70, 0.25% 5.83, 2.55% 5.84, 2.71%
T2T (Ts=50,Tg=30)∗ [8] 5.69, 0.02% 5.70, 0.11% 5.78, 1.60% 5.75, 1.10%

Fast T2T (Ts=5,Tg=5) 5.69, 0.01% 5.69, 0.02% 5.71, 0.36% 5.75, 1.02%
Fast T2T (Ts=20,Tg=20) 5.69, 0.00% 5.69, 0.01% 5.71, 0.21% 5.73, 0.80%

TSP-100

DIFUSCO (Ts=50)∗ [7] 7.87, 1.44% 7.78, 0.23% 8.03, 3.44% 8.02, 3.31%
T2T (Ts=50,Tg=30)∗ [8] 7.80, 0.55% 7.77, 0.08% 7.95, 2.47% 7.91, 1.96%

Fast T2T (Ts=5,Tg=5) 7.77, 0.12% 7.76, 0.02% 7.79, 0.40% 7.80, 0.55%
Fast T2T (Ts=20,Tg=20) 7.76, 0.08% 7.76, 0.01% 7.77, 0.23% 7.78, 0.34%

TSP-500

DIFUSCO (Ts=50)∗ [7] 17.31, 4.61% 17.05, 3.04% 16.78, 1.40% 16.86, 1.85%
T2T (Ts=50,Tg=30)∗ [8] 17.18, 3.79% 16.92, 2.25% 16.68, 0.81% 16.72, 1.00%

Fast T2T (Ts=5,Tg=5) 16.99, 2.67% 17.02, 2.87% 16.61, 0.36% 16.63, 0.51%
Fast T2T (Ts=20,Tg=20) 16.94, 2.34% 16.97, 2.54% 16.58, 0.20% 16.60, 0.33%

TSP-1000

DIFUSCO (Ts=50)∗ [7] 24.17, 4.54% 24.04, 3.98% 23.65, 2.30% 23.63, 2.21%
T2T (Ts=50,Tg=30)∗ [8] 24.20, 4.66% 23.85, 3.16% 23.47, 1.51% 23.41, 1.23%

Fast T2T (Ts=5,Tg=5) 23.12, 3.43% 24.08, 4.15% 23.31, 0.82% 23.25, 0.56%
Fast T2T (Ts=20,Tg=20) 23.86, 3.22% 24.01, 3.87% 23.25, 0.58% 23.20, 0.36%

Results for Generalization. Based on the
problem set {TSP-50, TSP-100, TSP-500,
TSP-1000}, we train the model on a specific
problem scale and then evaluate it on all
problem scales. Table 3 presents the gener-
alization results of Fast T2T compared with
diffusion-based counterparts with greedy de-
coding. The results show the satisfying
cross-domain generalization ability of Fast
T2T, e.g., the model trained on TSP-1000
achieves less than a 0.6% optimality gap on
all other problem scales.

Soving Time vs. Optimality Drop on TSP-100/1000. Fig. 3 and Fig. 4 illustrate the solving progress
via the runtime-drop curves of Fast T2T and the prominent mathematical solver LKH3 [45]. The
comparison is conducted on TSP-100 and TSP-1000. We are excited to discover that Fast T2T
surpasses LKH3 in the early solving stage while also performing comparably in the later stage. This
suggests that Fast T2T can serve as an effective rapid solver for approximate solutions outperforming

8

Table 2: Results on TSP-500 and TSP-1000. AS: Active Search,
S: Sampling Decoding, BS: Beam Search. ∗ denotes results that
are quoted from previous works [8, 6].

ALGORITHM TYPE
TSP-500 TSP-1000

LENGTH↓ DROP↓ TIME LENGTH↓ DROP↓ TIME

Mathematical Solvers or Heuristics

Concorde [44] Exact 16.55 0.00% 37.66m 23.12 0.00% 6.65h
Gurobi [49] Exact 16.55 0.00% 45.63h – – –
LKH-3 [45] Heuristics 16.55 0.00% 46.28m 23.12 0.00% 2.57h
Farthest Insertion Heuristics 18.30 10.57% 0s 25.72 11.25% 0s

Learning-based Solvers with Greedy Decoding

AM∗ [2] RL+G 20.02 20.99% 1.51m 31.15 34.75% 3.18m
GCN∗ [3] SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m
POMO+EAS-Emb∗ [15] RL+AS+G 19.24 16.25% 12.80h – – –
POMO+EAS-Tab∗ [15] RL+AS+G 24.54 48.22% 11.61h 49.56 114.36% 63.45h
DIMES∗ [6] RL+G 18.93 14.38% 0.97m 26.58 14.97% 2.08m
DIMES∗ [6] RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h
DIMES∗ [6] RL+G+2Opt 17.65 6.62% 1.01m 24.83 7.38% 2.29m
DIMES∗ [6] RL+AS+G+2Opt 17.31 4.57% 2.10h 24.33 5.22% 4.49h

DIFUSCO (Ts=100) [7] SL+G 18.17 9.82% 4m31s 25.74 11.36% 14m20s
Fast T2T (Ts=1) SL+G 17.80 7.57% 17s 25.23 9.13% 55s
Fast T2T (Ts=5) SL+G 17.53 5.94% 22s 24.57 6.29% 1m21s
T2T (Ts=50,Tg=30) [8] SL+G 17.48 5.61% 6m23s 25.21 9.04% 19m21s
Fast T2T (Ts=1,Tg=1) SL+G 17.26 4.28% 36s 24.60 6.42% 2m30s
Fast T2T (Ts=5,Tg=5) SL+G 16.93 2.33% 2m12s 23.96 3.64% 9m12s
DIFUSCO (Ts=100) [7] SL+G+2Opt 16.80 1.50% 4m40s 23.55 1.89% 14m25s
Fast T2T (Ts=1) SL+G+2Opt 16.75 1.23% 15s 23.45 1.42% 57s
Fast T2T (Ts=5) SL+G+2Opt 16.70 0.90% 22s 23.38 1.14% 1m20s
T2T (Ts=50,Tg=30) [8] SL+G+2Opt 16.68 0.82% 6m29s 23.44 1.40% 19m39s
Fast T2T (Ts=1,Tg=1) SL+G+2Opt 16.67 0.73% 39s 23.35 1.00% 2m33s
Fast T2T (Ts=5,Tg=5) SL+G+2Opt 16.61 0.39% 2m10s 23.25 0.58% 8m37s

Learning-based Solvers with Sampling Decoding

EAN∗ [50] RL+S+2Opt 23.75 43.57% 57.76m 47.73 106.46% 5.39h
AM∗ [2] RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h
GCN∗ [3] SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m
DIMES∗ [6] RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m
DIMES∗ [6] RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h
DIMES∗ [6] RL+S+2Opt 17.64 6.56% 1.10m 24.81 7.29% 2.86m
DIMES∗ [6] RL+AS+S+2Opt 17.29 4.48% 2.11h 24.32 5.17% 4.53h

DIFUSCO (Ts=100) [7] SL+S 17.55 6.05% 14m3s 25.12 8.64% 51m49s
Fast T2T (Ts=1) SL+S 17.63 6.56% 53s 24.91 7.76% 3m2s
Fast T2T (Ts=5) SL+S 17.02 2.85% 1m7s 24.07 4.10% 4m39s
T2T (Ts=50,Tg=30) [8] SL+S 17.04 2.99% 19m33s 24.85 7.49% 49m42s
Fast T2T (Ts=1,Tg=1) SL+S 17.08 3.21% 2m26s 24.43 5.67% 6m8s
Fast T2T (Ts=5,Tg=5) SL+S 16.72 1.02% 7m9s 23.68 2.44% 19m1s
DIFUSCO (Ts=100) [7] SL+S+2Opt 16.69 0.87% 19m8s 23.42 1.31% 51m56s
Fast T2T (Ts=1) SL+S+2Opt 16.72 1.02% 59s 23.39 1.17% 3m12s
Fast T2T (Ts=5) SL+S+2Opt 16.63 0.49% 1m8s 23.30 0.77% 4m50s
T2T (Ts=50,Tg=30) [8] SL+S+2Opt 16.63 0.48% 19m42s 23.37 1.07% 51m3s
Fast T2T (Ts=1,Tg=1) SL+S+2Opt 16.64 0.54% 2m33s 23.31 0.83% 6m14s
Fast T2T (Ts=5,Tg=5) SL+S+2Opt 16.58 0.21% 6m51s 23.22 0.42% 18m17s

Figure 3: Effect of runtime to
optimality drop for Fast T2T
and LKH3 on TSP-100.

Figure 4: Effect of runtime to
optimality drop for Fast T2T
and LKH3 on TSP-1000.

Figure 5: Effect of α to the
performance drop.

LKH3, which may find widespread applications requiring prompt responses. Other neural solver
baselines fall far outside the comparable range; please refer to Fig. 6 for an intuitive illustration.

Ablation and Hyperparameter Study. Fig. 5 illustrates the performance variation when altering the
noise hyperparameter α, and we discover a relatively superior and stable performance at α = 0.2.
Fig. 6 shows the performance variation when varying the sampling and gradient search steps. We
also include DIFUSCO [7] and T2T [8] for direct comparison, in order to see whether diffusion-
based methods can achieve promising results using minimal sampling steps. In this case, we let the
gradient search steps equal to the sampling steps for Fast T2T and T2T. The results show a significant
performance overwhelm of Fast T2T to diffusion-based counterparts.

6.2 Experiments for MIS

Datasets. Two datasets are tested for the MIS problem following [52, 54, 53, 6, 7], including RB
graphs [31] and Erdős–Rényi (ER) graphs [55]. We randomly sample 200 to 300 vertices uniformly
and generate the graph instances. ER graphs are randomly generated with each edge maintaining a
fixed probability of being present or absent, independently of the other edges. We adopt ER graphs of
700 to 800 nodes with the pairwise connection probability set as 0.15.

Metrics. Following previous works [2, 3, 6, 7], we adopt three evaluation metrics to measure model
performance: 1) Size: the average size of the solutions w.r.t. the corresponding instances, i.e. the
objective. 2) Drop: the relative performance drop w.r.t. size compared to the optimal solution or the
reference solution; 3) Time: the average computational time required to solve the problems.

Main Results. The baselines include SOTA neural methods with greedy and sampling decoding (×4),
as well as exact solver Gurobi [49] and heuristic solver KaMIS [51]. The solving time of Gurobi is
set as comparable to neural solvers, thus it does not reach optimality. Table. 4 shows that Fast T2T
with merely one-step sampling and gradient search steps averagely approximates diffusion-based

9

Table 4: Results on MIS. TS: Tree Search, UL: Unsupervised
Learning. ∗ denotes results quoted from previous works [8, 31].

ALGORITHM TYPE
RB-[200-300] ER-[700-800]

SIZE↑ DROP↓ TIME SIZE↑ DROP↓ TIME

KaMIS [51] Heuristics 20.10∗ – 1h24m 44.87∗ – 52.13m
Gurobi [49] Exact 19.98 0.01% 47m34s 41.28 7.78% 50.00m

Intel [52] SL+G – – – 34.86 22.31% 6.06m
DIMES [6] RL+G – – – 38.24 14.78% 6.12m
DIFUSCO (Ts=100) [7] SL+G 18.52 7.81% 16m3s 37.03 18.53% 5m30s
Fast T2T (Ts=1) SL+G 18.59 7.37% 35s 36.72 18.17% 11s
Fast T2T (Ts=5) SL+G 18.74 6.65% 1m16s 37.80 15.76% 24s
T2T (Ts=50,Tg=30) [8] SL+G 18.98 5.49% 20m58s 39.81 11.28% 7m7s
Fast T2T (Ts=1,Tg=1) SL+G 19.37 3.51% 1m18s 40.25 10.30% 25s
Fast T2T (Ts=5,Tg=5) SL+G 19.49 2.89% 4m44s 40.68 9.34% 1m32s

Intel [52] SL+TS 18.47 8.11% 13m4s 38.80 13.43% 20.00m
DGL [53] SL+TS 17.36 13.61% 12m47s 37.26 16.96% 22.71m
LwD [54] RL+S – – – 41.17 8.25% 6.33m
GFlowNets [31] UL+S 19.18 4.57% 32s 41.14 8.53% 2.92m
DIFUSCO (Ts=100) [7] SL+S 19.13 4.79% 20m28s 39.12 12.81% 21m43s
Fast T2T (Ts=1) SL+S 18.91 5.81% 42s 37.91 15.52% 24s
Fast T2T (Ts=5) SL+S 19.38 3.46% 1m50s 39.81 11.27% 1m16s
T2T (Ts=50,Tg=30) [8] SL+S 19.38 3.53% 30m18s 41.41 7.72% 27m45s
Fast T2T (Ts=1,Tg=1) SL+S 19.53 2.74% 1m59s 40.98 8.66% 1m19s
Fast T2T (Ts=5,Tg=5) SL+S 19.70 1.90% 6m59s 41.73 6.99% 5m51s

Figure 6: Effect of step num-
ber to drop for diffusion/con-
sistency based methods. GS
stands for gradient search.

counterparts with approximately 100 sampling steps by a slight performance gain of 2.5% and a
speedup of 26.3x. Fast T2T variants with more sampling and gradient search steps achieve 23.7%
performance gain with 9.1x speedup compared to previous SOTA diffusion-based counterparts.

7 Conclusion

We introduce optimization consistency on top of the diffusion-based training-to-testing solving
framework for efficient and effective combinatorial optimization solving. Our proposed model
facilitates rapid single-step solving, demonstrating comparable or superior performance to SOTA
diffusion-based counterparts, offering a more effective and efficient alternative backbone for neural
solvers. In addition, a novel consistency-based gradient search scheme is introduced to further
complement the generalization capability during solving. Experimental results on TSP and MIS
datasets showcase the superiority of our methods, exhibiting significant performance gains in both
solution quality and speed compared to previous state-of-the-art neural solvers. Furthermore, our
approach demonstrates superiority over LKH3 in the early stages of solving.

References

[1] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a
methodological tour d’horizon,” European Journal of Operational Research, 2021.

[2] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems!” arXiv
preprint arXiv:1803.08475, 2018.

[3] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolutional network technique
for the travelling salesman problem,” arXiv preprint arXiv:1906.01227, 2019.

[4] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo: Policy optimization
with multiple optima for reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 188–21 198, 2020.

[5] M. Kim, J. Park, and J. Park, “Sym-nco: Leveraging symmetricity for neural combinatorial
optimization,” arXiv preprint arXiv:2205.13209, 2022.

[6] R. Qiu, Z. Sun, and Y. Yang, “Dimes: A differentiable meta solver for combinatorial optimization
problems,” arXiv preprint arXiv:2210.04123, 2022.

[7] Z. Sun and Y. Yang, “DIFUSCO: Graph-based diffusion solvers for combinatorial optimization,”
in Thirty-seventh Conference on Neural Information Processing Systems, 2023. [Online].
Available: https://openreview.net/forum?id=JV8Ff0lgVV

[8] Y. Li, J. Guo, R. Wang, and J. Yan, “T2t: From distribution learning in training to gradient
search in testing for combinatorial optimization,” in Advances in Neural Information Processing
Systems, 2023.

10

https://openreview.net/forum?id=JV8Ff0lgVV

[9] Y. Min, Y. Bai, and C. P. Gomes, “Unsupervised learning for solving the travelling salesman
problem,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[10] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in neural information
processing systems, vol. 28, 2015.

[11] B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network guided local search for
the traveling salesperson problem,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=ar92oEosBIg

[12] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained model to arbitrarily large
tsp instances,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8,
2021, pp. 7474–7482.

[13] F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang, “Neural combinatorial optimization with
heavy decoder: Toward large scale generalization,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[14] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial optimization
with reinforcement learning,” arXiv preprint arXiv:1611.09940, 2016.

[15] A. Hottung, Y.-D. Kwon, and K. Tierney, “Efficient active search for combinatorial optimization
problems,” arXiv preprint arXiv:2106.05126, 2021.

[16] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” arXiv preprint
arXiv:2303.01469, 2023.

[17] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning
using nonequilibrium thermodynamics,” in International Conference on Machine Learning,
2015, pp. 2256–2265.

[18] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Structured denoising diffusion
models in discrete state-spaces,” Advances in Neural Information Processing Systems, vol. 34,
pp. 17 981–17 993, 2021.

[19] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling, “Argmax flows and multinomial
diffusion: Learning categorical distributions,” Advances in Neural Information Processing
Systems, vol. 34, pp. 12 454–12 465, 2021.

[20] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization
algorithms over graphs,” Advances in neural information processing systems, vol. 30, 2017.

[21] A. Hottung, B. Bhandari, and K. Tierney, “Learning a latent search space for routing problems
using variational autoencoders,” in International Conference on Learning Representations,
2021.

[22] S. Geisler, J. Sommer, J. Schuchardt, A. Bojchevski, and S. Günnemann, “Generalization
of neural combinatorial solvers through the lens of adversarial robustness,” in International
Conference on Learning Representations, 2022.

[23] X. Zheng, Y. Li, C. Fan, H. Wu, X. Song, and J. Yan, “Learning plaintext-ciphertext crypto-
graphic problems via anf-based sat instance representation,” Advances in Neural Information
Processing Systems, 2024.

[24] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning,” in Asian Conference on Machine
Learning, 2020, pp. 465–480.

[25] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement heuristics for solving
routing problems,” IEEE transactions on neural networks and learning systems, vol. 33, no. 9,
pp. 5057–5069, 2021.

[26] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial optimization,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[27] S. Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle routing,” Advances in
Neural Information Processing Systems, vol. 34, pp. 26 198–26 211, 2021.

[28] Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng, “Generalize learned heuristics to solve large-
scale vehicle routing problems in real-time,” in The Eleventh International Conference on
Learning Representations, 2023.

11

https://openreview.net/forum?id=ar92oEosBIg

[29] R. Cheng, X. Lyu, Y. Li, J. Ye, J. Hao, and J. Yan, “The policy-gradient placement and generative
routing neural networks for chip design,” Advances in Neural Information Processing Systems,
vol. 35, pp. 26 350–26 362, 2022.

[30] X. Du, C. Wang, R. Zhong, and J. Yan, “Hubrouter: Learning global routing via hub generation
and pin-hub connection,” in Advances in Neural Information Processing Systems, 2023.

[31] D. Zhang, H. Dai, N. Malkin, A. Courville, Y. Bengio, and L. Pan, “Let the flows tell: Solving
graph combinatorial optimization problems with gflownets,” arXiv preprint arXiv:2305.17010,
2023.

[32] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,”
Advances in neural information processing systems, vol. 32, 2019.

[33] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[34] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint
arXiv:2010.02502, 2020.

[35] Y. Song and S. Ermon, “Improved techniques for training score-based generative models,”
Advances in neural information processing systems, vol. 33, pp. 12 438–12 448, 2020.

[36] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Interna-
tional Conference on Machine Learning, 2021, pp. 8162–8171.

[37] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in
Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[38] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based
generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456,
2020.

[39] N. Karalias and A. Loukas, “Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs,” Advances in Neural Information Processing Systems,
vol. 33, pp. 6659–6672, 2020.

[40] H. P. Wang, N. Wu, H. Yang, C. Hao, and P. Li, “Unsupervised learning for combinatorial opti-
mization with principled objective relaxation,” in Advances in Neural Information Processing
Systems, 2022.

[41] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-based
learning,” Predicting structured data, vol. 1, no. 0, 2006.

[42] A. Graikos, N. Malkin, N. Jojic, and D. Samaras, “Diffusion models as plug-and-play priors,”
arXiv preprint arXiv:2206.09012, 2022.

[43] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman
problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[44] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde tsp solver,” 2006.
[45] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling

salesman and vehicle routing problems,” Roskilde: Roskilde University, pp. 24–50, 2017.
[46] G. A. Croes, “A method for solving traveling-salesman problems,” Operations research, vol. 6,

no. 6, pp. 791–812, 1958.
[47] X. Bresson and T. Laurent, “The transformer network for the traveling salesman problem,”

arXiv preprint arXiv:2103.03012, 2021.
[48] P. R. d. O. da Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-opt heuristics for the

traveling salesman problem via deep reinforcement learning,” arXiv preprint arXiv:2004.01608,
2020.

[49] Gurobi Optimization, “Gurobi optimizer reference manual,” http://www.gurobi.com, 2020.
[50] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau, “Learning heuristics

for the tsp by policy gradient,” in International conference on the integration of constraint
programming, artificial intelligence, and operations research. Springer, 2018, pp. 170–181.

[51] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck, “Finding near-optimal indepen-
dent sets at scale,” in 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 2016, pp. 138–150.

12

http://www.gurobi.com

[52] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional networks
and guided tree search,” Advances in neural information processing systems, vol. 31, 2018.

[53] M. Böther, O. Kißig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich, “What’s wrong with deep
learning in tree search for combinatorial optimization,” arXiv preprint arXiv:2201.10494, 2022.

[54] S. Ahn, Y. Seo, and J. Shin, “Learning what to defer for maximum independent sets,” in
International Conference on Machine Learning, 2020, pp. 134–144.

[55] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ. Math. Inst. Hung. Acad.
Sci, vol. 5, no. 1, pp. 17–60, 1960.

[56] B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network guided local search for
the traveling salesperson problem,” arXiv preprint arXiv:2110.05291, 2021.

[57] H. H. Hoos and T. Stützle, “Satlib: An online resource for research on sat,” Sat, vol. 2000, pp.
283–292, 2000.

13

Appendix

A Training Details

A.1 Training Algorithm

Algorithm 2 Optimization Consistency Training

1: Input datasetD, consistency model fθ(·, ·), initial model parameter θ, learning rate η, consistency
loss function d(·, ·), inference steps T , scaling factor α, Bernoulli noise matrix Q̄1,...,T , weighting
function λ(·)

2:
3: repeat
4: Sample x∗ ∼ D, t1 ∼ [1, T], t2 ← ⌈αt1⌉
5: Sample z1 ∼ x∗Q̄t1 , z2 ∼ x∗Q̄t2
6: L(θ)← λ(t1) (d (fθ (z1, t1) , δ(z1 − x∗))) + d (fθ (z2, t2) , δ(z1 − x∗))
7: θ ← θ − η∇θL(θ)
8:
9: until convergence

A.2 Design Choices for Optimization Consistency

We supplement the specific design choices of the optimization consistency models, and the listed
hyperparameters correspond to those used in the algorithm presented in sections 4 and 5.

Training Design Choice
Consistency Loss Function d(x, y) = Binary_Cross_Entropy(x, y)

Scaling Factor α = 0.5
Weighting Function λ(t) = 1

Discretization Curriculum t ∼ {1, 2, . . . , T}, randomly sampling
Initial Learning Rate η = 0.0002

Learning Rate Schedule Cosine decay, decay rate ω = 0.0001

Test Design Choice
Sampling Step Schedule t1 = T (1− sin(N · iπ/2)), t2 = T (1− sin(N · (i+ 1)π/2))

Guided Weighting Parameters λ1 = 50, λ2 = 50 on TSP λ1 = 2, λ2 = 2 on MIS
Rewrite Ratio ϵ = 0.2 on TSP and ER-[700-800] ϵ = 0.3 on RB-[200-300]

B Supplementary Experiments

B.1 Results on TSP Real-World Data

Results on TSPLIB 50-200. We evaluate our model trained with random 100-node problems on
real-world TSPLIB instances with 50-200 nodes. The compared baselines include DIFUSCO [7],
T2T [8], and baselines listed in [56]’s Table 3. The hyperparameter settings of the compared baselines
are: DIFUSCO: Ts=50; T2T: Ts=50 and Tg=30; Fast T2T (w/o GS): Ts=10; Fast T2T (w/ GS): Ts=10
and Tg=10. The diffusion-based methods are compared in the same settings with greedy decoding
and Two-Opt post-processing. For each instance, we normalize the coordinates to [0,1].

Results on TSPLIB 50-200. We also supplement the results (optimality drop) of diffusion-based
baselines and Fast T2T on large-scale TSPLIB benchmark instances with 200-1000 nodes. The
models are trained on TSP-500 and inference with greedy decoding and Two-Opt post-processing.
For each instance, we normalize the coordinates to [0,1].

14

Table 5: Solution quality for methods trained on random 100-node problems and evaluated on
TSPLIB instances with 50-200 nodes. ∗ denotes results quoted from previous works [56].

INSTANCES AM* GCN* Learn2OPT* GNNGLS* DIFUSCO T2T Fast T2T (w/o GS) Fast T2T (w/ GS)

eil51 16.767% 40.025% 1.725% 1.529% 2.82% 0.14% 0.00% 0.00%
berlin52 4.169% 33.225% 0.449% 0.142% 0.00% 0.00% 0.00% 0.00%

st70 1.737% 24.785% 0.040% 0.764% 0.00% 0.00% 0.01% 0.00%
eil76 1.992% 27.411% 0.096% 0.163% 0.34% 0.00% 0.00% 0.00%
pr76 0.816% 27.793% 1.228% 0.039% 1.12% 0.40% 0.00% 0.00%
rat99 2.645% 17.633% 0.123% 0.550% 0.09% 0.09% 0.00% 0.00%

kroA100 4.017% 28.828% 18.313% 0.728% 0.10% 0.00% 0.00% 0.00%
kroB100 5.142% 34.686% 1.119% 0.147% 2.29% 0.74% 0.74% 0.65%
kroC100 0.972% 35.506% 0.349% 1.571% 0.00% 0.00% 0.00% 0.00%
kroD100 2.717% 38.018% 0.866% 0.572% 0.07% 0.00% 0.00% 0.00%
kroE100 1.470% 26.589% 1.832% 1.216% 3.83% 0.27% 0.13% 0.00%

rd100 3.407% 50.432% 1.725% 0.003% 0.08% 0.00% 0.00% 0.00%
eil101 2.994% 26.701% 0.387% 1.529% 0.03% 0.00% 0.00% 0.00%
lin105 1.739% 34.902% 1.867% 0.606% 0.00% 0.00% 0.00% 0.00%
pr107 3.933% 80.564% 0.898% 0.439% 0.91% 0.61% 1.31% 0.62%
pr124 3.677% 70.146% 10.322% 0.755% 1.02% 0.60% 0.08% 0.08%

bier127 5.908% 45.561% 3.044% 1.948% 0.94% 0.54% 1.50% 1.50%
ch130 3.182% 39.090% 0.709% 3.519% 0.29% 0.06% 0.00% 0.00%
pr136 5.064% 58.673% 0.000% 3.387% 0.19% 0.10% 0.01% 0.01%
pr144 7.641% 55.837% 1.526% 3.581% 0.80% 0.50% 0.39% 0.39%
ch150 4.584% 49.743% 0.312% 2.113% 0.57% 0.49% 0.00% 0.00%

kroA150 3.784% 45.411% 0.724% 2.984% 0.34% 0.14% 0.00% 0.00%
kroB150 2.437% 56.745% 0.886% 3.258% 0.30% 0.00% 0.07% 0.07%

pr152 7.494% 33.925% 0.029% 3.119% 1.69% 0.83% 1.17% 0.19%
u159 7.551% 38.338% 0.054% 1.020% 0.82% 0.00% 0.00% 0.00%

rat195 6.893% 24.968% 0.743% 1.666% 1.48% 1.27% 0.79% 0.79%
d198 373.020% 62.351% 0.522% 4.772% 3.32% 1.97% 1.35% 0.86%

kroA200 7.106% 40.885% 1.441% 2.029% 2.28% 0.57% 1.79% 0.49%
kroB200 8.541% 43.643% 2.064% 2.589% 2.35% 0.92% 2.50% 2.50%

Mean 16.767% 40.025% 1.725% 1.529% 0.97% 0.35% 0.41% 0.28%

Table 6: Solution quality for methods trained on random 500-node problems and evaluated on
TSPLIB instances with 200-1000 nodes.

INSTANCES DIFUSCO T2T Fast T2T (w/o GS) Fast T2T (w/ GS)

a280 1.39% 1.39% 4.58% 0.10%
d493 1.81% 1.81% 3.48% 1.43%
d657 4.86% 2.40% 1.91% 0.64%
fl417 3.30% 3.30% 7.45% 2.01%

gil262 2.18% 0.96% 0.64% 0.18%
lin318 2.95% 1.73% 2.24% 1.21%

linhp318 2.17% 1.11% 2.00% 0.78%
p654 7.49% 1.19% 4.84% 1.67%

pcb442 2.59% 1.70% 1.47% 0.61%
pr226 4.22% 0.84% 0.66% 0.34%
pr264 0.92% 0.92% 0.77% 0.73%
pr299 1.46% 1.46% 2.16% 1.40%
pr439 2.73% 1.63% 0.53% 0.50%
rat575 2.32% 1.29% 1.74% 1.43%
rat783 3.04% 1.88% 1.76% 1.03%
rd400 1.18% 0.44% 0.16% 0.08%
ts225 4.95% 2.24% 3.31% 1.37%

tsp225 3.25% 1.69% 0.84% 0.81%
u574 2.50% 1.85% 1.31% 0.94%
u724 2.05% 2.05% 2.15% 1.41%

Mean 2.87% 1.59% 2.20% 0.93%

B.2 Results on MIS Real-World Data

We supplement the results on the SATLIB real-world dataset [57] below. Initially, we did not include
the SATLIB results because Fast T2T requires more data to learn the consistency mapping, which, due
to its greater power, is more challenging to learn. Unfortunately, SATLIB does not provide sufficient
data for this purpose. However, we still discover a positive results of Fast T2T outperforming previous
baselines.

15

Table 7: Results on MIS SATLIB dataset.
Type Method Size Drop Time

Heuristic KAMIS 425.96 – 37.58m
Gurobi Exact 425.95 0.00% 26.00m

RL+Sampling LwD 422.22 0.88% 18.83m
RL+Sampling DIMES 423.28 0.63% 20.26m
UL+Sampling GlowNets 423.54 0.57% 23.22m
SL+Sampling DIFUSCO (Ts = 100) 425.14 0.19% 53m41s
SL+Sampling T2T (Ts = 50, Tg = 30) 425.18 0.18% 38m1s
SL+Sampling Fast T2T (Ts = 5, Tg = 5) 425.23 0.17% 25m35s

B.3 Results for Generalization on TSP Datasets

Fig. 7 visualized the performance of DIFUSCO, T2T, and Fast T2T on different scales of TSP
instances. The experimental settings are the same to Sec. 6.1.

TS
P-5

0

TS
P-1

00

TS
P-5

00

TS
P-1

00
0

Testing problem

TSP-50

TSP-100

TSP-500

TSP-1000

Tr
ai

ni
ng

 p
ro

bl
em

0.09 0.25 2.55 2.71

1.44 0.23 3.44 3.31

4.61 3.04 1.40 1.85

4.54 3.98 2.30 2.21

DIFUSCO (T =50) Drop (%)

TS
P-5

0

TS
P-1

00

TS
P-5

00

TS
P-1

00
0

Testing problem

TSP-50

TSP-100

TSP-500

TSP-1000

Tr
ai

ni
ng

 p
ro

bl
em

0.02 0.11 1.60 1.10

0.55 0.08 2.47 1.96

3.79 2.25 0.81 1.00

4.66 3.16 1.51 1.23

T2T (T =50, T =30) Drop (%)

TS
P-5

0

TS
P-1

00

TS
P-5

00

TS
P-1

00
0

Testing problem

TSP-50

TSP-100

TSP-500

TSP-1000

Tr
ai

ni
ng

 p
ro

bl
em

0.01 0.02 0.36 1.02

0.12 0.02 0.40 0.55

2.67 2.87 0.36 0.51

3.43 4.15 0.82 0.56

Fast T2T (T =5, T =5) Drop (%)

TS
P-5

0

TS
P-1

00

TS
P-5

00

TS
P-1

00
0

Testing problem

TSP-50

TSP-100

TSP-500

TSP-1000

Tr
ai

ni
ng

 p
ro

bl
em

0.00 0.01 0.21 0.80

0.08 0.01 0.23 0.34

2.34 2.54 0.20 0.33

3.22 3.87 0.58 0.36

Fast T2T (T =20, T =20) Drop (%)

Figure 7: Confusion matrix of four scales from TSP datasets. Models are trained on scales on
the y-axis, and tested with Greedy Decoding on scales on the x-axis. Values in matrices are the
corresponding drop compared to exact solvers.

B.4 Results for Generalization on MIS

We provide supplementary results for generalization results on the MIS problem below. We test the
model trained on ER 700-800 with p = 0.15 to different p (the probability that each simple edge
exists) and n (graph size). We find that the generalization ability of Fast T2T is significantly better
than that of the previous diffusion-based methods DIFUSCO and T2T regarding both solution quality
and speed, e.g., in ER 350-400 Sampling setting Fast T2T achieves significant performance gain from
(23.28%, 24m31s) to (11.45%, 1m1s). Results are presented in Tables 8 and 9.

16

Table 8: Generalization Performance from p = 0.15 to p = 0.2, p = 0.3, and p = 0.4.
p Type Method Size Drop Time

0.2

Greedy

DIFUSCO (Ts = 100) 26.25 25.65% 6m31s
T2T (Ts = 50, Tg = 30) 27.84 21.13% 7m52s
Fast T2T (Ts = 1, Tg = 1) 28.04 20.58% 32s
Fast T2T (Ts = 5, Tg = 5) 29.52 16.38% 1m57s

Sampling

DIFUSCO (Ts = 100) 27.98 20.73% 27m15s
T2T (Ts = 50, Tg = 30) 28.07 20.49% 33m58s
Fast T2T (Ts = 1, Tg = 1) 28.81 18.39% 1m40s
Fast T2T (Ts = 5, Tg = 5) 30.10 14.74% 6m13s

0.3

Greedy

DIFUSCO (Ts = 100) 15.84 34.99% 7m58s
T2T (Ts = 50, Tg = 30) 16.43 32.55% 8m20s
Fast T2T (Ts = 1, Tg = 1) 17.43 28.45% 51s
Fast T2T (Ts = 5, Tg = 5) 17.69 27.39% 2m52s

Sampling

DIFUSCO (Ts = 100) 17.17 29.52% 30m3s
T2T (Ts = 50, Tg = 30) 16.38 32.78% 37m27s
Fast T2T (Ts = 1, Tg = 1) 17.79 26.97% 2m2s
Fast T2T (Ts = 5, Tg = 5) 18.38 24.53% 8m36s

0.4

Greedy

DIFUSCO (Ts = 100) 11.75 35.40% 9m40s
T2T (Ts = 50, Tg = 30) 12.77 29.77% 10m28s
Fast T2T (Ts = 1, Tg = 1) 12.86 29.30% 1m1s
Fast T2T (Ts = 5, Tg = 5) 13.27 27.06% 3m36s

Sampling

DIFUSCO (Ts = 100) 12.69 30.21% 40m22s
T2T (Ts = 50, Tg = 30) 13.03 28.33% 45m2s
Fast T2T (Ts = 1, Tg = 1) 13.31 26.80% 2m12s
Fast T2T (Ts = 5, Tg = 5) 13.56 25.43% 8m58s

Table 9: Generalization Performance from ER 700-800 to ER 350-400 and 1400-1600.
n Decoding Method Size Drop Time

350-400

Greedy
DIFUSCO (Ts = 100) 27.31 28.04% 5m1s
T2T (Ts = 50, Tg = 30) 28.54 24.80% 6m59s
Fast T2T (Ts = 1, Tg = 1) 32.56 14.20% 22s

Sampling
DIFUSCO (Ts = 100) 29.33 22.73% 20m12s
T2T (Ts = 50, Tg = 30) 29.12 23.28% 24m31s
Fast T2T (Ts = 1, Tg = 1) 33.61 11.45% 1m1s

1400-1600

Greedy
DIFUSCO (Ts = 100) 34.39 32.48% 22m7s
T2T (Ts = 50, Tg = 30) OOM OOM OOM
Fast T2T (Ts = 1, Tg = 1) 36.95 27.47% 1m39s

Sampling
DIFUSCO (Ts = 100) 35.55 30.21% 1h27m31s
T2T (Ts = 50, Tg = 30) OOM OOM OOM
Fast T2T (Ts = 1, Tg = 1) 38.59 24.25% 3m56s

We also supplement cross-dataset generalization results between RB graphs and ER graphs in Table 10.
As seen, Fast T2T outperforms previous diffusion-based counterparts by a clear margin, e.g., in
"Train:ER; Test:RB" "Sampling" setting, Fast T2T achieves significant performance gain from the
previous (23.24%, 30m13s) to (9.10%, 4m20s).

C Experimental Details

C.1 Computational Resources.

Test evaluations on TSP-50/100 and MIS are performed on a single GPU of NVIDIA RTX 4090, and
evaluations on TSP-500/1000 are performed on a single GPU of NVIDIA Telsla A100.

C.2 Graph Sparsification.

For large-scale TSP problems, we follow [7, 8] to employ sparse graphs, as sparsified by constraining
each node to connect to only its k nearest neighbors, determined by Euclidean distances. For TSP-500,

17

Table 10: Performance Comparison Between Greedy and Sampling Methods (Train:ER; Test:RB).
Setting Type Method Size Drop Time

Train:ER; Test:RB

Greedy

DIFUSCO (Ts = 100) 15.87 21.00% 10m8s
T2T (Ts = 50, Tg = 30) 16.59 17.41% 15m5s
Fast T2T (Ts = 1, Tg = 1) 16.73 16.59% 40s
Fast T2T (Ts = 5, Tg = 5) 17.01 15.21% 2m39s

Sampling

DIFUSCO (Ts = 100) 16.75 16.62% 41m0s
T2T (Ts = 50, Tg = 30) 16.80 16.40% 29m48s
Fast T2T (Ts = 1, Tg = 1) 17.29 13.78% 57s
Fast T2T (Ts = 5, Tg = 5) 17.38 13.38% 4m33s

Train:ER; Test:RB

Greedy

DIFUSCO (Ts = 100) 29.98 27.54% 10m48s
T2T (Ts = 50, Tg = 30) 31.47 23.96% 13m40s
Fast T2T (Ts = 1, Tg = 1) 36.39 11.96% 43s
Fast T2T (Ts = 5, Tg = 5) 36.94 10.64% 2m37s

Sampling

DIFUSCO (Ts = 100) 31.67 23.47% 44m0s
T2T (Ts = 50, Tg = 30) 31.77 23.24% 30m13s
Fast T2T (Ts = 1, Tg = 1) 36.84 10.90% 57s
Fast T2T (Ts = 5, Tg = 5) 37.58 9.10% 4m20s

we set k = 50, and for TSP-1000, k = 100. This strategy prevents the exponential increase in edges
typical in dense graphs as node count rises.

C.3 Datasets.

The reference solutions for TSP-50/100 are labeled by the Concorde exact solver [44] and the
solutions for TSP-500/1000 are labeled by the LKH-3 heuristic solver [45]. The test set for TSP-
50/100 is taken from [2, 3] with 1280 instances and the test set for TSP-500/1000 is from [12] with
128 instances for the fair comparison.

The reference solutions for both RB graphs and ER graphs are labeled with KaMIS [51]. For RB
graphs, we randomly generate 90000 instances for the training set and 500 instances for the test set.
For ER graphs, we randomly generate 163840 instaces for the training set and the test is from [6].

C.4 Training Resource Requirement

We outline the offline training resource requirements of the Fast T2T framework in Table 11, with
computations conducted on A100 GPUs. For contextual comparison, AM [2] necessitates 128M
instances generated on-the-fly to train TSP-100, consuming 45.8 hours on 2 1080Ti GPUs. POMO [4]
mandates 200M instances generated dynamically for TSP-100 training, entailing approximately one
week on a single Titan RTX. Sym-NCO [5], an extension of POMO, requires approximately two
weeks on a single A100 for training. Additionally, Sym-NCO [5] built upon AM [2] necessitates three
days on 4 A100 GPUs. Compared with DIFUSCO [7], Fast T2T necessitates approximately double
training time and GPU memory under the same settings, because our consistency training method
requires forward twice for each training instance, leading to more time and memory consumption.

Table 11: Details about the training resource requirement of Fast T2T framework. The results are
calculated on A100 GPUs.

Problem Scale Dataset Size Batch Size 1 GPU 2 GPUs 4 GPUs GPU Mem

TSP-50 1,502 k 32 112h 45m 62h 24m 41h 16m 16.5 GB
TSP-100 1,502 k 12 488h 12m 268h 37m 139h 26m 23.2 GB
TSP-500 128 k 6 142h 17m 78h 58m 45h 2m 37.8 GB

TSP-1000 64 k 4 324h 43m 185h26s 101h 3m 20.2 GB

C.5 Hyperparamters

We conduct experiments on TSP and MIS benchmarks with our methods and compare the performance
with prevalent learning-based solvers, heuristics, and exact solvers. The noise degree α associated
with each benchmark is listed in Table. 12.

18

Table 12: Noise Degree for each benchmark.
Benchmark TSP-50 TSP-100 TSP-500 TSP-1000 RB-[200-300] ER-[700-800]

α 0.20 0.20 0.20 0.20 0.30 0.20

C.6 Baseline Settings

C.6.1 TSP Benchmarks

TSP-50/100: In the evaluation of TSP-50 and TSP-100, we compare our proposed Fast T2T against
11 baseline methods. These baselines include one exact solver, Concorde [44], two heuristic solvers
- 2OPT [46] and Farthest Insertion - and seven learning-based solvers: AM [2], GCN [3], Trans-
former [47], POMO [4], Sym-NCO [5], Image Diffusion [42], DIFUSCO [7], and T2T [8]. Our
post-processing involves greedy sampling and 2OPT refinement. To ensure equitable comparisons in
terms of computational effort, we limit the number of inference steps for DIFUSCO to 100, and for
T2T, we set the number of inference steps and guided search steps to 50 and 30, respectively.

TSP-500/1000: In the evaluation of TSP-500 and TSP-1000, our method is compared with 2 exact
solvers, Concorde [44] and Gurobi [49], 2 heuristic solvers, LKH-3 [45] and Farthest Insertion, and 6
learning-based methods, including EAN [50], AM [2], GCN [3], POMO+EAS [15], DIMES [6], and
DIFUSCO [7]. These learning-based methods can be further categorized into supervised learning (SL)
and reinforcement learning (RL). Post-processing techniques employed encompass greedy sampling
(Grdy, G), multiple sampling (S), 2OPT refinement (2OPT), beam search (BS), active search (AS),
and combinations thereof. To ensure fair comparisons in terms of computational resources, we cap
the number of inference steps for DIFUSCO at 100. Additionally, for T2T, we fix the number of
inference steps and guided search steps at 50 and 30, respectively.

C.6.2 MIS Benchmarks

We assess our method on two distinct benchmarks: RB-[200-300] and ER-[700-800]. Across both
benchmarks, we compare the performance of Fast T2T against one exact solver, Gurobi [49], one
heuristic solver, KaMIS [51], and 5 learning-based frameworks: Intel [52], DGL [52], LwD [54],
DIMES [6], and DIFUSCO [7]. Post-processing strategies encompass greedy sampling (Grdy) and
tree search (TS). Specifically, on both benchmarks, we set the number of inference steps at 100 for
DIFUSCO. For T2T, we set the number of inference steps and guided search steps at 50 and 30,
respectively.

D Network Architecture Details

D.1 Input Embedding Layer

Given node vector x ∈ RN×2, weighted edge vector e ∈ RE , denoising timestep t ∈ {τ1, . . . , τM},
where N denotes the number of nodes in the graph, and E denotes the number of edges, we compute
the sinusoidal features of each input element respectively:

x̃i = concat(x̃i,0, x̃i,1) (9)

x̃i,j = concat

(
sin

xi,j

T
0
d

, cos
xi,j

T
0
d

, sin
xi,j

T
2
d

, cos
xi,j

T
2
d

, . . . , sin
xi,j

T
d
d

, cos
xi,j

T
d
d

)
(10)

ẽi = concat

(
sin

ei

T
0
d

, cos
ei

T
0
d

, sin
ei

T
2
d

, cos
ei

T
2
d

, . . . , sin
ei

T
d
d

, cos
ei

T
d
d

)
(11)

t̃ = concat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, cos
t

T
2
d

, . . . , sin
t

T
d
d

, cos
t

T
d
d

)
(12)

where d is the embedding dimension, T is a large number (usually selected as 10000), concat(·)
denotes concatenation.

19

Next, we compute the input features of the graph convolution layer:

x0
i = W 0

1 x̃i (13)

e0i = W 0
2 ẽi (14)

t0 = W 0
4 (ReLU(W 0

3 t̃)) (15)

where t0 ∈ Rdt , dt is the time feature embedding dimension. Specifically, for TSP, the embedding
input edge vector e is a weighted adjacency matrix, which represents the distance between different
nodes, and e0 is computed as above. For MIS, we initialize e0 to a zero matrix 0E×d.

D.2 Graph Convolution Layer

Following [3], the cross-layer convolution operation is formulated as:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)) (16)

el+1
ij = eli +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) (17)

ηlij =
σ(elij)∑

j′∼i σ(e
l
ij′) + ϵ

(18)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

For TSP, we aggregate the timestep feature with the edge convolutional feature and reformulate the
update for edge features as follows:

el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) +W l

6(ReLU(t0)) (19)

For MIS, we aggregate the timestep feature with the node convolutional feature and reformulate the
update for node features as follows:

xl+1
i = xl

i +ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)) +W l

6(ReLU(t0)) (20)

D.3 Output Layer

The prediction of the edge heatmap in TSP and node heatmap in MIS is as follows:

ei,j = Softmax(norm(ReLU(Wee
L
i,j))) (21)

xi = Softmax(norm(ReLU(Wnx
L
i))) (22)

where L is the number of GCN layers and norm is layer normalization.

D.4 Hyper-parameters

For both TSP and MIS tasks, we construct a 12-layer GCN derived above. We set the node, edge, and
timestep embedding dimension d = 256, 128 for TSP and MIS tasks, respectively.

E Limitations and Broader Impacts

As the scale increases, our method’s improvement in solving speed compared to diffusion-based
methods will experience a certain degree of attenuation. This is because, with the expansion of
the scale, the proportion of time required for relevant serial processing becomes larger, while the
proportion of time for model inference is squeezed, resulting in a weakening of the speed improvement
in the overall pipeline. This limitation can be addressed by combining our model with more efficient
traditional solving strategies, which we leave for future work. Since the consistency model requires

20

two inference predictions with different noise levels during training, it requires twice the training cost
of the original diffusion model. However, this overhead on training is offline, and the consistency
model is much more efficient than diffusion at inference time.

Our work provides a more powerful and efficient backbone for neural combinatorial optimization,
enabling significant performance improvement and versatility, making its application feasible across
various solving frameworks. This work can be integrated into existing and future research in this
field, driving progress in related studies.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the claims made, including the
contributions made in the paper (Sec. 1). The claims match the experimental results in
Sec. 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [Yes]
Justification: The theoretical derivation of this paper has been given in Sec. 5, and there are
no additional theorems needed to be proved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are in Sec. 6 and Append. B, C. We will make our
source code publicly available upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The source code will be made publicly available upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are in Sec. 6 and Append. B, C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: we follow the setting of previous works to report the average solution quality
over 128 or 1,280 instances in Sec. 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the testing GPUs and time-consumption of our methods as well as
previous works in Sec. 6. The training resource requirement is in Appendix. C

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the borader impacts in Appendix. E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that introduce models and datasets used in the paper are
cited in Sec. 6.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

26

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Currently, the paper does not release new assets. Our source code will be
released upon the acceptance of the paper with comprehensive documents. As parts of
the documents, we formally describe our proposed model and the corresponding details in
Sec. 4 and 5. The training details are presented in Appendix. C.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not incur such risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Preliminaries and Problem Definition
	Training-Stage Optimization Consistency Modeling
	Solution Encoding and Noising Process
	Optimization Consistency Training Scheme

	Testing-Stage Problem Solving via Consistency-Based Gradient Search
	Consistency Sampling for Initial Solutions
	Consistency-based Gradient Search with Objective Feedback

	Experiments
	Experiments for TSP
	Experiments for MIS

	Conclusion
	Training Details
	Training Algorithm
	Design Choices for Optimization Consistency

	Supplementary Experiments
	Results on TSP Real-World Data
	Results on MIS Real-World Data
	Results for Generalization on TSP Datasets
	Results for Generalization on MIS

	Experimental Details
	Computational Resources.
	Graph Sparsification.
	Datasets.
	Training Resource Requirement
	Hyperparamters
	Baseline Settings
	TSP Benchmarks
	MIS Benchmarks

	Network Architecture Details
	Input Embedding Layer
	Graph Convolution Layer
	Output Layer
	Hyper-parameters

	Limitations and Broader Impacts

