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Abstract

Foundation models for natural language processing, empowered by the transformer1

architecture, exhibit remarkable in-context learning (ICL) capabilities: pre-trained2

models can adapt to a downstream task by only conditioning on few-shot prompts3

without updating the weights of the models. Recently, transformer-based foun-4

dation models also emerged as universal tools for solving scientific problems,5

including especially partial differential equations (PDEs). However, the theoretical6

underpinnings of ICL-capabilities of these models still remain elusive. This work7

develops rigorous error analysis for transformer-based ICL of the solution operators8

associated to a family of linear elliptic PDEs. Specifically, we show that a linear9

transformer defined by a linear self-attention layer can provably learn in-context to10

invert linear systems arising from the spatial discretization of the PDEs. We derive11

theoretical scaling laws for the proposed linear transformers in terms of the size of12

the spatial discretization, the number of training tasks, the lengths of prompts used13

during training and inference, under both the in-domain generalization setting and14

various settings of distribution shifts. Empirically, we validate the ICL-capabilities15

of transformers through extensive numerical experiments.16

1 Introduction17

Foundation models (FMs) for natural language processing (NLP), exemplified by ChatGPT Achiam18

et al. [2023], have demonstrated unprecedented power in text generation tasks. From an architectural19

perspective, the main novelty of these models is the use of transformer-based neural networks Vaswani20

et al. [2017], which are distinguished from feedforward neural networks by their self-attention layers.21

Those transformer-based FMs, pre-trained on a broad range of tasks with large amounts of data,22

exhibit remarkable transferability to diverse downstream tasks with limited data Brown et al. [2020].23

The success of of foundation models for NLP has recently sparked a large amount of work on building24

FMs in domain-specific scientific fields Batatia et al. [2023], Celaj et al. [2023], Méndez-Lucio et al.25

[2022]. Specifically, there is growing interest within the community of Scientific Machine Learning26

(SciML) in building scientific foundation models (SciFMs) to solve complex partial differential27

equations (PDEs) Subramanian et al. [2024], McCabe et al. [2023], Ye et al. [2024], Yang et al.28

[2023], Sun et al. [2024].29

Traditional deep learning approaches for PDEs such as Physics-Informed Neural Networks Raissi30

et al. [2019] for learning solutions and neural operators Lu et al. [2019], Li et al. [2020] for learning31

solution operators need to be retrained from scratch for a different set of coefficients or different PDE32

systems. Instead, these SciFMs for PDEs, once pre-trained on large datasets of coefficients-solution33

pairs from multiple PDE systems, can be adapted to solving new PDE systems without training34

the model from scratch. Even more surprisingly, transformer-based FMs have demonstrated their35

in-context learning (ICL) capability in Achiam et al. [2023], Bubeck et al. [2023], Kirsch et al.36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



[2022] and in SciML Yang et al. [2023], Chen et al. [2024a], Yang and Osher [2024]: when given a37

prompt consisting of examples from a new learning task and a query, they are able to make correct38

predictions without updating their parameters. While the emergence of ICL has been deemed a39

paradigm shift in transformer-based FMs, its theoretical understandings remain underdeveloped.40

The goal of this paper is to investigate the ICL capability of transformers for solving a class of41

linear elliptic PDEs and the associated linear systems. We are particularly interested in developing42

neural scaling laws that quantify the prediction risk of transformers as a function of the size of the43

training data, the model size, and other key parameters. Additionally, we aim to quantify the error44

incurred by distribution shifts between tasks and data used in pre-training and those in adaptation.45

As distribution shifts have been identified in Subramanian et al. [2024], McCabe et al. [2023], Ye46

et al. [2024], Yang et al. [2023] as a significant hurdle in the generalization capability of SciFMs, it is47

crucial to develop a rigorous theory of out-of-distribution generalization for SciFMs.48

1.1 Main contributions.49

We highlight our main contributions as follows:50

• We formalize a framework for learning the solution operators of linear elliptic PDEs in-51

context. This is based on (1) reducing the infinite dimensional PDE problem into a problem52

of solving a finite dimensional linear system arising from spatial discretization of the PDE53

and (2) learning to invert the finite dimensional linear system in-context.54

• We adopt transformers defined by single linear self-attention layers for ICL of the lin-55

ear systems and establish a non-asymptotic generalization bound of ICL in terms of the56

discretization size, the number of pre-training tasks, and the lengths of prompts used in57

pre-training and downstream tasks; see Theorem 1. This bound further enables us to prove58

an H1-error bound for learning the solution of PDEs; see Theorem 2.59

• We examine the prediction risk error that arises due to shifts in downstream task and60

covariate distributions. Specifically, we introduce a novel concept of task diversity and61

demonstrate that pre-trained transformers can generalize to out-of-distribution settings when62

the pre-training task distribution is diverse; see Theorem 3. Additionally, we provide several63

sufficient conditions under which task diversity holds; see Theorem 4.64

• We demonstrate the ICL ability of linear transformers through several numerical experiments.65

1.2 Related work66

ICL and FMs for PDE. Several transformer-based FMs for solving PDEs have been developed67

in Subramanian et al. [2024], McCabe et al. [2023], Ye et al. [2024], Sun et al. [2024] where the68

pre-trained transformers are adapted to downstream tasks with fine-tuning on additional datasets. The69

work Yang et al. [2023], Yang and Osher [2024] study the in-context operator learning of differential70

equations where the adaption of the pre-trained model is achieved by only conditioning on new71

prompts. While these empirical work show great transferabilities of SciFMs for solving PDEs, their72

theoretical guarantees are largely open. To the best of our knowledge, this work is the first to derive73

the theoretical error bounds of transformers for learning linear elliptic PDEs in context.74

Theory of ICL for linear regression and other statistical models. The work Garg et al. [2022]75

provides theoretical understanding of the ability of transformers in learning simple functions in-76

context. In the follow-up works Akyürek et al. [2022], Von Oswald et al. [2023], it is shown by77

explicit construction of attention matrices that linear transformers can implement a single step of78

gradient descent when given a new in-context linear regression task, and numerical experiments79

supported that trained transformer indeed implement gradient descent on unseen tasks. Several recent80

works Mahankali et al. [2024], Zhang et al. [2023], Ahn et al. [2024] extend the results of Von Oswald81

et al. [2023] by proving that one step of gradient descent is indeed optimal for learning linear models82

in-context. These works are further complemented by ICL guarantees for learning nonlinear functions83

Bai et al. [2024], Cheng et al. [2023], Kim et al. [2024] and for reinforcement learning problems Lin84

et al. [2023].85

Among the aforementioned works, the settings of Zhang et al. [2023], Ahn et al. [2024], Chen et al.86

[2024b] are closest to us. Our theoretical bound on the population risk extends the results of Zhang87
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et al. [2023], Ahn et al. [2024] for the linear regression tasks to the tasks of inverting linear systems88

that are associated to elliptic PDEs. Our main novelty is that our results apply to a much larger89

class of task distributions, since our task matrices must respect the PDE structure. In particular,90

this leads to new and nontrivial results regarding task distribution shifts, whereas the effect of task91

distribution shifts is simple under the assumptions of the aforementioned works. We also provide92

sample complexity bounds with respect to the number of pre-training tasks, which have not addressed93

by the above works.94

2 Problem set-up95

2.1 In-context operator learning of linear elliptic PDEs96

Consider the second-order strongly-elliptic PDE on a bounded Lipschitz domain Ω ⊆ Rd0 :97 {
La,V u(x) := −∇ ·

(
a(x)∇u(x)

)
+ V (x)u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(1)

where a ∈ L∞(Ω) is strictly positive, V ∈ L∞(Ω) is non-negative and f ∈ Xf ⊂ L2(Ω). By the98

standard well-posedness of the elliptic PDE, the solution u ∈ Xu ⊂ H1
0 (Ω). We are interested in99

learning the linear solution operator Ψ : f → u ∈ Xu in context Yang et al. [2023]. More specifically,100

at the training stage we are given a training dataset comprising N length-n prompts of source-solution101

pairs {(f j
i , u

j
i )

n
i=1}Nj=1, where {f j

i }
i.i.d.∼ Pf for some distribution Pf on the space of functions f ,102

and uj
i are the solutions corresponding to f j

i and parameters (aj , Vj)
i.i.d.∼ Pa × PV , where Pa and103

PV are distributions on the coefficient a and V respectively. An ICL model, after pre-trained on the104

data above, is asked to predict the solution u for a new source term f conditioned on a new prompt105

(fi, ui)
m
i=1 which may or may not have the same distribution as the training prompts. Further, the106

prompt-length m in the downstream task may be different from the prompt-length n in the training.107

While the ideal ICL problem above is stated for learning operators defined on infinite dimensional108

function spaces, a practical ICL model (e.g. a transformer) can only operate on finite dimensional109

data, which are typically observed in the form of finite dimensional projections or discrete evaluations.110

To be more concrete, let {ϕk(x)}∞k=1 be a basis on both Xu and Xf , and define a truncated base111

set Φ(x) := [ϕ1, · · · , ϕd(x)] for some d < ∞. An approximate solution ũ to problem (1) can112

be constructed in the framework of Galerkin method: we seek ũ(x) = ⟨u,Φ(x)⟩ where u ∈ Rd113

solves the linear system Au = f , where the matrix A = (Aij) ∈ Rd×d and the right hand side114

f = (fi) ∈ Rd are defined by115

Aij = ⟨ϕj ,La,V ϕi⟩ and fi = ⟨f, ϕi⟩, i, j = 1, · · · , d. (2)

As quantitative discretization error bounds of PDEs are well established, e.g. for finite element116

methods Brenner and Scott [2007] and spectral methods Shen et al. [2011], this paper focuses on the117

error analysis of in-context learning of the finite dimensional linear systems defined by the matrix118

inversion A−1, which will ultimately translate to estimation bounds for the PDEs.119

2.2 ICL of linear systems120

The consideration above reduces the original infinite dimensional in-context operator learning problem121

to the finite dimensional ICL problem of solving linear systems. To keep the framework more general,122

we make the following change of notations: f → y and u → x. An ICL model operates on a prompt123

of n input-output pairs, denoted by S := {(yi,xi)}ni=1 ⊂ Rd × Rd with xi = A−1yi as well as a124

new query input yn+1 ∈ Rd. Given multiple prompts, the model aims to predict xn+1 corresponding125

to the new independent query input yn+1. Unlike in supervised learning, each prompt the model126

takes is drawn from a different data distribution. To be more precise, for j = 1, · · · , N , we assume127

that the j-th prompt S(j) := {(y(j)
i ,x

(j)
i )}ni=1 is generated from the sources {y(j)

i }ni=1
i.i.d.∼ py; the128

solutions x(j)
i are associated to the j-th inversion task via x

(j)
i = (A(j))−1y

(j)
i where the matrices129

A(j) i.i.d.∼ pA. Informed by task matrices derived from discretizations of PDEs as illuminated in (2),130

we make the following assumption on the task distribution pA.131
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Assumption 1. The task distribution pA is supported on the set of symmetric positive definite132

matrices, and there exist constants cA, CA > 0 such that the bounds c−1
A Id ≺ A ≺ CAId hold for all133

A ∈ supp(pA). The source term y follows a Gaussian distribution N(0,Σ).134

Observe that Assumption 1 on A is very mild and holds for instance whenever the coefficient a is135

strictly positive and V is non-negative and bounded. We will make repeated use of the bounds1136

∥A−1∥op ≤ cA, ∥A∥op ≤ CA, pA − a.s. (3)

The Gaussian assumption on the covariate y holds when we assume that the source term f of the PDE137

is drawn from a Gaussian measure N(0,Σf ), where Σf : L2(Ω) → L2(Ω) is bounded, in which138

case the covariance matrix Σ is defined by Σij = ⟨Σfϕi, ϕj⟩L2(Ω).139

2.3 Linear transformer architecture for linear systems140

Inspired by the recent line of work on ICL of linear functions, we consider a linear transformer defined141

by a single-layer linear self-attention layer for our ICL model. Following the standard convention, we142

encode the data of each prompt into a prompt matrix143

Z =

[
y1 . . . yn yn+1

x1 . . . xn 0

]
∈ RD×(n+1), (4)

where D = 2d. For P̃ , Q̃ ∈ RD×D, the linear self-attention module with parameters θ̃ = (P̃ , Q̃) is
given by

Attnθ̃(Z) = Z +
1

n
P̃ZMZT Q̃Z,

where M =

[
In 0
0 0

]
∈ R(n+1)×(n+1) is a masking matrix to account for the asymmetry of the

prompt matrix. Our definition of the self-attention module makes several simplifying assumptions
compared to the standard definition in the literature, namely we merge the key and query matrices
into a single matrix Q and we omit the softmax activation function. A transformer fθ̃ predicts a new
label x for the downstream task by reading out the x-component from the self-attention output, i.e.

fθ̃(Z) := [Attnθ̃(Z)]d+1:D,n+1 =

d∑
j=1

⟨ed+j ,Attnθ̃(Z)en+1⟩ed+j ,

where ei denotes the ith standard basis vector. Since the output of the transformer only reads out
the last d entries on the bottom right of the output of the self-attention layer, many blocks in P̃ and
Q̃ do not actually play a role in the prediction defined by the transformer. More precisely, similar

to Von Oswald et al. [2023], Zhang et al. [2023], Ahn et al. [2024], if we set P̃ =

[
0 0
0 P

]
and

Q̃ =

[
Q 0
0 0

]
with P,Q ∈ Rd×d, then output of the transformer can be re-written in a compact form:

with θ = (P,Q),
TFθ(Z) = PA−1YnQy,

where Yn := 1
n

∑n
k=1 yky

T
k denotes the empirical covariance matrix associated to the in-context144

examples. We work with this simplified parameterization for the remainder of our theoretical analysis.145

2.4 Generalization of ICL146

Our goal is to find the attention matrices P and Q that minimize the population risk functional147

Rn(P,Q;n) = E
[∥∥∥TFθ(Z)−A−1y

∥∥∥2] = E
[∥∥∥PA−1YnQy −A−1y

∥∥∥2], (5)

1Most of our estimates involve bounds on the norm of A−1, since it represents the ’solution operator’ of the
PDE. However, for technical reasons, we also require a bound on the norm of A.
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where the expectation is taken over A ∼ pA, {y,y1, . . . ,yn} ∼ N(0,Σ)⊗n+1. Since we do not148

have access to the distribution on tasks, P and Q are instead trained by minimizing the corresponding149

empirical risk functional defined on N tasks:150

Rn,N (P,Q) =
1

N

N∑
i=1

∥∥∥PA−1
i Y (i)

n Qyi −A−1
i yi

∥∥∥2, (6)

where {Ai}
i.i.d.∼ pA, {yi}

i.i.d.∼ N(0,Σ), and Y
(i)
n is the empirical covariance matrix associated to151

the in-context examples {y(i)
1 , . . . ,y

(i)
n } which are (jointly) independent from yi.152

A pre-trained transformer is expected to make predictions on a downstream task that consists of a new153

length-m prompt {(yi,xi)}mi=1 = {(yi, (A
′)−1yi)}mi=1 and a new test sample y, where the input154

samples {yi}ni=1 ∪ {y} ∼ P ′
y and the matrix A′ ∼ P ′

A = N(0,Σ′). Our primary interest is to bound155

the generalization performance (measured by the prediction risk) of the pre-trained transformer for156

the downstream task in two different scenarios.157

• In-domain generalization: The distributions of tasks and of prompt data in the pre-training are158

the same as these in the downstream task (Py = P ′
y and PA = P ′

A). Thus in-domain generalization159

measures the testing performance on unseen samples in the downstream task that do not appear in the160

training samples. The in-domain generalization error is defined by161

Rm(P,Q;m) = EA∼pA,(y1,...,ym,y)∼N(0,Σ)⊗(m+1)

[∥∥∥PA−1YmQy −A−1y
∥∥∥2]. (7)

• Out-of-domain (OOD) generalization: The distributions of tasks or within-task data in the162

pre-training are different from those in the downstream task, i.e. Py ̸= P ′
y or PA ̸= P ′

A. Specifically,163

the OOD-generalization error with respect to the task distribution shift is defined by164

Rp′
A

m (P,Q;m) = EA′∼p′
A,(y1,...,ym,y)∼N(0,Σ)⊗(m+1)

[∥∥∥P (A′)−1YmQy − (A′)−1y
∥∥∥2]. (8)

We also define the OOD-generalization error with respect to the covariate distribution shift by165

RΣ′

m (P,Q;m) = EA∼pA,(y1,...,ym,y)∼N(0,Σ′)⊗(m+1)

[∥∥∥PA−1YmQy −A−1y
∥∥∥2]. (9)

Notice that the prompt length m in the prediction risk need not equal the prompt length n in the166

model pre-training. We are particularly interested in quantifying the scaling laws of the generalization167

errors for the pre-trained transformer as the amount of data increases to infinity, i.e. N,n,m ↑ ∞.168

3 Theoretical results169

3.1 Error bounds for in-domain generalization of learning linear systems170

Our first result studies the generalization ability of the transformer obtained by empirical risk171

minimization over a set of norm-constrained transformers, where the error is measured by the172

prediction risk Rm.173

Theorem 1. Let θ̂ = (PN , QN ) ∈ argmin∥θ∥≤MRn,N (θ), where ∥θ∥ := max
(
∥P∥op, ∥Q∥op

)
.

Then for n sufficiently large and m ≤ n, we have with probability ≥ 1− 1
poly(N) ,

Rm(θ̂) ≲
1

m
+

1

n2
+

d2√
N

,

where the implicit constants depend on M , the data covariance Σ, and the task distribution pA, and174

we have omitted factors which are polylog in N .175

The precise statement of Theorem 1 is given in Appendix B, where we discuss what happens when176

m > n. We refer to m ≤ n as the practical regime, since it is commonly satisfied by large pre-trained177

transformers. Notice that the prompt lengths during training and testing contribute different rates178

to the overall sample complexity bound, with the sequence length n during training contributing179

an O(n−2) rate while the sequence length m at inference contributing an O(m−1) rate; a similar180

phenomenon was observed in [Zhang et al., 2023, Theorem 4.2] for in-context linear regression.181
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3.2 Error bounds for in-domain generalization of learning elliptic PDEs182

Building upon Theorem 1, we proceed to bound the ICL-generalization error for learning the elliptic183

PDE (1). Our next result provides a rather general upper bound on the ICL-generalization error for184

the PDE solution in terms of the spatial discretization error of the PDE and the ICL-generalization185

error in learning the finite linear systems associated to the discretization. The discretization error is186

typically fully determined by the number d of basis functions used in the Galerkin projection. The187

second term is bounded by Theorem 1. In the following result, let u denote the solution to the elliptic188

PDE specified by (1). We write ud for a discrete approximation to u with the mesh size h and we189

write ûd for the approximate solution obtained by solving a discrete linear system with a pre-trained190

transformer.191

Theorem 2. Let Φ′ be the stiffness matrix defined by Φ′
ij = (ϕ′

i, ϕ
′
j)L2(Ω) and let Φ be the mass

matrix defined by Φij = (ϕi, ϕj)L2(Ω). Assume that both matrices are symmetric and positive definite.
Then,

E∥u− ûd∥2H1(Ω) ≲ E∥u− ud∥2H1(Ω) + (1 + λmax(Φ
−1/2Φ′Φ−1/2)) · Rm(θ̂),

where θ̂ is a minimizer of the empirical risk defined in Theorem 1 and λmax(·) denotes the largest192

eigenvalue of a symmetric positive definite matrix.193

Theorem 2 bounds the in-domain generalization error of ICL of the PDE as a sum of the discretization194

error of the PDE solver and the statistical error of learning the linear system associated to the195

discretization of the PDE. It is worth-noting that there is a trade-off between the two terms; the196

first term decreases as the number of basis functions (or fineness of the mesh) increases, while197

the prefactor λmax(Φ
−1/2Φ′Φ−1/2) in the second term can grow as the number of basis functions198

tends to infinity. The abstract bound established in Theorem 2 is agnostic to the choice of PDE199

discretization. We show in Appendix C how this result can be used to derive an explicit error estimate200

for the ICL in the context of a P 1-finite element discretization of the PDE in one dimension.201

3.3 OOD-generalization under task distribution shift202

Let θ̂ denote the minimizer of the empirical risk Rn,N over the bounded set {∥θ∥ ≤ M} for some203

M > 0, and recall that the training tasks (modeled by A) are drawn from a distribution pA. Let204

p′A denote the distribution of A in the downstream tasks, and let Rm,R′
m be the prediction risk205

functionals defined as in (8) where the expectations over tasks are taken with respect to pA and206

p′A respectively. We would like to bound the quantity R′
m(θ̂), which represents the test error of207

the trained transformer under a shift on the task distribution. We say that a pre-trained model θ̂208

achieves OOD generalization if its population risk with respect to the downstream task distribution209

p′A converges to zero in probability: lim(m,n,N)→∞ R′
m(θ̂)

P→ 0. In order to state our results on210

OOD generalization, we first introduce the following ’infinite-context’ variant of the in-domain211

denoted by R∞:212

R∞(θ) = EA∼pA
[∥(PA−1ΣQ−A−1)Σ1/2∥2F ]. (10)

We also define an OOD-generalization risk R′
∞ similar to above with pA replaced by p′A. We denote213

by M∞ and M′
∞ the sets of minimizers of R∞ and R′

∞ respectively. We are now able to define the214

key notion of task diversity.215

Definition 1. The pre-training task distribution pA is diverse relative to the downstream task216

distribution p′A if M∞ ⊆ M′
∞.217

The importance of task diversity has been observed in the prior work Tripuraneni et al. [2020] for218

transfer learning. Our notion of diversity differs from the previous notion in that we compare the219

set of minimizers of population losses instead of the loss values. Theorem 3 below shows that the220

task diversity, in the sense of Definition 1, is sufficient for the pre-trained transformer to achieve221

OOD-generalization.222

Theorem 3. Let pA and p′A denote the pre-training and downstream task distributions respectively,
and suppose pA is diverse relative to p′A. Then, with θ̂ ∈ argmin∥θ∥≤MRn,N (θ), we have

R′
m(θ̂) ≲ Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞)2,
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where d(pA, p
′
A) is a discrepancy between the pre-training and downstream task distributions that223

satisfies d(pA, p′A) = 0 if pA = p′A.224

The precise definition of the discrepancy d(pA, p
′
A) is technical and can be found in the statement of225

Lemma 2 in the appendix. The OOD generalization error is bounded by a sum of three terms: the226

in-domain generalization error, the task-shift error, and the model error, the latter of which is captured227

by dist(θ̂n,M∞). A salient feature of Theorem 3, compared to the prior ICL-generalization bound228

Mroueh [2023] under distribution shift, is that the task-shift error inherits a factor of m−1, which229

elucidates the robustness of transformers under shifts in the task distribution. Theorem 3 also extends230

the prior OOD-generalization result of ICL for linear regression Zhang et al. [2023] to learning linear231

systems. However, unlike in the linear regression setting, the set of minimizers of the population232

risk in the linear system setting can vary substantially when the task distribution changes, we need233

the training tasks to be sufficient diverse compared to the downstream tasks in order to control the234

additional model error due to the change of the minimizers; see Appendix D for more details. We235

also note that Proposition 4 in the appendix shows that the minimizers of the empirical risk converge236

in probability to the minimizers of R∞, thus guaranteeing that the bound in Theorem 3 is oP (1).237

Since task diversity is sufficient to achieve OOD generalization, it is natural to ask what conditions on238

pA and p′A guarantee task diversity. The following result provides two sufficient conditions. We refer239

the readers to Appendix D for additional discussions on task diversity. To state the result, we recall that240

the notion of the centralizer C(S) of a subset S ⊆ Rd×d : C(S) = {P ∈ Rd×d : PS = SP ∀S ∈ S}.241

Theorem 4. Let pA, p′A be two distributions on the matrices A that satisfy Assumption 1. Then242

1. If supp(p′A) ⊆ supp(pA), then pA is diverse relative to p′A.243

2. Define S(pA) := {A1A
−1
2 : A1, A2 ∈ supp(pA)}. If C(S(pA)) = {cI : c ∈ R}, then pA is244

diverse relative to any distribution p′A.245

The first statement of Theorem 4 is a natural one: it says that the pre-training task distribution is246

diverse whenever the downstream task distribution is a ’subset’ of it, in the sense of supports. The247

second condition is particularly interesting because it implies OOD-generalization (by Theorem 3)248

regardless of the downstream task distribution. The second condition based on the centralizer of the249

set S(pA) is less obvious, but heuristically it enforces that the support of pA must be large enough250

that the only matrices which can commute with all pairwise products in S(pA) are scalars. Our251

empirical results suggest that the task distributions associated to elliptic PDE problems are diverse.252

3.4 OOD-generalization under covariate distribution shift253

We now study the OOD-generalization error due to the distribution shift with respect to the Gaussian254

covariates {y1, . . . ,yn}, i.e., the vectors at which a task matrix A is evaluated. The next proposition255

provides a quantitative upper bound for the generalization error in terms of the discrepancy between256

the covariance matrices. To simplify the proof, we use a Frobenius norm bound on the empirical risk257

minimizer. However, this choice of norm is not essential to the result.258

Theorem 5. Let Σ = WΛWT and Σ̃ = W̃ Λ̃W̃T be the covariance matrices of Gaussian covariates259

used in the training and testing respectively. Let (P̂ , Q̂) be minimizers of the empirical risk associated260

to covariates sampled from N(0,Σ) and take M > 0 such that max
(
∥P̂∥F , ∥Q̂∥F

)
≤ M. Then261

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + ∥Σ− Σ̃∥op +
1

m
∥W − W̃∥op.

where the implicit constants depend on M , Σ, Σ̃, and the constant cA defined in Assumption 1.262

Theorem 5 states that the OOD-generalization error with respect to the covariate distribution shift263

is Lipschitz stable with respect to changes in the covariance matrix. However, unlike the case of264

task distribution shift, the covariate distribution shift error can not be mitigated by increasing the265

prompt-length in the downstream task; see also Figure 3. A similar phenomenon was observed in266

Zhang et al. [2023].267
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4 Numerical experiments268

4.1 In-domain generalization269

We first investigate numerically the neural scaling law of the transformer model for solving the linear270

system associated to the Galerkin discretization of the elliptic PDE (1) in the setting of in-domain271

generalization. More precisely, we consider the one dimensional elliptic PDE (−∆+ V (x))u(x) =272

f(x) on Ω = [0, 1] with Dirichlet boundary condition. We assume that the source f ∼ N(0, I),273

where I denotes the identity operator. We discretize the PDE using Galerkin projection under d sine274

bases. Further we assume that the potential V is uniform random field that is obtained by dividing the275

domain into 2d+ 1 sub-intervals and in each cell independently, the potential takes values uniformly276

in [1, 2]. In Figure 1: A-C, we demonstrate the empirical scaling law of the linear transformer for277

learning the discrete linear system by showing the log-log plots of the ℓ2-errors as functions of the278

number of pre-training tasks N , the sequence length n during training and the sequence length m279

at inference. These numerical results suggest that the decaying rates of the prediction errors are280

O(N− 1
2 ), O(n−2) and O(m−1) respectively, which agree with the rates predicted in Theorem 1 in281

the practical regime m ≤ n. We also demonstrate the ICL-generalization error for learning the PDE282

solutions. Figure 1:D shows that prediction error increases as d increases indicating that ICL of the283

linear system becomes harder as the d increases.284

Figure 2:B shows the H1-error curve between the numerical solution predicted by the ICL-model285

and the ground-truth as a function of the number of bases d, while fixing the prompt-lengths and the286

number of tasks. The U-shaped curve indicates the trade-off between the dimension of the discrete287

problem and the amount of data. More details on the experiment set-ups can be found in Appendix H.288

Figure 1: The figures A-D show the log-log plots for the ℓ2-error of learning the linear system
associated to the PDE discretization with respect to the number of tasks N , the prompt length n
during training, the prompt length m during inference, and the dimension d of the linear system.

4.2 Out-of-domain generalization289

Task shifts. We validate the ICL-capability of pre-trained transformers for learning the linear systems290

and PDEs under task distribution shifts. Specifically, for the PDE (1) in one dimension, we consider291

the task distribution shifts in a and V exclusively. To sample a(x), we write a(x) = eb(x), where292

b(x) is sampled from a centered normal distribution with covariance operator −(∆ + τI)−α, for293

8



Figure 2: The left plot shows the PDE solution defined by the pre-trained transformer with the
reference solution, obtained by Galerkin’s method with 2000 basis functions. The right plot shows
the H1-error between the solution predicted by the transformer and reference solution with respect to
the number of Galerkin basis functions d.

Figure 3: Figures A, B show the relative H1-error under shifts on a(x) and V (x) respectively. Figure
C shows the relative H1-error under the covariate shift on the source term f .

α, τ > 0. During training, we set α = 3 and τ = 5, and during inference, we vary the values294

of α and τ according to Figure 3: A. We assume the potential V is piecewise constant on 2d + 1295

subintervals and that the value of V on each cell is drawn according to the uniform distribution on296

[a, b]. During training, we set [a, b] = [1, 2], and we vary the values of [a, b] at inference according to297

Figure 3: B. For further details on the experimental setup, see in Appendix H. Figure 3: A shows that298

the pre-trained transformer can perform equally well on tasks on smoother a but perform slightly299

worse on tasks with less regular a. Figure 3: B shows the OOD-generalization errors increase as the300

distribution shift in V becomes stronger, but they decrease as the context length at inference increases,301

as predicted by Theorem 3.302

Covariate shifts. Finally, we test the performance of the pre-trained transformer under covariate303

distribution shifts. Specifically, we train the model to solve the PDE (1), where the source term304

f ∼ N(0, C) for C = (−∆ + cI)−β , where c, β > 0 are fixed. Then, at inference, we consider305

solving the same PDE, but where the source term is defined by N(0, 3C) or N(0, 5C). Figure 3306

show that the pre-trained transformers are not robust to covariate distribution shifts. We refer to307

Figure 5 in the appendix for additional numerical results for the covariant shifts in c and β.308

5 Conclusion309

In this work, we studied the ability of a transformer characterized by a single linear self-attention310

layer to in-context learn the solution operator of a linear elliptic PDE. We characterized the role of311

the number of pre-training task, the number of in-context examples during pre-training and testing,312

the mesh size, and various distribution shifts on the PDE coefficients in the overall PDE recovery313

error. We also provided thorough numerical experiments to demonstrate our theory. There are several314

natural extensions of this work, such as to nonlinear and time-dependent PDE problems. In these315

more complex settings, it is crucial to characterize the role that depth and nonlinearity play in the316

ability of transformers to approximate the PDE solution. We leave these directions to future work.317
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A Notation430

Before delving into the proofs of our main results, we briefly go over all relevant notation:431

• Physical dimension of PDE problem: d0432

• Dimension of task matrix for ICL: d433

• Task matrix for ICL: A434

• Covariates for ICL: {y1, . . . ,yn}435

• Prompt matrix for ICL: Z436

• Empirical covariance matrix of {y1, . . . ,yn}: Yn437

• Distribution on tasks: pA438

• Upper bound on largest eigenvalue of A−1 over supp(pA): cA439

• Covariance operator of the distribution on L2(Ω)-valued covariates: Σf440

• Covariance matrix of the distribution on Rd-valued covariates: Σ441

• Parameters of transformer: θ = (P,Q)442

• Prediction of the transformer with parameters θ: TFθ(Z)443

• Population risk for training: Rn444

• Population risk for inference: Rm445

• Empirical risk: Rn,N446

• "Infinite-context" population risk: R∞447

• Number of context examples per prompt during training: n448

• Number of context examples per prompt during inference: m449

• Number of pre-training tasks: N450
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B Proofs for Subsection 3.1451

In this section we prove Theorem 1, which controls the (in-distribution) generalization error for452

in-context learning of linear systems in terms of the context length during training, the context length453

during inference, and the number of pre-training tasks. Before the proof, we present a more precise454

statement of the theorem.455

Theorem 6 (Theorem 1, precise version). Let θ̂ = (PN , QN ) ∈ argmin∥θ∥≤MRn,N (θ), where456

∥θ∥ := max
(
∥P∥op, ∥Q∥op

)
. Then for n sufficiently large, we have with probability ≥ 1− poly(N)457

Rm(θ̂) ≲
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(EA∼pA

[A−2])
)2

Tr(Σ)

n2

+
d2c2A∥Σ∥2op max(1, ∥Σ−1∥op)

4

√
N

+max(1, ∥Σ−1∥op)
4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣,
(11)

where we have omitted factors which are polylog in N .458

Remark 1. We would like to comment on the possible suboptimality of the bound (11). Specifically,459

the last term on the right side of (11), which we term the "context mismatch error", is mainly due to460

our proof strategy and can likely be removed with a refined analysis. This term is not observed in our461

numerical experiments; see Figure 1. In the practical 2 regime where the length of the testing prompts462

is less than that of the training prompts (i.e. m ≤ n), we have
∣∣ 1
n − 1

m

∣∣ ≤ 1
m , and hence the context-463

mismatch error is absorbed into the O
(

1
m

)
term, leading to the following overall generalization464

bound465

Rm(θ̂) ≲
1

m
+

1

n2
+

1√
N

. (12)

Proof of Theorem 1. Step 1 - error decomposition: Throughout the proof, we use the notation466

θ = (P,Q) and ∥θ∥ = max(∥P∥op, ∥Q∥op). Write ℓ(A, Yn,y; θ) = ∥(PA−1YnQ − A−1)y∥2, so467

that the risk functionals can be expressed as468

Rn(θ) = EA,Yn,yℓ(A, Yn,y; θ), Rn,N (θ) =
1

N

N∑
i=1

ℓ(Ai, Y
(i)
n ,yi; θ).

Let us introduce an auxiliary parameters t > 0 – to be specified precisely at the end of the proof –469

and define the events470

At(Yn,y) =

{
∥y∥ ≤

√
Tr(Σ) + t, ∥Yn∥op ≤ ∥Σ∥op

(
1 + t+

√
d

n

)}
.

Define the truncated loss function as ℓR,t(A, Yn,y; θ) = ℓ(A, Yn,y; θ) · 1{AR,t}(Yn,y), and let471

Rt
n, Rt

n,N , and Rt
m denote the associated truncated risk functionals. Further, let θ∗ denote a472

fixed parameter, to be specified later on. We decompose the generalization error into a sum of473

approximation error, statistical error conditioned on the data being bounded, and truncation error that474

2The performance of GPTs is known to deteriorate when the test sequence length exceeds the train sequence
length; Zhang et al. [2023] conjectures this phenomenon to be the result of positional encoding.
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leverages the tail decay of the data distribution. In more detail, we have475

Rm(θ̂) =
(
Rm(θ̂)−Rt

m(θ̂)
)
+
(
Rt

m(θ̂)−Rt
m,N (θ̂)

)
+
(
Rt

m,N (θ̂)−Rt
m,N (θ∗)

)
(13)

+
(
Rt

m,N (θ∗)−Rt
m(θ∗)

)
+
(
Rt

m(θ∗)−Rm(θ∗)
)
+Rm(θ∗) (14)

≤ sup
∥θ∥≤M

(
Rm(θ)−Rt

m(θ)
)
+ 2 sup

∥θ∥≤M

∣∣∣Rt
m(θ)−Rt

m,N (θ)
∣∣∣ (15)

+
(
Rt

m,N (θ̂)−Rt
m,N (θ∗)

)
+ inf

∥θ∗∥≤M
R(θ∗). (16)

where we discarded the nonpositive term
(
Rt(θ∗)−R(θ∗)

)
. This decomposition mimics the standard476

decomposition of generalization error into approximation and statistical errors, with an additional477

term that arises from truncating the data. Similar techniques have recently been used in Cole and Lu478

[2024] and Park et al. [2023]. There is one more technical detail to be addressed. We would like to say479

that the term
(
Rt

m,N (θ̂)−Rt
m,N (θ∗)

)
is nonpositive with high probability, as a consequence of the480

minimality of θ̂. However, the parameter θ̂ is a minimizer of the empirical risk Rn,N corresponding481

to the context length n during training, as opposed to the empirical risk Rm,N corresponding to the482

context length m during inference. However, it is easy to see that the following bound holds483

Rt
m,N (θ̂)−Rt

m,N (θ∗) ≤ 2 sup
∥θ∥≤M

(
Rt

m,N (θ)−Rt
m(θ)

)
+ 2 sup

∥θ∥≤M

(
Rt

n,N (θ)−Rt
n(θ)

)
(17)

+ sup
∥θ∥≤M

(
Rm(θ)−Rt

m(θ)
)
+ sup

∥θ∥≤M

(
Rn(θ)−Rt

n(θ)
)

(18)

+ 2 sup
∥θ∥≤M

∣∣∣Rm(θ)−Rn(θ)
∣∣∣+ (Rt

n,N (θ̂) +Rt
n,N (θ∗)

)
. (19)

Plugging the estimate 17 into the bound from 13 gives the final bound484

Rm(θ̂) ≤ 2 sup
∥θ∥≤M

(
Rm −Rt

m

)
(θ) + sup

∥θ∥≤M

(
Rn −Rt

n

)
(θ)︸ ︷︷ ︸

data truncation error

(20)

+ 4 sup
∥θ∥≤M

(
Rt

m −Rt
m,N

)
(θ) + 2 sup

∥θ∥≤M

(
Rt

n −Rt
n,N

)
(θ)︸ ︷︷ ︸

statistical error

(21)

+ 2 sup
∥θ∥≤M

∣∣∣Rm(θ)−Rn(θ)
∣∣∣︸ ︷︷ ︸

context mismatch error

+
(
Rt

n,N (θ̂)−Rt
n,N (θ∗)

)
︸ ︷︷ ︸

≤0 w.h.p.

+ Rm(θ∗)︸ ︷︷ ︸
approx. error

(22)

= I + II + III + IV + V. (23)

The plan of action is to bound term I using the tail decay of the data and term II using tools485

from empirical process theory; term III is controlled via Lemma 12; term IV can be shown to be486

nonpositive with high-probability, and term V , the approximation error, is controlled by Proposition487

1.488

Step 2 - bounding the truncation error: By Lemma 7 and Example 6.2 in Wainwright [2019], when489

y ∼ N(0,Σ) and Yn is the empirical covariance of iid samples from N(0,Σ) we have490

P (Ac
t(Yn,y)) ≤ exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

)
14



for some universal constant C > 0. Therefore, for any ∥θ∥ ≤ M , we can apply the Cauchy-Schwarz
inequality to obtain
Rm(θ)−Rt

m(θ) = E∥(PA−1YmQ−A−1)y∥2 · 1{Ac
R,t(Ym,y)}

≤
(
E∥(PA−1YmQ−A−1)y∥4

)1/2
· P
(
Ac

R,t(Ym,y)
)1/2

≤ c2A

(
M2
(
E∥Yn∥4op

)1/2
+ 1
)(

E∥y∥4
)1/2

·

√
exp

(
− mt2

2

)
+ exp

(
− t2

C∥Σ∥op

)
.

This shows that the truncation error is quite mild, since R and t can be made large – in fact, we will491

see that the generalization error depends only poly-logarithmically on R. Analogous bounds hold for492

sup∥θ∥≤M

(
Rn −Rt

n

)
(θ).493

Step 3 - Reduction to bounded data: Note that by the union bound,

BN,t :=

N⋂
i=1

At(Y
(i)
n ,yi)

satisfies

P(BN,R,t) ≥ 1−N
(
exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
.

Moreover, on the event BN,t, we have ℓ(·; θ) = ℓR,t(·; θ), and hence θ̂ = argmin∥θ∥≤MRt
N (θ).

Therefore, if we restrict attention to the event BN,R,t, we may assume boundedness of the data, which
is crucial to proving statistical error bounds, and the error term

IV =
(
Rt

N (θ̂)−Rt
N (θ∗)

)
is nonpositive by the minimality of Rt

N (θ̂). For the remainder of the proof, we assume that the event494

BN,R,t holds, i.e., all expectations taken are conditioned on the event BN,R,t.495

Step 4 - bounding the statistical error: The statistical error is measured by496

sup
∥θ∥≤M

∣∣∣Rt
n(θ)−Rt

n,N (θ)
∣∣∣

= sup
∥θ∥≤M

∣∣∣EA,Yn,y∥(PA−1YnQ−A−1)y∥2 − 1

N

N∑
i=1

∥(PA−1
i Y (i)

n Q−A−1
i )yi∥2

∣∣∣,
where the expectations over Yn and y are over truncated versions of their original distributions. By a497

standard symmetrization argument, we have498

sup
∥θ∥≤M

∣∣∣EA,Yn,y[∥(PA−1YnQ−A−1)y∥2]− 1

N

N∑
i=1

∥(PA−1
i Y (i)

n Q−A−1
i )yi∥2

∣∣∣
≤ 2E

Ai,Y
(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥(PA−1
i Y (i)

n Q−A−1
i )yi∥2

= 2E
Ai,Y

(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi

(
∥PA−1

i Y (i)
n Qyi∥2 + ∥A−1

i yi∥2 − 2⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩

)
≤ 2E

Ai,Y
(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2

+ 4E
Ai,Y

(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩,

where the last inequality follows from the triangle inequality, noting that the term
∑N

i=1 ϵi∥A
−1
i yi∥2499

is independent of θ and hence vanishes in the expectation over ϵi. Now, define the function classes500

Θ1(M) = {(A, Yn,y) 7→ ∥PA−1YnQy∥2 : ∥θ∥ ≤ M},
Θ2(M) = {(A, Yn,y) 7→ ⟨PA−1YnQy, A−1y⟩ : ∥θ∥ ≤ M}.
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By Dudley’s integral theorem Dudley [1967], it holds that501

E
Ai,Y

(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2 ≤ inf
ϵ>0

12
√
2√

N

∫ D1(M)

ϵ

√
logN

(
Θ1(M), ∥ · ∥N , τ

)
dτ,

(24)
where N

(
Θ1(M), ∥ · ∥N , τ

)
is the τ -covering number of the function class Θ1(M) with respect to

the metric induced by the empirical L2 norm ∥F∥2N = 1
N

∑N
i=1 F (Ai, Y

(i)
n ,yi)

2 and

D1(M) = sup
∥θ∥≤M

∥∥∥∥PA−1YnQy∥2
∥∥∥
N
.

Note the bound502

D1(M)2 = sup
∥θ∥≤M

1

N

N∑
i=1

∥PA−1
i Y (i)

n Qyi∥4

≤ 1

N

N∑
i=1

M8c4A∥Σ∥4op

(
1 + t+

√
d

n

)4(√
Tr(Σ) + t

)4
and hence D1(M) ≤ M4c2A∥Σ∥2op

(
1+t+

√
d
n

)2(√
Tr(Σ)+t

)2
. Similarly, for θ1 = (P1, Q1), θ2 =503

(P2, Q2), with ∥θ1∥, ∥θ2∥ ≤ M , we have504

∥θ1 − θ2∥2N =
1

N

N∑
i=1

∥(P1 − P2)A
−1
i Y (i)

n (Q1 −Q2)yi∥4

≤ 16M4c2A∥Σ∥2op

(
1 + t+

√
d

n

)2
R2 · 1

N

N∑
i=1

∥(P1 − P2)A
−1
i Y (i)

n (Q1 −Q2)∥2

≤ M4c4A∥Σ∥4op

(
1 + t+

√
d

n

)4(√
Tr(Σ) + t

)4
·max

(
∥P1 − P2∥2op, ∥Q1 −Q2∥2op

)
.

This shows that the metric induced by ∥ · ∥N is dominated by the metric d(θ1, θ2) = max
(
∥P1 −

P2∥op, ∥Q1 −Q2∥op

)
, up to a factor of M2c2A∥Σ∥2op

(
1 + t+

√
d
n

)2(√
Tr(Σ) + t

)2
. The covering

number of the set {∥θ∥ ≤ M} in the metric d(·, ·) is well-known, from which we conclude that

logN
(
Θ1(M), ∥ · ∥N , τ

)
≤ 2d2 log

(
M2c2A∥Σ∥2op

(
1 +

2

τ

))
.

Optimizing over the choice of ϵ in Equation 24, this proves that505

E
Ai,Y

(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2 (25)

= O
(d2M4c2A∥Σ∥2op

(
1 + t+

√
d
n

)2(√
Tr(Σ) + t

)2
√
N

)
, (26)

where O
(
·
)

omits factors that are logarithmic in N . An analogous argument proves a bound of the
same order on the quantity

E
Ai,Y

(i)
n ,yi

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩,

which in turn bounds the statistical error

sup
∥θ∥≤M

∣∣∣Rt
n(θ)−Rt

n,N (θ)
∣∣∣
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by the right-hand side of Equation 25. The same argument proves in analogous bound on the statistical
error term

sup
∥θ∥≤M

∣∣∣Rt
m(θ)−Rt

m,N (θ)
∣∣∣,

where n is replaced by m in the bound of Equation 25.506

Step 5: Bounding the context mismatch error The context mismatch error satisfies the bound

sup
∥θ∥≤M

∣∣∣Rm(θ)−Rn(θ)
∣∣∣ ≤ 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣.
The proof of this fact is deferred to Lemma 12.507

Step 6 - Approximation error: It remains to bound the approximation error term R(θ∗). From
Proposition 1, we have

Rm(θ∗) ≤ c2ATr(Σ)
m

+
c6A∥Σ−1∥2op∥Σ∥6opTr(Σ)

n2
+O

( 1

mn

)
for an appropriate choice of θ∗, where C1 and C2 depend only on the task and data distributions.508

Moreover, upon inspection of the proof of Proposition 1, we see that the θ∗ = (Id, Qn) that attains509

this error is an O(1/n)-perturbation of the pair (Id,Σ−1). Thus, if n is sufficiently large, we are510

guaranteed that θ∗ belongs in the set {∥θ∥ ≤ M} for M ≥ 2max(1, ∥Σ−1∥op).511

Step 7 - Balancing error terms: Putting everything together and applying the error decomposition512

from step 1, we have shown that 3513

Rm(θ̂) ≲ c2A

(
M2E[∥Yn∥4op]

1/2 + 1
)
E[∥y∥4]1/2 ·

√
exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

)

+
d2M4c2A∥Σ∥2op

(
1 + t+

√
d
n

)2(√
Tr(Σ) + t

)2
√
N

+
2Tr(E[A−2]Σ)

n
,

with probability at least

1−N
(
exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
.

For a fixed p > 0, we choose t such that(
exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
=

1

Np+1
.

It is clear that such a t satisfies t ≲
√
p log(N). For such a t, we have, omitting universal constants514

and log(N) factors, that515

Rm(θ̂) ≲
c2ATr(Σ)

m
+

c6A∥Σ−1∥2op∥Σ∥6opTr(Σ)
n2

+
√
p
c2A

(
M2E[∥Yn∥4op]

1/2 + 1
)
E[∥y∥4]1/2

N

+
d2M4c2A∥Σ∥2op√

N
+M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣, w.p. ≥ 1− 2

Np
.

We omit the third term from the final bound, since, asymptotically, it is dominated by the fourth516

term.517

We now present an important preliminary result, which gives an upper bound on infθ Rm(θ),
the minimal risk achieved by a transformer in the infinite-task limit. To motivate our result, we

3For simplicity, we have omitted the terms from the truncation and statistical errors which depend on m, as
they do not change the order of the final bound with respect to m, n, or N .
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first observe that for θ = (P,Q), the output of the transformer TFθ at a prompt Z of length m
corresponding to a task matrix A is

TFθ(Z) = P
( 1

m

m∑
i=1

xiyi
T
)
Qy.

Since xi = A−1yi, we can equivalently write the prediction of the transformer as

TFθ(Z) = PA−1YmQy,

where Ym = 1
m

∑m
i=1 yiyi

T is the empirical covariance associated to the context vectors518

{y1, . . . ,ym}. Note that if we set P = Id and Q = Σ−1 to be the inverse of the data covariance519

matrix, then for sufficiently large m we have TFθ(Z) ≈ A−1y. This suggests that the transformer can520

learn to solve linear systems in a way that is extremely robust to shifts in the distribution on the task521

matrices. We note that similar choices of attention matrices have been studied in the linear regression522

setting (Ahn et al. [2024], Zhang et al. [2023]). Our result essentially employs the parameterization523

P = Idd and Q = Σ−1, but with an additional bias term to account for the fact that the sequence524

length n during training may differ from the sequence length m during inference.525

Before stating our result precisely, let us define B := EA∼pA
[A−2]. In addition, recall the weighted

trace of a matrix K with respect to the covariance Σ = WΛWT defined by

TrΣ(K) :=

d∑
i=1

σ2
i ⟨Kφi, φi⟩,

where σ2
1 , . . . , σ

2
d are the eigenvalues of Σ and φi = Wei are the eigenvectors. Note that the weighted526

trace is independent of the choice of eigenbasis.527

Proposition 1. With

Qn = B
(n+ 1

n
ΣB +

TrΣ(B)

n
Σ
)−1

,

we have

Rm(Id, Qn) ≤
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ)

n2
+O

( 1

mn

)
.

Proof. By Lemma 8, we can write Qn = Σ−1 + 1
nK, where528

∥K∥op ≤ ∥Σ−1∥op∥Σ∥op

(
1 + TrΣ(B)

)
C2

A. (27)

It follows that529

Rm(Id, Qn) = EA,Ym [Tr(A−1(YmQn − Id)Σ(QnYm − Id)A
−1)]

= EYm [Tr(B(YmQn − Id)Σ(Q
T
nYm − Id))], B := E[A−2]

= Tr(BΣ) + EYm
[Tr(BYmQnΣQ

T
nYm)]− Tr(BΣQnΣ)− Tr(BΣQT

nΣ)

= Tr(BΣ) + Tr(BΣQnΣQnΣ)− Tr(BΣQnΣ)− Tr(BΣQT
nΣ)

+
1

m

(
Tr
(
BΣQnΣQ

T
nΣ
)
+ TrΣ(QnΣQ

T
n )Tr(BΣ)

)
where the last equality follows from Lemma 4. Writing Qn = Σ−1+ 1

nK and doing some simplifying530

algebra, we find that531

Rm(Id, Qn) =
1

m

(
Tr((B + TrΣ(Σ−1Id)Σ)

)
+

1

n2
Tr
(
BΣKΣKTΣ

)
+O

( 1

mn

)
=

1

m

(
Tr((B + dId)Σ)

)
+

1

n2
Tr
(
BΣKΣKTΣ

)
+O

( 1

mn

)
,

where we used the fact that TrΣ(Σ−1) = d. Using the bound on the norm of K stated in Equation 27,
and the fact that ∥B∥op ≤ c2A, we have

Tr(BΣKΣKTΣ) ≤ c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ).
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Similarly, the bound
Tr((B + dId)Σ) ≤ (c2A + d)Tr(Σ)

holds. We conclude that

Rm(Id, Qn) ≤
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ)

n2
+O

( 1

mn

)
.

532

To justify our ansatz for upper bounding the approximation error (i.e., how the matrix Qn in Proposi-533

tion 1 was chosen), we introduce the following lemma.534

Lemma 1. The minimizer of the functional Q 7→ Rn(Id, Q) is given by

Qn = B
(n+ 1

n
ΣB +

TrΣ(B)

n
Σ
)−1

,

where B = E[A−2] and TrΣ(·) denotes the Σ-weighted trace.535

Proof. Let us recall the definition of the population risk functional

R(Id, Q) = E
[∥∥∥A−1

(
YnQ− I

)
y
∥∥∥2],

where Yn := 1
n

∑n
i=1 yiyi

T denotes the empirical covariance of {yi}ni=1. Note that, conditioned on536

A and {yi}ni=1, A−1
(
YnQ−I

)
y is a centered Gaussian random vector with covariance A−1

(
YnQ−537

I
)
Σ
(
QYn−I

)
A−1. In addition, since the task and data distributions are independent, we can replace538

the task by its expectation. It therefore holds that539

E
[∥∥∥A−1

(
YnQ− I

)
y
∥∥∥2] = EYn

[
Tr
(
B
(
YnQ− I

)
Σ
(
QTYn − I

))]
.

Since this is a convex functional of Q, it suffices to characterize the critical point. Taking the
derivative, we find that the critical point equation for the risk it

∇QR(Id, Q) = EYn
[ΣQTYnBYn + YnBYnQΣ]− 2ΣBΣ = 0.

Using Lemma 4 to compute the expectation, we further rewrite the critical point equation as(n+ 1

n
BΣ+

TrΣ(B)

n
Σ
)
Q+QT

(n+ 1

n
ΣB +

Tr(Σ)
n

Σ
)
= 2B.

This equation is solved by the matrix Qn defined in the statement of the Lemma.540

C Proofs and additional results for Subsection 3.2541

In this section, we present a proof of Theorem 2 and provide an example of the PDE recovery error542

bound when the spatial discretization is defined by a P 1-finite element method.543

Proof of Theorem 2. By the triangle inequality, we have

E
[
∥u− ûd∥2H1(Ω)

]
≤ 2E

[
∥u− ud∥2H1(Ω)

]
+ 2E

[
∥ud − ûd∥2H1(Ω)

]
.

Notice that E
[
∥ud − ûd∥2L2(Ω)

]
= Rm(θ̂), where θ̂ is as defined in the statement of Theorem 1. The544

desired estimate therefore follows, provided we can bound E
[
∥ud − ûd∥2H1(Ω)

]
by a multiple of545
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E
[
∥ud − ûd∥2L2(Ω)

]
. For any g =

∑d
k=1 ckϕk ∈ span{ϕk}dk=1, we have546

∥g∥2H1(Ω) = ∥g∥2L2(Ω) +
∥∥∥ d∑

k=1

ckϕ
′
k(x)

∥∥∥2
L2(Ω)

= cT (Φ + Φ′)c

= c̃(Id +Φ−1/2Φ′Φ−1/2)c̃

≤ (1 + λmax(Φ
−1/2Φ′Φ−1/2))∥c̃∥2

= (1 + λmax(Φ
−1/2Φ′Φ−1/2))∥g∥2L2(Ω),

where c̃ = Φc We conclude that

E
[
∥ud−ûd∥2H1(Ω)

]
≤ (1+λmax(Φ

−1/2Φ′Φ−1/2)·E
[
∥ud−ûd∥2L2(Ω)

]
= 2 max

1≤k≤d
∥ϕk∥2H1(Ω)·Rm(θ̂),

and therefore that547

E
[
∥u− ûd∥2H1(Ω)

]
≲ E

[
∥u− ud∥2H1(Ω)

]
+ (1 + λmax(Φ

−1/2Φ′Φ−1/2) · Rm(θ̂).

548

Example 1 (PDE recovery error with FEM discretization in 1D). Consider the elliptic PDE (1) on a
unit interval Ω = [0, 1]. Let Ik = [(k − 1)j, kh] for 0 ≤ k ≤ d be the uniform mesh on Ω, where
h = d−1 is the mesh size. Let Ph

1 (Ω) be the linear finite element space spanned by the P1-finite
element base functions {ϕk}dk=0. Let uh ∈ Ph

1 (Ω) denote the P1-finite element approximation of the
solution u. Suppose that Assumption 1 holds for the task distributions Pa, PV and assume further that
a(x) ∈ C1(Ω) Pa-a.s and V ∈ C(Ω) Pv-a.s. Then by classical regularity estimates for elliptic PDEs,
the solution u ∈ H2(Ω) and satisfies ∥u∥H2(Ω) ≲ ∥f∥L2(Ω) up to a universal constant. Moreover,
by Theorem 3.16 in Ern and Guermond [2004], the FEM-solution ud satisfies the discretization error
estimate

∥u− ud∥H1(Ω) ≲ h∥u∥H2(Ω).

It follows that

E
[
∥u− ud∥2H1(Ω)

]
≲ h2E[∥u∥2H2(Ω)] ≲ h2E[∥f∥2L2(Ω)] = h2Tr(Σf ),

where Σf : L2(Ω) → L2(Ω) is the covariance operator of f ∼ Pf . In addition, it can be shown that
for piecewise linear FEM on 1D, the stiffness and mass matrices satisfy λmax(Φ

−1/2Φ′Φ−1/2) ≲ h−2

(see e.g. equation (2.4) of Boffi [2010]). By Theorem 2, we conclude that in the practical regime that
m ≤ n, the PDE recovery error of the transformer is bounded by

E
[
∥u− ûh∥2H1(Ω)

]
≲ h2 +

1

h2

( 1

m
+

C4
A∥Σ−1∥2op

n2
+

d2∥Σ−1∥4op√
N

)
.

Note that the terms ∥Σ−1∥op and C4
A depend on the number of Galerkin basis functions d. For the549

matrix A corresponding to the FEM discretization, it can be shown that CA ≲ h−2. In addition,550

when the covariance operator of the random source is given by Σf = (−∆+ I)−α for some α > 0551

which controls the smoothness of the source term, it follows from the inverse inequalities [Ern and552

Guermond, 2004, Lemma 12.1] that ∥Σ−1∥op ≲ h2α. Inserting this estimate to above leads to the553

final PDE recovery bound in terms of the mesh size h554

E
[
∥u− ûh∥2H1(Ω)

]
≲ h2 +

1

h2m
+

1

h10+4αn2
+

1

h4+8α
√
N

, (28)

or equivalently in terms of the number of Galerkin basis functions d555

E
[
∥u− ûh∥2H1(Ω)

]
≲

1

d2
+

d2

m
+

d10+4α

n2
+

d4+8α

√
N

. (29)

Here, we have hidden all constants from the estimate of Theorem 1 that do not depend on the556

dimension d.557
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D Proofs and additional results for Subsection 3.3558

We first state a more general version of Theorem 3, which does not assume that the pre-training task559

distribution is diverse relative to the downstream task distribution.560

Theorem 7. Let pA and p′A denote the pre-training and downstream task distributions respectively561

and assume both satisfy Assumption 1. Let M∞(pA) and M∞(p′A) denote the minimizers of R∞562

and R′
∞ respectively, and let θ̂ ∈ argmin∥θ∥≤MRn,N (θ) denote the empirical risk minimizer. Then563

R′
m(θ̂) ≲ Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞(pA))

2 + dist(θ̂,M∞(p′A))
2,

where d(pA, p′A) is a distance between the distributions pA and p′A, and the implicit constants depend564

on M , Σ, and the constant cA defined in Assumption 1.565

Notice that Theorem 3 is a direct consequence of Theorem 7, because the assumption that pA is566

diverse relative to p′A implies that for any θ, dist(θ,M∞(p′A)) ≤ dist(θ,M∞(pA)). The fourth567

term in the bound of Theorem 7, corresponding to dist(θ̂,M∞(p′A))
2, is novel to the best of our568

knowledge, and it motivates the definition of task diversity. It highlights the hardness of learning569

general linear systems in-context, compared to learning linear regression models Zhang et al. [2023]570

or linear systems corresponding to diagonal matrices Chen et al. [2024b].571

Proof of Theorem 7. Recall that θ̂ ∈ argmin∥θ∥ ≤MRn,N (θ) is the ERM. Let θ∗ = (P∗, Q∗) denote572

a projection of θ̂ onto the set M∞ and let θ′∗ = (P ′
∗, Q

′
∗) denote a projection of θ̂ onto M∞. Let573

ϵ1 = ∥θ̂ − θ∗∥ and ϵ2 = ∥θ̂ − θ′∗∥. Then we have the error decomposition574

R′
m(θ̂) = Rm(θ̂) + (R′

m(θ̂)−R′
m(θ′∗)) + (Rm(θ′∗)−Rm(θ∗)) + (Rm(θ∗)−Rm(θ̂))

Taking the infimum over all projections θ∗ and θ′∗ of θ̂ onto M∞(pA) and M∞(p′A), followed by575

the supremum over θ̂ in {∥θ∥ ≤ M}, we arrive at the bound576

R′
m(θ̂) ≤ Rm(θ̂) + sup

∥θ̂∥≤M

inf
θ∗,θ′

∗
|Rm(θ∗)−R′

m(θ′∗)|+ sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ2

|Rm(θ1)−Rm(θ2)|

+ sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ1

|R′
m(θ1)−R′

m(θ2)| .

The second and third terms can be bounded using a simple Lipschitz continuity estimate. Note that
for m sufficiently large and θ = (P,Q) with ∥θ∥ ≤ M , we have

∥(PA−1YmQ−A−1)Σ1/2∥2F ≲ c2A(1 + ∥Σ∥opM
2)2Tr(Σ)

for any A ∈ supp(pA). It follows that

Rm(θ) = EA∼pA,Ym
[∥(PA−1YmQ−A−1)Σ1/2∥2F ]

is O
(
c2A(1 + ∥Σ∥opM

2)2Tr(Σ)
)
-Lipschitz on {∥θ∥ ≤ M}. We therefore have

sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ1

|Rm(θ1)−Rm(θ2)| ≲
(
c2A(1 + ∥Σ∥opM

2)2Tr(Σ)
)
ϵ21.

An analogous bound holds for sup∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ2 |R
′
m(θ1)−R′

m(θ2)|, since the test dis-
tribution p′A is also assumed to satisfy Assumption 1. To bound the term |Rm(θ∗)−R′

m(θ′∗)|, we
recall by Lemma 5 that for any θ = (P,Q),

Rm(θ) = R∞(θ)+
1

m
EA∼pA

[
Tr(PA−1ΣQΣQTΣA−1PT ) + TrΣ(QΣQT )Tr(PA−1ΣA−1PT )

]
and

R′
m(θ) = R′

∞(θ) +
1

m
EA∼p′

A

[
Tr(P (A′)−1ΣQΣQTΣ(A′)−1PT )

+ TrΣ(QΣQT )Tr(P (A′)−1Σ(A′)−1PT )
]
.
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In particular, since θ∗ ∈ argminθR∞(θ) and θ′∗ ∈ argminθR′
∞(θ), and each functional achieves 0 as577

its minimum value, we have578

|Rm(θ∗)−R′
m(θ′∗)| ≤

1

m

∣∣∣EA∼pA

[
Tr(P∗A

−1ΣQ∗ΣQ
T
∗ ΣA

−1PT
∗ )

+ TrΣ(Q∗ΣQ
T
∗ )Tr(P∗A

−1ΣA−1PT
∗ )
]

− EA∼p′
A

[
Tr(P ′

∗(A
′)−1ΣQ′

∗Σ(Q
′
∗)

TΣ(A′)−1(P ′
∗)

T )

+ TrΣ(Q′
∗Σ(Q

′
∗)

T )Tr(P ′
∗(A

′)−1Σ(A′)−1(P ′
∗)

T )
]∣∣∣

=:
1

m

∣∣EA∼pA
[f(A; θ∗)]− EA′∼p′

A
[f(A′; θ′∗)]

∣∣ .
It follows that579

sup
∥θ̂∥≤M

inf
θ∗,θ′

∗
|Rm(θ∗)−R′

m(θ′∗)| ≤
1

m
sup

∥θ̂∥≤M

inf
θ∗,θ′

∗

∣∣EA∼pA
[f(A; θ∗)]− EA′∼p′

A
[f(A′; θ′∗)]

∣∣
=:

1

m
d(pA, p

′
A),

where, again, the infimum is taken over all θ∗ ∈ argminθ∈M∞(pA)∥θ − θ̂∥2 and θ′∗ ∈580

argminθ′∈M∞(p′
A)∥θ′ − θ̂∥2. Combining the estimates for each individual term in the error de-581

composition, we obtain the final bound in the statement of Theorem 7. The fact that the bound582

we have obtained tends to zero as the sample size (m,n,N) → ∞ follows from examination of583

each term in the estimate: the in-domain generalization error Rm(θ̂) tends to zero in probability by584

Theorem 1, the term d(pA,p′
A)

m is deterministic and tends to zero as m → ∞, and dist(θ̂,M∞) tends585

to zero as N and n tend to infinity, respectively, by Proposition 4.586

The discrepancy d(pA, p
′
A) defined in the proof of Theorem 3 may not be a metric, but, crucially,587

it satisfies d(pA, pA) = 0. This ensures that the error term due to distribution shift in Theorem 3588

vanishes when the pre-training and downstream tasks coincide. We give a simple proof of this fact589

below.590

Lemma 2. Let

d(pA, p
′
A) = sup

∥θ̂∥≤M

inf
θ∗,θ′

∗

∣∣∣EA∼pA
[f(A; θ∗)]− EA′∼p′

A
[f(A′; θ′∗)]

∣∣∣,
where the infimum is taken over all projections θ∗ and θ′∗ of θ̂ onto the sets M∞(pA) and M∞(p′A)
respectively, and

f(A; θ) = Tr(PA−1ΣQΣQTΣA−1PT ) + TrΣ(QΣQT )Tr(PA−1ΣA−1PT ), θ = (P,Q).

Then d(pA, p
′
A) = 0 if pA = p′A.591

Proof. Note that we can upper bound d(pA, pA) by

d(pA, pA) ≤ sup
∥θ̂∥≤M

inf
θ∗

∣∣∣EA∼pA
[f(A; θ∗)]− EA∼pA

[f(A; θ∗)]
∣∣∣,

where the infimum is now taken only over all projections θ∗ of θ̂ onto M∞(pA). Clearly we have∣∣∣EA∼pA
[f(A; θ∗)]− EA∼pA

[f(A; θ∗)]
∣∣∣ = 0

for all θ∗, hence d(pA, pA) ≤ 0. Since d(pA, pA) is clearly non-negative, we conclude that592

d(pA, pA) = 0.593

The next proposition gives a characterization of the minimizers of the functionals R∞ and R′
∞.594

Apart from being interesting in its own right, it is a key tool to prove Theorem 4.595
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Proposition 2. Fix a task distribution pA satisfying Assumption 1. Then θ = (P,Q) is a minimizer596

of R∞ if and only if P commutes with all elements of the set {A1A
−1
2 : A1, A2 ∈ supp(pA)} and Q597

is given by Q = Σ−1A0P
−1A−1

0 for any A0 ∈ supp(pA).598

Proof of Proposition 2. Recall that

R∞(θ) = EA∼pA
[∥(PA−1ΣQ−A−1)Σ1/2∥2F ], θ = (P,Q),

and M∞(pA) = argminθR∞(θ). Let us first prove that for any pA satisfying Assumption 1, θ ∈
M∞(pA) if and only if PA−1ΣQ = A−1 for all A ∈ supp(pA). Let us first observe that the
minimum value of R∞ is 0 - this is attained, for instance, at P = Id and Q = Σ−1. It is clear
that if the equality PA−1ΣQ = A−1 holds over the support of pA, then EA∼pA

[∥(PA−1ΣQ −
A−1)Σ1/2∥2F ] = 0. Conversely, suppose (P,Q) satisfies EA∼pA

[∥(PA−1ΣQ−A−1)Σ1/2∥2F ] = 0.
Fixing A0 ∈ supp(pA) and ϵ > 0, let pA,ϵ(A0) denote the normalized restriction of pA to the ball of
radius ϵ centered about A0. Then the equality EA∼pA

[∥(PA−1ΣQ−A−1)Σ1/2∥2F ] = 0 implies that

EA∼pA,ϵ(A0)[∥(PA−1ΣQ−A−1)Σ1/2∥2F ] = 0

for each ϵ > 0. Since pA,ϵ(A0) converges weakly to the Dirac measure centered at A0, we have599

that ∥(PA−1
0 ΣQ−A−1

0 )Σ1/2∥2F = 0, and hence that PA−1
0 ΣQ = A−1

0 . As A0 was arbitrary, this600

concludes the first part of the proof.601

Now, suppose θ = (P,Q) is a minimizer of R∞. By the previous argument, this is equivalent to the602

system of equations PA−1ΣQ = A−1 holding simultaneously for all A ∈ supp(pA). In particular,603

for any fixed A0 ∈ supp(pA), the equation PA−1
0 ΣQ = A−1

0 can be solved for Q, yielding604

Q = Σ−1A0P
−1A−1

0 . Since the matrix Q is constant, this implies that the function A 7→ AP−1A−1605

is a constant on the support of pA. We have therefore shown that the minimizers of R∞ can be606

completely characterized as {(P,Σ−1A0P
−1A−1

0 ) : P ∈ Rd×d}, where A0 is any element of607

supp(pA). In addition, the fact that the function A 7→ AP−1A−1 is constant on the support of pA608

implies that P commutes with all products of the form {A1A
−1
2 : A1, A2 ∈ supp(pA)}.609

We now give a proof of Theorem 4.610

Proof of Theorem 4. 1) This is a direct corollary of Proposition 2.611

2) Let θ∗ = (P∗, Q∗) be a minimizer of R∞. Then Proposition 2 implies that P∗ ∈ C(S(pA)). Since612

the centralizer of S(pA) is trivial by assumption, this implies that P∗ = cId for some c ∈ R\{0}.613

Using the characterization of minimizers of R∞ derived in Proposition 2, we have that Q∗ solves the614

equation cA−1ΣQ∗ = A−1 for all A ∈ supp(pA), and therefore Q = c−1Σ−1.615

The proof of Theorem 4 implies that if supp(pA) satisfies the condition that the centralizer of616

{A1A
−1
2 : A1, A2 ∈ supp(pj)} is trivial, then all minimizers of R∞ are of the form {(P,Q) =617

(cId, c
−1Σ−1) : c ̸= 0}. In this case, it is worth noting that the discrepancy on task distributions618

d(pA, p
′
A) defined in Theorem 3 admits a much simpler expression. We state this result as a Corollary619

below.620

Corollary 1. Under the assumption that the pre-training task distribution pA satisfies the centralizer
condition

C
(
{A1A

−1
2 : A1, A2 ∈ supp(pj)}

)
= {cId : c ∈ R},

the out-of-distribution generalization error admits the more tractable expression

R′
m(θ̂) = Rm(θ̂) +

(d+ 1)
∣∣Tr
((
EA∼pA

[A−2]− EA′∼p′
A
[(A′)−2]

)
Σ
)∣∣

m
+ dist(θ̂,M∞(pA))

2.

In particular, the second term, reflecting the discrepancy between pA and p′A, depends only on the621

second moments of A−1 and (A′)−1.622

Proof. By combining Theorems 3 and 4, we immediately derive the bound on the out-of-distribution
generalization error

R′
m(θ̂) = Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞(pA))

2,
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where the distance d(pA, p
′
A) is given by

d(pA, p
′
A) = |Rm(θ∗)−R′

m(θ∗)| ,

and θ∗ is defined as the projection of θ̂ onto the M∞(pA). Under our assumptions, we have
M∞(pA) = {(cId, c−1Σ−1) : c ∈ R\{0}}, and applying Lemma 6 to compute Rm(θ∗) and
R′

m(θ∗), we obtain

d(pA, p
′
A) = (d+ 1)

∣∣Tr
((
EA∼pA

[A−2]− EA′∼p′
A
[(A′)−2]

)
Σ
)∣∣ .

623

To conclude this section, we investigate the diversity of task distributions whose support consists of624

simultaneously diagonalizable matrices. The simultaneous-diagonalizability of task matrices has been625

used as a key assumption in the existing theoretical analysis of in-context learning of linear systems626

(Chen et al. [2024b]) and in the in-context learning of linear dynamical systems (Sander et al. [2024]).627

In addition, it is also relevant to the PDE setting: if the diffusion coefficient a(x) and potential V (x)628

are both constant, a(x) ≡ a0, V (x) ≡ v0, then the solution operator of the corresponding elliptic629

PDE is given by
(
−a0∆+ v0I

)−1

, whose diagonalization is independent of the constants a0 and v0.630

It is therefore natural to ask whether such a task distribution is diverse in the sense of Definition 1.631

Proposition 3. Let pA and p′A denote the pre-training and downstream task distributions, and632

suppose that the matrices in supp(pA) are simultaneously diagonalizable for a common orthogonal633

matrix U . Suppose additionally that there exist matrices A1, A2 ∈ supp(pA) and A′
1A

′
2 ∈ supp(p′A)634

such that A1A
−1
2 and A′

1(A
′
2)

−1 have no repeated eigenvalues.635

1. If supp(p′A) is also simultaneously diagonalizable with respect to U , then pA is diverse636

relative to p′A.637

2. If there exist matrices A′
3, A

′
4 ∈ supp(p′A) such that A′

3(A
′
4)

−1 is not diagonalizable with638

respect to U , then pA is not diverse relative to p′A.639

Proposition 3 reveals that a simultaneously-diagonalizable task distribution cannot achieve out-of-640

distribution generalization under arbitrary shifts in the downstream task distribution; namely the641

downstream task distribution must also be simultaneously diagonalizable in the same basis. However,642

it also shows that, provided the pre-training and downstream task distributions are simultaneously643

diagonalizable, pre-trained transformers can generalize under arbitrary shifts on the distribution shifts644

on the eigenvalues of the task matrices. This provides a precise characterization of the diversity of a645

simultaneously diagonalizable task distribution.646

Before proving Proposition 3, we first introduce a preliminary lemma.647

Lemma 3. Let pA be a task distribution satisfying Assumption 1. Suppose that the support of pA is
simultaneously diagonalizable with a common orthogonal diagonalizing matrix U ∈ Rd×d. Assume
in addition that there exist A1, A2 ∈ supp(pA) such that A1A

−1
2 has distinct eigenvalues. Then

M∞(pA) = ΘU,Σ, where

ΘU,Σ :=
{
(P,Σ−1P−1) : P = UDUT , D = diag(λ1, . . . , λd)

}
.

Proof. By Proposition 2, a parameter (P,Q) belongs to M∞(pA) if and only if P commutes648

with all products of the form {AiA
−1
j : Ai, Aj ∈ supp(pA)}, in which case Q is defined by649

Q = Σ−1A0P
−1A−1

0 for any A0 ∈ supp(pA). Let A1, A2 ∈ supp(pA) be as defined in the statement650

of the lemma. Since P and A1A
−1
2 are commuting diagonalizing matrices and A1A

−1
2 has no repeated651

eigenvalues (Strang [2022]), they must be simultaneously diagonalizable. This implies that P is652

diagonal in the basis U , and hence Q is given by Q = Σ−1A0P
−1A−1

0 = Σ−1P−1.653

Proof of Proposition 3. For 1), if the support of p′A is also simultaneously diagonalizable with respect654

to U , then Lemma 3 implies that M∞(pA) = M∞(p′A) = ΘU,Σ, where ΘU,Σ, where ΘU,Σ is as655

defined in the statement of Lemma 3. This proves that if the support of p′A is also simultaneously656

diagonalizable with respect to U , then pA is diverse.657
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For 2), we must find a minimizer of R∞ which is not a minimizer of R′
∞. Consider the parameter658

θ = (P,Σ−1P−1), where P = UDUT for D an invertible diagonal matrix with no repeated entries.659

By Lemma 3, θ is a minimizer of R∞. Let A′
3, A

′
4 ∈ supp(p′A) be such that A′

3(A
′
4)

−1 is not660

diagonalizable with respect to U . Since A′
3(A

′
4)

−1 and P are not simultaneously diagonalizable and661

P has no repeated eigenvalues (Strang [2022]), P does not commute with A′
3(A

′
4)

−1. By Proposition662

2, θ is therefore not a minimizer of R′
∞, completing the proof.663

E Proofs for Subsection 3.4664

We begin by stating a more formal version of Theorem 5 where the constants are more explicit.665

Theorem 8. Let Σ = WΛWT and Σ̃ = W̃ Λ̃W̃T be two covariance matrices, let (P̂ , Q̂) be666

minimizers of the empirical risk when the in-context examples follow the distribution N(0,Σ) and667

take M > 0 such that max
(
∥P̂∥F , ∥Q̂∥F

)
≤ M. Then668

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)

2∥Σ− Σ̃∥op

+
1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)

2Tr(Σ̃)
(
∥Σ− Σ̃∥op + ∥Λ− Λ̃∥1 + ∥W − W̃∥op

)
.

Theorem 5 then follows from Theorem 8 by bounding ∥Λ− Λ̃∥1 ≲ ∥Σ− Σ̃∥op, merging the term

1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)

2Tr(Σ̃)
(
∥Σ− Σ̃∥op + ∥Λ− Λ̃∥1

)
into the second term, and omitting the constant factors.669

Proof of Theorem 8. By the triangle inequality, we have670

RΣ̃
m(P̂ , Q̂) ≤ RΣ

m(P̂ , Q̂) + sup
∥P∥op,∥Q∥op≤M

∣∣∣RΣ̃
m(P,Q)−RΣ

m(P,Q)
∣∣∣. (30)

It therefore suffices to bound the second term. From the proof of Proposition 1, we know that671

RΣ
m(P,Q) = EA

[m+ 1

m
Tr(PA−1ΣQΣQTΣA−1PT +

TrΣ(QΣQT )

m
Tr(PA−1ΣA−1PT )

]
(31)

+ EA

[
Tr(A−1ΣA−1)− Tr(PA−1ΣQΣA−1)− Tr(A−1ΣQTΣA−1PT )

]
. (32)

Similarly, we have672

RΣ̃
m(P,Q) = EA

[m+ 1

m
Tr(PA−1Σ̃QΣ̃QT Σ̃A−1PT +

TrΣ̃(QΣ̃QT )

m
Tr(PA−1Σ̃A−1PT )

]
(33)

+ EA

[
Tr(A−1Σ̃A−1)− Tr(PA−1Σ̃QΣ̃A−1)− Tr(A−1Σ̃QT Σ̃A−1PT )

]
. (34)

We seek to bound the difference
∣∣∣RΣ

m(θ)−RΣ̃
m(θ)

∣∣∣ by bounding the respective differences of each673

term appearing in the expressions for RΣ
m and RΣ̃

m. By a simple applications of Hölder’s inequality674

and the triangle inequality, we see that675

EATr(PA−1(ΣQΣ− Σ̃QΣ̃)A−1) ≤ EA∥A−1PA−1∥F ∥ΣQΣ− Σ̃QΣ̃∥F

≤ c2A∥P∥F
(
∥(Σ− Σ̃)QΣ∥F + ∥Σ̃Q(Σ− Σ̃)∥F

)
≤ c2A∥P∥F

(
∥QΣ∥F + ∥Σ̃Q∥F

)
∥Σ− Σ̃∥op

≤ 2c2A∥P∥F ∥Qf max(∥Σ∥op, ∥Σ̃∥op)∥Σ− Σ̃∥op

= 2c2AM
2 max(∥Σ∥op, ∥Σ̃∥op)∥Σ− Σ̃∥op.
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Analogous arguments can be used to prove the bounds

EATr(A−1(ΣQTΣ− Σ̃QT Σ̃)A−1PT ) ≤ 2c2AM
2 max(∥Σ∥op, ∥Σ̃∥op)∥Σ− Σ̃∥op,

EATr(A−1(Σ− Σ̃)A−1) ≤ c2A∥Σ− Σ̃∥op

and676

EATr(PA−1(ΣQΣQTΣ− Σ̃QΣ̃QT Σ̃)A−1PT ) ≤ c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)

2∥Σ− Σ̃∥op.

Notice that the term above dominates each of the preceding three terms. For the final term, we have677

TrΣ(QΣQT )Tr(PA−1ΣA−1PT )− TrΣ̃(QΣ̃QT )Tr(PA−1Σ̃A−1PT )

≤
∣∣∣TrΣ(QΣQT )− TrΣ̃(QΣ̃QT )

∣∣∣∣∣∣Tr(PA−1ΣA−1PT )
∣∣∣

+
∣∣∣TrΣ̃(QΣ̃QT )

∣∣∣∣∣∣Tr(PA−1(Σ− Σ̃)A−1PT )
∣∣∣.

By Lemma 10 and Holder’s inequality, the second term satisfies678 ∣∣∣TrΣ̃(QΣ̃QT )
∣∣∣∣∣∣Tr(PA−1(Σ− Σ̃)A−1PT )

∣∣∣ ≤ c2AM
4∥Σ̃∥opTr(Σ̃) · ∥Σ− Σ̃∥op.

Similarly, using Lemma 11, the first term satisfies679 ∣∣∣TrΣ(QΣQT )− TrΣ̃(QΣ̃QT )
∣∣∣∣∣∣Tr(PA−1ΣA−1PT )

∣∣∣
≤ c2AM

4∥Σ∥op

(
Tr(Σ̃)∥Σ− Σ̃∥op + ∥Σ∥op

(
∥Λ− Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

))
Combining the estimates for each individual term and taking the supremum over the all P,Q with680

Frobenius norm bounded by M yields the final bound681

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)

2∥Σ− Σ̃∥op

+
1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)

2Tr(Σ̃)
(
∥Σ− Σ̃∥op + ∥Λ− Λ̃∥1 + ∥W − W̃∥op

)
.

682

F Discussion on dependence of constants on dimension683

It is important to consider the dependence of the constants appearing in Theorem 1 on the dimension684

of the linear system. Recall that in the PDE setting, the dimension d corresponds to the number of685

basis functions used in Galerkin’s method, and hence the true PDE solution is only recovered in the686

limit d → ∞.687

Since the solution operator of the PDE is a bounded operator on L2(Ω), the norm of the inverse
A−1 is uniformly bounded in d, and hence the constant cA = supA∈supp(pA) ∥A−1∥op is dimension-
independent. Similarly, constants involving the norm of the covariance Σ are dimension-independent,
since we always have

∥Σ∥op ≤ ∥Σf∥op, Tr(Σ) ≤ Tr(Σf ),

where Σf is the covariance of the source f on the infinite-dimensional space. However, the constant688

CA = supA∈supp(pA) ∥A∥op is unbounded as d → ∞, because the limiting forward operator is689

unbounded on L2(Ω). Similarly, the constant ∥Σ−1∥op is unbounded as d → ∞. The precise growth690

of these constants depends on the distributions on the coefficients of the PDE; as a prototypical691

example, we have ∥A∥op = O(d2) for the Laplace operator under FEM discretization in 1D. It is thus692

important to consider the trade-offs between discretization and generalization error with respect to693

the dimension d; this is explored in Example 1 for the specific case of FEM discretization.694

G Auxiliary lemmas695

We make frequent use of the following lemma to compute expectations of products of empirical696

covariance matrices.697
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Lemma 4. Let {y1, . . . , yn} ⊆ Rd be iid samples from N(0,Σ) and assume that Σ = WΛWT ,
where Λ = diag(σ2

1 , . . . , σ
2
d). Let Yn = 1

n

∑n
k=1 yky

T
k associated to {y1, . . . , yn} and let K ∈ Rd×d

denote a deterministic symmetric matrix. Then

E[YnKYn] =
n+ 1

n
ΣKΣ+

TrΣ(K)

n
Σ,

where TrΣ(K) :=
∑d

ℓ=1 σ
2
ℓ ⟨Kφℓ, φℓ⟩ and φℓ := Weℓ denote the eigenvectors of Σ.698

Proof. Let us first consider the case that W = Id, so that the covariance is diagonal with entries699

σ2
1 , . . . , σ

2
d. Observe that700

E[(YnKYn)ij ] = E

[
d∑

ℓ,ℓ′=1

1

n2

(∑
k ̸=k′

⟨yk, ei⟩⟨yk′ , ej⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

+

n∑
k=1

⟨ei, yk⟩⟨ej , yk⟩⟨eℓ, yk⟩⟨eℓ′ , yk⟩Kℓ,ℓ′

)]
.

When i ̸= j, we compute that701

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk′ , ej⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

]
= σ2

i σ
2
jKi,j

and
d∑

ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk, ej⟩⟨yk, eℓ⟩⟨yk, eℓ′ , ⟩Kℓ,ℓ′

]
= 2σ2

i σ
2
jKi,j .

On the other hand, for i = j, we have
d∑

ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk′ , ei⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

]
= σ4

iKi,i

and702

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩2⟨yk, eℓ⟩⟨yk, eℓ′ , ⟩Kℓ,ℓ′

]
= 2σ4

iKi,i + σ2
i

d∑
ℓ=1

σ2
ℓKℓ,ℓ.

Putting everything together, we have shown that

E(YnKYn)i,j ] =
n+ 1

n
σ2
i σ

2
jKi,j + δij ·

TrΣ(K)

n
σ2
i .

The result then follows since (ΣKΣ)i,j = σ2
i σ

2
jKi,j . For general covariance Σ = WΛWT , we703

have YnKYn = W (ZnW
TKWZn)W

T , where Zn is the empirical covariance matrix associated to704

{WT y1, . . . ,W
T yn}. Noting that WT y ∼ N(0,Λ) for y ∼ N(0,Σ), we can apply the above result705

to WTKW :706

E[YnKYn] = WE[Zn(W
TKW )Zn]W

T

= W
(n+ 1

n
ΛWTKWΛ +

TrΣ(K)

n
Λ
)
WT

=
n+ 1

n
ΣKΣ+

TrΣ(K)

n
Σ.

707

We quickly put Lemma 4 to work to give a tractable expression for the population risk.708

Lemma 5. For θ = (P,Q), we have709

Rn(θ) := EA,Yn
[∥(PA−1YnQ−A−1)Σ1/2∥2F ] = EA[∥(PA−1ΣQ−A−1)Σ1/2∥2F ]

+
1

n
EA

[
Tr(PA−1ΣQΣQTΣA−1PT ) + TrΣ(QΣQT )Tr(PA−1ΣA−1PT )

]
.
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Proof. This follows from a direct computation of the expectation with respect to Yn :710

EA,Yn [∥(PA−1YnQ−A−1)Σ1/2∥2F ] = EA,Yn [Tr((PA−1YnQ−A−1)Σ(QTYnA
−1PT −A−1))]

= EA,Yn
[Tr(A−1ΣA−1 + PA−1YnQΣQTYnA

−1PT − PA−1YnQΣA−1 −A−1ΣQTYnA
−1PT )]

= EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1PT ]

+ EA,Yn
[Tr(PA−1YnQΣQTYnA

−1PT )]

= EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1PT ]

+
n+ 1

n
EA[Tr(PA−1ΣQΣQTΣA−1PT )] +

1

n
EA[TrΣ(QΣQT )Tr(PA−1ΣA−1PT )]

= EA[∥(PA−1ΣQ−A−1)Σ1/2∥2F ]

+
1

n
EA

[
Tr(PA−1ΣQΣQTΣA−1PT ) + TrΣ(QΣQT )Tr(PA−1ΣA−1PT )

]
,

where we used Lemma 4 to compute the expectation over Yn in the second-to-last line.711

It will also be useful to derive a simpler expression for the population risk Rm(θ) when θ belongs to712

the set ΘΣ = {(cId, c−1Σ−1) : c ∈ R\{0}}.713

Lemma 6. Let P = cId, Q = c−1Σ−1 for c ∈ R\{0}. Then

Rm(θ) =
d+ 1

n
EA

[
Tr
(
A−1ΣA−1

)]
.

Proof. Using Lemma 4 to compute the expectations defining Rm, we have714

Rm(θ) = EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1PT ]

+
n+ 1

n
EA[Tr(PA−1ΣQΣQTΣA−1PT )] +

1

n
EA[TrΣ(QΣQT )Tr(PA−1ΣA−1PT )].

Since P = cId and Q = c−1Σ−1, we have that PA−1ΣQΣA−1, A−1ΣQTΣA−1PT , and
PA−1ΣQΣQTΣA−1PT are all equal to A−1ΣA−1, and

EATrΣ(QΣQT )Tr(PA−1ΣA−1PT ) = EATrΣ(Σ−1)Tr(A−1ΣA−1).

Therefore, after some algebra, the population risk simplifies to

Rm(θ) =
1 + TrΣ(Σ−1)

n
EA

[
Tr
(
A−1ΣA−1

)]
.

Noting that TrΣ(Σ−1) = d, we conclude the expression for Rm(θ) as stated in the lemma.715

We quote the following result from Theorem 2.1 of Rudelson and Vershynin [2013].716

Lemma 7. [Gaussian concentration bound] Let y ∼ N(0,Σ). Then

P
{
∥y∥ ≥

√
Tr(Σ) + t

}
≤ 2 exp

(
− t2

C∥Σ∥op

)
,

where C > 0 is a constant independent of Σ and d.717

We use the following result to control the error between Qn and Σ−1.718

Lemma 8.719

Let Qn = B
(

n+1
n BΣ+ TrΣ(B)

n Σ
)−1

be as defined in Lemma 1. Assume that n satisfies

∥Σ−1∥op

∥∥∥Σ(Id + TrΣ(B)B−1
)∥∥∥

op

n
≤ 1

2
.

Then we can write
Qn = Σ−1 +

1

n
E1,

where E1 satisfies
∥E1∥ ≲ ∥Σ−1∥op∥Σ∥op

(
1 + TrΣ(B)

)
C2

A.
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Proof. Using some algebra, we find720

Qn = B
(n+ 1

n
BΣ+

TrΣ(B)

n
Σ
)−1

=
(n+ 1

n
Σ+

TrΣ(B)

n
ΣB−1

)−1

=
(
Σ+

1

n
Σ
(
Id+ TrΣ(B)B−1

))−1

.

By Lemma 9, we have

∥Qn − Σ−1∥op ≤ ∥Σ−1∥op ·
ϵ∗

1− ϵ∗
,

where

ϵ∗ =
∥Σ−1∥op

∥∥∥Σ(Id + TrΣ(B)B−1
)∥∥∥

op

n
.

This gives the final bound

∥Qn − Σ−1∥op ≲
∥Σ−1∥op

∥∥∥Σ(Id + TrΣ(B)B−1
)∥∥∥

op

n
≤

∥Σ−1∥op∥Σ∥op

(
1 + TrΣ(B)∥B−1∥op

)
n

,

Here, we used the bound ϵ
1−ϵ ≲ ϵ which holds for ϵ sufficiently small; in particular, for ϵ ∈ (0, 1/2),721

we have ϵ
1−ϵ ≤ 2ϵ.722

The following result, used to bound the inverse of a perturbed matrix, is a standard application of723

matrix power series.724

Lemma 9. Suppose that A is an invertible d× d matrix and D ∈ Rd×d satisfies ∥D∥op ≤ ϵ
∥A−1∥op

for some ϵ < 1. Then
∥(A+D)−1 −A−1∥op ≤ ∥A−1∥op ·

ϵ

1− ϵ
.

Proof. Note that A +D = (Id +DA−1)A. Under our assumption on D, we have ∥DA−1∥op ≤
∥D∥op∥A−1∥op < 1, which implies the series expansion

(I +DA−1)−1 =

∞∑
k=0

(−DA−1)k.

It follows that725

(A+D)−1 =
((

I +DA−1
)
A
)−1

= A−1
(
I +DA−1

)−1

= A−1
∑
k=0

(−DA−1)k.

In turn, this gives the bound726

|(A+D)−1 −A−1∥op =
∥∥∥A−1

∞∑
k=1

(−DA−1)k
∥∥∥

op

≤ ∥A−1∥op

∞∑
k=1

∥DA−1∥kop

≤ ∥A−1∥op

∞∑
k=1

ϵk

= ∥A−1∥op
ϵ

1− ϵ
.

727
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Recall that for a positive definite matrix Σ = WΛWT and a symmetric matrix K,

TrΣ(K) =

d∑
i=1

σ2
i ⟨Kφi, φi⟩,

where σ2
1 , . . . , σ

2
d are the eigenvalues of Σ and φi = Wei are the eigenvectors of Σ.728

Lemma 10. For any symmetric matrix K, we have

TrΣ(K) ≤ ∥K∥opTr(Σ).

Proof. For each 1 ≤ i ≤ d, we have ⟨Kφi, φi⟩ ≤ ∥Kφi∥∥φi∥ ≤ ∥K∥op. Therefore,

TrΣ(K) =

d∑
i=1

σ2
i ⟨Kφi, φi⟩ ≤ ∥K∥op

d∑
i=1

σ2
i = ∥K∥opTr(Σ).

729

In order to prove Theorem 5, we also need the following stability bound of TrΣ(K) with respect to730

perturbations of both Σ and K.731

Lemma 11. Let Σ = WΛWT and Σ̃ = W̃ Λ̃W̃T be two symmetric positive definite matrices and
K, K̃ two symmetric matrices, let {σ2

i }di=1 and {σ̃2
i }di=1 be the respective eigenvalues of Σ and Σ̃

and let {φi}di=1 and {φ̃i}di=1 be the respective eigenvectors. Then∣∣∣TrΣ(K)− TrΣ̃K̃
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op + ∥K∥op

(
∥Λ− Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

)
.

Proof. We have732

TrΣ(K)− TrΣ̃(K̃) ≤
∣∣∣TrΣ(K)− TrΣ̃(K)

∣∣∣+ ∣∣∣TrΣ̃(K − K̃)
∣∣∣. (35)

733

The second term in 35 can be bounded by an application of Lemma 10, which yields∣∣∣TrΣ̃(K − K̃)
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op.

To bound the first term in 35, we first use the estimate734 ∣∣∣TrΣ(K)− TrΣ̃(K)
∣∣∣ ≤ ∣∣∣ d∑

i=1

(
σ2
i − σ̃2

i

)
⟨Kφi, φi⟩

∣∣∣+ ∣∣∣ d∑
i=1

σ̃2
i

(
⟨K(φi − φ̃i), φi⟩+ ⟨Kφ̃i, φi − φ̃i⟩

)∣∣∣.
The first term above can be bounded by735 ∣∣∣ d∑

i=1

(
σ2
i − σ̃2

i

)
⟨Kφi, φi⟩

∣∣∣ ≤ ∥K∥op ·
d∑

i=1

∣∣∣σ2
i − σ̃2

i

∣∣∣ = ∥K∥op · ∥Λ− Λ̃∥1. (36)

To bound the second term in 36, note that for any 1 ≤ i ≤ d, we have

⟨K(φi − φ̃i, φi⟩ ≤ ∥K∥op∥φi − φi∥ ≤ ∥K∥op∥W − W̃∥op,

and similarly ⟨Kφ̃, φ− φ̃⟩ ≤ ∥K∥op∥W − W̃∥op. It therefore holds that736 ∣∣∣ d∑
i=1

σ̃2
i

(
⟨K(φi − φ̃i), φi⟩+ ⟨Kφ̃i, φi − φ̃i⟩

)∣∣∣ ≤ 2∥K∥opTr(Σ̃)∥W − W̃∥op.

Combining all terms yields the final estimate737 ∣∣∣TrΣ(K)− TrΣ̃K̃
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op + ∥K∥op

(
∥Λ− Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

)
.

The following lemma bounds the ’context mismatch error’, which arises in the proof of Theorem 1.738
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Lemma 12. The bound

sup
∥θ∥≤M

∣∣∣Rm(θ)−Rn(θ)
∣∣∣ ≤ 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣
holds.739

Proof. Denote θ = (P,Q). Recall that, as a direct consequence of Lemma 5, we have740

Rn(θ) = EA

[
Tr(A−1ΣA−1)− Tr(PA−1ΣQΣA−1)− Tr(A−1ΣQTΣA−1PT )

+
n+ 1

n
Tr(PA−1ΣQΣQTΣA−1PT ) +

TrΣ(QΣQT )

n
Tr(PA−1ΣA−1PT )

]
,

An analogous expression holds for Rm(θ). Therefore, for θ satisfying ∥θ∥ = max(∥P∥op, ∥Q∥op) ≤741

M, we have the bound742 ∣∣∣Rm(θ)−Rn(θ)
∣∣∣ = ∣∣∣ 1

n
− 1

m

∣∣∣∣∣∣EA

[
Tr(PA−1ΣQΣQTΣA−1PT ) + TrΣ(QΣQT )Tr(PA−1ΣA−1PT )

]∣∣∣
≤
∣∣∣ 1
n
− 1

m

∣∣∣ · 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ).

743

The following lemma is an adaptation of Wald’s consistency theorem of M-estimators [Van der Vaart,744

2000, Theorem 5.14]. We use it to prove the convergence in probability of empirical risk minimizers745

to population risk minimizers.746

Lemma 13. Let θ ∈ Rm, x ∈ Rd, and suppose ℓ(·, ·) : Rd ×Rm → [0,∞) is lower semicontinuous
in θ. Let m0 = minθE[ℓ(x, θ)] for some fixed distribution on x, and let Θ0 = argminθE[ℓ(x, θ)]. Let
{θN}N∈N be a collection of estimators such that supN ∥θN∥ < ∞ and

m0 − EN [ℓ(x, θ0)] = oP (1)

Then dist(θN ,Θ0)
P→ 0.747

Proposition 4. For any sequence {θ̂n,N}n,N∈N of minimizers of the empirical risk Rn,N with
supN ∥θ̂n,N∥ < ∞ for all n, we have

lim
n→∞

lim
Nto∞

dist(θ̂n,N ,M∞) = 0, in probability.

Proof. For each fixed n ∈ N. we can apply Lemma 13 to the empirical risk minimizer θ̂n,N . In this
context, the condition of the lemma amounts to the condition that Rn(θ∗)−Rn,N (θ̂n,N ) = oP (1),
for any θ∗ ∈ argminθRn, which is satisfied since

Rn(θ∗)−Rn,N (θ̂n,N ) =
(
Rn(θ∗)−Rn,N (θ∗)

)
+
(
Rn,N (θ∗)−Rn,N (θ̂n,N )

)
.

The first term tends to zero in probability by the law of large numbers, and the second term is
non-negative by the minimality of θ̂n,N . This proves that

lim
Nto∞

dist(θ̂n,N ,Mn) = 0, in probability,

where Mn = argminθRn(θ). Consequently, since Rn and R∞ are polynomials in θ such that the
coefficients of Rn converge to the coefficients of R∞ as n → ∞, we have by the triangle inequality
that

lim
n→∞

lim
N→∞

dist(θ̂n,N ,M∞) = 0, in probability.

748
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H Experimental setup749

H.1 In-domain generalization750

We recapitulate the experimental set-up described in Subsection 4.1 for our in-domain experiments.
We consider the one dimensional elliptic PDE (−∆+V (x))u(x) = f(x) on Ω = [0, 1] with Dirichlet
boundary condition. We assume that the source term is a Gaussian white noise, i.e. f = N(0, I),
where I denotes the identity operator. We discretize the PDE using Galerkin projection onto the
sine basis ϕk(x) = sin(kπx), k ∈ {1, . . . , d}. Furthermore, we assume that the potential V is
uniform random field that is obtained by dividing the domain into 2d+ 1 sub-intervals and in each
cell independently, the potential V takes values uniformly in [1, 2]. This leads to the linear system
Au = f , where f ∼ N(0, Id) and

Aij = k2π2δij + ⟨ϕi, V ϕj⟩L2 .

The prompts used for pre-training are then built on observations of the form751

((f1, A
−1f1), . . . , (fn, A

−1fn)).752

H.2 Out-of-domain generalization753

For out-of-domain generalization, we consider the PDE defined by −∇·(a(x)∇u(x))+V (x)u(x) =754

f(x) on [0, 1] with Dirichlet boundary conditions.755

Task shifts: During both training and inference, we assume that f is a centered Gaussian with756

covariance operator defined by (−∆+ cI)−β for some fixed c, β > 0. We parameterize a(x) as a log-757

normal random field, i.e., we write a(x) = eb(x), where b(x) is sampled from an infinite-dimensional758

Gaussian measure N(0, Cα,τ ), where Cα = (−∆+τI)−α. The parameter α governs the smoothness759

of the field. During training, we set α = 3, τ = 5, and during inference we use α = 1, 2, 4. For V ,760

we assume during training that V is piecewise constant, and the constant values are iid according to761

the uniform distribution U(1, 2). During inference, we shift the distribution on the pieces of V to762

U(3, 4), U(5, 10), and U(10, 20).763

Covariate shifts: We train the model to solve the PDE (1), where the source term is defined by a764

Gaussian measure N(0, C) for C = (−∆+ cI)−β , where c = β = 1 Then, at inference, we consider765

solving the same PDE, but where the source term is defined by N(0, 3C) or N(0, 5C); see Figure 3:766

C. We also consider covariate shifts defined by changing the parameters c and β in the covariance;767

see Figure 5 in Appendix I.768

I Additional numerical results769

In this section, we present some additional numerics. The plots in Figure 4: A.1-C.1 are identical770

to those in Figure 1: A-C, but Figure 1: A.2 - C.2 also show the slopes of the log-log plots as a771

function of the sample size. This makes it easier to compare the empirical scaling laws with those772

derived in Theorem 1. Figure 5 depicts the relative H1-error of the pre-trained transformer under773

covariate shifts with respect to a set of parameters in the covariance operator that are different from774

the one discussed in Section 4.2. More precisely, we recall that the source term f is sampled from a775

centered Gaussian measure on L2([0, 1]) with covariance operator given by (−∆+ cI)−β . During776

training, we set the parameters of the covariance as β = c = 1. We then shift the parameters of777

the covariance during inference, as defined by the legend of Figure 5: A. Figures 5: B shows the778

heat map of the relative H1-error with respect to the parameters α and τ . Note that the shift on the779

covariance operator of f defined in Figure 5 differs from the shift defined in Figure 3: C, where the780

shift on the covariance operator was defined by constant multiplication. Both cases validate Theorem781

5 and provide further evidence that pre-trained transformers are not robust with respect to covariate782

shifts. In particular, the prediction errors are more sensitive to the shifts in the amplitude of field and783

the smoothness parameter β than the shift in the shift parameter c. Figure 6 complements Figure 3784

with an additional heat map of the relative H1-error under tasks shift in the diffusion coefficient a785

with respect to the parameters α and τ . Figure 6 shows that the prediction errors under task shifts786

remain decently small in a wide range of parameter shifts.787
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Figure 4: Plots A.1-C.1 are identical to those shown in Figure 1. Plots A.2-C.2 show the slopes of the
error curves in the left column as functions of various sample sizes.

Figure 5: The figures show the relative H1-error of learning the linear systems under covariate shifts
in the covariance operator C = (−∆+ cI)−β with respect to the parameters c and β. During training,
we set c = β = 1. Figure A plots the error curves corresponding to four parameter pairs (β, c) as a
function of the testing prompt length. Figure B plots the errors for the data corresponding to a wide
range of parameter pairs.
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Figure 6: Figure A shows the relative H1 error as a function of the prompt length under shifts on
the distribution of a(x) (the training distribution is a(x) = eb(x) with b(x) ∼ N(0, (−∆+ τI)−α),
α = 3 and τ = 5). Figure B shows the corresponding heat map for the relative H1 error with respect
to the parameters α and τ.
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