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Abstract

In-context learning has been applied to001
knowledge-rich tasks such as question answer-002
ing. In such scenarios, in-context examples003
are used to trigger a behaviour in the language004
model: namely, it should surface information005
stored in its parametric knowledge. We study006
the construction of in-context example sets,007
with a focus on the parametric knowledge of008
the model regarding in-context examples. We009
identify ‘known’ examples, where models can010
correctly answer from its parametric knowl-011
edge, and ‘unknown’ ones. Our experiments012
show that prompting with ‘unknown’ examples013
decreases the performance, potentially as it en-014
courages hallucination rather than searching015
its parametric knowledge. Constructing an in-016
context example set that presents both known017
and unknown information performs the best018
across diverse settings. We perform analysis on019
three multi-answer question answering datasets,020
which allows us to further study answer set or-021
dering strategies based on the LM’s knowledge022
about each answer. Together, our study sheds023
lights on how to best construct in-context ex-024
ample sets for knowledge-rich tasks.025

1 Introduction026

Large language models (LLMs) can perform com-027

petitively on knowledge-rich tasks such as question028

answering via in-context demonstrations (Brown029

et al., 2020). In such scenarios, in-context exam-030

ples are used not only to teach the LLM the map-031

ping from inputs to outputs, but also to invoke the032

LLM’s parametric knowledge (Liu et al., 2021;033

Agrawal et al., 2022). Given such role of in-context034

examples, we examine how the LLM’s parametric035

knowledge of in-context examples impact the ef-036

fectiveness of in-context examples.037

Let’s imagine a very challenging in-context ex-038

ample set, where LLMs cannot answer any of in-039

context examples from its parametric knowledge.040

Question 
Where was ...

Answers

Unknown Examples

Question

  HalfKnown Examples

Question 
What are ...

Answers

Known Examples

Language Model

Who has scored a hat trick against spain? 
Answer Ordering

Language Model

Gary LinekerCristiano Ronaldo David Healy

Question 
Who is ...

Answers

Evaluation Query 
Who did liverpool beat in the champions league final?

In-Context Example

Tottenham

AC Milan Sevilla

Barcelona Dortmund

Gary Lineker Cristiano RonaldoDavid Healy

Known Unknown

Figure 1: We study how an LM’s knowledge of in-
context examples impacts their effectiveness. On the
top box, we construct three sets of in-context examples,
Unknown, HalfKnown, and Known, differing in its diffi-
culty (Section 3). On the bottom box, we construct two
in-context examples, which contain the same question
and answer set but answers are sorted differently: one
in increasing amount of parametric knowledge and one
in reverse (Section 4, 5).

For example, in-context examples can query knowl- 041

edge about recent events that happened after pre- 042

training. These in-context examples will teach the 043

model to generate plausible-looking responses, but 044

may encourage hallucination as a result. On the 045

other hand, if we only provide in-context examples 046

where LLM can easily answer, would LLM learn 047

to make an educated guess on more challenging 048

evaluation examples? 049

We pose a suite of research questions connect- 050

ing parametric knowledge of an LM on in-context 051

examples and its impact on model predictions. Fig- 052

ure 1 provides our study overview. We mainly 053

evaluate on multi-answer QA datasets (Min et al., 054

2020; Malaviya et al., 2023; Amouyal et al., 2022), 055

a challenging knowledge-rich task, and a math QA 056
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dataset (Cobbe et al., 2021), which requires reason-057

ing from LLM. Multi-answer QA datasets further058

allows a controlled study where we fix the question059

and vary a choice of answer from a set of valid an-060

swers, or how we order answers based on model’s061

parametric knowledge of individual answer.062

We first compare providing ‘known’ or ‘un-063

known’ in-context examples (Section 3). We oper-064

ationalize ‘known’ in-context examples as those065

LM can correctly predict with in-context learn-066

ing. We do not observe a clear winner between067

two choices, with results varying depending on the068

dataset. Throughout all datasets, however, pro-069

viding in-context examples that have a mixture070

of known and unknown information leads to su-071

perior performance compared to solely known or072

unknown in-context examples.073

Our next analysis focuses on the ordering of074

multi-answer set while fixing in-context example075

set (Section 4, 5). Compared to randomly ordering076

valid answers, semantically meaningful ordering077

brings substantial changes in model predictions.078

Even alphabetical ordering of answer set changes079

predicted answers substantially, prompting model080

to generate 1.5 more answer on average than when081

shown randomly sorted answer set. We further find082

that ordering the answer set of in-context exam-083

ples in descending order of model knowledge often084

leads to performance gains. Together, our work085

suggests best practices for crafting in-context ex-086

amples, with relation to its parametric knowledge,087

for knowledge-intensive tasks.088

2 Experimental Settings089

We first describe our evaluation setting which cen-090

ters around multi-answer QA datasets.091

2.1 Dataset092

We evaluate on three multi-answer QA datasets:093

(1) AmbigQA (Min et al., 2020) contains a094

subset of questions from the Natural Ques-095

tions (Kwiatkowski et al., 2019) dataset, namely096

those marked as ambiguous in the sense that de-097

pending on the interpretation they can have mul-098

tiple correct answers. (2) QAMPARI (Amouyal099

et al., 2022) consists of questions whose set of100

correct answers necessarily span multiple para-101

graphs in the document from which they were re-102

trieved. The dataset was originally developed to103

evaluating retrieval methods, and we repurpose it104

to create a challenging closed-book QA setting.105

(3) QUEST (Malaviya et al., 2023) dataset is con- 106

structed by formulating queries that define implicit 107

set operations over Wikipedia entities. We report 108

the dataset statistics in Appendix A. 109

2.2 Evaluation Metrics 110

Given a question q, the model will predict a set 111

of answers â = {a1, a2, ..., am}, where each ai = 112

(wi1 , wi2 , ..., wi|ai|
). is a sequence of tokens for a 113

single answer. We denote a∗ = {a∗1, a∗2, ..., a∗n} as 114

the ground truth answers to the same question. 115

We use standard token match metrics for evalu- 116

ating answer accuracy, Exact Match (EM) and F1- 117

score (Joshi et al., 2017). EM assigns a score of 1 if 118

the predicted answer equals to the ground truth an- 119

swer, while F1-score is calculated over the tokens 120

in the answer. We use metrics for multi-answers 121

introduced in prior work (Min et al., 2020), which 122

we describe below for completeness. 123

Answer-level Exact Match (F1EM) As predict- 124

ing the exact ground truth answer set correctly is 125

very challenging, we report the F1-score of answer- 126

level exact match, denoted as F1EM . For an an- 127

swer a and reference answers set S, we define a 128

correctness score c(f, a, S) = f(a, S) with respect 129

to function f . We use f(a, S) = 1(a ∈ S) here. 130

Then, we calculate the F1-score over set-level pre- 131

cision and recall according to c. 132

P =

∑m
i=1 c(f, ai, a

∗)

m
,R =

∑n
j=1 c(f, a

∗
j , â)

n
133

134

F1EM =
2× P ×R

P +R
135

Answer-level F1 (F1F1) The generated answer 136

may be semantically equivalent to one of the 137

ground truth answers, without being lexically 138

equivalent (e.g., "Friends" and "The TV show 139

Friends"). To account for such semantic equiva- 140

lences, we use F1 score between the tokens of 141

two answer strings instead of the exact match as a 142

correctness score, f(a, S) = maxa′∈S(F1(a, a′)). 143

Then, we compute F1-score over set-level precision 144

and recall as above. 145

Statistical Testing As our evaluation datasets are 146

relatively small, we conduct paired bootstrap tests 147

throughout most of our experiments, highlighting 148

results that outperform baseline with p value of 149

≤ 0.05. 150
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AmbigQAdev QAMPARIdev QUESTtest
Llama2 GPT-3.5 Llama2 GPT-3.5 Llama2 GPT-3.5

Random 18.0 / 28.9 20.0 / 31.6 10.3 / 20.8 15.0 / 28.5 3.4 / 11.0 6.0 / 16.6
Unknown 17.2*/ 28.2* 20.3*/ 33.1* 10.9*/ 22.0* 14.8 / 27.9* 3.7*/ 11.9* 5.7*/ 15.8*

HalfKnown 18.5*/ 29.5* 21.6*/ 33.2* 11.3*/ 22.6 15.5*/ 28.2* 4.0*/ 11.9* 6.3*/ 17.4*

Known 18.3*/ 29.0* 21.3*/ 33.1* 9.8 / 19.7 15.3 / 29.2* 3.9*/ 12.0* 5.4*/ 15.8

Table 1: Results comparing known example and unknown example. We present F1EM and then F1F1 in each cell.
Using half-known example outperforms other settings. We put ∗ on scores that are significantly different from that
of Random in-context examples set, and bold the highest performing set for each metric.

2.3 Base Models151

Language Model We evaluate on Llama2 (Tou-152

vron et al., 2023) (13B) language model mainly and153

additionally OPT (Zhang et al., 2022) (13B) and154

GPT-3.5-turbo models to evaluate generalization.155

In-context Example Retriever Prior work (Ru-156

bin et al., 2021) has established that using seman-157

tically similar in-context examples improves the158

performance of in-context learning significantly.159

Throughout our study, we often retrieve top 5 most160

similar in-context examples from the entire train-161

ing set for each dataset to form the prompt. We162

place in-context examples in decreasing order of163

similarity, such that the most similar example will164

be presented closest to the evaluation question. We165

measure example similarities by encoding each166

question with a SimCSE model (Gao et al., 2021)167

and computing their dot product.168

3 Known Examples vs. Unknown169

Examples170

Prior work has studied a few characteristics of suc-171

cessful in-context example set, such as label dis-172

tribution in the in-context example set (Min et al.,173

2022). We evaluate in-context examples with re-174

spect to model’s parametric knowledge, whether a175

“known" or “unknown" in-context example is bet-176

ter. We operationalize “known" ones as the ones177

where LLMs can get the answers correctly from its178

own parametric knowledge, and “unknown" ones179

as those that cannot be answerable from its para-180

metric knowledge.181

3.1 In-context Example Set Study182

We create four sets of in-context examples, differ-183

ing in its difficulty for a given LM.184

• UNKNOWN: examples for which the LM pos-185

sesses no knowledge of the answers. Op-186

erationally, these are examples when LM is187

prompted with five most similar examples, LM 188

will predict zero answer correctly (i.e. zero 189

F1EM score). 190

• RANDOM: randomly sampled examples. Since 191

the LM possesses no knowledge to majority of 192

the examples, these exhibit 0.18 F1EM score on 193

average. 194

• HALFKNOWN: examples for which the LM pos- 195

sesses roughly half knowledge of the answers 196

(i.e. 0.5 F1EM score). 197

• KNOWN: examples for which the LM possesses 198

full knowledge of the answers (i.e. 1.0 F1EM 199

score). 200

As prior work (Rubin et al., 2021) has estab- 201

lished that the similarity of in-context example 202

to the query correlates strongly with the model’s 203

performance, we control for this confounding fac- 204

tor. We compute the average similarity for each 205

in-context example candidate to other in-context 206

example candidates in the candidate set (training 207

set). Then, we choose a fixed number of in-context 208

examples whose average similarity value is close to 209

the median value.1 From this candidate set, we sam- 210

ple five examples for each condition and use them 211

as fixed in-context examples across all questions in 212

the evaluation dataset. To further reduce random- 213

ness, we sample multiple sets of five example set 214

for each condition and report the average perfor- 215

mance (by default, four sets are sampled and two 216

sets are sampled for HALFKNOWN and KNOWN 217

set in QUEST because of lack of examples with 218

sufficient model knowledge). 219

We present the performance of each in-context 220

example set for three datasets with Llama2 and 221

GPT-3.5 in Table 1. We observe the HALFKNOWN 222

1We choose 999 examples for AmbigQA and QAMPARI,
and 499 for QUEST (as QUEST only has 1251 training ex-
amples), half from below median, half from above median.
For QUEST, we could not find enough examples with where
model score full F1EM score, so we selected highest scoring
examples. The mid-range is (0.245, 0.264), (0.294, 0.296),
(0.326, 0.373) for AmbigQA, QAMPARI, and QUEST.
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Unknown Random HalfKnown Known

33.1 34.8 36.4 32.0

Table 2: The accuracy on GSM8K dataset. Accuracy is
expressed as the percentage of correct answers over the
entire test dataset, which consists of 1319 queries.

in-context example set achieves strong perfor-223

mance consistently on both LMs. Since HALF-224

KNOWN with in-context examples that contain both225

answers that the model knows and doesn’t know,226

we hypothesize this may successfully prompt LMs227

to leverage parametric knowledge and to make ed-228

ucated guesses.229

3.2 Analysis230

In this section, we provide two additional studies231

with Llama2 model.232

Extension to Math QA Dataset We explore233

constructing in-context example sets with varying234

“knownness" for single-answer QA task. We chose235

GSM8K (Cobbe et al., 2021) dataset, a commonly236

used dataset for investigating the reasoning capa-237

bilities of LLMs. GSM8K consists of 8,500 natural238

language questions requiring arithmetic reasoning239

for obtaining an answer. To evaluate parametric240

knowledge available to solve each training exam-241

ple with the LM, we prompt each example with the242

8-shot example set taken from Wei et al. (2022b)243

and classified as correct, wrong, or invalid, where244

invalid indicates that the model did not produce an245

answer. We construct four in-context example sets:246

• UNKNOWN set includes randomly selected six247

examples that model answered incorrectly.248

• RANDOM set includes randomly selected six ex-249

amples from entire training dataset. The LM cor-250

rectly answer questions in training set for 20%251

of questions.252

• HALFKNOWN set includes three correct and253

three wrong examples.254

• KNOWN set includes randomly selected six ex-255

amples that model answered correctly.256

We select six examples four times and report the257

averaged accuracy in Table 2. HALFKNOWN set258

achieves the highest accuracy, repeating the trend259

from multi-answer QA datasets.260

Single Answer Study In this study, we further261

control for variability in the question used in in-262

context examplars. We fix the in-context example263

Figure 2: Results of single answer study on Llama2
model. Only an answer at the x-th quantile of perplexi-
ties in decreasing order is presented in each in-context
example. As the model gets exposed to more known
answers, the performance tend to increase.

set and manipulate the multi-answer set, such that 264

we provide only one answer from multi answer 265

set for each in-context example. For example, if 266

a question in in-context example is “who was the 267

president of U.S.?", we can either provide a fa- 268

mous president or a lesser-known president as an 269

answer. Both are “correct" answers, but which 270

answer would lead to better model performance? 271

For each question in our evaluation set, we re- 272

trieve top five most similar examples in training set 273

as in-context examples. We will measure perplex- 274

ity of each answer to approximate how well LM 275

‘knows’ the answer. For each example, a pair of 276

question q and gold answer set {a∗1, a∗2, ...a∗n}, we 277

form a prefix p by prepending top five most simi- 278

lar examples to the query q.2 Then, we compute 279

the length normalized perplexity of each answer a∗i 280

and prefix p as follows: 281

PP (a∗i |p) =
|a∗i |∏
j=1

P (wij |p, wi1, ..., wi(j−1))
− 1

|a∗
i
| 282

We will order the gold answer set in descending 283

order of perplexity, and select an answer at the 284

x-th quantile. This way, an answer at the 100% 285

quantile represents the most ‘known’ answer, as its 286

perplexity is the lowest among the gold answers. 287

Figure 2 presents the F1EM score among vari- 288

ous x-th quantile. We observe a clear trend across 289

all three datasets, that using a ‘known’ answer leads 290

LM to generate more accurate answer. These in- 291

context examples are incomplete, only presenting 292

2We present an example prefix in Appendix G.

4



one answer while there are multiple valid answers.293

This leads to low performance overall, as LM will294

only generate a single answer (low recall). Yet, this295

experiment affirms that crafting in-context example296

by considering model’s parametric knowledge can297

impact the final performances.298

4 Ordering Answers Based on LM’s299

Knowledge300

Prior work suggests that the ordering of in-context301

examples significantly impacts the performance,302

with more relevant examples being most benefi-303

cial when placed last (Zhao et al., 2021). Yet, no304

prior work has studied the ordering of answers in-305

side each in-context example. We investigate this306

here. Following our previous study, our focus is307

on parametric knowledge of LMs being prompted.308

Specifically, we question whether placing answers309

based on how well the model knows about answers310

improves the performance.311

We present strategies to order the answer set of312

each example, a pair of question q and its gold an-313

swer set a∗ = {a∗1, a∗2, ..., a∗n}, which will be used314

as an in-context example.3 We present two base-315

lines and two methods (PERPLEXITY, GREEDY)316

for ordering the gold answer set of each in-context317

example based on model’s parametric knowlege.318

Baselines The RANDOM baseline randomly or-319

ders answers, and ALPHABET orders answers al-320

phabetically. While alphabetical ordering is not321

relevant to model’s parametric knowledge of the322

answer, prior work (Madaan et al., 2022) has shown323

that consistent ordering of labels can improve the324

performance of fine-tuned LLM’s predictions.325

Knowledge-Aware Ordering We decide order-326

ing based on the perplexity of individual answer327

given the prefix, or by performing greedy con-328

strained decoding given the prefix. We use the329

same prefix as in Section 3.2, a concatenation330

of five in-context examples. Each ordering strat-331

egy will yield two orderings of answers, which332

either sorts the answers in the descending order of333

model’s parametric knowledge or ascending order334

(denoted as REVERSE).335

• PERPLEXITY: We compute the length normal-336

ized perplexity of each answer a∗i and prefix p as337

3As reordering process is computationally expensive, pro-
portional to the number of answers, we only consider examples
that have less than 20 answers. This results in exclusion of
1 example in AmbigQA, 8094 examples in QAMPARI, and
none in QUEST.

Input: LM M, Prefix p, Gold answer set
a∗ = {a∗

1, . . . , a
∗
n}, where each gold answer is

a token sequence (i.e., a∗
i = (wi1 , . . . wi|a∗

i
|))

Output: Ordered answer indices of the gold answer set

1: I1 ← {w11 , ..., wn1}
2: u← 1
3: while I1 ̸= ∅ do
4: t← 0
5: repeat
6: t← t+ 1
7: ot ← argmaxw∈It

PM(w|p)
8: p← [p; ot]
9: It+1 ← {wit+1 |wit == ot}

10: until ∃a∗
ku

== (o1, . . . , ot) {this assigns ku the
index of completed answer}

11: I1 ← I1 \ {wku1}
12: u← u+ 1
13: return {k1, . . . , kn}

Figure 3: Algorithm for constrained decoding for
GREEDY ordering.

used in Section 3.2. Then, we sort the answers in 338

ascending order of these perplexities, resulting 339

in ‘known’ answers placed earlier. 340

• GREEDY: We arrange the gold answers by per- 341

forming a beam search decoding in a greedy man- 342

ner, constrained to permissible tokens. There will 343

be two loops, outer loop for selecting the first to- 344

ken of the generated answer, and inner loop for 345

completing the chosen first token. 346

Figure 3 presents the pesudocode, which we 347

explain below. Let’s denote a∗i as a sequence 348

of tokens (wi1 , wi2 , ..., wi|a∗
i
|) for the i-th an- 349

swer. At each decoding step t, a set of permis- 350

sible tokens It is constructed. Initially, I1 = 351

{w11 , w21 , ..., wn1}, a set of the first token for 352

each potential answer. We choose a token from 353

this set that has the highest likelihood given the 354

prompt, i.e., o1 = argmaxw∈I1P (w|p). Then, 355

we update the prefix p ← [p; o1]. This initiates 356

the inner loop, setting I2 = {wi2 |wi1 == o1} 357

as a set of second token of answers who starts 358

with the selected first token. This continues until 359

one of the answers ak1 is fully generated. Af- 360

terwards, we come back to the outer loop, and 361

the initial set of permissible tokens is set to be 362

I1 = {w11 , w21 , ..., wn1} \ {wt1} excluding a∗k1 363

which has been already generated. This process 364

continues until all answers has been generated, 365

with a time complexity of O(n|a∗i |). 366

5 Results for Answer Ordering Strategies 367

Having introduced strategies for ordering answers 368

for in-context examples, we study how this im- 369
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S
GREEDY REVERSE GREEDY PERPLEXITY REVERSE PERPLEXITY ALPHABET

AmbigQAdev 71.7 / 66.0 39.2 / 37.2 69.5 / 65.8 38.1 / 34.2 87.4 / 55.6
QAMPARIdev 69.6 / 60.0 42.2 / 41.0 58.1 / 54.1 46.3 / 45.9 95.0 / 58.9

De QAMPARItest 70.0 / 65.7 43.0 / 41.7 58.8 / 55.8 45.0 / 44.2 94.9 / 58.1
QUESTdev 78.4 / 63.9 47.2 / 45.8 57.1 / 51.5 49.3 / 48.5 95.7 / 52.1
QUESTtest 81.0 / 63.3 45.7 / 45.3 57.6 / 52.5 48.8 / 47.5 95.6 / 50.8

Average 74.1 43.5 60.2 45.5 93.7

Table 3: Percentage of generated answer ordering matching in-context examples answer ordering, where we use
Llama2 forM. In each cell, we present the percentage from using corresponding answer ordering strategy first
(ϕ(S,DS

t ,De,M)) and the percentage for randomly ordering answers for control (ϕ(S,DSrandom
t ,De,M)).

pacts the generation of answers with Llama2 and370

OPT. We first evaluate whether the generated an-371

swers mimic the ordering of answers in in-context372

examples. Then, we evaluate whether the order-373

ing impacts the size and the accuracy of predicted374

answer set. We also report whether two model’s375

parametric knowledges are in sync, meaning, if one376

model knows about one fact, does the other model377

likely to know the same fact? We overall observe378

such patterns, particularly for QUEST dataset.379

5.1 Does the predicted answer set follow the380

ordering of in-context answer set?381

Throughout in-context learning, the model is ex-382

pected to learn the pattern shown in the demonstra-383

tions. We assess the generated answers to observe384

whether the model has followed the particular or-385

dering shown in the in-context examples.386

Metric We introduce a metric ϕ(S,DSt

t ,De,M).387

This measures how much LMM follows the an-388

swer ordering strategy S on evaluation dataset389

De when using in-context examples from training390

dataset Dt whose answered are ordered according391

to St.4 When S matches St, this metric will mea-392

sure how much predicted outputs mimic the answer393

ordering strategy of in-context examples.394

Let’s denote âi = {ai1 , ai2 , ..., aim} be the list395

of predicted m answers for the i-th example of396

an evaluation dataset De, following its generation397

order from model M . We reorder the predicted an-398

swers from âi with respect to S and denote f(aij)399

to be the index of aij in the newly ordered set.400

For each consecutive answer pair in âi, we evalu-401

ate whether their order is preserved after reordering.402

Then we count the number of consecutive answer403

pairs that have preserved the ordering, which is404

Pi =
∑m−1

j=1 1(f(aij) < f(a(i(j+1)). Similarly,405

4We assume retrieving five most similar in-context exam-
ples for each evaluation example throughout this study.

Figure 4: ϕ(S,DS
t ,De,M) vs. the number of generated

answers across three datasets, where we use Llama2 for
M. Instead of the raw number of answer set, we report
the size difference compared to the answer set generated
from random ordering. As ϕ increases, which signifies
how faithfully LM follows the ordering strategy in in-
context examples, the model generates more answers.

Ni =
∑m−1

j=1 1(f(aij) > f(a(i(j+1)) represents 406

the number of pairs that violates the ordering. Then, 407

we compute micro average over De. 408

ϕ(S,DSt

t ,De,M) =
100 ·

∑
i∈De

Pi∑
i∈De

(Pi +Ni)
409

Results Table 3 presents the results for 410

Llama2 model, and we provide the results 411

for OPT model in Table 8 in the appendix. 412

For each ϕ(S,DS
t ,De,M), we also report 413

ϕ(S,DSrandom
t ,De,M) as a control. We found 414

that in every cell (except for one cell in Table 415

8), the first number is higher than the second 416

number, suggesting that the model follows the 417

answer ordering pattern presented in the in-context 418

examples. We found this is particularly true for 419

ALPHABET ordering, which is probably the easiest 420

pattern to learn. 421
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QAMPARI PEM REM F1EM F1F1

RANDOM 26.3 / 25.2 11.7 / 10.9 13.8 / 12.9 25.3 / 22.4
GREEDY 26.4 / 25.7 12.2 / 11.9* 14.2 / 14.0* 25.6 / 22.6
PERPLEXITY 26.7 / 26.4* 12.4*/ 11.6* 14.6*/ 13.9* 25.8 / 22.9
REVERSE GREEDY 26.5 / 25.8 11.6 / 10.1* 13.9 / 12.4 25.1 / 21.8
REVERSE PERPLEXITY 27.0 / 26.7* 11.7 / 11.0 14.0 / 13.3 25.2 / 22.5
ALPHABET 24.5*/ 23.5* 12.7*/ 11.8* 14.3 / 13.6 24.7 / 22.6

QUEST PEM REM F1EM F1F1

RANDOM 23.9 / 24.8 17.9 / 19.7 18.3 / 19.9 27.2 / 27.8
GREEDY 23.8 / 24.8 19.6*/ 20.8* 19.5*/ 20.6* 28.6*/ 28.4*

PERPLEXITY 24.3 / 24.8 19.3*/ 20.8* 19.4 / 20.6* 28.0 / 28.4*

REVERSE GREEDY 22.9 / 24.5 17.0 / 18.4* 17.4 / 18.8* 26.3 / 26.5*

REVERSE PERPLEXITY 23.7 / 24.5 17.3 / 19.4 17.7 / 19.4 26.4 / 27.1*

ALPHABET 20.5*/ 23.8* 17.6 / 20.4* 17.0 / 20.0 25.0*/ 27.0*

Table 4: QA performance for answer ordering strategies on Llama2 (13B) model. PEM and REM are precision and
recall for calculating F1EM . We present development set performance and then test set performance in each cell.
Blue color indicates improved performance compared to Random and red indicates the opposite. We put ∗ on scores
that are significantly different from that of Random ordering.

We further observe that the model is decoding422

answers such that it will present confident an-423

swer first (following the orders of GREEDY and424

PERPLEXITY), even when answers in in-context425

example is randomly ordered. Even after intro-426

ducing consistent ordering (presenting less confi-427

dent answer first), the model shows propensity to428

present confident answer first (values for REVERSE429

GREEDY and REVERSE PERPLEXITY are below430

chance (50) consistently).431

5.2 Does ordering impact the number of432

generated answers?433

Unlike in simpler QA tasks where there is exactly434

one gold answer, models have to decide how many435

answers to generate. Would consistent ordering of436

answers allow the model to generate more answers?437

We report the number of generated answers for438

each ordering strategy for Llama model in Figure 4.439

We find that generation order impacts the number440

of generated answer, with ALPHABET ordering441

substantially increasing the number of generated442

answers the most. The results further suggest that443

an ordering pattern that is easier for the model to444

learn can prompt LM to generate more answers.445

We report the results for OPT model in Figure 8446

which shows the same trends.5447

5.3 Does the ordering impact the QA448

performance?449

Lastly, we examine the end task (QA) performance450

of different answer ordering strategies. Table 4451

5We did not measure it for GPT-3.5 as it is costly.

presents the results on QAMPARI and QUEST 452

datasets on Llama2 model. Overall, we see that 453

answer ordering does not bring large impact in final 454

performance, but notice consistent patterns. Pre- 455

senting more confident answers first (GREEDY and 456

PERPLEXITY) yielded better results than their RE- 457

VERSE counterparts. GREEDY and PERPLEXITY 458

show gains mostly in recall, leading to increase in 459

both F1EM and F1F1. Arbitrary, yet consistent or- 460

dering such as ALPHABET does not improve model 461

performance, sometimes rather leading to lower 462

performance. The trend holds for AmbigQA (re- 463

sults presented in Table 7 in the appendix) though 464

not statistically significant. This might be caused 465

by smaller average answer set size compared to 466

that of other datasets (2-3 vs. 10+ answers). We 467

suggest ordering ‘known’ answer first in in-context 468

examples to improve model performance. 469

For OPT model (result can be found in Table 9 in 470

the appendix), we observe GREEDY and PERPLEX- 471

ITY show improved performance through gains in 472

recall for QUEST dataset but the results are mostly 473

random on other datasets. We plot the perplex- 474

ity of individual answer in train examples with 475

respect to two models in Figure 5. Overall, we 476

find that Llama2 contains more factual knowledge 477

than OPT, resulting in higher end task performance. 478

Two models exhibit similar knowledge for QUEST 479

as they strongly correlate, however OPT shows a 480

wider range of perplexities on other datasets, es- 481

pecially for answers that have low perplexity on 482

Llama2. We hypothesis carefully ordering between 483

answers will bring significant changes in end task 484

7



Figure 5: Plots of log answer perplexities from Llama2-13b (x-axis) and OPT-13b (y-axis). Horizontal and vertical
lines indicate the mean value of log perplexities with respect to each LM. In all datasets, Llama2 outperforms OPT
in its parametric knowledge, and the answers mostly report higher perplexity with OPT compared to Llama2.

performance only when model exhibits sufficient485

parametric knowledge of subset of answers. When486

the model is not familiar enough with the gold an-487

swers in in-context examples, knowledge-aware488

answer ordering might have limited effectiveness.489

5.4 Transfer to other base LMs490

So far we have measured the parametric knowledge491

on an language model and then use the same model492

for in-context prompting. In this section, we ex-493

periment using in-context example set constructed494

with parametric knowledge of one language model495

(Llama2), see how it impacts the generation of an-496

other language model (GPT-3.5). While different497

LMs have different pre-training data, the relative498

parametric knowledge might be similar for differ-499

ent LMs (e.g., famous entity to one LM remains500

famous for another LM). This also allows us to ex-501

periment with propriety black-box LM API easily,502

whose prediction probability is not always avail-503

able. We observe similar patterns as in the original504

experiments (GPT 3.5 results in Table 10 in the ap-505

pendix), but the effect size is much smaller and not506

significant, potentially because of the difference in507

parametric knowledge between two models.508

6 Related Work509

Analysis on In-context Learning Many prior510

works investigate factors that determine the perfor-511

mance of in-context learning (Brown et al., 2020),512

such as the composition of the pre-training dataset513

(Xie et al., 2022), size of language model (Wei514

et al., 2022a), number of pre-training tokens (Tou-515

vron et al., 2023), and specific fine-tuning strategy516

employed (Wei et al., 2021). More closely related517

to ours, one line of work particularly focuses on518

factors related to the in-context examples, includ-519

ing the choice of verbalizer and templates (Min520

et al., 2022), order of examples (Lu et al., 2022;521

Pezeshkpour and Hruschka, 2023), and the choice 522

of in-context examples (Liu et al., 2021; Rubin 523

et al., 2021; Agrawal et al., 2022; Ye et al., 2023). 524

While past work is mainly centered around classi- 525

fication tasks, our work studies the task of multi- 526

answer QA, with a focus on how LM’s paramet- 527

ric knowledge on in-context examples impact the 528

performance. In particular, our findings suggests 529

that answers with lower perplexity lead to more 530

accurate answer, which is congruent with recent 531

work that shows using lower perplexity prompts im- 532

proves model perplexity in general (Ye and Durrett, 533

2023; Iter et al., 2023; Gonen et al., 2022). 534

Multi-answer QA Real-world questions could 535

naturally have multiple answers when a question 536

is ambiguous (Min et al., 2020; Stelmakh et al., 537

2022), when a question is evaluated under differ- 538

ent temporal or geographical contexts (Zhang and 539

Choi, 2021), or when a question expects a set of 540

answers (Amouyal et al., 2022; Malaviya et al., 541

2023). While most prior work tackles multi-answer 542

QA in the open-book setting by retrieving from ex- 543

ternal corpus (Shao and Huang, 2022; Sun et al., 544

2023), we study the problem in the close-book set- 545

ting, which prompts LLMs to generate the answers 546

based on their parametric knowledge. 547

7 Conclusion 548

We present comprehensive studies on knowledge- 549

aware prompt design for multi-answer QA tasks. 550

Our findings underscore the benefits of having in- 551

context examples that the language model is fa- 552

miliar with. First, the HALFKNOWN set aids the 553

model in effectively accessing its parametric knowl- 554

edge. Second, employing knowledge-aware order- 555

ing of presenting answers in descending order of 556

the model’s knowledge enhances the overall pro- 557

cess of answer generation. 558
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Limitations559

Our study mainly focuses on multi-answer QA560

datasets. The analysis can be extended to a wide561

range of tasks that requires different types of rea-562

soning ability. Also, we find that the end task563

performance gets less impacted when random in-564

context examples are used (Appendix F). Further565

studies can be conducted with diverse in-context566

example retrieval methods as well as cover multiple567

languages.568
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A Dataset Statistics724

We report the dataset statistics in Table 5.725

B Similarity of In-Context Examples726

We calculate the similarity score of two in-context727

examples using SimCSE embeddings of each query.728

Figure 6 illustrates the similarity distributions729

across three datasets.730

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.00

0.02

0.04

0.06

0.08

0.10 AmbigQA
QAMPARI
QUEST

Figure 6: Similarity distributions among in-context ex-
ample candidates. The x-axis denotes embedding simi-
larity (with SimCSE (Gao et al., 2021) encoder) and the
y-axis indicates the percentage of each bin. The median
value for each dataset is 0.254, 0.295, 0.350.

C Experimental Details731

C.1 Resources732

All experiments are conducted on NVIDIA A40733

GPU. A single evaluation for AmbigQA and734

QUEST (development split) took around 20 min-735

utes. QAMPARI (development and test split) took736

around 1 hours. QUEST (test split) took around 2737

hours, due to its largest size.738

C.2 Statistical Testing739

We conduct paired bootstrap tests with 10000 boot-740

strap samples throughout our experiments (Sec-741

tion 2.2). Since we have multiple (two or four)742

in-context example sets for experiments in Section743

3, we randomly sample one in-context example set744

of each class (UNKNOWN, HALFKNOWN, KNOWN,745

and RANDOM) and conduct testing.746

D In-Context Example Set Study747

In Table 6, we present the results from Section 3.1748

for QAMPARItest and QUESTdev on Llama2.749

E Answer Ordering Strategies 750

E.1 Single Answer Study 751

We examine the effectiveness of answer ordering 752

strategies discussed at Section 4. We provide only 753

one answer at the forefront of each ordered an- 754

swers in in-context examples. Since an answer 755

from GREEDY and PERPLEXITY is ‘known’ to 756

the model, they may serve as an upper bound of 757

‘known’ answer, while REVERSE GREEDY and RE- 758

VERSE PERPLEXITY may serve as a lower bound. 759

RANDOM exists somewhere between these. The 760

disparities among these are clear, as shown in Fig- 761

ure 7. The results suggest that the model is able to 762

differentiate ordering strategies. 763

16

18

24
Greedy
Perplexity
Random
Reverse Greedy
Reverse Perplexity

AmbiQAdev QAMPARIdev QAMPARItest QUESTdev QUESTtest
0

4

8F1
EM

Figure 7: Answer-level Exact Match (F1EM ) score for
demonstrating only one frontmost answer of an ordering
methodology on Llama2 model.

E.2 AmbigQA results 764

We present the performance of answer ordering 765

strategies on AmbigQA dataset in Table 7. 766

E.3 Results on OPT 13B model 767

We present the results of experiments in Section 768

5 with OPT 13B model. With respect to follow- 769

ing the ordering strategy of in-context examples 770

(Section 5.1, 5.2), we find that the results hold for 771

OPT LLM model as well (Table 8). However, the 772

end task performance results are somewhat mixed 773

(Table 9, Figure 8). We observe consistent results 774

of end task performance on QUEST dataset but 775

the results are mostly random on AmbigQA and 776

QAMPARI dataset. 777

E.4 Results on GPT-3.5 model 778

GPT-3.5-turbo model tends to generate lengthy and 779

chatty outputs such as “There is not enough infor- 780
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AmbigQA QAMPARI QUEST
Train Dev. Train Dev. Test Train Dev. Test

# Examples 4,615 1,048 50,372 1,000 1,000 1,251 316 1,669
Avg. # of answers 2.8 3.1 14.0 13.2 13.1 10.9 10.7 10.7
Query length 46.9 46.7 67.8 57.7 55.8 54.0 52.2 53.3
Answer length 15.9 14.5 14.4 17.3 16.6 17.2 16.7 17.0
Answer sequence length 45.2 45.4 200.9 228.5 217.6 187.0 179.0 182.4
# Unique answers 10,684 2,999 455,469 12,462 12,464 10,160 3,050 12,367

Table 5: Dataset statistics. Lengths of query, answer, and answer sequence are measured by the length of each string.
# Unique answers counts unique answers within each split. Duplicated questions are removed from training sets.

QAMPARItest QUESTdev
F1EM F1F1 F1EM F1F1

Random 10.0 19.3 4.0 12.1
Unknown 10.6 20.2* 4.4* 13.2*

HalfKnown 11.2* 20.9* 4.9* 13.1*

Known 9.9 18.6 4.3* 12.8*

Table 6: Results comparing known example and un-
known example. We put ∗ on scores that are significantly
different from that of Random in-context examples set,
and bold the highest performing set for each metric.

Figure 8: ϕ(S,DS
t ,De,M) vs. the number of generated

answers across three datasets, where we use OPT (13B)
model forM.

mation given to answer this question". Therefore781

we add a short instruction as following: “Follow782

the answers pattern".783

Table 10 shows the results for experiment in784

Section 5.4. We do not experiment on GREEDY and785

REVERSE GREEDY because we do not think that786

a greedy ordering will be effectively transferred787

between different LMs.788

F Random Examples789

Prior works have highlighted the importance of790

relevant in-context examples, such as those based791

on similarity (Liu et al., 2021) and diversity (Levy792

et al., 2022). Yet, many studies do not do example 793

specific retrieval and use random examples for its 794

simplicity. Throughout our experiments (except for 795

Section 3.1 which constructs universal in-context 796

set for all examples in evaluation dataset), we re- 797

trieved similar in-context examples for each evalu- 798

ation example. How would our results hold if we 799

use randomly select in-context examples? 800

First, with randomly retrieved in-context exam- 801

ples, models still learn to follow the answer or- 802

dering strategy shown in in-context examples but 803

substantially less than when using similar incon- 804

text examples (Table 11). Second, we find that the 805

number of generated answer is affected similarly, 806

with using ALPHABET ordering leads to the high- 807

est number of generated answers. However, we 808

see invariant performances on end tasks (Table 12). 809

Carefully constructing relevant in-context exam- 810

ples is more meaningful than doing it for random 811

in-context examples. This suggests that if you do 812

not have large enough training examples to recover 813

semantically relevant in-context examples, careful 814

construction of prompt might not yield changes in 815

end task performance. 816

G Prompts 817

Throughout Table 13 to Table 16, we present the 818

prompts used in our experiments. 819
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AmbigQA PEM REM F1EM F1F1

RANDOM 27.1 17.9 20.0 31.3
GREEDY 27.2 18.5 20.5 31.7
PERPLEXITY 27.4 18.4 20.5 31.8
REVERSE GREEDY 27.1 17.8 20.1 31.5
REVERSE PERPLEXITY 27.3 17.9 20.2 31.8
ALPHABET 26.7 18.2 20.3 31.2

Table 7: QA performance on AmbigQA dataset on Llama2 model. The table is formatted the same as Table 4.

S
GREEDY REVERSE GREEDY PERPLEXITY REVERSE PERPLEXITY ALPHABET

AmbigQAdev 60.3 / 58.3 43.7 / 42.2 68.8 / 58.1 49.5 / 41.9 75.5 / 50.5
QAMPARIdev 62.8 / 52.1 39.0 / 39.6 60.0 / 55.1 52.1 / 44.9 87.8 / 52.0

De QAMPARItest 63.1 / 52.4 39.7 / 39.1 61.8 / 56.7 52.1 / 39.1 85.4 / 47.3
QUESTdev 70.5 / 49.1 44.0 / 42.5 60.0 / 57.1 53.1 / 42.9 91.1 / 67.6
QUESTtest 75.3 / 57.5 46.3 / 45.5 60.1 / 54.0 50.6 / 46.0 92.3 / 51.6

Average 66.4 42.5 62.1 51.5 86.4

Table 8: Percentage of generated answer ordering matching in-context examples answer ordering, where we use
OPT (13B) model forM. The table is formatted the same as Table 3.

AmbigQA PEM REM F1EM F1F1

RANDOM 13.1 10.3 10.7 19.4
GREEDY 13.1 10.3 10.7 19.5
PERPLEXITY 12.9 10.0 10.5 19.2
REVERSE GREEDY 12.9 9.9 10.5 19.1
REVERSE PERPLEXITY 13.2 10.7 11.0 19.3
ALPHABET 13.5 10.6 11.0 19.3

QAMPARI PEM REM F1EM F1F1

RANDOM 14.2 / 15.5 7.5 / 7.2 8.1 / 8.2 18.6 / 17.1
GREEDY 14.0 / 14.9 7.5 / 7.6 7.9 / 8.4 18.6 / 17.8
PERPLEXITY 14.7 / 15.6 7.8 / 7.7 8.3 / 8.5 19.0 / 17.6
REVERSE GREEDY 14.5 / 15.4 6.9*/ 6.7 7.6 / 7.9 18.0*/ 16.7
REVERSE PERPLEXITY 15.6*/ 15.9 7.6 / 7.2 8.4 / 8.3 18.8 / 16.9
ALPHABET 14.4 / 15.0 8.1*/ 7.9* 8.5 / 8.9* 18.7 / 17.4

QUEST PEM REM F1EM F1F1

RANDOM 14.6 / 18.4 11.6 / 16.1 12.0 / 15.6 21.3 / 23.8
GREEDY 15.7 / 18.6 16.6*/ 18.0* 14.9*/ 17.0* 23.7*/ 25.2*

PERPLEXITY 16.1 / 18.3 14.8*/ 17.0* 13.9*/ 16.2 22.6 / 24.5
REVERSE GREEDY 14.5 / 17.4* 10.7 / 13.8* 10.2 / 13.8* 19.6 / 22.1*

REVERSE PERPLEXITY 15.0 / 17.9 14.3*/ 15.4 13.2 / 15.1 22.4 / 23.5
ALPHABET 16.3*/ 17.6* 15.9*/ 17.3* 14.7*/ 16.3* 23.0*/ 24.1*

Table 9: QA performance for answer ordering strategies with OPT (13B) model. The table is formatted the same as
Table 4.
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AmbigQA PEM REM F1EM F1F1

RANDOM 28.2 22.1 23.1 35.7
PERPLEXITY 28.8 23.1* 23.9 36.5
REVERSE PERPLEXITY 29.0 22.3 23.5 35.3
ALPHABET 28.4 22.5 23.5 35.8

QAMPARI PEM REM F1EM F1F1

RANDOM 23.4 / 23.2 18.7 / 18.5 18.4 / 18.4 30.1 / 28.4
PERPLEXITY 23.9 / 22.9 19.5 / 19.1 18.9 / 18.5 30.4 / 29.1
REVERSE PERPLEXITY 23.2 / 23.1 18.2 / 18.5 18.2 / 18.3 30.2 / 28.5
ALPHABET 23.4 / 23.0 17.3*/ 17.8 17.8 / 18.0 29.0*/ 27.5

QUEST PEM REM F1EM F1F1

RANDOM 15.0 / 16.4 16.7 / 17.6 14.8 / 15.8 25.5 / 26.4
PERPLEXITY 16.6 / 17.0 17.7 / 18.6* 15.9 / 16.5* 26.8 / 26.8
REVERSE PERPLEXITY 16.2 / 16.5 17.5 / 17.8 15.5 / 15.9 26.6 / 26.4
ALPHABET 15.5 / 17.0 16.2 / 17.6 14.9 / 16.2 24.9 / 25.5*

Table 10: QA performance for answer ordering strategies with GPT-3.5 model. We use the particular answer
ordering from Llama2 and transfer to GPT-3.5 model. The table is formatted the same as Table 4 except we do not
experiment on GREEDY and REVERSE GREEDY.

S
GREEDY REVERSE GREEDY PERPLEXITY REVERSE PERPLEXITY ALPHABET

AmbigQAdev 69.6 / 68.9 33.7 / 32.8 70.2 / 70.5 68.9 / 29.5 83.6 / 62.5
QAMPARIdev 63.2 / 59.8 40.7 / 40.3 57.0 / 57.3 57.3 / 42.7 92.6 / 65.9

De QAMPARItest 61.2 / 61.4 43.5 / 43.2 57.5 / 56.4 57.5 / 43.6 92.7 / 60.7
QUESTdev 55.4 / 52.6 39.3 / 40.2 59.1 / 57.4 57.1 / 42.6 88.5 / 59.7
QUESTtest 56.8 / 54.0 38.9 / 40.1 56.9 / 56.4 56.4 / 43.6 86.7 / 60.9

Average 61.2 39.2 60.1 59.4 88.8

Table 11: Percentage of generated answer ordering matching in-context examples answer ordering, where we
employ random in-context examples instead of most similar examples. The table is formatted the same as Table 3.

AmbigQAdev QAMPARIdev QAMPARItest

F1EM F1F1 # ans F1EM F1F1 # ans F1EM F1F1 # ans

RANDOM 17.8 28.7 2.07 9.8 20.2 3.77 10.0 19.1 3.74
GREEDY 17.4 27.8 2.12 9.6 19.9 4.42 9.3 17.7 4.43
PERPLEXITY 17.9 28.3 2.11 9.7 20.0 3.99 9.7 18.6 4.03
REVERSE GREEDY 17.6 28.3 2.08 9.8 20.4 3.82 9.6 18.5 3.61
REVERSE PERPLEXITY 17.9 28.4 2.11 9.3 19.7 3.83 9.6 18.4 3.81
ALPHABET 17.9 28.5 2.22 9.8 19.8 5.48 9.6 17.5 5.41

QUESTdev QUESTtest

F1EM F1F1 # ans F1EM F1F1 # ans

RANDOM 4.4 12.9 3.42 3.5 11.2 3.41
GREEDY 4.7 12.5 4.51 3.4 10.9 4.49
PERPLEXITY 4.7 13.0 3.60 3.4 11.1 3.62
REVERSE GREEDY 4.0 12.5 3.51 3.3 11.1 3.11
REVERSE PERPLEXITY 4.6 12.6 3.09 3.6 11.4 3.28
ALPHABET 4.5 11.2 5.84 3.0 9.4 5.99

Table 12: QA performance for answer ordering strategies with random in-context examples. We bold the highest
performing set for each metric.
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Question Who is the current chairman of african union commission?

Gold Answers Jean Ping, Moussa Faki, Nkosazana Clarice Dlamini-Zuma

Prompt Question: Who is the chairman of the federal reserve?\nAnswers: Alan Greenspan | Ben Bernanke |
Janet Yellen\n\nQuestion: Who is the president of south africa now?\nAnswers: Thabo Mvuyelwa Mbeki
| Kgalema Petrus Motlanthe | JZ\n\nQuestion: Who is the present chairperson of national human rights
commission in india?\nAnswers: Justice K. G. Balakrishnan | H. L. Dattu | Cyriac Joseph\n\nQuestion:
Who appoints the chairman of the finance commission?\nAnswers: the President | Pranab Mukherjee |
Ram Nath Kovind | Pratibha Devisingh Patil\n\nQuestion: Who is the chairman of national commission
for woman of india?\nAnswers: Lalitha Kumaramangalam | Mamta Sharma | Girija Vyas\n\nQuestion:
Who is the current chairman of african union commission?\nAnswers:

Output Jean Ping | Nkosazana Dlamini-Zuma | Moussa Faki Mahamat\n

Table 13: Prompt example of AmbigQA

Question What movies did Scott Z. Burns screenwrite?

Gold Answers Contagion, No Time to Die, Pu-239, Side Effects, The Bourne Ultimatum, The Informant!, The Laundro-
mat, The Mercy, The Report

Prompt Question: Which film has Edward Burns as a member of its cast and had Edward Burns as screen-
writer?\nAnswers: Ash Wednesday | Purple Violets | She’s the One | Sidewalks of New York | The
Brothers McMullen | The Groomsmen | Newlyweds | Looking for Kitty | No Looking Back\n\nQuestion:
Scott Ziehl was a director for what genre of film?\nAnswers: action film | crime thriller | horror film
| monster film | drama\n\nQuestion: What are the publication dates of film that had Scott Z. Burns
as screenwriter?\nAnswers: 2007 | 2006 | 2009 | 2013 | 2014 | 2018 | 2019 | 2020\n\nQuestion: Who
are the cast members of film that had Scott Z. Burns as screenwriter?\nAnswers: Christoph Waltz
| Patton Oswalt | Marsha Stephanie Blake | Jocko Sims | David Costabile | Dan Fredenburgh | Ted
Levine | Ken Stott | Steven Berkoff\n\nQuestion: What are the genres of film that had Scott Z. Burns as
screenwriter?\nAnswers: action film | thriller film | comedy film | spy film | drama\n\nQuestion: What
movies did Scott Z. Burns screenwrite?\nAnswers:

Output Contagion | Side Effects | The Bourne Ultimatum | The Bourne Supremacy | The Bourne Identity\n

Table 14: Prompt example of QAMPARI

Question Mary Stewart novels

Gold Answers A Walk in Wolf Wood, Airs Above the Ground, My Brother Michael, The Crystal Cave, The Hollow
Hills, The Ivy Tree, The Last Enchantment, The Prince and the Pilgrim, The Wicked Day, The Wind Off
the Small Isles, This Rough Magic, Thornyhold, Touch Not the Cat, Wildfire at Midnight

Prompt Question: 1740s fantasy novels, 1747 books, or novels by Denis Diderot\nAnswers: Niels Klim’s
Underground Travels | The Sofa: A Moral Tale | Jacques the Fatalist | Rameau’s Nephew | La Re-
ligieuse | The Art of Cookery Made Plain and Easy | Letters from a Peruvian Woman | Madame de La
Carli\u00e8re | The Indiscreet Jewels | The Skeptic’s Walk | Zadig | Mystification\n\nQuestion: Sarah
Weeks novels\nAnswers: So B. It | Jumping the Scratch\n\nQuestion: 1858 British novels, 1872 fantasy
novels, or Novels by George MacDonald\nAnswers: At the Back of the North Wind | Alec Forbes of
Howglen | The Princess and the Goblin | David Elginbrod | The Day Boy and the Night Girl | Ranald
Bannerman’s Boyhood | The Princess and Curdie | Through the Looking-Glass | Phantastes | My Lady
Ludlow | Sir Gibbie | Mary Marston | Doctor Thorne | Lilith | Poor Dionis\n\nQuestion: Mark Clapham
novels\nAnswers: The Taking of Planet 5 | Twilight of the Gods | The Book of the War | Beige Planet
Mars | Hope\n\nQuestion: Marlon James Novels\nAnswers: A Brief History of Seven Killings | John
Crow’s Devil | The Book of Night Women\n\nQuestion: Mary Stewart novels\nAnswers:

Output The Crystal Cave | The Hollow Hills | The Last Enchantment | The Wicked Day\n

Table 15: Prompt example of QUEST
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Question Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate
meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final
meal of the day if the size of Wendi’s flock is 20 chickens?

Logical reasoning
and Answer

If each chicken eats 3 cups of feed per day, then for 20 chickens they would need 3*20=«3*20=60»60
cups of feed per day.\nIf she feeds the flock 15 cups of feed in the morning, and 25 cups in the afternoon,
then the final meal would require 60-15-25=«60-15-25=20»20 cups of chicken feed.\n#### 20

Prompt Question: Mabel lives 4500 steps directly east of Lake High school. Helen lives 3/4 the number of
steps that Mabel lives, directly west of the school. What’s the total number of steps Mabel will walk
to visit Helen so that they can do their assignments together?\nAnswer: Helen lives 3/4 * 4500 =
«3/4*4500=3375»3375 steps directly west of Lake High. To reach Helen, Mabel would have to walk to
4500 + 3375 = «4500+3375=7875»7875 steps. #### 7875\n\nQuestion: Mark is 7 years older than Amy,
who is 15. How old will Mark be in 5 years?\nAnswer: Mark is 15 years + 7 years = «15+7=22»22 years
old. In 5 years, he will be 22 years + 5 years = «22+5=27»27 years old. #### 27\n\nQuestion: Steve has
2 boxes of pencils with 12 pencils in each box. He gave Matt 3 more pencils than he gave to Lauren. If
Steve gave 6 pencils to Lauren, how many pencils does he have left?\nAnswer: Steve started with 2 * 12
= «2*12=24»24 pencils. He gave Matt 6 + 3 = «6+3=9»9 pencils. After giving away the pencils, Steve
will have 24 \u2013 9 \u2013 6 = «24-9-6=9»9 pencils left. #### 9\n\nQuestion: Mandy researched 42
med schools. She applied to 1/3 of the schools she researched and got into half of the schools where
she applied. How many schools was Mandy accepted to?\nAnswer: First find the number of schools
Mandy applied to: 42 med schools / 3 = «42/3=14»14 med schools Then divide that number by 2 to
find the number of schools where she was accepted: 14 med schools / 2 = «14/2=7»7 med schools ####
7\n\nQuestion: Rachel is stuffing envelopes. She has eight hours to complete the task, and there are
1,500 envelopes. In the first hour, Rachel stuffs 135 envelopes. The second hour she stuffs 141 envelopes.
How many envelopes will Rachel need to stuff per hour to finish the job?\nAnswer: Rachel has 1500
- 135 - 141 envelopes = «1500-135-141=1224»1224 envelopes remaining to stuff. Rachel has 8 hours
- 2 hours = «8-2=6»6 hours left to finish the task. Rachel needs to stuff 1224 envelopes / 6 hours =
«1224/6=204»204 envelopes per hour. #### 204\n\nQuestion: Samson is going to another town which
is 140 km away. He will use his car that uses ten liters of gasoline for a distance of 70 km. How many
liters of gasoline will Samson need for a one-way trip?\nAnswer: Samson will need 140 km/70 km =
«140/70=2»2 ten liters of gasoline for a one-way trip to a town. Therefore, he will need a total of 2 x
10 liters = «2*10=20»20 liters of gasoline. #### 20\n\nQuestion: Every day, Wendi feeds each of her
chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to help keep
them healthy. She gives the chickens their feed in three separate meals. In the morning, she gives her
flock of chickens 15 cups of feed. In the afternoon, she gives her chickens another 25 cups of feed. How
many cups of feed does she need to give her chickens in the final meal of the day if the size of Wendi’s
flock is 20 chickens?\nAnswer:

Output Wendi gives her chickens 15 cups of feed in the morning and 25 cups of feed in the afternoon. She needs
to give her chickens another 20 cups of feed in the final meal of the day. #### 20\n

Table 16: Prompt example of GSM8K
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